AT

Karlsruhe Institute of Technology

AVX Overhead Mitigation: OS Support for
Power-Limited Systems

Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

von der KIT-Fakultat fiir Informatik
des Karlsruher Instituts fiir Technologie (KIT)

genehmigte

Dissertation

Mathias Gottschlag, M.Sc.

aus Bad Driburg

Tag der miindlichen Priifung: 23. Juni 2023
Erster Referent: Prof. Dr. Frank Bellosa
Zweiter Referent: Prof. Dr. Timo Hénig







Acknowledgements

I am immensely grateful to my supervisor, Prof. Dr. Frank Bellosa, for giving me full
freedom when choosing my direction of research, yet always giving invaluable advice
whenever needed. His thorough feedback on paper and thesis drafts proved to be very
helpful, as did his focus on making sure that I always had the tools required for my
experiments. I would also like to extend my gratitude to Prof. Dr. Timo Hoénig for his
valuable commentary on drafts of this thesis and for his invitation to present my work at
the 2022 PEACHES workshop.

My heartfelt thanks go to the other members of the operating systems group for their
continued support throughout my work. Thorsten Groninger, Marius Hillenbrand, Jens
Kehne, Marc Rittinghaus, and Lukas Werling all had a large impact on this thesis, be it via
valuable insights during discussions or via thorough feedback on drafts and presentations.
In many cases, you taught me the finer points of the scientific crafts, for which I am very
grateful.

I am also deeply thankful for the assistance from Maximilian Hefl and my brother Bernd
Gottschlag, who dedicated many hours to proofreading this thesis. It is not only this direct
support that makes a thesis such as this one possible, though. Especially during the more
stressful phases of a PhD, emotional support is often equally valuable. In this sense, I
would like to extend my gratitude to all the friends who lifted my spirits over countless
rounds of board games and computer games.

I would also like to thank my parents, without whose continued guidance throughout
life I would have hardly been in a position where I would be able to perform such research
work. Finally, thank you Itzel for always being there and supporting me whenever I needed
support.






Abstract

In recent years, processors have become more and more power-limited. As a result, one of
the main goals of CPU frequency selection of recent processors is to maximize performance
under the given power constraints. On these processors, the choice of instructions has
started to affect operating frequencies as different instructions require different amounts
of energy. For example, current Intel server CPUs with support for the AVX2 and AVX-512
instruction set extensions reduce the frequency of individual cores that execute these
power-intensive SIMD instructions. The resulting temporary frequency reduction reduces
the throughput of the SIMD code itself, but also affect other, less power-intensive code
that is, for example, executed on another hardware thread of the same physical CPU core
at the same time.

This thesis focuses on the overhead that is caused by such situations where code
consisting only of simple instructions with little energy consumption is executed at sub-
optimal CPU frequencies. This remote AVX overhead has been reported to slow some
workloads down by up to 30% and presents a major challenge in the use of AVX2 and AVX-
512. As we show, remote AVX overhead is largely avoidable using OS-level techniques,
though.

In this thesis, we perform a thorough analysis of the origins of remote AVX overhead
and present a profiler that is able to accurately measure its performance impact. We then
demonstrate that existing frequency selection policies implemented by the CPU provide
little potential for improvement in most scenarios — instead, major performance gains are
possible via techniques implemented in the operating system. We present two scheduler
modifications to mitigate the impact of remote AVX overhead in different situations. First,
we show how limiting the use of AVX-512 to few CPU cores and migrating individual
tasks to appropriate cores can greatly reduce remote AVX overhead in heterogeneous
workloads involving AVX-512 code. Second, we show how prioritizing tasks affected by
remote AVX overhead can greatly improve performance isolation in the presence of remote
AVX overhead caused by either AVX2 or AVX-512 code.

Our work demonstrates the need for increased involvement of the operating system
with CPU frequency selection in current — and, potentially, future — power-limited systems.
In addition, we uncover a range of potential improvements to existing CPU designs that
would allow for even more effective mitigation of effects such as remote AVX overhead.

1ii






Zusammenfassung

In den vergangenen Jahren haben sich Prozessoren dahingehend entwickelt, dass sie mehr
und mehr durch ihre Leistungsabgabe begrenzt wurden. Aus diesem Grund ist eines der
Hauptziele der Strategie zur Auswahl der Frequenz aktueller Prozessoren, die Performan-
ce innerhalb der gegebenen Leistungsgrenzen zu maximieren. Auf diesen Prozessoren
beeinflusst deshalb die Wahl der Instruktionen mittlerweile oft die Betriebsfrequenz, da
unterschiedliche Instruktionen unterschiedlich viel Energie benétigen. Ein Beispiel da-
fir findet sich in aktuellen Intel-Server-Prozessoren mit Unterstiitzung fiir AVX2- und
AVX-512-Instruktionen. Diese Prozessoren reduzieren die Frequenz von CPU-Kernen,
die leistungsintensiven Code mit solchen SIMD-Instruktionen ausfithren. Die dadurch
verursachte Frequenzreduktion reduziert den Durchsatz dieses SIMD-Codes, beeinflusst
aber auch anderen weniger leistungsintensiven Code, der zum Beispiel gleichzeitig auf
einem anderen Hardware-Thread des gleichen physischen CPU-Kerns ausgefiihrt wird.

Diese Arbeit konzentriert sich auf die Kosten, die in solchen Situationen dadurch entste-
hen, dass einfacher, wenig leistungsintensiver Code mit einer suboptimalen CPU-Frequenz
ausgefithrt wird. Diese Kosten — Remote AVX Overhead genannt — verlangsamen laut fri-
herer Arbeiten manche Workloads um bis zu 30% und stellen eine grofle Herausforderung
bei der Verwendung von AVX2 und AVX-512 dar. Remote AVX Overhead kann jedoch,
wie wir zeigen, grofitenteils durch im Betriebssystem umgesetzte Techniken vermieden
werden.

In dieser Arbeit fithren wir eine umfangreiche Analyse der Griinde fiir Remote AVX
Overhead durch und beschreiben einen Profiler, der in der Lage ist, Remote AVX Over-
head mit hoher Genauigkeit zu quantifizieren. Zudem zeigen wir, dass die Frequenz-
auswahlstrategie existierender Prozessoren in den meisten Fallen wenig Potential fir
Performance-Verbesserungen bietet — stattdessen sind wesentliche Verbesserungen durch
Betriebssystemmodifikationen moglich. Wir beschreiben zwei Modifikationen des Sche-
dulers, die in unterschiedlichen Situationen dem Einfluss von Remote AVX Overhead
entgegenwirken. Zuerst zeigen wir, wie dadurch, dass AVX-512-Nutzung auf wenige Pro-
zessorkerne beschriankt wird und Tasks auf passende Kerne migriert werden, Remote AVX
Overhead stark reduziert wird, wenn Teile der ausgefiihrten Software AVX-512 verwenden.
Danach zeigen wir, wie eine Priorisierung von Tasks, die durch Remote AVX Overhead
verlangsamt werden, die Performance-Isolierung zwischen Tasks in Situationen verbessert,
wenn das System teilweise entweder AVX2 oder AVX-512 ausfiihrt.

Unsere Arbeit demonstriert, dass das Betriebssystem wesentlich starker in der Wahl von
Prozessorfrequenzen in aktuellen und zukiinftigen leistungslimitierten Systemen involviert
sein muss. Zudem zeigen wir eine Reihe von moglichen Verbesserungen existierender
Prozessorarchitekturen auf, die eine noch effektivere Reduktion des Einflusses von Effekten
wie Remote AVX Overhead ermoglichen wiirden.






Contents

Abstract

Zusammenfassung . . . . . . . ... e

1 Introduction . . . . . . . .

1.1
1.2
1.3
1.4

Scope . . .
Contributions . . . . . . . . ...
Student Theses and Publications . . . . . .. .. .. ... ... ......
Document Structure . . . . . . . . ...

2 Background: Power-Limited Computing . . . . . .. ... ... ... ......

2.1

2.2

2.3

Transistor Scaling and Processor Design . . . . ... ... ... .....
2.1.1  Pipelining and Out-Of-Order Processors . . . . .. ... ... ..
2.1.2  SIMD and Multi-Core Processors . . . . ... ... ........
CMOS Power Consumption . . . . ... . ... ... ... ...
2.2.1  Dynamic Voltage and Frequency Scaling . . . . . ... ... ...
222 VoltageGuardBand . .. ... ... ... ... . .......
223 DVFSPolicies . . . . ... ... . ...
Dennard Scaling and Leakage-Limited Scaling . . . . ... ... .....
2.3.1 Power-Limited DVFS . . . . . ... ... ... ... . ... ...
2.3.2  Energy-Efficient Accelerators . . . . ... ... ... .......
2.3.3 Heterogeneous Systems . . . .. ... ... ... ... .. ...,

3 Performance Implications of AVX2and AVX-512 . . . . . . ... ... ......

3.1
3.2

3.3

3.4
3.5

Local Impact on Performance and Power . . . . ... ... ... ... ..
Frequency Management for AVX2 and AVX-512 . . . ... ... ... ..
3.2.1 AVX2and AVX-512 Frequency Levels. . . . . ... ... ... ..
3.2.2 Frequency Reduction . . . . .. ... ... ... ... .. ...
3.23 Delayed Frequency Increase . . . . ... .. ... .........
AVX Overhead . . . .. . .. ... .
331 Local AVX Overhead . . . ... ... ... .............
3.3.2 Remote AVX Overhead . . . . . . ... ... ... .. ... ...
3.3.3 Implications of Frequency Change Delays . . . . ... ... ...
3.3.4 Implications of Hyper-Threading . . . ... ... ... ......
3.3.5 Impact on Real-World Software . . . ... ... ... ... ... ..
3.3.6  Impact of Speculative Execution. . . . . . ... ... .......
Information Available at Runtime . . . . . ... ... ... ... .....
Applicability to Other Microarchitectures . . . . . . ... ... ... ...

[ A

O O

10
15
16
17
18
21
23
25
27
29

33
34
36
37
38
42
44
44
46
47
48
48
52
52
55

vii



Contents

4 Runtime Profiling of AVX2 and AVX-5120verhead . . . . . . . . ... ... ... 57
4.1 Existing Profilers . . . . ... ... ... 58
4.2 Detecting Unnecessary Frequency Reduction . . . . . ... ... ... .. 60

4.2.1 Frequency Reduction Sampling . . . ... ... ... ....... 61
43 DVFS Performance Prediction Model . . . . ... ... ... ....... 64
431  ExistingModels . . . ... ... o 65
4.3.2  Stall Cycle Counting for Intel Skylake-SP . . . . . ... ... .. 68
44 Sourceof Overhead . . . . ... ... ... ... ... ... ... .. ... 70
45 Evaluation . . ... ... ... 71
45.1 Profiler Accuracy . . . . .. ... 72
4.5.2 Impact of Instrumentation Perturbation . . ... ... ... ... 73
45.3 ProfilerOverhead . . . . . . . . ... ... ... .. ........ 74
454 Overhead Source Analysis . . . . .. ... ............. 76
4.6 DiIScussion . . . . . ... 77
4.6.1 Optimized Frequency Reduction Sampling . . . . . ... ... .. 78
4.6.2 Proposed Hardware Changes . . . ... ... ........... 79

5 Viability of Improved DVFS Policies . . . . . . . . . .. ... ... .. ...... 83
5.1 Parallels to Dynamic Power Management . . . . . . ... ......... 84
5.2 Characterization of AVX Frequency Changes . . . . . ... ... ... .. 87

5.2.1  Frequency Reduction Overhead . . . . . .. ... ... ...... 87
5.2.2  Frequency Boost Overhead . . .. ... ... ... ........ 89
5.2.3  Break-Even Time of Frequency Changes . . . . . ... ... ... 91
5.3 Simulating Improved Frequency Scaling . . . . . .. ... ... ... ... 92
54 Discussion . . . . . . ... 96

6 Separating AVX-512 and Non-AVX-512Code . . . . . . .. ... ......... 99
6.1 Existing Mitigation Techniques . . . . . ... ... ... ... ...... 100
6.2 Core Specialization for AVX-512 Applications . . . . .. ... ... ... 102

6.2.1  Scheduling Policy . . . . ... ... ... ... .. ... .. ... 104
6.2.2 Number of AVX-512Cores . . . . . . ... ... ... ....... 106
6.2.3 Detecting AVX-512Code . . . . . . .. ... ... .. 107
6.2.4 Detecting Non-AVX-512Code . . . . . . ... ... ... ..... 110
6.3 Implementation . . ... ... ... ... ... . L L. 112
6.3.1 Choice of Scheduler . . . ... ... ... ... ... . ...... 112
6.3.2 Tripled RunQueues . ... ... ... ... ... ......... 113
6.3.3 AVX-512 Feature Detection . . ... ... ... .. .. ...... 114
6.4 Estimation of Effectiveness . . . . . .. ... ... ... 0L 115
6.5 Evaluation . .. ... ... ... .. 117
6.5.1 Effectiveness . . . . ... .. ... ... .. 117
6.52 Overhead . . ... ... ... ... ... . ... .. ... 121
6.5.3 Short Non-AVX-512Phases . . ... ... ... .......... 121
6.5.4 Estimation of Effectiveness . . . ... .. ... ... ..... .. 122
6.6 Discussion . . . ... .. ... L e 123
6.6.1 Reducing Migration Overhead . . . . . . . .. ... ... ... .. 123

viil



Contents

7.1
7.2
7.3
7.4

7.5
7.6

7.7

6.6.2 NUMASupport . . . . ... ... .
6.6.3 Imprecise Detection of Power-Intensive Code . . . . . . . .
6.6.4  Proposed Hardware Changes . . . .. ... .........
7 Scheduling for Improved Performance Isolation . . . . . . . . .. ... ..
Fairness and Performance Isolation . . ... ... ... .......
Quantifying AVX2 and AVX-512 Performance Isolation Problems
Metrics for Performance Isolation . . . . ... ... ... ......
Modified CPU Time Accounting . . . . . . . ... ... ... ....
7.4.1  Attribution of Frequency Changes . . ... ... ... ...
7.4.2  Estimating Remote AVX Overhead . . ... ... ... ...
7.4.3  Frequency Reduction Compensation . . ... ... .. ...
Thread Mobility . . . . ... ... ... ...
Evaluation . . . ... .. ... .. . ... .
7.6.1  Setup. . . ...
7.6.2  Performance Isolation . .. ... ... ... .........
763 Overhead . .. ... ... ... ... ... . ... ...,
7.6.4 ComparisonwithCFS . . ... ... ... .. ... . ....
Discussion . . . . ... ... ...
7.7.1  Attribution of Remote AVX Overhead . .. ... ... ...

8 Conclusion
Future Work . . . . . . . . . .

8.1

Bibliography
List of Figures

List of Tables

Listings

7.7.2 ThrottleCycles . . . . . ... ... ... ... ...
7.7.3  Compatibility with Profiling Tools . . . . .. ... ... ..
7.74 NUMA-Support . . . . . . .. .. .

X






1 Introduction

For a long time, technical progress in the area of semiconductor manufacturing meant
that the power density of processors at full load remained constant despite rising CPU
frequencies and exponentially increasing transistor density [64]. In recent years, this
trend stopped as CPU manufacturers were unable to further reduce operating voltages
— such voltage reduction had been central to the required continuous improvements to
power efficiency [243]. Increasing power densities soon reached the limits of economically
viable cooling solutions, requiring CPU manufacturers to reduce operating frequencies or
to leave parts of the chip inactive. In this scenario, the desire of CPU manufacturers to
maximize performance has led to the introduction of a range of techniques to fully exploit
the available power budget. For example, overall power dissipation is reduced when CPU
cores are disabled. Techniques such as Intel Turbo Boost [117] use the resulting thermal
headroom to increase CPU frequencies whenever some CPU cores are inactive.

Similarly, power dissipation depends on the energy consumption of individual instruc-
tions. To maximize performance for all types of code, a processor can execute code consist-
ing of only simple instructions at a higher frequency than code involving energy-intensive
complex instructions. The first widely available processors showing such behavior were
those using the Intel Haswell, Broadwell, and Skylake microarchitecture which reduced
their operating frequencies when executing code using AVX2 and AVX-512 instructions [76,
77, 213]. AVX2 and AVX-512 are single-instruction multiple-data (SIMD) instruction set
extensions operating on large 256-bit and 512-bit vector registers supporting, for example,
up to 16 32-bit multiplications in a single instruction. Due to the complexity of these
instructions, the Skylake-SP CPUs targeted by this thesis provide three discrete sets of op-
erating frequencies — a low “AVX-512” frequency level, an intermediate “AVX2” frequency
level, and a high non-AVX frequency level [113, p. 2-14]. Upon execution of 512-bit or
256-bit SIMD instructions, individual CPU cores switch to the appropriate level and revert
the change after a period where no such power-intensive instructions are executed.

This frequency management scheme results in increased performance for many work-
loads, in particular those only consisting of simple instructions with low energy consump-
tion. Such workloads would otherwise have to be executed at unnecessarily low frequency
levels. In other workloads, the frequency reduction triggered by AVX2 and AVX-512 - or,
in future CPUs, other similarly power-intensive instructions — has a substantial perfor-
mance impact. This performance impact is most pronounced when, as shown in Figure 1.1,
power-intensive code causes other, less power-intensive code to be executed at lower
frequencies, which we term remote frequency reduction. This remote frequency reduction
causes what we, in the case of AVX2 and AVX-512, call remote AVX overhead — code which
uses power-intensive instructions slows other code down. Remote AVX overhead has
been observed by related work in web server scenarios where AVX-512 in cryptography
routines caused the whole web server to be slowed down by 10% [141]. Remote AVX



1 Introduction

Same CPU core = non-AVX code slowed down

Frequency change delayed

= non-AVX code slowed down Code (HT 1) ’ Non-AVX | AVX-512 Non-AVX ‘
(V]
B ’ Non-AVX |Avx-512| Non-AVX ‘ Code (HT 2)’ Non-AvX ‘
[
0 0
o o
o Time - Time

(a) Frequency change delays (b) Hyper-threading

Figure 1.1: Power-intensive instructions such as AVX2 and AVX-512 cause the CPU fre-
quency to be temporarily reduced. This frequency reduction also affects less
power-intensive code that directly follows on the same hyper-thread (a) or that
is executed in parallel on the sibling hyper-thread (b) The resulting slowdown
is called remote AVX overhead.

overhead was also demonstrated in a multi-application scenario where a latency-critical
was slowed down by up to 30% by a concurrently running machine learning workload
using AVX-512 [55]. Apart from an obvious impact on overall system throughput, the
multi-application scenario also shows how remote AVX overhead impacts performance iso-
lation. Concurrently executed processes could easily cause the latency-critical application
to fail to meet real-time requirements.

In this thesis, we provide a detailed analysis of remote AVX overhead. We show how
it effects a wide range of workloads and why it is hard to predict as it is caused by the
interaction of multiple software components. Most importantly, though, we show that
the impact of remote AVX overhead can often be mitigated. To this end, we describe a
set of tools to quantify and prevent remote AVX overhead. First, we describe a profiler
that creates accurate estimates of the amount of remote AVX overhead by periodically
pausing individual CPU cores and analyzing the resulting frequency changes. This profiler
is able to measure remote AVX overhead with an average error of only 2.2 percentage
points and is able to determine the reason for remote AVX overhead. We also show how
information from the OS such as predictions of the time of the next AVX2 or AVX-512
phase can help the CPU to deploy better frequency scaling policies. While such improved
frequency scaling policies are very effective for systems without hyper-threading as they
remove frequency change delays, all server CPUs with support for AVX-512 also support
hyper-threading. For these systems, we therefore show how the scheduler can be modified
to reduce the co-scheduling of power-intensive and less power-intensive code that leads
to remote AVX overhead. Limiting AVX-512 code to a subset of the available CPU cores
results in an average reduction of remote AVX overhead by 90.4% over a wide range of
workloads. Due to limitations of existing CPUs, our prototype is ineffective for workloads
with AVX2 code, though. To mitigate the remaining performance isolation problems - in
particular those in workloads with AVX2 — caused by remote AVX overhead, we finally
describe how existing fair schedulers can be modified to prioritize tasks affected by remote
AVX overhead to counteract the slowdown. This approach is, for example, able to reduce
the average slowdown of non-AVX applications caused by AVX2 applications by 70.8%.



1.1 Scope

Our work leads to mainly two conclusions: First, the performance and performance
isolation improvements achieved by our prototypes show how important it is for the OS to
be designed with remote AVX overhead or similar effects in power-limited systems in mind.
We expect techniques such as those described in this thesis to become even more important
in the future as CPU manufacturers will likely integrate more accelerators similar to AVX-
512 into CPUs in an effort to improve performance and power efficiency [234]. Second,
our prototypes demonstrate the requirement for improved interfaces between the OS
and the CPU. For example, while our prototypes are functional, they often suffer from
limited effectiveness due to a lack of information provided by the CPU. We propose that
future CPUs should provide more fine-grained information about power requirements
of currently executed code and should give the OS more control about how and when
frequency changes occur.

1.1 Scope

This thesis focuses on the effects of AVX2 and AVX-512 instructions on the performance
of applications running on Skylake-SP server CPUs. Power-intensive instructions cause
similar effects on many other CPUs. Generally, these CPUs lie outside of the scope of this
thesis. For example, the predecessors to Skylake CPUs — Haswell and Broadwell CPUs -
also feature frequency reduction during execution of AVX2 code [76]. Also, later server
CPUs using the Cascade Lake or Ice Lake microarchitecture feature similar frequency
management as Skylake-SP CPUs [188], as do many recent desktop CPUs [58]. We expect
most of the techniques described in this thesis to be applicable to microarchitectures
similar to Skylake-SP.

Our findings are, in contrast, largely not applicable to other types of power-intensive
accelerators that behave differently to the function units used for AVX2 and AVX-512.
These function units are tightly coupled accelerators which are placed within individual
CPU cores [51]. Other accelerators such as graphics processing units (GPUs) are placed
further away from CPU cores and constitute loosely coupled accelerators. Despite their
different behavior — for example, these accelerators generally operate asynchronously to
the CPU - they sometimes show similar behavior. For example, on many mobile systems,
CPU cores and GPUs are placed on the same system-on-chip (SoC) and therefore share
their power budget. While the GPU is used, these SoCs often allocate less power to the
CPU cores causing a temporary frequency reduction [34]. This frequency management is
similar to that on current Intel server CPUs in that the CPU frequency is reduced when a
power-intensive accelerator is used. Therefore, similar effects become visible - for example,
performance isolation is impacted if a GPU application causes a CPU frequency reduction
that affects another application. Consequently SoCs with loosely coupled accelerators may
benefit from similar approaches as those presented in this thesis. However, the differences
between tightly and loosely coupled accelerators mean that our concrete designs are
not directly applicable. We therefore leave the development of similar techniques for
power-limited systems with loosely coupled accelerators as future work.



1 Introduction

1.2 Contributions

Our work makes the following contributions:

« We provide the most extensive analysis of effects of AVX2 and AVX-512 instructions
on performance to date. We introduce the distinction between local and remote
frequency reduction as well as between local and remote AVX overhead and provide
direct measurements of remote AVX overhead in a wide range of workloads. In
addition, we provide the most extensive analysis of the frequency transitions caused
by AVX2 and AVX-512 instructions do date.

« We describe a profiler to determine, for a given workload, magnitude and reasons
for the overhead caused by remote frequency reduction on existing hardware. Such
a profiler facilitates software development as it uncovers the negative performance
impact of AVX-512 code sections and enables software developers to make better
design decisions. The profiler also facilitates system administration as it provides
information on whether counter-measures against remote AVX overhead should be
applied.

« We show that counter-measures against remote AVX overhead largely have to be
implemented in software. Improved frequency scaling policies implemented in the
CPU itself show little potential for performance improvement on systems with
hyper-threading.

« We describe how core specialization can be used as a technique to reduce remote AVX
overhead by reducing the co-scheduling of power-intensive and less power-intensive
code. In addition, we describe a mechanism to identify power-intensive code based
on register accesses and heuristics. This mechanism is architecture-agnostic and can
be used on any CPU that is missing improved interfaces to identify power-intensive
code.

« We describe simple modifications to existing time-based fair schedulers which im-
prove performance isolation in situations where one task causes a frequency reduc-
tion during execution of another task. This approach complements other approaches
to mitigate the impact of remote AVX overhead which often are not 100% effective.

« We sketch a range of improvements to future power-limited CPUs which enable the
OS to apply more effective and efficient counter-measures against remote frequency
reduction.

1.3 Student Theses and Publications

Parts of this thesis are directly or indirectly based on previously published information. In
particular, we supervised a number of student theses which, to the extent described in the
following, influenced this thesis:



1.3 Student Theses and Publications

« In his bachelor’s thesis Analysis and Optimization of Dynamic Voltage and Frequency
Scaling for AVX Workloads Using a Software-Based Reimplementation [131], Yussuf
Khalil performed a detailed analysis of AVX-512 frequency management with a focus
on transitions between the frequency levels. While our experiments performed in
Section 3.2 to determine the steps involved in these frequency transitions use a
different setup, they are heavily influenced by his work. In addition, Yussuf Khalil
tested the viability of improved DVFS policies with eager frequency changes. We
used parts of the resulting source code for the experiments described in Chapter 5.

« In his bachelor’s thesis Stage-Aware Scheduling in a Library OS [216], Christian
Schwarz showed the viability to partition applications and to execute parts on
separate CPU cores. Despite chasing a radically different goal, our work on core
specialization in Chapter 6 greatly benefited from the resulting insights on cache
behavior and thread migration efficiency.

« In his master’s thesis Constructing a Library for Mitigating AVX-Induced Performance
Degradation, loannis Papamanoglou described how to implement core specializa-
tion for AVX-512 workloads completely in user-space [187]. Ultimately, his work
uncovered the limitations of such user-level designs. Consequently, our work on
core specialization in Chapter 6 is not based on his prototype but rather uses an
approach that operates on unmodified applications.

« In his master’s thesis Core Specialization for AVX-512 Using Fault-and-Migrate [35],
Peter Brantsch described improvements to core scheduling that allow the OS to
automatically detect AVX-512 code regions based on register use and additional
heuristics. While the mechanism to detect the beginning of AVX-512 phases had been
suggested in our earlier work [83, 84], Peter Brantsch came up with the innovative
method to detect the end of AVX-512 phases based on system calls performed by the
application. Parts of our implementation described in Chapter 6 are based on his
code.

« In his bachelor’s thesis Faires Scheduling unter Beachtung von AVX-512-Frequenzeffek-
ten [164], Philipp Machauer constructed a prototype for fair scheduling of workloads
where some tasks use AVX-512. His work based on the Linux Completely Fair
Scheduler showed the importance of fast load balancing. Our work in Chapter 7
does not use his prototype, but greatly benefits from his analysis concerning the
attribution of frequency changes.

Furthermore, parts of this thesis have previously been published as conference papers,
workshop papers, or technical reports:

+ In our workshop paper AVX Overhead Profiling: How Much Does Your Fast Code
Slow You Down? [87], we described a profiler that determines the amount of remote
AVX-512 overhead in heterogeneous workloads. The prototype described in this
paper forms the basis for our work in Chapter 4. Improvements described in this
thesis include the use of a DVFS performance prediction model and additional steps
to determine the reason for remote AVX overhead.



1 Introduction

« In our technical report Dim Silicon and the Case for Improved DVFS Policies [86], we
presented a simulation of improved DVFS policies based on information provided
by the operating system. This report constitutes a preliminary version of our work
presented in Chapter 5 and is partially based on the aforementioned bachelor’s
thesis by Yussuf Khalil. While the chapter of this thesis generally follows the same
methodology, we improve upon our earlier work by simulating systems with hyper-
threading with a wider range of workloads.

« In our conference paper Automatic Core Specialization for AVX-512 Applications [85],
we described how core specialization can mitigate remote AVX overhead by reducing
co-scheduling between AVX-512 and non-AVX-512 applications. The design pre-
sented in the paper forms the basis for the design presented in Chapter 6 of this
thesis. The main difference between the designs is that the variant described in this
thesis contains a technique to dynamically determine a suitable number of cores
reserved for AVX-512 tasks. We also presented earlier versions of the design as part
of a workshop paper [84] and a technical report [83]. These earlier versions formed
the basis for the master thesis by Peter Brantsch listed above.

« In our conference paper Fair Scheduling for AVX2 and AVX-512 Workloads [88], we
described a scheduler that improved fairness in workloads where the frequency
reduction caused by some AVX-512 or AVX2 tasks affects other non-AVX tasks.
The prototype of this scheduler forms the basis for the scheduler presented in
Chapter 7, although this thesis presents a slightly different CPU time accounting
policy that vastly improves performance isolation for tasks slowed down by remote
AVX overhead.

1.4 Document Structure

The remainder of this document is structured as follows. First, in Chapter 2, we describe the
technical background of our work. We describe the microarchitectural design of modern
CPUs as well as the developments that led to the current era of power-limited computing
before giving an overview over existing techniques to minimize energy consumption and
to maximize performance in this power-limited design regime. Then, in Chapter 3, we
describe the frequency scaling policy found in recent Intel CPUs with support for AVX-512
and analyze how it affects the performance of heterogeneous workloads consisting of both
power-intensive and low-power code. In particular, we quantify the amount of remote
AVX overhead for a wide range of workloads. As the technique used to measure remote
AVX overhead is labor-intensive, the following Chapter 4 presents an easy-to-use profiler
that is able to measure remote AVX overhead during execution of unmodified applications
with little overhead. In the remaining chapters we then present techniques to mitigate the
effects of remote AVX overhead. First, in Chapter 5, we show that the behavior of the CPU,
while not optimal, does not leave much room for improvement. We show that even DVFS
policies that use information by the OS about future workload behavior achieve hardly any
performance gains in systems with hyper-threading. In Chapter 6, in contrast, we present
core specialization as a technique to reduce co-scheduling between power-intensive and



1.4 Document Structure

low-power code and to reduce remote AVX overhead. As this approach is not able to
completely eliminate remote AVX overhead, either, Chapter 7 then presents a scheduling
approach to improve performance isolation and to minimize the performance impact on
low-power code even if that code is executed at sub-optimal frequencies. Finally, we
conclude our work in Chapter 8.






2 Background: Power-Limited Computing

Modern CPUs are the result of many decades of engineering and often feature very
complex behavior stemming from extensive hardware optimization. This behavior often
makes careful design of the operating system and of system software necessary to prevent
negative impact on system performance. For instance, modern CPUs autonomously
perform complex frequency management which can substantially reduce the performance
of some workloads if not taken into account by the software. Such frequency management
is implemented because it improves the performance of most other workloads. Systems
have become more and more power-limited due to restricted transistor scaling in the
last two decades, so modern CPUs commonly try to select frequencies that maximize
performance without violating power limits.

This thesis presents operating system techniques to circumvent some of the negative
side effects of this CPU-managed frequency scaling in power-limited systems. For better
understanding of the following chapters, this background section therefore briefly summa-
rizes the technological development which has led to this situation and provides a survey
of existing CPU power management techniques. Specifically, we first give a brief overview
over how transistor scaling according to Moore’s law has resulted in increasingly complex
processors (Section 2.1). We then summarize how dynamic voltage and frequency scaling
(DVFS) can be used to reduce the energy consumption of these processors (Section 2.2).
The focus of the techniques presented in the remainder of this thesis, however, lies not on
energy but on power, as in recent years the breakdown of Dennard scaling has resulted
in a rapid increase of power density. Therefore, we also describe this development as
well as existing power management techniques for power-limited systems (Section 2.3).
Readers who are well versed in processor architecture and power management are invited
to directly skip ahead to this last section.

2.1 Transistor Scaling and Processor Design

While early semiconductor research dates back to the late 19th century [36] and the first
transistors were developed in the late fourties of the 20th century [16, 219], the main
invention that paved the way for modern computers was that of the integrated circuit a
decade later [132]. The integrated circuit allowed the integration of many components on
one semiconductor device, which resulted in the commodification of computing. Whereas
early computers filled multiple cabinets and were only sold in low numbers [181, pp. 71 ff.],
miniaturization of electronics substantially reduced size and costs and made computers an
ubiquitous commodity.

Early during this process of miniaturization, Gordon Moore et al. made the observation
that the number of components per integrated circuit increased exponentially with time



2 Background: Power-Limited Computing

Input

—————— Output

Combinatorial logic

7777777777777777777777777777777

Memory
Present state Next state

1
Clock

Figure 2.1: Synchronous sequential logic consists of memory elements connected to inputs
and outputs of combinatorial logic [241, p. 147]. At the end of each clock
cycle, the memory elements capture the state of the combinatorial logic; the
data is then fed back into the combinatorial logic during the next clock cycle.
The longest signal delay through the combinatorial logic limits the maximum
operating frequency [241, p. 159].

and predicted continuous future exponential growth [175]. For most of the last decades,
this prediction — commonly known as Moore’s law — remained true, as the economics
of silicon manufacturing resulted in continuous transistor size reductions. Soon, large
numbers of transistors could be placed on a single chip, which allowed for the development
of single-chip microprocessors [181, p. 113].

Increasing transistor counts not only enabled increasingly complex circuit designs,
though. Reduced transistor sizes also resulted in increased energy efficiency as well as
reduced signal delays [64]. Reduced signal delays, in turn, increased the operating fre-
quencies of microprocessors. Modern microprocessors are mainly designed as synchronous
sequential logic which, as shown in Figure 2.1, consists of combinatorial logic as well as
memory elements which are connected to some of its outputs to capture its state [241,
p. 147]. The memory elements then feed this state back into the combinatorial logic at the
next clock cycle. Whereas combinatorial logic is asynchronous, meaning that it changes
its output whenever the input signals change, synchronous sequential logic performs oper-
ations synchronously to a clock. The maximum operating frequency of such synchronous
logic is mainly defined by the longest signal delay caused by the combinatorial logic as its
output signals have to be stable by the end of each clock cycle [241, p. 159].

2.1.1 Pipelining and Out-Of-Order Processors

The maximum throughput achieved by a processor depends not only on its maximum
operating frequency but also on the average number of instructions executed per clock
cycle. When Moore’s law made large numbers of transistors available, processor designers
therefore used these transistors to implement techniques which exploit instruction-level
parallelism (ILP) to let the processor execute multiple instructions from a single instruction
stream during each clock cycle.

Pipelining is the most basic technique to exploit ILP, where the processor is divided into
a number of pipeline stages [103, p. C-3] connected via memory elements commonly called

10



2.1 Transistor Scaling and Processor Design

Conditional/indirect branch
Speculative execution with branch prediction reduces stalls

Instruction Instruction Memory
Fetch Decode Access

Write Back

Read-after-write dependency
Caches and prefetchers reduce stalls

Figure 2.2: The two main reasons for pipeline stalls are conditional and indirect branches
as well as memory accesses.!Both cause dependencies between the stages of
pipelined processors such as the depicted five-stage RISC pipeline [103, pp. C-
5 ff.]. CPUs commonly utilize a combination of predictive techniques and
caching to improve performance.

pipeline registers [103, pp. C-8 f.]. Each pipeline stage corresponds to a different step during
the execution of an instruction, and all instructions travel through all pipeline stages in
order. This design allows multiple instructions to be processed by different pipeline stages
in parallel as long as there are no dependencies between the instructions preventing such
parallel execution. The parallel execution alone does not increase throughput as only one
instruction is admitted to the pipeline per cycle. Instead, pipelining increases throughput
by allowing substantially higher processor frequencies, as in general the signal delay of the
combinatorial logic within individual pipeline stages - i.e., between pipeline registers — is
much lower than that of the whole logic of a processor without pipelining. If the pipeline
stages are perfectly balanced - i.e., they cause identical signal delay — a processor with n
pipeline stages provides almost n times higher throughput provided that the processor is
able to admit one instruction per cycle to the pipeline.

In practice, however, the throughput of simple pipelined processors is much lower than
one instruction per cycle. As soon as one instruction depends on an earlier instruction,
the pipeline is stalled until the earlier instruction has been completed [103, p. C-11]. For
example, such dependencies occur if the former instruction reads the value written by the
latter, or the latter instruction is a branch instruction which specifies the address of the
former as shown in Figure 2.2. Pipeline stalls due to interdependence of pipeline stages
limit the amount of ILP that can be extracted by the processor and can substantially impact
performance.

The first point at which a pipeline can be stalled is when fetching instructions. In
particular, branches constitute a major source for pipeline stalls as the address of the next
instruction is only made available at some point during execution of the preceding branch
instruction. Unconditional direct branches only stall the pipeline briefly until instruction
decoding makes the branch target address available [103, pp. C-21 ff.]. Conditional or
indirect branches can potentially cause longer stalls, though, as the conditional branches
require the condition to be evaluated whereas the indirect branches require the branch

1 We ignore register dependencies - i.e., one instruction reads from a register that is written by an earlier
instruction — for non-memory operations as the resulting stalls are often comparably short. Many such
stalls can be mitigated via simple techniques such as forwarding [103, pp. C-16 f1.].

11



2 Background: Power-Limited Computing

target to be calculated. Modern processors therefore commonly try to predict branch
targets and whether conditional branches will be taken, even before the branch instructions
are decoded [103, pp. 203 f.]. Depending on the outcome of this prediction, the processors
then perform speculative execution of either the branch target or the instructions directly
following the branch [103, p. 183]. In the case of false predictions, the speculatively
executed instructions are discarded and execution resumes at the correct location. Modern
branch predictors are highly effective - for example, the Intel Xeon E5-2650L v3 CPU has
an average branch miss rate of only 2.198% when executing SPEC CPU2017 [159].

The second major source for pipeline stalls is when an operand to an operation is
provided by a preceding instruction, as then execution can only proceed once the operand
has been made available. Due to the high latency of external memory, memory accesses are
especially likely to stall subsequent instructions. Therefore, modern processors commonly
feature multiple levels of caches [103, pp. 72 f.] to reduce the average latency of memory
accesses and the number of resulting memory stall cycles. In addition, many processors
employ prefetchers to anticipate future memory accesses and to hide their latency [103,
p- 91]. As a result, while cache efficacy depends on working set size and access patterns,
modern caches often feature high overall hit rates. For example, on a system with an Intel
Core i7-8700K, 97% of all data accesses performed by the SPEC CPU2017 benchmarks can
be served from either L1, L2, or L3 cache [102]. Similarly, translation lookaside buffers
(TLBs) cache most virtual address translations to reduce the number of memory accesses
caused by page table walks [190, p. 502].

With such effective techniques to reduce the likeliness of pipeline stalls, the main
limiting factor remaining for the performance of simple pipelined processors is that they
can execute at most one instruction per cycle. To increase the amount of ILP that can be
exploited, modern processors therefore commonly implement multiple-issue designs [103,
pp- 193 f.]. These processors provide multiple functional units, i.e., different, potentially
specialized execution pipelines. Whenever dependencies between the instructions permit,
the processors can execute multiple instructions per cycle using these functional units.
Multiple-issue processors can be categorized as either statically scheduled or dynamically
scheduled processors depending on how the execution order of instructions is defined.

Static scheduling lets the compiler determine the execution order [103, p. 193]. Statically
scheduled processors can be further divided into statically scheduled superscalar processors
and very long instruction word (VLIW) processors.? For superscalar processors, the
compiler simply emits individual instructions without specifying whether instructions
are to be executed in parallel, so the hardware itself determines which instructions are
suitable for parallel execution [211]. Each cycle, statically scheduled superscalar processors
check for dependencies between instructions in hardware and submit as many consecutive
instructions to suitable functional units as possible [103, pp. 193 f.]. These processors are
commonly called in-order superscalar processors as the execution order of instructions
always equals their program order. The approach is commonly found in processor designs
such as the ARM Cortex-A8 for low-power applications or embedded devices due to its

2 For the sake of simplicity, we ignore Intel’s Explicitly Parallel Instruction Computing (EPIC) architecture
which combines many features of VLIW and statically scheduled superscalar processors [211]. Today, this
design is largely irrelevant due to its lack of economical success.

12



2.1 Transistor Scaling and Processor Design

Instruction fetch

. In-order issue
and decode unit

Reservation Reservation Reservation Reservation
station station station station
l i i i Out-of-order execute
Integer ALU Integer ALU Fl}')atlng Load/étore
point unit unit

Commit unit In-order commit

Figure 2.3: Simplified structure of an out-of-order processor - instructions are fetched and
decoded in program order and are then processed by one of several functional
units whenever all required operands are available [190].

low complexity when compared to dynamic scheduling. VLIW processors achieve even
lower hardware complexity by implementing the dependency checks in software. These
processors execute only one instruction word per cycle, so parallelism is achieved by
the compiler explicitly packing multiple instructions into such an instruction word. This
approach has mainly found success in digital signal processors (DSPs) such as the Texas
Instruments TMS320 C6000 series.

The main limitation of both types of static scheduling is that instructions are always
issued in program order [103, pp. 168 ff.]. As long as a dependency blocks execution of a
single instruction, none of the following instruction can be executed, which greatly limits
the amount of ILP that can be exploited. Therefore, most modern server and desktop
CPUs instead use dynamic out-of-order scheduling. These CPUs dynamically reorder
the instruction stream when reordering enables the parallel execution of instructions.
Figure 2.3 shows the simplified structure of an out-of-order superscalar processor. Whereas
instructions are still fetched and decoded in program order, they are then distributed to
reservation stations corresponding to the individual functional units [190, p. 399]. The
reservation stations then admit instructions to the functional units whenever all operands
are available. The order in which operations are performed by the functional units does not
necessarily match the instruction order in the program, so the results are not sent directly
to the register file but rather to a commit unit holding a reorder buffer. The commit unit
makes results visible in the register file only when it is safe to do so, i.e., when all preceding
instructions - in program order — have been executed. In this design, a full reorder buffer
or a full reservation station queue presents a potential bottleneck as no further instructions
can be processed, so processor designers have continuously increased the size of these
buffers. The Skylake microarchitecture found in the processors used throughout this thesis
provides a reorder buffer with 224 entries as well as a unified reservation station with a
queue of up to 97 pending instructions [223] and is, under ideal conditions, able to execute
five instructions per cycle [222].

13



2 Background: Power-Limited Computing

Similar to other pipelined processors, out-of-order processors heavily depend on tech-
niques such as caching or speculative execution for good performance [223]. In particular,
speculative execution is highly beneficial because the frontend - i.e., instruction fetch
and decode - is operating in program order, which means that stalls caused by control
flow instructions affect the whole processor [190, p. 399]. Memory instructions or other
instructions with potentially high latency, instead, do not always cause the whole proces-
sor to stall — due to its out-of-order nature, the processor can often simply select other
instructions for execution. If memory accesses cause particularly long stalls, there is often
not enough ILP left to hide the stalls, though. Out-of-order processors therefore generally
rely on techniques such as caching to increase available ILP.

For many applications even this combination of speculative execution and caching is
not enough to ensure good utilization of modern processor cores which can issue multiple
instructions per cycle [103, p. 223]. Therefore, most modern server or desktop processor
cores try to additionally exploit thread-level parallelism (TLP) via hardware multi-threading
to increase utilization. Hardware multi-threading allows multiple threads of execution
to share one processor core by presenting multiple logical processors to the operating
system. If one thread of execution stalls due to a memory access, another can use the idle
functional units.

Different methods exist to implement hardware multi-threading. For simple statically
scheduled processors, in particular, hardware multi-threading can be implemented via fine-
grained and coarse-grained multi-threading [103, p. 224]. Fine-grained multi-threading
switches to a different thread on each clock cycle, skipping threads that are stalled by, for
example, memory accesses. Coarse-grained multi-threading only switches to a different
thread on the occurrence of an expensive pipeline stall. Coarse-grained multi-threading is
unable to hide the cost of short stalls because each context switch to a different thread
incurs substantial cost as the processor pipeline has to be refilled. Most modern out-of-
order processors, instead, use a variant of fine-grained multi-threading called simultaneous
multi-threading (SMT) where during each clock cycle the processor frontend potentially
fetches and decodes instructions from multiple hardware threads and submits them to
the reservation stations [103, pp. 224 f.]. In contrast to coarse-grained multi-threading
and similar to fine-grained multi-threading, SMT can hide the cost of even short stalls
as no pipeline refills are required. Unlike fine-grained multi-threading, SMT can issue
instructions from multiple threads each cycle, thereby achieving better processor utilization
during cycles where single threads alone would not be able to provide the maximum amount
of instructions to the functional units. The Intel processors used in the remainder of this
thesis implement SMT, which Intel calls hyper-threading. In most cases, hyper-threading
substantially improves performance. For example, Hebbar and Milenkovi¢ [102] analyzed
the scalability of most benchmarks from the SPEC CPU2017 benchmark suite on a system
with an Intel Core i7-8700K CPU. When executing two threads per physical CPU core, they
measured an average speedup of 14% compared to a setup with one thread per physical
CPU core.

One downside of simultaneous multi-threading is that a hardware thread is able to affect
the performance of other hardware threads within the same physical processor core. In the
past, shared functional units and shared L1 caches have shown to pose a security risk as they
can be used to leak information via side channels and covert channels [247]. In addition, all

14



2.1 Transistor Scaling and Processor Design

hardware threads of a physical processor core are executed at the same processor frequency,
so frequency changes caused by one thread can be observed by the other threads which
allows for the creation of covert channels [125]. Such security considerations are out of
scope for this thesis. Instead, we cover the performance implications when - as described
below — a whole physical processor core has to reduce its operating frequency because
one hardware thread executes AVX2 or AVX-512 instructions.

2.1.2 SIMD and Multi-Core Processors

The techniques described above were made possible by the continuously increasing number
of transistors made available by miniaturization according to Moore’s law. Over time,
however, it became harder to improve the performance of individual processor cores.
Increasing numbers of transistors were required to extract more ILP — or, in the case
of hardware multi-threading, TLP — which resulted in an increasingly inefficient use of
silicon and power [103, p. 344]. This development is reflected by Pollack’s Rule which
states that the performance increase through microarchitectural improvements follows the
square root of the processor complexity [78]. As a result, processor designers additionally
started to exploit data-level parallelism and allowed for more thread-level parallelism via
multi-core designs.

Data-level parallelism (DLP) is present in situations when the same operation is applied
to many data items [103, p. 9]. The two main techniques to utilize data-level parallelism in
modern systems are external accelerators such as graphics processing units (GPUs) as well
as single instruction multiple data (SIMD) instruction set extensions [103, p. 262]. Given
the CPU-centric nature of this thesis, this section will focus on the latter. SIMD instruction
set extensions such as the x86 extensions MMX, SSE, AVX, AVX2, or AVX-512 provide
large vector registers as well as instructions operating on these registers [103, pp. 282 ff.].
The instructions commonly divide the registers into identically-sized segments and then
perform the same operation on each of the segments. For example, a single AVX-512 PADDQ
add instruction can perform up to eight 64-bit integer additions at the same time [115,
pp. 4-204 f.]. These operations are commonly performed in parallel by multiple ALUs
in order to increase performance [190, p. 649]. For problems with sufficient data-level
parallelism, such parallel execution provides substantial throughput increases at modest
power [41, 93, 112] and silicon area [223] increases. See Section 3.1 for a more detailed
discussion of the impact of AVX2 and AVX-512 in particular.

While SIMD sometimes provides large performance increases, many problems do not
provide the required data-level parallelism and do not benefit from SIMD. Modern proces-
sors therefore also try to exploit thread-level-parallelism by providing multiple processor
cores, as using transistors for additional cores ideally results in an almost linear per-
formance improvement, in contrast to the diminishing returns from microarchitectural
improvements mentioned above [78]. In practice, the performance gain of multi-core
scaling is limited by a number of factors. First, the cores share memory, yet the view of
memory has to be coherent among the cores, i.e., each write to memory must be made
visible to all cores [177, p. 11]. This requirement adds additional circuitry and increases the
rate of cache misses [103, p. 372] as well as the latency of memory accesses [103, p. 350].
Second and perhaps more importantly, the degree of parallelism in any given workload is

15



2 Background: Power-Limited Computing

H| PMOS transistors pull the output
up to the supply voltage

4 NMOS transistors pull the-
output down to ground

Figure 2.4: CMOS logic consists of a net of PMOS transistors and a net of NMOS transistors.
Ideally, only one of the two nets is conductive at any point in time leading to
very low static power consumption.

limited by Amdahl’s law which states that the fraction of sequential code in the workload -
either due to non-parallelizable parts of the problem or due to communication — limits the
achievable speedup through parallelization [103, p. 46]. The availability of workloads with
sufficient thread-level parallelism made processors with large core counts particularly
common in server systems, where the size of the datasets and the natural request-level
parallelism of the executed applications ensures good utilization of all cores [103, p. 344].
For example, recent Intel server CPUs provide up to 40 cores [75]. Multi-core architectures
have also become common in desktop and mobile systems, mainly as they also increase
power efficiency: As described in the next sections, a single core running at a frequency f
often requires substantially more energy than two cores running at f/2.

2.2 CMOS Power Consumption

While performance improvements required increasing CPU complexity, this complexity
had a substantial negative effect on power consumption. Modern processors are commonly
designed using complementary metal-oxide semiconductor (CMOS) circuits with power
consumption consisting of three components, namely leakage, short-circuit, and switching
power [186, p. 143]:3

P= Pleakage + Pshort—circuit + Pswitching (2-1)

These three components are caused by different effects during the operation of CMOS
circuits. CMOS logic consists of a net of PMOS transistors as well as a net of NMOS
transistors — at any time, either the PMOS transistors are supposed to pull the output
up to the supply voltage or the NMOS transistors are supposed to pull the output down
to 0V [174]. As an example, Figure 2.4 shows a simple inverter where the two nets
consist of only one transistor each. Ideally, at any time and in any part of the circuit, only
one of the two nets conducts current, leading to very low static power consumption. In

3 Sometimes, glitching power is named as a fourth component [186], representing the switching and
short-circuit power of unwanted temporary voltage level transitions caused by the delay of individual
signals. For the sake of clarity, we do not distinguish between necessary and unwanted transitions.

16



2.2 CMOS Power Consumption

practice, there are two exceptions [186, p. 143]: First, short-circuit power occurs during
signal transitions when both PMOS and NMOS nets conduct, creating a short-circuit
path between the power supply and 0V. Generally, short-circuit power has been much
lower than switching power [253]. Second, transistors allow small amounts of leakage
current even when switched off, which results in leakage power even in the absence of any
transistor switching activity. Leakage currents depend on the transistor threshold voltage,
with lower threshold voltages resulting in an exponential leakage power increase [221,
p- 1]. Section 2.3 discusses how this effect started to pose a substantial challenge in recent
years.

Throughout the history of CMOS circuits, chips were designed to provide low static
power — instead, switching power was responsible for a majority of the overall power
consumption.* Whenever a logic gate - i.e., a set of transistors that drive a single output —
switches its output value, the capacitance connected to the output of the gate needs to be
either charged or discharged [186, pp. 147 ff.].> The switching power consumption caused
by the resulting current depends on the total capacitance C, the operating voltage V, the
circuit’s operating frequency f and the average switching activity A [221, p. 11], with A
being the average chance of each individual transistor to switch its state during a single
clock cycle:

Pswitching = CVzAf (2.2)

These factors are not independent - in particular, voltage reductions result in an increase
of the signal delay caused by the circuits [44]. Increased delays, in turn, translate into
reduced frequencies because synchronous sequential logic requires signals to be stable at
the end of each clock period [241, p. 159] as described in Section 2.1. The following equa-
tion describes the approximate relationship between voltage V and maximum operating
frequency f, where t4.14y is the signal delay of the combinatorial logic, V3, is the threshold
voltage, and k is a factor derived from other transistor properties [107]:

cv

1
— > by = ke 2.3
fo TV = V)2 23

2.2.1 Dynamic Voltage and Frequency Scaling

Even before today’s era of power-limited computing, many use cases required energy
consumption to be efficient. In data centers, efficient energy usage results in reduced
power bills, while portable devices profit from increased battery life [221, p. 2]. If we take
the equation above and assume that the time required for a task is proportional to the
frequency, the energy consumed due to transistor switching activity is as follows, which
shows that reducing the operating voltage is a very effective method to reduce energy
consumption:

Eswitching = tPswitching =CV*A (2.4)

Before the year 2000, large transistors resulted in very low leakage currents [30]. Afterwards, it was
assumed that ideally “the leakage power should be only 30% of the dynamic power” [61].

Commonly, this capacitance consists of the output capacitance of the gate’s transistors, the gate capacitance
of any transistors connected to the gate, as well as the capacitance provided by the wiring between the
transistors [2, p. 523].

17



2 Background: Power-Limited Computing

Integrated voltage VR VR VR VR VR
regulators Veorel Veorez OVeore2s (3x) (4x)
Core 1 Core 2 Core 28
@fcore,1 @fcore,2 @fcore,28
Voltage/frequency Last-level caches, mesh interconnect
domains @ﬁzncore
DDR4 memory interface

Figure 2.5: Frequency and voltage domains of a 28-core Skylake-SP server CPU (simpli-
fied) [231]; the individual CPU cores can operate at different frequencies and
are provided with different voltages by integrated voltage regulators.

Even though a voltage reduction increases signal delays, it does not necessarily have to
occur at the expense of performance. In particular, while the combinatorial logic has a
critical path whose delay defines the maximum operating frequency, other paths are of
lower complexity and provide slack. Slack — the difference between the maximum time
and the actually required time - can be used to selectively reduce the supply voltage for
the gates constituting these paths without any impact on the frequency [240].

To our knowledge, such fine-grained techniques are rarely used in recent processors,
though, likely due to the additional complexity of the power supply circuitry. Instead,
these processors employ coarse-grained dynamic voltage and frequency scaling, where
either the whole chip or individual processor cores can be configured to operate at reduced
voltages and frequencies. For example, on recent x86 CPUs such as the ones targeted
by the remainder of this thesis the operating system can select a different frequency for
each core at runtime [231, 220]. These processors provide a separate voltage regulator for
each processor core as shown in Figure 2.5 to ensure efficient operation. Circuitry shared
between multiple cores such as last-level caches, shared interconnects, or input/output
circuitry is commonly operated at a separate, independent frequency.

2.2.2 Voltage Guard Band

Most commonly, the operating system requests a specific frequency or — on recent pro-
cessors with autonomous frequency management — a specific performance level from
individual cores [116, pp. 14-5 f.]. Voltage selection is then commonly performed by
the processor which automatically selects a suitable voltage whenever the frequency
changes. On some systems the operating system can manually configure the voltage when
requesting a specific frequency instead. In this case the manufacturer provides a table
with frequency/voltage pairs for the operating system to choose from. More fine-grained
frequency selection may be possible by interpolating between these pairs [166].

In either case, the voltage applied at the CPU’s transistors should be as low as possible
to minimize energy consumption, but high enough that the signal delay of the critical
path is lower than the clock period. Specifically, the voltage has to be high enough to fulfil
the condition from Equation 2.3 during any voltage droops, as only then stable operation

18



2.2 CMOS Power Consumption

Power

Time

\f/\y/\ﬁ

Time

Voltage

Figure 2.6: The voltage near logic circuits depends on power consumption. While the
resistance of supply lines causes the voltage to sag as long as current draw is
high (IR drop), the supply line’s inductivity and delayed reaction of the voltage
regulator to load changes causes temporary voltage droops whenever power
consumption increases (dI/dt droop).

is guaranteed. Determining a good voltage for a desired CPU frequency is made difficult
by two main challenges, though:

First, the voltage required by the transistors to achieve a specific operating frequency is
not constant. Instead, it depends on factors such as temperature or age, where older chips
or transistors operating at high temperatures require a higher voltage [46]. Traditionally,
CPU designers added a substantial voltage guardband® on top of the voltage required by
new, cool chips to arrive at a conservative selection of operating voltages that meet even
worst-case requirements. However, as shown by the equations above, any such voltage
increase has a negative impact on energy efficiency. Therefore, techniques have been
developed that make the voltage guardband as thin as possible by measuring the impact of
factors such as temperature and aging and letting the state of the the chip influence voltage
selection [46, 91]. These techniques have proven to be effective without any negative
impact on performance and are therefore of no relevance to the remainder of this thesis.

Second, the voltage present at the transistors often differs from the voltage provided by
the voltage regulator. The impedance of the supply line between the voltage regulators and
logic circuits causes the voltage applied to the logic circuits to fluctuate based on power
consumption. Related work differentiates between two effects, IR drop and dI/dt droop,
which are both depicted in Figure 2.6 [148, 153, 123]. IR drop is caused by the supply line’s
resistance — the voltage drop across this resistance is proportional to the current, so the
voltage at the logic circuits is reduced whenever power consumption is high [148]. dI/dT
droop is, instead, mainly caused by the supply line’s inductivity. Both cause the voltage to
temporarily sag when current draw is increased and — similar to effects described above -
require the introduction of a voltage guard band to ensure stable operation even when the
voltage is temporarily reduced. As both effects can be addressed with similar techniques,
we use the term voltage droops in the following to refer to both. The guardband required

6 Some sources alternatively use the phase timing guardband [148]. The underlying concept is identical, as
any voltage margin results in higher possible frequencies and therefore in timing margin.

19



2 Background: Power-Limited Computing

2 E— ] o
= = st
5 5 5 |
o o o
Time Time
& & &
o] V(]uard S < w
S S St
= = = Vmin
Time Time Time
(a) No mitigation (b) Reactive mitigation (c) Proactive mitigation

Figure 2.7: In the absence of voltage droop mitigation techniques, the system has to pro-
vide a large voltage guardband to prevent instability if load changes cause
voltage droops as shown in Figure (a). Figures (b) and (c) show systems which
exemplarily achieve reduced guardbands via temporary voltage boosts during
load changes. Until the voltage boost has been applied, the system is thottled to
prevent excessive voltage droops. Reactive voltage droop mitigation (b) applies
such techniques when a voltage droop is detected, whereas proactive voltage
droop mitigation (c) predicts load changes and applies the techniques before the
onset of a voltage droop. Due to its faster reaction time, proactive mitigation is
more effective.

to ensure stability in the face of voltage droops depends mainly on their scale, so a wide
range of techniques has been described to reduce voltage droops [46, 126, 148, 33].

Approaches to reduce voltage droops can be categorized as either reactive or proactive
approaches. The former category contains approaches which detect voltage droops and
then either temporarily boost the operating voltage [46, 148] or reduce the operating
frequency [148, 33]. If these reactions occur before the voltage has reached its minimum,
the scale of the voltage droop is limited, which allows operation with a reduced voltage
guardband as shown in Figure 2.7b. Between the beginning of the voltage droop event and
the onset of the mitigation techniques, some voltage droop remains, though. Especially on
systems with particularly large power consumption variability, reactive approaches may
be ineffective as the remaining voltage droop requires substantial voltage guardbands.

Therefore, some systems with support for very power-intensive vector operations em-
ploy proactive approaches against voltage droop, as on these systems vectorized code may
require substantially more power than non-vectorized code. For example, the Qualcomm
Hexagon DSP predicts future power consumption based on power-intensive microarchi-
tectural events [126]. The pipelined nature of modern processors means that such events
are often known multiple cycles in advance. When an impeding voltage droop is predicted,
the system can temporarily throttle the processor by, for example, modulating the clock
and skipping clock cycles to prevent the voltage droop. As throttling begins even before
the voltage droop has started, the power-intensive events covered by the technique do not
need to be taken into account at all when calculating the voltage guardband, resulting in
lower guardbands and more energy-efficient operation as shown in Figure 2.7c.

Such an approach is also implemented by the Intel CPUs targeted by this thesis [68]
which throttle individual processor cores whenever power-intensive AVX2 and AVX-

20



2.2 CMOS Power Consumption

512 SIMD instructions are executed. This throttling ends whenever a processor core has
increased its voltage guardband sufficiently for regular execution of these instructions. The
impact of the throttling on application performance is comparably low and is dominated by
other effects connected to the execution of AVX2 and AVX-512 instructions. In particular,
as shown in Chapter 3, the thermally limited nature of the CPUs causes AVX2 and AVX-
512 instructions to often trigger substantial frequency reductions to prevent excessive
long-term heat dissipation.

2.2.3 DVFS Policies

As described in the previous section, voltage selection is rarely a task performed by
software. The operating system’s DVFS policy instead requests specific frequencies - or,
as mentioned above, performance levels — from the CPU. The task of the DVFS policy is
commonly to minimize energy consumption given the performance constraints present
in the system. Here, the main opportunity stems from the fact that performance is not
always proportional to frequency [221, p. 11]. Instead, DVFS policies can often exploit
slack which reduces the impact of frequency reductions — while the CPU is not performing
useful work, any frequency reduction has no impact on performance.” There are two types
of slack utilized by different DVFS policies:

« Scheduling slack — commonly just called slack — occurs whenever the system finishes
tasks earlier than required [221, pp. 22 ff.]. Interactive tasks in particular are usually
associated with hard or soft deadlines, yet completing these tasks far ahead of their
deadline may not yield any additional benefit. In such scenarios, energy can be
saved by running the tasks at a lower frequency so that they exactly meet their
deadline [73]. In real-time systems, the scheduler typically knows about the worst-
case execution time as well as the deadline of all tasks and can therefore easily
calculate slack and select suitable frequencies for individual tasks [182]. In contrast,
such information about tasks is not available in general-purpose operating systems.
Instead, these operating systems can only observe the idle time caused by slack. They
therefore commonly base their estimate of slack on recent processor utilization [250],
potentially paired with additional information such as information on communication
or CPU utilization patterns [73]. An example for a utilization-based DVFS policy
can be found in the Linux kernel [37].

« Memory slack is caused by memory accesses that temporarily stall the processor [251].
If memory is operated at a constant frequency independent from the processor
frequency, as usually is the case for external DRAM, the constant latency of memory
accesses has less impact on performance at reduced processor frequencies. Therefore,
whenever energy savings shall be maximized while the system has to provide a
specific level of performance, memory-heavy code should be executed at a lower
frequency than CPU-bound code. Process cruise control [251], for example, estimates

7 This slack on the software level should not be confused with the definition of slack on the circuit level
given in Section 2.2. While the two concepts are very similar, circuit-level timing and the corresponding
slack are not visible to software.

21



2 Background: Power-Limited Computing

the degree to which individual threads are memory-bound. Whenever a different
thread is scheduled, the scheduler then configures the optimal processor frequency
for that thread.

While such an approach is able to exploit the differences between threads, its ef-
fectiveness is limited for heterogeneous tasks with memory-heavy and CPU-heavy
execution phases, as the approach fails to identify such phases if they are sufficiently
short. In addition, these phases are rarely aligned to context switches during which
the scheduler potentially changes the frequency. Therefore, techniques have been
proposed where a profiler identifies frequency-insensitive execution phases and a
compiler inserts code to trigger frequency changes at the beginning as well as the
end of these code regions [108, 257, 255].

Any approach which bases frequency selection on the amount of memory slack
requires a model to predict the performance impact of frequency changes. Process
cruise control, for example, uses the average number of memory requests and instruc-
tions per clock cycle to characterize threads [251]. This model is purely empirical -
it is based on the observation that the selected performance events correlate with the
impact of DVFS on performance. In contrast to mechanistic models [72], it does not
intend to accurately model any hardware properties. We present a more complete
description of the available modelling approaches in Section 4.3.

The goal of all these approaches to DVES is to conserve energy. In recent years, however,
the main use of DVFS has shifted. The increase of leakage power as described in the next
section sometimes has made race-to-halt policies viable which try to minimize energy
consumption by maximizing idle time [12]. At the same time, DVFS has become more
and more important to limit power dissipation during phases of high load as described
in the following section. This thesis completely focuses on this power-centric use of
DVFS in recent CPUs. We therefore ignore the DVFS policies listed above and commonly
assume that the system is fully utilized and operates at the highest available frequency.
Nevertheless, our work is influenced by the aforementioned work on DVFS policies in
mainly two places:

First, similar to energy-centric DVES policies based on instrumentation [108, 257, 255],
power-centric DVFS potentially causes frequent clock changes as it needs to react quickly
to power spikes [213]. In both cases, the maximum viable rate of frequency and voltage
changes is limited by the overhead caused by the changes [108]. In particular, before
or after each frequency change, the affected processor cores temporarily operate at sub-
optimal voltages while the voltage is gradually ramped up or down [189]. In addition,
frequency changes usually require the processor core to be temporarily halted while the
clock synthesizer - commonly a phase-locked loop (PLL) — is reconfigured to provide
the new frequency. The resulting impact on energy efficiency substantially impacts the
efficacy of fine-grained energy-centric DVES to the point where DVEFS policies fail to
achieve any energy reduction if they cause too many frequency transitions. Power-centric
DVES approaches such as the policies covered by this thesis experience very similar effects
when they boost the processor frequency whenever there is sufficient power headroom.
We analyze these effects in more depth in Section 5 where we show that each frequency

22



2.3 Dennard Scaling and Leakage-Limited Scaling

Table 2.1: Dennard scaling and leakage-limited scaling employ different scaling factors.
Dennard scaling provided constant power density despite smaller transistors and
rising frequencies [64]. Excessive leakage power at lower threshold voltages has
lead to leakage-limited scaling which suffers from increased power density [243].

Transistor property Dennard scaling Leakage-limited scaling

Size 1/S 1/S
Spatial density 52 S?
Capacitance 1/S 1/S
Frequency S S
Voltage 1/S 1
Power per transistor 1/5° 1
Power density 1 S?

boost is associated with a specific break-even time — if the frequency does not remain high
for long enough, the frequency boost will, overall, not result in increased performance.

Second, energy-centric DVFS policies and power-centric DVFS policies are equally
affected by memory slack. In particular, temporary frequency boosts for low-power code —
in our case, code without AVX2 and AVX-512 instructions — are less effective for programs
that experience many memory stalls than for CPU-limited programs. Both our profiler
described in Chapter 4 as well as our fair scheduler described in Chapter 7 need to estimate
this impact of frequency changes on performance. Therefore, we present a suitable model
in Section 4.3.

2.3 Dennard Scaling and Leakage-Limited Scaling

Initially, the main goal of DVFS was to reduce energy consumption — power, on the
contrary, was of no particular interest. DVFS policies commonly assumed that they could
select any frequency supported by the CPU. This situation changed with the breakdown
of Dennard scaling, after which power limits became increasingly problematic. Eventually,
power-centric DVFS became necessary to achieve good performance in the presence of
strict power limits as described in the following.

Dennard scaling is a set of scaling rules proposed by Dennard et al. [64] to keep power
density constant despite the rapidly increasing transistor density caused by miniaturization
according to Moore’s law. Table 2.1 lists these scaling rules. If, for example, the transistor
size is reduced by the factor S, the spatial transistor density is increased by S2. The reduced
dimensions result in a capacitance reduction which in turn allows the frequency to be
increased by S, resulting in a substantial performance boost. To keep power density
constant despite the frequency increase and the larger transistor count, the operating
voltage has to be reduced by S. As stated by Equation 2.3, the maximum frequency
depends on the difference between operating and threshold voltage, so this operating
voltage reduction requires a corresponding threshold voltage reduction.

23



2 Background: Power-Limited Computing

In the early 2000s, further threshold voltage reduction became more and more difficult
due to increasing leakage. The following equation describes the subthreshold leakage
current, where K; and n are experimentally derived, V is the supply voltage, W is the gate
width, Vp is the thermal voltage — 25mV at room temperature — and V}, is the threshold
voltage [133]:

Toup = KyWe ™/ (1 - ¢7V/%) (2.5)

As the equation shows, subthreshold leakage scales exponentially when the threshold
voltage is reduced [133]. Whereas previous CMOS circuits featured negligible leakage
power, in the early 2000s it reached the same order of magnitude as dynamic power. If this
trend had continued, leakage power would have quickly accounted for the vast majority
of overall power consumption. Instead, CPU designers started to balance dynamic power
against leakage power to minimize overall power. For example, leakage power constituted
30% of the power required by Intel Xeon Tulsa server CPUs introduced in 2006 [156], a
ratio which newer work states is ideal for optimized CPU designs [61]. The exponential
nature of subthreshold leakage mostly prevented any further substantial threshold voltage
reduction, leading to a modified set of scaling rules shown in Table 2.1. While transistors
kept becoming smaller, power per transistor remained constant, resulting in an overall
power density increase of 5% [243].

Any such continuous power density increase is unsustainable given the limits to power
consumption imposed by the cooling system. Even though some high-end processor cool-
ing solutions support power densities of up to 350 W/cm? [42], for most systems such solu-
tions are not economically viable. Instead, most processors are limited to 100 W/cm? [61].
This power density limit combined with the increasing power density of leakage-limited
scaling causes what is commonly called dark silicon [71]: The transistor properties pro-
vided by modern manufacturing processes do not allow the whole chip to be active during
operation at its maximum frequency. Assuming frequency and power density to be scaled
by S and S?, respectively, as suggested by the scaling rules listed above, maximum chip
area utilization would be scaled by 1/5? [234], i.e., the additional transistors made available
via miniaturization would be hardly usable for general-purpose logic that is commonly
active.

Forgoing any frequency increase when reducing transistor sizes in a bid to improve chip
area utilization does not solve this problem, either. In this case, due to the reduced margin
between operating voltage and threshold voltage, lower frequencies only result in minor
operating voltage reduction [233]. Consequently, not all of the additional transistors made
available via transistor size reduction can be used to implement, for example, additional
processor cores. It is commonly assumed that even such constant-frequency scaling results
in a maximum chip area utilization of only 1/S [234]. Nevertheless, stagnant processor
frequencies show that this approach to scaling has been chosen for virtually all processors
during the previous decade [61].

The increasing impact of dark silicon has started a new era of power-limited computing,
where power consumption commonly is the main limiting factor for performance, with
wide-reaching implications for system design. Specifically, this situation has led to mainly
two developments. First, a wide range of techniques has been developed to exploit any
available thermal headroom and to convert it into performance by temporarily increasing

24



2.3 Dennard Scaling and Leakage-Limited Scaling

either chip utilization or frequencies. Second, chip designers have increased their focus
on energy-efficient computing, as increased energy efficiency translates into increased
throughput. In the following, we give an overview over both to provide the reader with
the necessary background information for the remainder of this thesis.

2.3.1 Power-Limited DVFS

When performance is limited by power consumption, maximum performance is achieved
when the available power budget is fully utilized. Full utilization is achieved, as described
above, when only a fraction of the chip is operated at maximum frequency, but also when
larger parts of the chip are operated at substantially reduced frequencies, with the latter
setup commonly being called dim silicon [110].

On modern multi-core processors, chip utilization is mainly defined by the number
of active CPU cores — a multi-core system can either operate few active cores at high
frequencies or many active cores at low frequencies. On such a system, dim silicon
therefore presents a trade-off between single-core performance or multi-core throughput.
To ensure good performance for both single-threaded and multi-threaded code, techniques
such as EPI throttling [92], Intel Turbo Boost [117], AMD Turbo CORE [34], or AMD
Precision Boost 2 [5] therefore automatically select suitable CPU frequencies based on
the number of active cores. Recent Intel CPUs, for example, contain a central power
control unit [23] which periodically checks the number of active cores and adapts core
frequencies according to a predefined frequency table [118]. In contrast, AMD Precision
Boost 2 dynamically measures, among others, temperature and power [5] and executes a
closed-loop policy based on this input to increase core frequencies until the processor hits
any power limits [59].

These techniques move responsibility for frequency changes from the operating system
to the processor, as boost frequencies are commonly selected autonomously by the latter.
As a result, automatic frequency boosting techniques are completely oblivious to the
software executed on the system. In particular, the CPU does not have any information
about task priorities or critical paths in multi-threaded applications. Wamhoff et al. [246]
therefore propose giving applications user-space control over frequency selection to
boost, for example, lock holders or high-priority threads. While allowing applications
to influence frequency boosting can result in substantial performance improvements for
some workloads, such approaches are often limited by the CPU and the available interfaces
for frequency management. Whereas some AMD processors provide a suitable interface
for manual control over boost frequencies, most others, including Intel CPUs, do not.
In addition, as described in Section 2.2.3, high frequency transition latencies mean that
frequency boosting is not viable when applied for short periods of time. Gouicem et al. [89]
and Lawall et al. [145] showed that this is particularly problematic for workloads with
limited parallelism that spawn many rather short-lived tasks. Existing schedulers such
as the Linux Completely Fair Scheduler (CFS) often place such tasks on CPU cores that
were previously idle and were therefore configured to use a reduced frequency by the
CPU’s autonomous power management or by the operating system’s utilization-based
DVFS policy. Lawall et al. [145] show that the scheduler should ideally limit the set of
CPU cores used for workloads with limited parallelism, both because new tasks should be

25



2 Background: Power-Limited Computing

placed on CPU cores operating at a high frequency and because limiting the set of active
CPU cores often allows the CPU to select a higher turbo frequency.

In this thesis, we explore the viability of short-term frequency boosting and optimized
placement of tasks to improve performance in Chapters 5 and 6, respectively. However,
as described above we generally assume high system utilization and therefore ignore the
impact of variable numbers of active cores on the CPU frequency. Instead, we study the
two mechanisms in the context of variable power consumption of individual cores. As
described in Section 2.2, the power dissipation of CMOS circuits depends both on the
active chip area — affecting capacitance as well as leakage power — and on the switching
activity within. Both factors cause the power consumption of individual processor cores
to be highly variable. For example, parts of the processor can be power-gated - i.e.,
disconnected from the supply voltage — to reduce the active chip area when specific types
of instructions are not in use [29], resulting in power variation depending on instruction
set usage. Also, operations with different complexity trigger different switching activity.
For example, multiplications often require more power than additions or data transfer
instructions [172]. In some cases, even the values that are processed can have a substantial
impact on switching activity and therefore power consumption [213].

In general, potential power variation is especially high when processor cores support
both very simple instructions, such as bit manipulation on short integers, as well as very
complex instructions, such as SIMD floating point instructions. Such processors should
therefore take power consumption of individual CPU cores into account when selecting
frequencies and should, for example, boost their operating frequencies while executing
predominantly low-power code. Recent Intel CPUs with support for the very complex
AVX2 and AVX-512 instruction set extensions show an example for such behavior and often
execute AVX2 and AVX-512 code at much lower frequencies than less power-intensive
code as part of a feature named AVX Turbo Boost [118]. As this behavior — executing
power-intensive code at reduced frequencies - is the main target of our work, we dedicate
Chapter 3 to an extensive description of the behavior of these Intel CPUs as well as its
performance implications.

While AMD CPUs are outside the scope of this thesis, they also take the nature of the
workload into account when selecting CPU frequencies [212], as the closed-loop DVFS
policy of AMD Precision Boost 2 described above relies on measurements of actual CPU
power [5]. Whereas the implementation in Intel CPUs is integrated with the voltage droop
prevention techniques described in Section 2.2.2, AMD CPUs at the time of writing appear
to lack similar proactive mechanisms to reduce the voltage guardband. While patents
filed by Intel [29, 204, 201] currently cover Intel’s implementation of proactive voltage
guardband reduction and its integration with the DVFS policy, we expect that in the future
the increasing need for energy efficiency will force other manufacturers to implement
similar integrated techniques.

Finally, while all the techniques above commonly try to maximize performance while
staying within the thermal design power (TDP) limit, it is often possible to temporarily or
indefinitely exceed TDP. TDP specifies the required capabilities of the cooling solution
and represents the “highest expected sustainable power while running known power
intensive real applications” [70, p. 14]. In practice, TDP is a very conservative estimate of
the power dissipation possible without violating chip temperature limits. In particular,

26



2.3 Dennard Scaling and Leakage-Limited Scaling

temporary power spikes above TDP do not result in excessive chip temperature if the
initial chip temperature before the spike is low enough and if the thermal mass of the
cooling solution is able to temporarily buffer the excessive thermal energy. This effect is
utilized by computational sprinting [199] and Intel Turbo Boost 2.0 [206] which allow the
system to temporarily exceed its sustainable power limits by activating additional CPU
cores or by increasing CPU frequencies. The remainder of this thesis will largely ignore
such techniques as we target server systems where we assume CPU load to remain fairly
steady:.

In addition, the definition of the TDP is conservative in that it assumes an arbitrary
set of active CPU cores dissipating heat. If the active cores are evenly spread across the
chip, equal overall power dissipation results in much lower maximum temperatures than
if the cores are grouped together [185]. Similarly, a larger number of active CPU cores
causes a more even spread of power dissipation across the chip and allows for higher
power without violating temperature limits. This observation has led Pagani et al. to
propose thermal safe power (TSP) [185] as a dynamic power limit that takes the number
and placement of active cores into account. The practical relevance of TSP is shown by
AMD Precision Boost 2, for example, which takes thermal interaction between different
cores into account when selecting CPU frequencies [59]. TDP can also be exceeded if
the system frequently cycles between different CPU cores as shown by Hao et al. [104],
although we are unaware of any commercial implementation.

All aforementioned techniques to utilize available power budgets have in common that
they increase performance variability from system to system. If a system fully utilizes
its available power, performance inevitably depends on energy efficiency, yet variation
during chip manufacturing means that no two systems provide identical efficiency [215].
Recently, even nominally identical CPUs have therefore often started to provide measurably
different performance. While the differences are negligible for most software, they can
severely impact software written for large-scale high performance computing installations
consisting of thousands of processor cores or more. On such systems, a single slow CPU
can cause all other cores to idle while waiting for an intermediate result, which impacts
both energy efficiency and overall performance. In this thesis, we focus on single-socket
setups and ignore software written for such distributed systems. However, some of the
techniques presented in this thesis reduce performance variability and therefore may have
a positive impact at scale.

2.3.2 Energy-Efficient Accelerators

When performance is limited by power consumption, techniques which increase energy
efficiency usually also increase throughput, since the energy (E) per operation equals
power (P) divided by throughput (rate,, = n,,/t):

E tP P

— = = (2.6)
Nop Nop rate,p

As a result, a wide range of techniques to increase energy efficiency has been proposed
in recent years, ranging from new computing paradigms such as approximate comput-
ing [98] to increased use of specialized accelerators and new system architectures such as

27



2 Background: Power-Limited Computing

heterogeneous systems [234]. Whereas we are not aware of substantial use of approximate
computing, the latter two approaches increasingly find their way into commercial systems.

Accelerators have already been used to speed up specific calculations a long time before
the onset of the dark silicon era. For example, the performance necessary to render com-
plex 3D graphics has long been provided by specialized graphics processing units (GPUs).
As specialized accelerators can be optimized for specific problems, they have the potential
to provide substantially higher performance than an equivalent software implementation
on a general-purpose CPU. Besides the fixed-function 3D math and rasterization hardware
provided by early GPUs [168], examples include cryptography accelerators provided by
CPUs [105] or application-specific integrated circuits for machine learning [180]. Such
accelerators not only increase performance but also energy efficiency, as they commonly
either require fewer transistors, trigger less switching activity, or finish their task faster,
thereby consuming less energy due to leakage power. This increased efficiency makes
specialized accelerators a suitable addition to power-limited processors [234]. For ex-
ample, Venkatesh et al. [243] propose conservation cores — accelerators® which do not
focus on performance but instead mainly on efficiency - as a technique to substantially
improve performance despite increasing amounts of dark silicon. Automated analysis of
several applications allows the generation of a set of cores that is able to execute all these
applications efficiently [244].

Commonly, the degree of specialization correlates with energy efficiency, with accelera-
tors specialized for a specific workload providing the highest energy savings. However,
even accelerators targeting a wider class of workloads or problems can cause substantial
performance and energy efficiency improvements, albeit to a lesser degree. For example,
SIMD units - as described in Section 2.1.2 — as well as general-purpose graphics processing
units support a wide range of data-parallel problems at greater performance and commonly
higher energy efficiency than CPUs [41, 109]. Even greater flexibility can be achieved by
making the accelerators reconfigurable, allowing the users to place arbitrary data paths in
reconfigurable fabric such as FPGAs [51].

For power-limited general-purpose systems, an advantage of specialized accelerators is
that they are often inactive for most code [100]. Therefore, they can be placed in silicon that
would otherwise have to remain unused due to power limits. Applications that do not use
the accelerator are not negatively affected as power to the accelerator can be disconnected.
Whenever accelerators are active, they potentially require the chip to operate at reduced
frequencies, though. As mentioned above and as described in detail in the next chapter,
recent Intel CPUs, for example, reduce their frequency whenever their SIMD function
units execute AVX2 or AVX-512 code [113, pp. 2-13 f.].

Frequent power-gating of unused accelerators is associated with energy and performance
overhead, so Kumar et al. [142] describe a design which detects short, inefficient phases of
SIMD code and automatically devectorizes this code via recompilation at runtime. As this
technique does not cover interactions between multiple tasks and because the reliance on

8 Venkatesh at al. [243] explicitly differentiate between accelerators and conservation cores based on the
primary goal to either improve performance or energy efficiency. For the sake of simplicity and as both
architectures, in effect, improve system performance for specific tasks, we do not make this distinction.

28



2.3 Dennard Scaling and Leakage-Limited Scaling

a just-in-time compiler restricts the applicability to arbitrary workloads, we propose core
specialization as a different solution to the same problem in Chapter 6.

Accelerators can be integrated at different places in the system, differing by the type of
connection to the processor cores. Based on work by Compton and Hauck on reconfigurable
computing [51], we categorize accelerators as either loosely or tightly coupled. Loose
coupling separates the accelerator from the processor via an I/O interface. For example,
GPUs are commonly connected to the PCle bus. The main disadvantage of loose coupling
is that the interface used for data transfer between processor cores and the accelerator
commonly introduces long latencies. The resulting communication overhead limits the use
of such accelerators for fine-grained acceleration of short code sections. Tight coupling,
where the accelerator is directly connected to a processor core as a coprocessor or a
functional unit, is more suited to such fine-grained acceleration. Examples for tightly
coupled accelerators include the SIMD units found in many current CPUs. This thesis
focuses on the power management required for tightly coupled accelerators such as AVX2
and AVX-512. Even though loosely coupled accelerators such as GPUs may pose similar
challenges compared to those covered in this thesis, they generally require different
solutions and are therefore outside the scope of this thesis.

2.3.3 Heterogeneous Systems

In most current processors, all processor cores provide the same set of tightly coupled
accelerators. For example, on current Intel server CPUs, all cores are identical and provide
SIMD units for AVX2 and AVX-512 as well as cryptography accelerators [223]. However,
as mentioned above only a fraction of the code executed on the system actually makes use
of these accelerators. In this situation, heterogeneous systems — systems, where individual
processor cores provide different feature sets or different performance characteristics —
often make more efficient use of the available chip area as well as the power budget [143].
While this thesis focuses on systems with homogeneous processor cores, we utilize ideas
from research on such heterogeneous systems in several places.

Heterogeneous systems are often categorized as either single-ISA or multi-ISA heteroge-
neous systems [143]. Single-ISA heterogeneous systems — often also called performance-
asymmetric systems [13] — combine multiple cores with the same instruction set architecture
(ISA), but with different performance, power, and area characteristics. Such a system could,
for example, schedule code on large, complex cores with high single-core throughput if it
demands low latencies [143] or if it cannot be parallelized [230, 9]. Highly parallel code
or code without particular performance requirements could instead be executed on less
complex, yet more energy efficient cores. Especially in mobile devices, single-ISA heteroge-
neous processors have seen large commercial success in recent years due to the increased
energy efficiency and the high compatibility with existing code, as applications do not need
to support multiple ISAs. For example, ARM big LITTLE [90] processors combine high-
performance out-of-order cores such as the Cortex-A15 core with more power-efficient
in-order cores such as the Cortex-A7 core. More recently, ARM DynamiQ [11] has even
allowed smartphones makers to combine more than two types of cores [134].

Applications are allowed to remain oblivious of differences between the cores of single-
ISA heterogeneous processors. The system architecture provides a substantial challenge

29



2 Background: Power-Limited Computing

to the operating system, though, as the scheduler has to create a mapping of tasks onto
suitable processor cores. Proposed approaches include schedulers which use a priori
information, for example executing system calls [171] or the virtual machine host [144]
on a specific core type, as well as schedulers which characterize individual tasks based on
the expected performance improvement on fast cores and use this information to select
appropriate cores [209].

A special type of single-ISA heterogeneity is created not during system design but rather
during chip production. Even if the design of all cores is completely identical, individual
cores often provide different maximum frequencies at identical voltage [32] as well as
different energy efficiency due to process variation. Cherry picking [200] exploits this
heterogeneity by, for example, selecting the most energy-efficient cores for the execution of
workloads which fail to scale to all available cores. Recent Intel CPUs implement a variant
of cherry picking as part of Intel Turbo Boost Max Technology 3.0 which provides slightly
increased frequencies for up to four CPU cores [238]. The operating system migrates
demanding workloads to these CPU cores to improve performance.

In contrast to single-ISA heterogeneous systems, the cores of multi-ISA heterogeneous
systems differ in their instruction sets. Researchers have proposed combining general-
purpose cores with identical feature sets, but completely different ISAs such as ARM versus
x86, harnessing the different properties of the instruction sets [242]. This approach is
rarely used in practice, as the ISA, in contrast to its microarchitectural implementation, has
shown to have little impact in the absence of any feature set difference [28], yet software
development is complicated by multiple ISAs.

Commercially successful multi-ISA heterogeneous designs commonly combine cores
with substantially different feature sets instead, thereby providing specialized cores -
faster and more energy efficient — for different types of code. Examples include the Cell
processor [106] which combines a general-purpose 64-bit Power processor with an array
of eight less complex Synergistic Processor Elements (SPE) specialized for highly-parallel
multimedia workloads [124]. Similarly, many processors with integrated GPUs [34],
DSPs [49], or similar loosely coupled programmable accelerators constitute multi-ISA
heterogeneous processors.

These approaches also suffer from increased software development complexity. Pro-
cessor cores such as the Cell SPE or GPUs often provide a different memory model [124]
or a different threading model [179] compared to general-purpose CPU cores. Therefore,
code designed to run on general-purpose CPU cores commonly needs to be restructured to
support other types of cores. In addition, the disjoint instruction set means that code, once
compiled, is only runnable on one type of core, preventing migration of tasks between
different types of cores at runtime. Popcorn Linux [15, 24] tries to solve these problems for
sufficiently flexible processor cores such as those of the Xeon Phi [47] capable of running
an operating system. Popcorn Linux applications are compiled for multiple architectures,
with the compiler inserting code for migration between different types of cores at select
points in the application. If different core types do not share a cache-coherent view of
memory, Popcorn Linux provides such a coherent view via distributed shared memory.

Heterogeneous systems without cache coherence or with very dissimilar instruction
sets are not of particular relevance to our work. The concept of instruction-based asymme-
try [157] - also called shared-ISA or functional asymmetry [6] — is more relevant to our

30



2.3 Dennard Scaling and Leakage-Limited Scaling

work. Instruction-based asymmetry means that all cores share the same base instruction
set but differ in specific extended parts of the instruction set. For example, individual cores
could provide different closely coupled accelerators [94] or some cores could do without a
floating-point unit to conserve energy when executing integer or fixed-point arithmetic [6].
In Chapter 6, we emulate such an architecture on top a regular homogeneous Intel server
processor to increase performance for workloads where only parts of the workload utilize
AVX-512 SIMD instructions.

On systems with instruction-based asymmetry, all cores can execute tasks which only
use the common base instruction sets. Whenever tasks use instructions outside of this
set, the operating system needs to migrate the tasks to the appropriate CPU core. Li et
al. [157] propose fault-and-migrate as a technique to transparently trigger such migrations.
Whenever a task tries to execute an instruction that is unsupported by its current core,
the core generates an exception and the exception handler moves the task to a suitable
core. Li et al. propose to migrate the task back to its original core once the task has not
made use of any instructions only supported by its current core for a specific amount of
time. We use a very similar approach in Chapter 6 when we restrict execution of AVX-512
tasks on a subset of the CPU cores, albeit with a different heuristic for migrating tasks
back to their original (non-AVX-512) core.

31






3 Performance Implications of AVX2 and
AVX-512

In the previous chapter, we showed that complex frequency management is required to
extract maximum performance in modern systems with heavily power-limited processors.
In particular, the varying power consumption of individual processor cores means that
these cores should be operated at different frequencies depending on the program executed.
The most prominent example for such behavior can be found in recent Intel processors
and their frequency management for AVX2 and AVX-512 SIMD instructions. This chapter
provides a detailed analysis of this frequency management as well as its performance
implications to provide the required background information for the next chapters where
we describe techniques to improve performance and fairness for workloads involving
AVX2 and AVX-512.

We first demonstrate the substantial local speedup caused by these instructions as
well as the resulting energy savings for problems with sufficient data-level parallelism in
Section 3.1 to demonstrate the general usefulness of the instructions. We also show how
the instructions increase power consumption. The resulting power consumption variability
has motivated Intel to implement a frequency management scheme that executes different
types of code at different frequencies to provide high performance for all types of code.
We describe this scheme in detail in Section 3.2. While this frequency management policy
greatly increases the performance for low-power non-AVX code, it results in AVX2 and
AVX-512 code being executed at reduced frequencies. As we describe in Section 3.3, this
frequency reduction affects the performance of many workloads. We classify the negative
performance impact as either local or remote AVX overhead. In this classification, local
AVX overhead is the impact of AVX2 and AVX-512 frequency reduction on code sections
that use AVX2 or AVX-512. We show how this local AVX overhead can be quantified
using existing tools and does not pose a particular challenge to software developers. This
thesis therefore mainly concentrates on remote AVX overhead which occurs when the
frequency reduction caused by AVX2 and AVX-512 affects other code that could have
been executed at higher frequencies. We describe these remote effects in Section 3.3.2 and
show how, in some cases, non-AVX code in real-world applications can be slowed down
by more than 20%. Section 3.4 then contains a description of the information available
to the OS about AVX-induced frequency reduction and about the resulting overhead as
many of the techniques described in the following chapters require such information. In
particular, we show that changes to applications often yield results that are hard to predict.
Finally, as this chapter mainly focuses on the Skylake-SP microarchitecture, we discuss
the applicability of our work to other microarchitectures in Section 3.5 and argue that an
increasing number of future CPUs will show similar behavior due to increasingly stringent
power limits.

33



3 Performance Implications of AVX2 and AVX-512

3.1 Local Impact on Performance and Power

The AVX2 and AVX-512 instruction sets targeted by this thesis are recent SIMD instruction
set extensions defined by Intel and implemented by recent x86 CPUs [57]. AVX2 was
first supported in 2013 by the Intel Haswell microarchitecture and provided many vector
operations on 256 bit vector registers [97]. On top of AVX2, AVX-512 introduced more
flexible operations and increased the maximum vector size to 512 bit and was first supported
in 2016 by the Intel Knights Landing many-core processor [226] and, more importantly, in
2017 by Skylake-SP server processors [231].

As described in the previous chapter, such SIMD instructions provide increased perfor-
mance by exploiting data-level parallelism. In the case of AVX-512, a single instruction can
execute up to 16 fused multiply-add (FMA) operations on 32-bit floating point numbers [115,
p- 5-128]. While not all applications provide the necessary data-level parallelism, AVX2 and
AVX-512 have been shown to provide substantial performance improvements for problems
from many different domains. For example, compared to an implementation without SIMD
instructions, Lemmetti et al. [152] showed that optimization performed on the Kvazaar
HEVC video encoder using AVX2 doubled its performance, while Tiwari et al. [236] showed
that AVX-512 enabled a 16% performance increase for the x265 video encoder compared to
an implementation using AVX2. Similarly, Miralles and Iwamoto [170] optimized routines
for software radios and found that using AVX2 instead of the earlier SSE2 SIMD instruction
set was responsible for most of a 50% performance improvement for many routines, with
AVX-512 often further improving performance. For the ChaCha stream cipher and the
Poly1305 message authentication code, Goll and Gueron [82, 81] showed that AVX2 and
AVX-512 each have the potential to double performance for sufficiently large messages.
Also, Dreseler et al. [69] demonstrated the large impact of optimization using AVX-512 on
database query processing.

These performance improvements demonstrate the usefulness of wide vector instruc-
tions. However, SIMD instructions such as AVX2 and AVX-512 not only increase per-
formance. Often, energy efficiency is improved as well [41, 112], as reduced CPU time
means that most transistors switch less often and that less energy is consumed due to
static power dissipation. The increased energy efficiency comes at the cost of increased
power dissipation, though. As described in the previous chapter, the increasing com-
plexity of individual SIMD operations means that average transistor switching activity
per instruction increases. Assuming equal frequencies, this increased switching activity
increases switching power.! For the older SSE and AVX instruction sets, this effect has
been demonstrated by Hiroshi Inoue [112], who showed that merge sort requires up to
15% more power when implemented with SSE, with similar power required by the AVX
implementation.? However, we are unaware of any direct measurement of this effect for
AVX2 and AVX-512. Such direct measurements are difficult as the processors implementing
these instructions are commonly already limited by their power consumption even when
they do not execute any AVX2 or AVX-512 instructions. Consequently, AVX2 and AVX-512

! Barredo et al. [17] suggest operating the SIMD unit at a lower frequency than the rest of the CPU core to
reduce power. We are unaware of any implementation of such a design.

2 In Hiroshi Inoue’s experiments [112], memory throughput limited the performance of the AVX implemen-
tation which therefore sometimes required slightly less power than the SSE implementation.

34



3.1 Local Impact on Performance and Power

Inssealuavx BEAVX2 [ 1 AVX512 ‘

T 6 I 1
@ @ = 10
Se g =
1 () [
$ @ 29 05 g .
%g ) | I mg I I : I I IHI
(O] ()
e il pll] E L
N o\ [°) N o\ ) \! o\ )
ore®gpen™ ore® gpen™ ore®gpen™
(a) Throughput (b) Energy per operation (c) Power

Figure 3.1: Experiments conducted at 3.5 GHz on a single CPU core show that AVX2 and
AVX-512 instructions can be used to increase throughput (a) while reducing
energy consumption (b). The AVX2 and AVX-512 variants of the benchmarks
require considerably more power, though (c).

code trigger the power management techniques described in the remainder of this chapter,
which hide any power increase caused by these instructions.

We perform such a direct measurement of the impact of AVX2 and AVX-512 on power
consumption to demonstrate that frequency reduction is often necessary to prevent power
limit violations. To isolate the impact of the choice of instructions, we configure the system
to operate at a constant frequency, thereby circumventing the autonomous frequency
management performed by the CPU. In particular, we configure a single CPU core of a
Xeon Gold 6130 CPU to operate at 3.5 GHz — at this frequency, the CPU is able to execute
all types of code if only a single core is active [119, p. 15]. We then execute several real-
world applications on this core and measure performance, power, and energy consumption.
The three applications used for the experiment are the benchdnn --rnn benchmark from
OneDNN 2.3.2 which benchmarks OneDNN’s code for recurrent neural networks [21], the
openssl speed benchmark from OpenSSL 1.1.11 [184] configured to benchmark OpenSSL’s
ChaCha20-Poly1305 cipher, and version 3.5 of the x265 video encoder [256] configured
to encode the 1080p50 version of the “old_town_cross” test video [258] at the “medium”
quality preset. Where necessary, we modify the benchmarks to be able to configure usage
of AVX2 and AVX-512. We normalize throughput and energy consumptions based on the
results for configurations where the applications only use SSE4 SIMD instructions. As the
goal of our power measurements is to demonstrate the impact of the instructions executed
on the CPU, we compare power consumption to that of a setup where the CPU only
executes the PAUSE instruction in a loop. We subtract the power reported by RAPL [116,
pp. 14-37 ff.] for this mostly-idle CPU from that reported for the benchmarks to isolate
the impact of the individual instruction sets on power dissipation.®

3 On earlier Intel microarchitectures such as Sandy Bridge, RAPL would not have been suitable for this kind
of analysis. On these CPUs, RAPL did not directly measure power but rather counted architectural events
and used a model to estimate power [206], leading to systematic over- or underestimation depending
on the instructions executed by the CPU. Since the Haswell microarchitecture, RAPL appears to rely on
direct power measurements and provides much higher accuracy for arbitrary instruction types, including
SIMD instructions [111, pp. 75 ff.].

35



3 Performance Implications of AVX2 and AVX-512

Figure 3.1 shows the results of these experiments. As expected, the throughput of all
benchmarked applications benefits from wider SIMD operations, with AVX-512 providing
a speedup of 411% and 241% for OneDNN and OpenSSL, respectively, when comparing
to SSE4. The performance improvement for x265 is far less pronounced, but noticeable,
which matches the findings of related work [236]. Energy consumption follows a very
similar pattern. For both OneDNN and OpenSSL, AVX2 and AVX-512 greatly reduce the
energy required per unit of work (i.e., per benchmark iteration or per byte processed).
However, it can be seen that the relative gain from AVX2 compared to previous instruction
sets is much bigger than the gain from AVX-512 compared to AVX2. This result shows
that the energy efficiency of AVX-512 implementations is particularly compromised by
the increased power consumption of these complex instructions. Whereas, for example,
OneDNN requires 5.3 W more when using SSE4 compared to a program which only
executes the PAUSE instruction, the AVX2 and AVX-512 implementations require 8.2 W
and 10.4 W, respectively.

3.2 Frequency Management for AVX2 and AVX-512

The large power variation caused by AVX2 and AVX-512 poses two challenges for CPU
power management. First, as described in Section 2.2.2, sudden increases of power con-
sumption can cause voltage droops which impact system stability. Second, as described
in Section 2.3.1, the increased power consumption of AVX2 and AVX-512 instructions
can potentially cause the processor to exceed thermal limits. These two problems can be
solved by operating the CPU with sufficient margins, i.e., by selecting a frequency low
enough that even power-intensive AVX-512 code does not produce excessive heat and by
selecting a large voltage guardband so that the system remains stable despite large voltage
droops. However, for most workloads, this solution comes at the expense of performance
and energy efficiency, as less power-intensive code allows for higher CPU frequencies and
lower voltages.

Instead of such a such a simplistic approach, recent Intel CPUs provide an extended
variant of Turbo Boost that takes the large power variation caused by AVX2 and AVX-512
instructions into account [213]. These CPUs select different frequencies according to the
nature of the currently executed code, with AVX2 and AVX-512 code executed at lower
frequencies than other less power-intensive code. Reducing the CPU frequency during
power-intensive execution phases not only reduces power dissipation but also increases
the available voltage guardband, thereby guaranteeing stable operation. At the same
time, executing less power-intensive code at a higher frequency and with a lower voltage
guardband improves performance and energy for these workloads.

In the following sections, we describe the voltage and frequency management scheme
implemented by these processors in greater detail. We focus on the behavior introduced
with the Intel Skylake-SP microarchitecture as this microarchitecture introduced support
for AVX-512 instructions — to date, all following Intel server CPUs feature similar behavior.
See Section 3.5 for a comparison between Skylake-SP and other Intel microarchitectures.

36



3.2 Frequency Management for AVX2 and AVX-512

Table 3.1: Frequencies of the Intel Xeon Gold 6130 server CPU - the CPU reduces its
frequency when executing AVX2 or AVX-512 instructions [119].

Turbo / Active Cores

Level Base 1-2 cores 3-4 cores 5-8 cores 9-12 cores 13-16 cores

Non-AVX 2.1GHz 3.7GHz 3.5GHz 3.4GHz 3.1GHz 2.8 GHz
AVX 20 17GHz 3.6GHz 3.4GHz 3.1GHz 2.6 GHz 2.4 GHz
AVX-512 13GHz 35GHz 3.1GHz 2.4GHz 2.1 GHz 1.9 GHz

3.2.1 AVX2 and AVX-512 Frequency Levels

To maximize performance, a power-limited CPU ideally always selects the highest possible
frequency that does not cause the CPU to exceed any temperature limits. In other words,
individual CPU cores should boost their frequency whenever they do not execute any
power-intensive instructions. With the Skylake-SP microarchitecture, Intel introduced
such a frequency scaling scheme [118]. These CPUs provide three different frequency
ranges; the default set of “non-AVX frequencies” is accompanied by a set of reduced “AVX
2.0 frequencies” as well as a set of even lower “AVX-512 frequencies”. Table 3.1 lists the
frequencies of a Xeon Gold 6130 server CPU for different numbers of active cores. Note
that the frequency differences increase when a larger number of cores is active as chip-level
power limits become more restrictive when power needs to be shared among more cores.

Unlike the names imply, AVX2 and AVX-512 frequencies are not simply triggered by
AVX2 and AVX-512 instructions, respectively. Instead, Intel categorizes SIMD instructions
based on register width as wider operations require more power.* The AVX-512 instruction
set extension introduced not only 512-bit operations, but also many instructions operating
on 256-bit and even 128-bit registers. 256-bit and 512-bit instructions are further classified
as either “light” and “heavy” instructions [113, p. 2.13]. Heavy instructions include all
floating point instructions as well as multiplications, whereas all other instructions are
categorized as light instructions. The CPU frequency is mainly selected based on these
categories as well as the rate at which the instructions are executed. Heavy 512-bit
instructions trigger a transition to the AVX-512 frequency level when executed at a rate of
one instruction per two cycles [150]. Below this rate, they trigger a transition to the AVX2
frequency level, as do all light 512-bit instructions. Similarly, heavy 256-bit instructions
only trigger a transition to the AVX2 frequency level when executed at a sufficient rate.
Infrequent heavy 256-bit instructions and all light 256-bit instructions do not require any
frequency reduction.

In some situations, the CPU deviates from this simple mapping between instruction
types and frequency levels. In particular, power consumption depends on the state of the
register file and valid 512-bit register content can cause instructions to trigger frequency
changes even if they nominally operate on more narrow registers. For example, Intel

* Documentation from Intel does not make this classification explicit. Instead, 256-bit instructions are called
“AVX2”, whereas 512-bit instructions are called “AVX-512” [113, p. 2-13]. However, our experiments show
that 256-bit AVX-512 instructions, for example, have a different impact on CPU frequencies than 512-bit
AVX-512 instructions.

37



3 Performance Implications of AVX2 and AVX-512

documentation describes that some mixtures of heavy 256-bit and light 512-bit instructions
can trigger a transition to the AVX-512 frequency level [113, p. 2-14]. There have even been
reports of scalar — i.e., non-SIMD - floating point code triggering a frequency reduction
after the upper half of the 512-bit registers has been modified [67]. Conversely, experiments
have shown that very short, yet dense sections of 512-bit multiplications only trigger a
transition to the AVX2 frequency level, even though these instructions constitute heavy
512-bit instructions [131].

3.2.2 Frequency Reduction

Whereas traditionally DVFS was mainly used to conserve energy and frequency changes
could be arbitrarily delayed by the OS, frequency reduction triggered by AVX2 and AVX-
512 plays a vastly different role and therefore features vastly different time constraints. In
particular, the frequency is reduced to limit the CPU temperature. While both heat spreader
and heat sink are able to buffer some of the excessive heat produced by power-intensive
instructions at excessive frequencies, eventually a frequency change is required to prevent
overheating. AMD CPUs, for comparison, perform frequency selection mainly based on
the temperature margin of the CPU - for these CPUs, Tim Schmidt measured reaction
times to load changes of multiple milliseconds [212, pp. 16 ff.]. Intel CPUs need to react
far more quickly, because on these CPUs frequency reduction also plays an important role
as part of proactive voltage droop mitigation. Essentially, the CPU commonly operates
at a substantially reduced voltage guardband while no power-intensive instructions are
executed in order to improve energy efficiency. As soon as a processor core starts executing
AVX2 or AVX-512 instructions, that core needs to immediately reduce its frequency or
increase its operating voltage.

To demonstrate that even short stretches of AVX2 and AVX-512 instructions are a
threat to system stability, we disable proactive voltage droop mitigation along with any
AVX2 and AVX-512 frequency reduction in a system with an Intel Skylake-X CPU. This
CPU features cores identical to those found in Skylake-SP server CPUs, but is targeted
at high-end desktop systems and overclocking [197], so it provides closer control over
frequency management. In particular, the CPU allows the user to configure the “AVX
frequency offset”, which, when set to zero, disables proactive voltage droop mitigation
altogether. We let all CPU cores execute a fixed number of 512-bit fused multiply-add
(FMA) instructions in parallel and test whether the system remains stable. Our experiment
show that often a single 512-bit FMA instruction per core is sufficient to create timing
errors that lead to a system crash, which confirms that Intel CPUs operate with very narrow
voltage guardbands and that immediate measures are required to prevent instability upon
execution of power-intensive instructions.

Even though an immediate frequency change would provide the increased guardband
required by AVX2 and AVX-512, recent Intel CPUs slightly delay frequency reduction.
In the interim, these CPUs employ throttling to prevent excessive voltage droops [113,
p. 2-14]. While multiple sources attempt to document the concrete steps during transitions
between the frequency levels, these sources often disagree about the nature and duration
of this delay. Intel’s Optimization Manual describes a delay of up to 500 ps as a “power

38



3.2 Frequency Management for AVX2 and AVX-512

license” has to be requested from the central power control unit [113, p. 2-14].° In contrast,
Travis Downs measures a delay of 10 us and assumes that the delay constitutes a “voltage-
only transition” as he observes an increasing voltage during this period in some of his
experiments [68]. However, his analysis only considers transitions from the non-AVX to
the AVX2 frequency level and in our opinion does not provide a satisfactory explanation
of why the CPU delays frequency changes — after all, the voltage does not need to be
increased if the frequency is substantially reduced directly afterwards. While Yussuf
Khalil’s extensive analysis includes other frequency level transitions caused by heavy 512-
bit SIMD instructions and observes similarly short delays during all these experiments [131,
p. 36], it does not analyze voltage changes.

In an effort to determine the concrete steps undertaken during frequency level transitions
caused by different types of SIMD instructions and to resolve the discrepancies listed above,
we expand upon the experiments conducted by Travis Downs [68] and Yussuf Khalil [131].
We perform two experiments where in both instances we first execute a specific type of
instruction — either 128-bit or 256-bit fused multiply-add (FMA) instructions — in a loop
for 1 ms to force the CPU to transition to a well-defined frequency level. We then execute
a more power-intensive type of instructions — either 256-bit FMA, 512-bit FMA, 256-bit OR
or 512-bit OR instructions — in a second loop for another 100 ps. Both loops are unrolled
with as little dependencies between the instructions as possible to maximize throughput
and, consequently, power consumption. To minimize its impact on our observations,
the sibling hyper-thread executes a MWAIT instruction during our observation period. To
force the system to operate at all-core turbo levels, we restrict idle power management by
disabling all C-states.®

In our first experiment, we configure the performance monitoring unit (PMU) to count
CPU cycles and reference cycles - i.e., cycles at a constant frequency - and read the
performance counters once per microsecond using the RDPMC instruction to measure the
CPU frequency. In addition, we read the number of executed instructions to calculate
the instructions per cycle (IPC) during each microsecond interval of the frequency level
transition.

In our second experiment, we sample the MSR_PERF_STATUS register to measure the
voltage while the CPU starts executing more power-intensive instructions. Unlike in
the previous experiment we do not repeatedly sample the register once per microsecond
during a single experiment run as we noticed that the long latency of the required RDMSR
instruction affects power consumption and CPU frequency selection. Instead, we repeat
the experiment and interrupt each repetition after a variable number of instructions to
measure the voltage once at that point. To reduce the noise caused by running the code
multiple times, we apply a median filter where we calculate the median of 21 consecutive
values when plotting the resulting voltages.

Figure 3.2 shows frequency, IPC, and voltage for the different combinations of instruc-
tions tested by our experiments. In all experiments, we observe immediate throttling by

> The description perfectly matches the behavior of traditional non-AVX turbo boost [95]. We assume that

the information was erroneously included in the description of AVX2 and AVX-512 frequency management.
6 C-states, as defined by the Advanced Configuration and Power Interface (ACPI), can be selected by the
operating system to partially or completely disable inactive CPU cores [40]. Intel Turbo Boost only
increases the CPU frequency if a sufficient number of cores have been placed in the C3 or C6 states [117].

39



3 Performance Implications of AVX2 and AVX-512

— 3 — 3 — 3
T 2 (. gT 2 gT 2 M\
o1 T O 1 FoO 1
=0 =0 =0
2 \ ‘ 2 i ‘ 2F —
g 1 = g 1 = g 1 ‘«N‘
- LJ - LJ \ - L
0 0 0 —
2 0.9 2 0.9 = 0.9
= 0.85 . = 085 = 0.85
s 08 s 08 S 08
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time (us) Time (us) Time (us)

(a) 128-bit FMA — 256-bit FMA  (b) 256-bit FMA — 512-bit FMA (c) 128-bit FMA — 512-bit FMA

= 3 ~ 3 = 3
g 2 gL 2 gT 2 \
r Q1 Q1 r Q1
0 0 0
3 —— ‘
, 21 | 2 I
g 2 \ g 1 g 1 ‘ “
=1 L = ] = L
0 0 0
2 09 2 0.9 2 0.9
= 0.85 < 0.85 + 0.85
§ 0.8 g 0.8 E 0.8
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time (us) Time (us) Time (us)

(d) 128-bit FMA — 256-bit OR () 256-bit FMA — 512-bit OR  (f) 128-bit FMA — 512-bit OR

Figure 3.2: Plots of typical frequency, IPC, and voltage while a CPU core starts executing
more power-intensive instructions at t = 100us — the CPU employs a com-
bination of throttling and frequency reduction to prevent excessive voltage
droops as well as overheating. In the depicted situations, all CPU cores of the
system were active. The temporary drops in the frequency plots as well as
the corresponding drops in the IPC plot are measurement artifacts caused by
pauses while the frequency is changed.

the CPU whenever it starts executing more power-intensive instructions. More specifically,
the CPU typically operates at a quarter of its maximum IPC for approximately 20 ps. After
this initial throttling period, the behavior of the CPU depends on the type of instruction
executed:

« If the CPU executes 256-bit or 512-bit FMA instructions, it typically operates at half
its maximum IPC for further 20 us before finally switching to the frequency level
required for the instruction type. We are unaware of any available information on
why there are two separate throttling phases. We do not observe any temporary
voltage boost that may provide enough voltage guardband for operation at higher
throughput.

« Frequency level transitions from the non-AVX frequency level to the AVX-512 fre-
quency level such as those caused by a transition from 128-bit to 512-bit FMA
instructions involve two separate frequency changes [131, p. 33]. The first frequency

40



3.2 Frequency Management for AVX2 and AVX-512

gt 3 \ ST 3 \ s 3
o O 1 O 1 T O 1
0 0 0
o 2 [ o 2 [ o 2 [
g ] =Y g 1 L g 1 L
1 lg : 1 1(5) V 1 lg
< e < 11 < 11
+ + e —— s N +
£ 1.05 £ 1.05 £ 1.05
> 1 > 1 > 1
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time (us) Time (us) Time (us)

(a) 128-bit FMA — 256-bit FMA (b) 256-bit FMA — 512-bit FMA  (c) 256-bit FMA — 512-bit OR

Figure 3.3: If the CPU starts to execute more power-intensive code while only one core is
active, a voltage boost can sometimes be observed when the 512-bit register
file is activated. The brief drops in the voltage plots are artifacts of the median
filter and are caused by variation between different runs.

change occurs between the two aforementioned throttling phases. After the first
frequency change, the CPU temporarily operates at the intermediate AVX2 frequency
level.

+ Some transitions from heavy to light instructions do not involve any frequency
change even if the width of the instructions is increased. For example, both 128-bit
FMA and 256-bit OR instructions can be executed at the highest frequency level.
Nevertheless, the CPU is temporarily throttled when the CPU starts to operate on
wider vector registers.

In all experiments, the voltage measured during correlates closely with the CPU fre-
quency — as soon as the frequency is reduced, we measure a reduced voltage. More
specifically, we do not measure any voltage boost similar to that observed by Travis
Downs [68]. However, during our experiments, all cores are active, whereas his experi-
ment setup only maintained one active core. We therefore repeat our experiment on a
system with active C-states and further deactivate all except two cores using the CPU
hotplug functionality of Linux to enforce operation at the highest turbo levels. While
the results of these experiments are largely very similar to those at all-core turbo levels,
two experiments — namely, those testing transitions from 256-bit FMA instructions to
512-bit instructions — show an increase of the voltage as shown in Figure 3.3. In addition,
all throttling periods were slightly longer in this two-core configuration, with the initial
throttling period consistently requiring approximately 30 ps.

Overall, our observations largely mirror those made by previous work [68, 131]. In
particular, we confirm that the throttling period before frequency changes caused by wide
SIMD instructions is far shorter than indicated by documentation from Intel [113, p. 2-14].
However, some differences between our results and those of previous work remain. For
example, unlike indicated in Travis Downs’ analysis, we are unable to trigger voltage
boosts via 256-bit OR instructions and measure slightly longer throttling periods. Also,
whenever we measure an increased voltage, the change occurs at the beginning of the

41



3 Performance Implications of AVX2 and AVX-512

throttling period, whereas Travis Downs shows it to occur at the end of the throttling
period. These differences are potentially caused by hardware differences, as we use a
Skylake-SP server CPU for all our experiments whereas Travis Downs used a mobile CPU
when analyzing voltage changes.

Our experimental results do not support the claim that the CPU throttles while waiting
for the voltage to rise to a safe level.” During most of our experiments, we observe a
substantial throttling period but no measurable voltage changes. Usually, no increased
voltage is needed, either, as throttling is commonly followed by a frequency reduction.
Our experiments show that the frequency reduction lowers the required voltage, so any
voltage increase during the throttling period would be superfluous. Intel’s documentation
instead states that during the throttling period the CPU requests a power license from
the central power control unit [113, p. 2-14]. This explanation is hardly more convincing
given that the frequency at the AVX2 and AVX-512 frequency levels only depends on the
number of active cores which is already known to the core via its previous frequency. The
voltage selection does not depend on the activity of other cores either given that each core
has its own voltage regulator.

While we are unable to determine the reason for the throttling period with certainty,
we identify two potential reasons: First, whenever SIMD functional units or parts of
the register file are enabled, they likely provide substantial capacitance that needs to be
charged, resulting in large inrush currents. Even if the instructions themselves later do
not require a frequency change, this temporary power increase can cause instability, so
temporary throttling is required to limit the overall voltage droop. Second, the CPU has
to evaluate the behavior of the code before selecting a suitable frequency level. Heavy
256-bit and 512-bit instructions cause less frequency reduction when executed at a low
rate, and Yussuf Khalil notes that in his experiments the CPU only transitions to the AVX2
frequency level after the execution of approximately 13000 256-bit FMA instructions [131,
p- 35]. Testing whether a frequency reduction is necessary before actually changing the
frequency reduces the number of frequency changes and their performance impact, but
requires throttling as the system would otherwise become unstable due to the insufficient
voltage guardband.

3.2.3 Delayed Frequency Increase

As described above, throttling and frequency reduction need to occur immediately upon
execution of power-intensive 256-bit or 512-bit SIMD instructions as these mechanisms are
required to achieve sufficient voltage guardbands. In contrast, increasing the frequency can
be arbitrarily delayed, as a CPU operating at a low frequency is able to execute arbitrary
types of code irrespective of their power consumption. Not immediately reverting to
higher frequencies whenever a phase of 256-bit or 512-bit code has finished is associated
with a performance penalty, though, as low-power code can be executed at a much higher
frequency than power-intensive SIMD code and is therefore unnecessarily slowed down.

Nevertheless, recent Intel CPUs substantially delay such frequency boosts. To demon-
strate the behavior of these CPUs when they transition to less power-intensive code, we

7 Travis Downs calls this phase a voltage-only transition [68].

42



3.2 Frequency Management for AVX2 and AVX-512

c¥ 5 ¥ 3
g (:5 1 —— 670 usdelay —>\‘( E (I_) %
=0 =0
a1 | a1

0 0

< % < i
;o ] i

0 100 200 300 400 500 600 700 800 700 750 800
Time (us) Time (us)
(a) 512-bit FMA — 128-bit FMA (all-core turbo) (b) 512-bit OR — 256-bit FMA

(single-core turbo)

Figure 3.4: Plots of frequency, IPC and voltage during a transition to less power-intensive
code measured using the experimental setup described in Section 3.2.2. At t =
100us the CPU starts executing less power-intensive instructions. It then waits
for approximately 670 us before it reverts the effects caused by the previous
power-intensive code.

repeat the experiments from the previous section. In contrast to our previous experiments,
we let the system first execute power-intensive 256-bit and 512-bit SIMD instructions and
then switch to less power-intensive SIMD instructions. Again, our experiments mirror
similar experiments conducted by related work [131, 68, 213], with the main difference
that we analyze a wider range of instruction types.

Figure 3.4 shows CPU frequency, IPC and voltage for two representative types of transi-
tions from more power-intensive SIMD instructions to less power-intensive instructions,
where the transition between the two occurs at ¢ = 100 ps. If the more power-intensive
instruction type requires a frequency reduction, our experiments show that the frequency
is increased after a delay of 670 pus (Figure 3.4a). Likewise, if the more power-intensive code
requires a voltage boost, this voltage change is reverted after the same delay (Figure 3.4b).
The delay matches that reported by related work [131, 68, 213] and again stands in stark
contrast to the considerably less accurate delay of “approximately 2 ms” reported by Intel’s
optimization manual [113, p. 2-14].

The reason for delayed voltage and frequency changes can be found in the overhead
caused by throttling and frequency transitions. Both temporarily reduce throughput -
while throttling reduces IPC, each frequency change has to temporarily stop the whole CPU
core to wait for the clock generator — usually a phase-locked-loop (PLL) - to synchronize
to the new frequency [189]. In addition, each frequency change is associated with a voltage
change that wastes energy. Before increasing and after lowering its frequency, a CPU core
gradually ramps its voltage up and down, respectively, during which time the core operates
at a higher voltage than required for its current frequency and is therefore temporarily
less energy-efficient [189]. Due to strict power limits, any reduction in energy efficiency
commonly translates into reduced performance.

As described in Section 2.2.3, such overhead limits the usefulness of fine-grained fre-
quency scaling, as very short periods of operation at a higher frequency fail to provide any

43



3 Performance Implications of AVX2 and AVX-512

performance improvement. In the case of Intel CPUs, immediately increasing the CPU fre-
quency whenever the executed instructions allow to do so could potentially result in even
lower performance than continuously operating at reduced AVX2 or AVX-512 frequencies.
Therefore, recent Intel CPUs use the aforementioned delay as a rate-limiting technique to
prevent frequent toggling between different frequencies [68, 204]. The CPUs’ behavior is
similar to techniques addressing the problem of dynamic power management [22], where
temporarily disabling a device saves energy, yet transitions into and from this low-power
state cost energy. Previous work in the field of dynamic power management states that a
delay equal to the break-even time, i.e., the minimum time after which a positive net impact
is expected, should be selected to minimize worst-case overhead [127]. In Chapter 5, we
show that the delay chosen by Intel does not match the break-even time associated with
frequency changes. However, we also show that there is little potential for other policies
to improve performance.

3.3 AVX Overhead

The frequency management scheme implemented by recent Intel CPUs affects both the
AVX2/AVX-512 code that causes the CPU frequency to be reduced and - in some scenarios
— other, potentially unrelated, less power-intensive code. The former is a local frequency
reduction, resulting in what we call local AVX overhead. The latter, instead, is a remote
effect created by the interaction between different software components, resulting in what
we call remote AVX overhead. In the following sections, we describe both types of AVX
overhead and, as a motivation for the remainder of this thesis, present their impact on
real-world applications. As this thesis focuses on remote AVX overhead, we explain to
which degree existing software is able to mitigate the impact of both local and remote
AVX overhead. We show how remote AVX overhead in particular presents challenges not
yet solved by existing profiling tools and operating systems.

3.3.1 Local AVX Overhead

Local AVX overhead - i.e., frequency reduction during the execution of power-intensive
AVX2 and AVX-512 code - substantially reduces the potential of AVX-512 and, to a lesser
degree, AVX2. In Section 3.1, we quantified the performance impact of wide 256-bit and
512-bit SIMD operations using benchmarks based on OpenSSL, OneDNN, and x265. In
this previous experiment, we focused on power consumption and ideal throughput in a
scenario without power limits and therefore intentionally hid any local AVX overhead
by configuring the system to use only core at a fixed frequency of 3.5 GHz. In this setup
all benchmarks benefit from both AVX2 and AVX-512 as shown in Figure 3.1. In a more
practical setup without such an artificial frequency limit, code using less power-intensive
instruction sets could have been executed at higher frequencies, though.

To get an estimate of the the performance impact of local AVX overhead, we therefore
repeat the measurements from Section 3.1, but configure the CPU to automatically choose
the maximum possible turbo frequency as in most productive environments. We repeat
the experiment twice, once restricting the application to only one CPU core, and once

44



3.3 AVX Overhead

I 6 I 6
a9 a9 B ussE4
294 394 mAvx
g 2 g ¢ IRAVX2
552 SE 2 AVX512

(V] [

i lﬂl il ¢ Lull wll o

(a) One core (b) All cores

Figure 3.5: AVX2 and AVX-512 provide much bigger performance gains when OneDNN
benchdnn --rnn and OpenSSL ChaCha20-Poly1305 are executed on a single
CPU core than when all cores are used. The different behavior is explained by
different amounts of local AVX overhead — as Table 3.1 shows, there is a larger
frequency reduction when all cores are active.

allowing it to use all available CPU cores. Figure 3.5 shows the results of both experiments.
As in both cases SSE4 and AVX configurations achieve higher frequencies than their AVX2
and AVX-512 counterparts, the speedup caused by AVX2 and AVX-512 relative to SSE4
is lower than for the fixed-frequency experiment in Section 3.1. For example, whereas
our previous experiment showed that AVX-512 yielded a 5.1x throughput improvement
for OneDNN, default frequency management reduces the advantage. While AVX-512 still
provides a 5.1x performance improvement when the system is operating at single-core
turbo frequencies®, the factor is reduced to 2.7x when all cores are used. For OpenSSL
and x265, the local AVX overhead caused by AVX-512 even completely outweighs the
advantages of these instructions over AVX2 if the benchmarks are executed on all of the
system’s cores.

Two effects are responsible for the reduced effectiveness of AVX2 and AVX-512. First,
AVX2 and AVX-512 cause a frequency reduction, and this reduction impacts the multi-core
configuration more than the single-core configuration due to the larger power consumption
when all cores are active. For example, whereas the Xeon Gold 6130 CPU used for the
experiment reduces its single-core turbo frequency by only 5.4% when executing AVX-512
instructions, its all-core turbo frequency is reduced by 32.1% [119, pp. 15 f.]. Second,
the scalability of SIMD instructions is limited by the available memory throughput, so
wider SIMD instructions fail to provide a further advantage if memory is saturated [103,
pp- 286 f.]. This effect also increases with higher numbers of cores as memory bandwidth
is shared between the cores.

Only the frequency impact constitutes local AVX overhead and is of relevance to this
thesis. To distinguish between frequency and memory effects, we analyze the instructions
per cycle (IPC) as only the memory effects cause an IPC reduction. We measure the IPC
difference between the multi-core and the single-core configuration when the benchmarks
use SSE4 and compare it to the IPC difference when the benchmarks use AVX-512. If
saturation of the memory bandwidth is responsible for some of the reduced effectiveness of

8 The expected difference between this and the previous experiment is likely hidden by the variation in the
results.

45



3 Performance Implications of AVX2 and AVX-512

AVX-512 observed above, we expect the AVX-512 version of the benchmarks to experience
a substantially larger IPC reduction than the SSE4 version.

This is not the case for x265, where the instruction throughput of the AVX-512 imple-
mentation is even less affected by the number of active cores than the SSE4 implementation.
Effects such as memory pressure or microarchitectural conflicts therefore do not explain
the reduced effectiveness of AVX-512 for x265. OneDNN and OpenSSL, instead, do experi-
ence a more pronounced IPC reduction for AVX-512 than for SSE4. For example, the SSE4
version of OneDNN achieves 67.9% less IPC in the multi-core setup, which is expected
given that multiple cores compete for memory throughput. The AVX-512 version experi-
ences an even higher 71.3% multi-core IPC reduction, which would in isolation translate
into a 10.6% performance impact. This IPC difference alone is by far not able to explain the
behavior observed above, though - executing the AVX-512 version of OneDNN on multiple
cores reduced its advantage compared to SSE4 by 46.6%, so frequency changes have a
far bigger impact than memory pressure. Similarly, for OpenSSL, the 23.6% performance
impact expected due to the different IPC ratios does not explain how AVX-512 is 45.1%
less effective in the all-core scenario. Instead, this results — and similar results for AVX2 -
again shows that the performance of AVX2 and AVX-512 is to a large degree limited by
the associated frequency reduction.

While such local AVX overhead greatly impacts the performance of AVX2 and AVX-512
code, it is not targeted by this thesis for two reasons. First, local AVX overhead is an
inevitable side-effect of AVX2 and AVX-512. When software developers directly use AVX2
and AVX-512 instructions, they usually do so knowing that these instructions reduce the
frequency. This choice is justified by large throughput improvements which commonly
outweigh the corresponding frequency reduction.

Second, local AVX overhead does not pose a particular challenge to software developers.
In contrast to remote AVX overhead described in the next section, local AVX overhead is a
purely local effect, which allows for simple detection and quantification of any resulting
performance issues during software development. Optimization using AVX2 and AVX-512
is usually a deliberate effort to improve performance within well-defined sections of code
and is usually accompanied by the use of profiling tools which measure the CPU time
required for this code. If the benefits of AVX2 and AVX-512 do not outweigh the local AVX
overhead, the resulting slowdown is easily observed in the form of increased CPU time.
For example, related work describes cases where AVX-512 was shown to fail to provide a
performance improvement for specific problems [248] or just specific configurations [236].
We expect that once overall slowdown has been observed it is often easy to mitigate
local AVX overhead by reverting the software changes that introduced power-intensive
instructions.

3.3.2 Remote AVX Overhead

As described above, local AVX overhead is not particularly problematic as the impact is
easy to quantify during software development. However, the impact of AVX frequency
reduction is not limited to just AVX2 and AVX-512 code. In many cases, lower frequencies
affect other, potentially unrelated code that could have been executed at a higher frequency.
In this thesis, we focus on the resulting remote AVX overhead. This type of overhead is

46



3.3 AVX Overhead

Same CPU core = non-AVX code slowed down

Frequency change delayed

= non-AVX code slowed down Code (HT 1) ’ Non-AVX | AVX-512 Non-AVX ‘
(V]
B ’ Non-AvX |Avx-512| Non-AVX ‘ Code (HT 2) ’ Non-AVX ‘
[®)
> >
e 2
() (]
C Time ™ Time

(a) Frequency change delays (b) Hyper-threading

Figure 3.6: The frequency reduction caused by AVX2 and AVX-512 instructions can affect
other code without those instructions in two scenarios: When AVX2 or AVX-
512 code is followed by code allowing higher CPU frequencies, the frequency
increase is delayed (a). When AVX2 or AVX-512 code and less power-intensive
code are executed on sibling hyper-threads, the hyper-threads share the same
low frequency (b).

often far more problematic for two reasons. First, even short phases of power-intensive
AVX2 or AVX-512 code can affect vastly larger amounts of less power-intensive code,
amplifying the effect on performance. Second, remote AVX overhead is far harder to
predict and quantify as it is caused by the interaction between different applications or
software components.

In addition, remote AVX overhead is of particular interest because it is — unlike local
AVX overhead - frequently avoidable. As we show in this thesis, the operating system can
often negate the specific conditions required for the occurrence of remote AVX overhead
without any need for applications to abstain from AVX2 and AVX-512. For example,
modified scheduling policies such as the one described in Chapter 6 can greatly reduce
the amount of overhead. In the following sections, we describe the causes for remote AVX
overhead to provide the necessary technical background for the following chapters of this
thesis. We then show the impact of remote AVX overhead on real-world workloads to
demonstrate the importance of our work.

3.3.3 Implications of Frequency Change Delays

One of the two sources of remote AVX overhead is the frequency change delay described
in Section 3.2.3 which is used by Intel CPUs to prevent frequent toggling between the
three frequency levels. These CPUs only restore a higher CPU frequency after 670 pus have
passed without AVX2/AVX-512 instructions requiring the lower frequency level. As shown
in Figure 3.6a, during this delay, any code is invariably executed at an unnecessarily low
frequency.

The resulting overhead especially affects workloads which consist of short stretches of
AVX2 or AVX-512 code interleaved with sections of code which can execute at a higher fre-
quency level. Reports of substantial amounts of such remote AVX overhead therefore often
represent workloads where only a single software library or component uses AVX2/AVX-
512. For example, in 2017, experiments at Cloudflare showed that the performance of a web

47



3 Performance Implications of AVX2 and AVX-512

server serving web pages via TLS was reduced by 10% if encryption and decryption was
performed by OpenSSL’s AVX-512 implementation of the ChaCha20-Poly1305 encryption
scheme [141]. The magnitude of the slowdown was particularly surprising given that only
2.5% of CPU time was spent in AVX-512 code. OpenSSL developers subsequently disabled
AVX-512 on the affected microarchitectures [195] once they noticed that the AVX-512 code
could slow some nginx workloads down. When we recreate these web server experiments
in the following, we therefore re-enable AVX-512 to demonstrate the original issue. Note
that the AVX2 code found in OpenSSL was not disabled even though it also impacts CPU
frequencies, albeit to a lesser degree.

Slowdown has also been reported for computer games [80]. Due to the periodic nature
of computer games — the game repeatedly calculates new graphics and audio data — a single
software component utilizing AVX2 or AVX-512 has the potential to cause substantial
slowdown even if only a fraction of each period is spent in the component. The radfft
FFT library in particular was shown to cause unacceptable slowdown when using AVX2
and AVX-512 on Intel CPUs [80]. Even the C standard library has the potential to cause
remote AVX frequency reduction, as functions such as memset () often use SIMD load/store
instructions to improve memory throughput. For example, the glibc library temporarily
provided AVX-512 implementations of memcpy/memset [161]. Similar to OpenSSL, these
implementations were eventually disabled on Intel Skylake CPUs once the potential overall
slowdown was noticed.

3.3.4 Implications of Hyper-Threading

The second source of remote AVX overhead stems from the fact that the frequency reduc-
tion caused by AVX2 and AVX-512 code often affects more than just the software executed
on the same logical CPU. As described in Section 2.1.1, modern Intel CPUs implement
simultaneous multi-threading, where each physical CPU cores provides multiple logical
CPUs in the form of hyper-threads executing on the same hardware and therefore at
identical CPU frequencies. As a result, as shown in Figure 3.6b, software executed on the
sibling hyper-thread next to an application using AVX2 or AVX-512 is executed at the
same low frequency, even if it could be executed at a higher frequency if it was placed in
isolation on a separate core [85].

In isolation, this type of remote AVX overhead has been observed, for example, at Intel
where it was shown that latency-critical jobs experienced 10% lower throughput and
30% higher latency when executed alongside deep learning training jobs [154, 55]. The
effects of hyper-threading likely also amplified the remote AVX overhead observed in the
situations listed in the previous section.

3.3.5 Impact on Real-World Software

To quantify the overhead caused by the two types of remote frequency reduction, we
execute a wide range of workloads involving AVX2 and AVX-512 instructions and compare
their throughput to the throughput achieved when these power-intensive instructions are
disabled. We try to recreate experiments conducted as part of existing reports on remote
AVX overhead [141, 154] whenever possible and add further benchmarks to cover a wider

48



3.3 AVX Overhead

range of workloads. All following experiments are conducted on a system with an Intel
Xeon Gold 6130 CPU, 24 GiB of 2666 MHz DDR4 RAM, Fedora 31, and the Linux 5.6.13
kernel. All experiments were repeated ten times.

To recreate the web server experiment performed at Cloudflare [141], we configure the
nginx 1.21.3 web server to serve a static page via TLS using the ChaCha20-Poly1305 imple-
mentation from OpenSSL 1.1.11. Whereas the original experiment simulates additional CPU
load by removing line breaks and spaces from the page using LuaJIT and then compressing
the page using the brotli compression algorithm, we only let the web server compress
the page to simplify the experimental setup. We use the wrk benchmark driver [254] -
modified to accept brotli-compressed responses — to generate HTTPS requests and to
determine the web server’s throughput.

We also recreate the two-application scenario mentioned in the previous section [154]
by executing a non-AVX application while a power-intensive AVX2 or AVX-512 application
runs in the background. We measure the CPU time required by the non-AVX application
to determine the remote AVX overhead caused by the power-intensive background task. In
contrast to previous work, we vary the power-intensive background task to demonstrate
that the problem affects not only deep learning applications but also applications such
as video encoders which often have a lower impact on CPU frequencies. We conduct
experiments with OneDNN benchdnn --rnn as well as x265, each configured as described
in Section 3.1, with the exceptions that x265 is configured to encode videos with the
“veryslow” quality preset to increase its runtime and that OneDNN is configured to use
passive waiting via OMP_WAIT_POLICY=passive to improve performance in the presence of
other applications.’ As Figure 3.7 shows, OneDNN causes a substantially larger frequency
reduction than x265 which only executes heavy 256-bit/512-bit instructions in select code
regions and uses light instructions in most others. We execute both in parallel with a wide
range of applications from different fields. Whereas the original report on remote AVX
overhead caused by hyper-threading described a workload involving a latency-critical
application [154], we select various benchmarks from Parsec 3.0 [26] and the Phoronix Test
Suite (PTS) v9.0.1 [194]. Our selection of benchmarks contains benchmarks representative
of high-performance computing including many of the Parsec benchmarks as well as
benchmarks representative for web workloads such as the PTS redis benchmark and
desktop workloads such as the PTS build-linux-kernel and git benchmarks. All applications
are configured to use as many threads as there are logical CPUs.

Figure 3.8a shows the results of all the experiments described above. In the figure,
the single-application nginx benchmark is labelled “nginx”, while the two-application
workloads are prefixed with either “x265-” and “onednn-" depending on the background
application. The figure shows the remote AVX overhead measured as the CPU time increase
of, depending on the workload, either nginx or the Parsec benchmark when AVX-512 or

° By default, OneDNN uses an implementation of barrier synchronization that performs active waiting in
user space [183]. We argue that this default configuration is problematic because active waiting causes
large amounts of overhead whenever one or more threads are preempted. Batch tasks such as machine
learning can often be used to utilize spare CPU cycles, in which case they need to coexist with other
tasks. OMP_WAIT_POLICY=passive selects an implementation that reduces synchronization overhead by,
for example, putting threads to sleep when they are blocked.

49



3 Performance Implications of AVX2 and AVX-512

3

T

5 Is SSE4
> 2 In AW
S I Avx2
2 1 AVX-512
(0]

T

onednn X265

Figure 3.7: OneDNN uses more heavy AVX2 and AVX-512 instructions and therefore
executes at lower average CPU frequencies than x265.

AVX2 instructions are enabled compared to identical configurations when the workload
only uses SSE4 instructions:

ICPU,AVX-512

overheadayx.s12 = -1 (3.1)
ICPU,SSE4
IcPU,AVX2
overheadayxs = ——— —1 (3.2)
ICPU,SSE4

While the overhead varies from application to application, it can be seen that in al-
most all cases AVX2 and AVX-512 have a substantial negative performance impact on the
non-AVX portion of the workloads. The only exception is Parsec canneal, where a more
detailed analysis shows large IPC variation between the different configurations which
counteracts some of the impact of frequency changes. On average, AVX2 reduced the
measured throughput by 5.1%, whereas AVX-512 caused a 16.8% performance reduction.
Counterintuitively, the results also show that x265 and OpenSSL cause similar levels of
remote AVX overhead even though they cause different degrees of frequency reduction.
Where applicable, our overhead measurements for AVX-512 workloads match those pre-
sented by previous reports of remote AVX overhead. For example, Vlad Krasnov described
an overhead of slightly less than 10% for a workload involving nginx and OpenSSL [141],
while our nginx-based benchmark experiences 13.2% overhead. Also, Aubrey Li observed
a 10% impact on throughput and a 30% impact on latency when a web server and an
AVX-512 deep-learning workload shared the same cores [154], while in our experiments
most applications executed alongside OneDNN showed between 10% and 30% remote AVX
overhead.

As described in Sections 3.3.3 and 3.3.4, remote AVX overhead can be caused either
by interaction between hyper-threads or by frequency change delays. To show which
of the two affects which benchmarks, we repeat the experiments, but effectively disable
hyper-threading by configuring all processes to use a CPU affinity mask with only one
logical CPU per core. Figure 3.8b contains the results of this experiment. It can be seen that
most two-application benchmarks are mainly affected by the effects of hyper-threading,
whereas the frequency change delay has little impact on performance. This is expected
as the timeslices allocated to the applications by the Linux scheduler are much longer
than the frequency change delay, so only small portions of the non-AVX applications
are affected by reduced frequencies. Only some applications switch more often between
non-AVX and AVX2 or AVX-512 code. For example, the web server example based on

50



19

"(q) parqesIp ST 11 uaym ueyj () pajqeus st Surpeary}-1odAy uaym

PEOYISA0 2IOW 2OUSLIIAXD SpeopRIom [V “Suorjejuawa[dwil HSS SAISUIIUT
-Tomod ssa] Aq padedai ST 9p0d ZIG-XAV/ZX AV 219UM SUOT}RINSU0D 0} dAIIR[II

ZIS-XAV PUB ZXAV AQ Pasned 9seaIour awry () O Y3 SMOYS 21n31j Y], "9pod

XAV-UOU dAISUJUI-ToMOd SSI SB [[om Se 9p0d ZIG-XAV 10 ZXAV Jo Sunsis

-U0D SPEOPIOM SN0dUF012)9Y AUeW Jo ddueuLIoIad 9y} S9oNPal sUOI}ONIISUI

Z1S-XAV PUB ZXAV 2AIsuajuI-1omod Aq pasned peayIsr0 XAY 2}0Wal Y[, :8°¢ 2In3L]

parqestp Surpesyl-odAH (q)

Overhead relative
to SSE4 (%)

!! il A

‘“v

- l! i

e

ﬁ

] TISXAY B TXAY B |\

pajqeus Surpearyi-1odLy ()

Overhead relative

to SSE4 (%)
65 - 8 =
*2 /6(‘4 Oé’/}?* I T T
g oy, | ]
N =
X, (¢ |
*26;9/70@ x| -—{ : -1
"5 A 0,9/ - o
N *e*face;./p fF = | B
6 / - | E
5)()7(// 5* r/77 [ -3 |
(ef 7 5 2
xR Ony, St = g
05y %'7'@ /h‘sf@ — 32
S[/'@ ) I 8
RN = -
4 )(pr Usg — g
63 3 4| D=
b » x P, 70 e — )
x
//O'// 26\5@% S ——— | § N
Yy, Ps| - v
€ | ___
O, 4 /)@ ]
0@0’/7/) 2 6‘26\5)(5’7 ﬁ — ; n
* 5, [ — N
@) oY, Y, Eeee——
) 7 @
eO,l? ‘jq,so GO;S — s
O/)@ bod_l/[O/@S 7’ i ******** ; - *:
op M. Py | |
0 ? ’7/7%/”7@ [ — L
’790,/7/) )(09(75/7 — : B
/7@0:/7 0’7@(7)‘{9 Qs .,O | — | D |
/) ]
O/7><f/./7/))(f./777- 3 |
on /790',,0’ %, Vrer| Ta
Sq, 7 - 2o
N [/7*,;@90;% — A%
/7@ /‘@a /77 /}) — 1S
o, O,/; Mey, 0| = g
/7@ )‘SW (/S % I : g
/)/7*60 Oﬁeo,e'of/bzr [ —— ' o
/ |
//\//. /7/7)(1/'\5‘7-1 ‘ %7
/70414, s | - L2
(@) Q —
/7@ 77 /7 7777777777777
0’7@0/ d,”h e./7 —= |
/7/7>( St — - E N
GOZ? e v |
—

] ZIS-XAY B TXAY B |\

pvayaag XAV €€



3 Performance Implications of AVX2 and AVX-512

nginx and OpenSSL frequently switches between AVX2/AVX-512 code (encryption and
decryption) and non-AVX code (compression, networking, and other web server logic) and
is slowed down even in our second experiment where hyper-threading is disabled.!® Some
of the two-application benchmarks also show substantial remote AVX overhead when
hyper-threading is disabled, which indicates that these applications cause an increased
context switch rate. Whereas, for example, swaptions causes only one context switch
per 7.4 ms of CPU time when executed alongside OneDNN and shows very little remote
AVX overhead, streamcluster experiences five context switches per millisecond of CPU
time and shows substantially higher overhead. The context switch rate is likely mainly
caused by the type of synchronization used by the parallelized applications; streamcluster
in particular makes intensive use of barrier synchronization [26].!!

3.3.6 Impact of Speculative Execution

The examples shown in the previous sections involved intentional execution of AVX2 or
AVX-512 instructions by parts of the workload. However, remote AVX overhead sometimes
occurs even if no task intentionally executes any such power-intensive instructions. In
particular, speculative execution can cause a frequency reduction even if AVX-512 instruc-
tions are only executed due to misspeculation as indicated by a Ubuntu bug report [1].
While we were able to replicate the issue in a synthetic program, we are unaware of
any widespread performance problems caused by such speculative execution of AVX-512
code. In the following chapters, we therefore mostly ignore this source for remote AVX
overhead. Some of the techniques inadvertently prevent speculative execution of AVX2
or AVX-512 code, though. For example, the core specialization technique presented in
Chapter 6 disables access to 512-bit registers on most cores.

3.4 Information Available at Runtime

As shown in Section 3.3.2, remote AVX overhead is hard to predict when developing
or deploying software as it is caused by runtime interaction between different software
components. However, once remote AVX overhead has been observed there are a number
of techniques to mitigate the effects of remote AVX overhead. Techniques against remote
AVX overhead include, for example, replacing AVX2 or AVX-512 with less power-intensive
instructions, as has been done by the developers of the OpenSSL or glibc libraries [195,
161], or placing AVX-512 code on other cores than less power-intensive code [85, 154] as
described in Chapter 6.

While such techniques can improve throughput in the presence of remote AVX overhead,
they often cause overhead themselves if little or no remote AVX overhead is present. In

19 When hyper-threading is active, the impact of frequency change delays is doubled because each short
section of AVX2 or AVX-512 code affects the following code executed on both hyper-threads. Therefore,
the nginx benchmark should show less remote AVX overhead when hyper-threading is disabled. In our
experiments, this effect was likely hidden by the large variation of the results.

1 The context switch rate also depends on the length of the scheduling timeslices. In Chapters 6 and 7, we
conduct similar experiments but use different schedulers, so the results differ.

52



3.4 Information Available at Runtime

Table 3.2: The CPU provides a number of performance events to count cycles at different
frequency levels. We show that the frequency levels documented by Intel can
be further subdivided to determine the type of instruction.

Name Event Umask Instructions

Documented Performance Events [116, pp. 19-7 £.]
CORE_POWER.LVL0O_TURBO_LICENSE 28H 07H <128-bit,
light 256-bit
CORE_POWER.LVL1_TURBO_LICENSE  28H 18H  heavy 256-bit,
light 512-bit
CORE_POWER.LVL2_TURBO_LICENSE  28H 20H  heavy 512-bit
Individual Umask Bits (Undocumented)

- 28H 02H <128-bit

- 28H 04H light 256-bit
- 28H 08H  heavy 256-bit
- 28H 10H light 512-bit

addition, they sometimes only target specific types of remote AVX overhead. Therefore, any
decision on whether to apply such countermeasures requires knowledge of the expected
amount of overhead caused by the techniques as well as knowledge of the amount of
remote AVX overhead in the absence of any countermeasure. Collecting such information
poses a major challenge, though. In particular, while current hardware generally provides
powerful performance monitoring facilities, their interfaces lack the performance events
required to detect the conditions for remote AVX overhead.

As shown in Table 3.2, Intel documents three performance events which measure
the frequency impact of AVX2 and AVX-512 by counting the cycles spent at the three
frequency levels [116, pp. 19-7 f.]. The performance events CORE_POWER.LVLO_TURBO_ -
LICENSE, CORE_POWER.LVL1_TURBO_LICENSE, and CORE_POWER.LVL2_TURBO_LICENSE count
the cycles spent at the non-AVX, AVX2 and AVX-512 levels, respectively. As we showed in
Section 3.2.2, the CPU differentiates between more than three types of instructions - for
example, the CPU’s behavior during transitions from 128-bit to 256-bit FMA instructions
differs from that during transitions from 128-bit FMA to 512-bit OR instructions. To
determine whether there are undocumented performance events which capture these
differences, we vary the Umask value which selects between different related events. We
set individual bits in the Umask value while executing different SIMD instructions in a
loop to test which events are triggered by which instructions. As shown in the lower
half of Table 3.2, we find that each bit corresponds to a different type of instruction, with
separate bits existing for light 256-bit and 512-bit as well as heavy 256-bit instructions.

The performance events allow the user to measure the time during which the frequency
is reduced by power-intensive instructions. As an example, Figure 3.9 shows the fraction
of cycles spent at the three frequency levels as reported by the PMU for x265 and OneDNN.

53



3 Performance Implications of AVX2 and AVX-512

100 80
5 £ 60 I B Non-AVX Frequency Level
é 50 é 40 I B AVX2 Frequency Level
> S 90 BB AVX-512 Frequency Level
0
ottt P\\l*&\]\lx"?ﬁ' EALZEENL P\\nk;l\\”\,gx'?—
(a) Cycles (OneDNN) (b) Cycles (x265)

Figure 3.9: Recent Intel CPUs provide performance events which represent the cycles spent
at the three frequency levels. When these events are counted for OneDNN (a)
and x265 (b), it can be seen that OneDNN causes a stronger frequency reduction.

The measurements show that OneDNN makes more intensive use of heavy 256-bit and
512-bit instructions and therefore as mentioned earlier causes a larger frequency reduction.
However, the PMU does not give any information on whether the frequency reduction is
actually required for the currently executing code, i.e., it is not able to identify the impact
of frequency change delays. The PMU is not able to attribute the frequency reduction
to individual hyper-threads either — instead, it reports the same cycle counts for both
hyper-threads even if only one of them executes AVX2 or AVX-512 code. The interface
can therefore not be used directly to identify or measure remote AVX overhead.

Instead, detecting and quantifying remote AVX overhead - i.e., unnecessarily low CPU
frequencies — requires not only information on CPU frequencies but also on whether
the currently executed code uses power-intensive SIMD instructions. While recent Intel
CPUs provide a number of performance events to count 256-bit or 512-bit floating point
operations [116, pp. 19-20 f.], they lack events for other power-intensive instructions such
as SIMD integer multiplications. In the absence of suitable hardware interfaces, previous
work has experimented with a wide range of methods to detect whether specific functional
units are in use. For example, static analysis is able to identify the regions of the control
flow graphs in which the program uses specific CPU components. You et al. [260] use
this information to implement efficient power gating of individual functional units. The
main drawbacks of static analysis is that it cannot determine the time spent in individual
program regions, though. Kumar et al. [142] therefore use dynamic profiling to determine
whether individual program regions are long enough to warrant use of SIMD instructions
or whether the SIMD unit should remain power-gated. In both cases, the referenced work
employs the techniques to reduce leakage power, as power-gating itself is only effective
when applied over sufficiently long time spans. However, the information can likely also
be used to measure the remote AVX overhead. When information about SIMD usage is
correlated with the aforementioned cycle counts reported by the PMU, phases without
SIMD instructions but with reduced frequencies constitute remote AVX overhead.

While such a profiler based on code analysis and dynamic profiling may be viable for
some workloads, the approach chosen by Kumar et al. [142] has an important drawback.
In particular, dynamic profiling is implemented via instrumentation of the application
using a just-in-time compiler. Such instrumentation not only has the potential to introduce
substantial overhead but also prevents use of the approach in scenarios where applications

54



3.5 Applicability to Other Microarchitectures

cannot be modified. A cloud provider, for example, is not able to add arbitrary instrumen-
tation to virtual machines provided by customers. In Chapter 4, we therefore present a
simple sampling profiler able to measure remote AVX overhead for arbitrary workloads at
runtime with low overhead. We also show how simple hardware modifications will make
quantification of remote AVX overhead far more simple and accurate.

As described in the introduction to this section, selecting a suitable countermeasure
against remote AVX overhead not only requires knowledge of the amount of remote AVX
overhead but also requires an estimate of the expected overhead of the countermeasure
itself. Given the wide range of potential countermeasures, no single technique to determine
this overhead can be given. Previously, remote AVX overhead has most commonly been
met by replacing the power-intensive code responsible for the remote AVX overhead
with a less power-intensive implementation. For example, when the OpenSSL developers,
as mentioned above, noticed performance regressions due to the use of AVX-512, they
completely disabled 512-bit SIMD instructions on the affected systems [195]. Similarly,
glibc’s AVX-512 implementations of string functions were disabled after remote AVX
overhead was observed [161]. Such code changes not only prevent remote AVX overhead
but also cause a local slowdown as wide SIMD instructions are replaced by less performant
instructions, which may lead to reduced performance in some situations. While, for
example, disabling AVX-512 in OpenSSL improved performance for many web server
configurations, our experiments show that other configurations such as web servers that
serve static uncompressed files are substantially slowed down [83]. Predicting the overhead
caused by such code changes therefore requires an estimate of the local speedup brought
by AVX2 and AVX-512 in the given scenario.

We are unaware of any generic method that produces reliable estimates of the local
slowdown if AVX2 or AVX-512 are replaced by less power-intensive instructions. One
could assume that, for example, counting all 512-bit SIMD operations and multiplying the
instruction count by four would yield a usable estimate of the number of 128-bit SIMD
instructions required. This and similarly simplistic approaches are not practical, though,
mainly because, as described above, the CPU does not provide the required instructions
counts. Also, such approaches may overestimate the slowdown as wider vector operations
are more heavily affected by memory stalls [112]. Zhu et al. [263] show how it is possible
to extrapolate cache efficiency and SIMD utilization from measurements performed with
reduced problem sizes, but such approaches require application-level knowledge. Overall,
in our eyes, the lack of methods to predict the impact of program changes such as those
described above on OpenSSL and glibc means that such changes come with an inherent
high risk to cause performance regressions. In this thesis, we therefore instead focus on
techniques which mitigate the impact by remote AVX overhead without any changes to
applications. We discuss changes to the CPU’s DVFS policy in Chapter 5 and describe
suitable scheduler modifications in Chapters 6 and 7.

3.5 Applicability to Other Microarchitectures

The sections above describe the behavior of the Intel Skylake-SP and Intel Skylake-X
microarchitectures. Similarly, the following chapters will focus on processors using these

55



3 Performance Implications of AVX2 and AVX-512

microarchitectures. However, as we show in the following, our work also applies to other
existing CPUs, albeit to varying degrees. More importantly, we expect a rising number of
CPUs to feature similar behavior to the Intel CPUs covered by this thesis as power limits
become more and more stringent.

The first Intel processors to feature different frequency levels depending on the instruc-
tion set used were the Intel Haswell-EP processors introduced in 2014 [76]. Whenever one
processor core executed AVX2 code, these processors reduced the frequencies of all their
cores [77]. This is in contrast to the processors used in this thesis which select different
frequencies for individual cores depending on instruction set usage. As a result, while
our work on profiling and fair scheduling in Chapters 4 and 7 largely applies to these
processors, albeit with minor modifications, our work on core specialization presented in
Chapter 6 does not.

The first microarchitecture to implement separate AVX frequency management for
individual CPU cores was the subsequently released Broadwell microarchitecture [77]. In
contrast to the Skylake-SP and Skylake-X microarchitectures described in this chapter and
similar to Haswell, it did not support AVX-512, yet. The third AVX-512 frequency level was
then introduced by Skylake, which proved to be a comparably long-lived microarchitecture.
To the best of our knowledge its derivatives Cascade Lake-SP and Cooper Lake feature
identical frequency management [188]. Subsequent Cannon Lake laptop processors with
support for AVX-512 also provide three different frequency levels [58]. The first microar-
chitecture that deviated from this frequency management scheme was Ice Lake which
was released for laptops in 2019 and for server systems in 2021. This microarchitecture
provided optimized frequency synthesizers — the processor cores do not need to halt while
the PLL changes its frequency - to reduce frequency change overhead [79, 188]. Also, Ice
Lake reduced the number of frequency levels to two, where heavy AVX2 and light AVX-512
code is able to execute at the same frequency level as non-AVX code. On these CPUs,
heavy AVX-512 code still has to be executed at reduced frequencies, so the qualitative
results of our work remain valid.

As described in Section 2.3.1, other CPU manufactures have yet to introduce similar
techniques to execute code using power-intensive instructions at reduced frequencies,
most likely because Intel’s implementation is the subject of multiple patents [29, 204,
201]. We expect the manufacturers to eventually follow suit, as increasingly stringent
power limits mean that exploiting leftover power headroom remains as the primary source
for performance improvements. Potentially, the number of different frequency levels
implemented by upcoming CPUs will even grow to enable better utilization of power
budgets for a wider range of code. We therefore expect the results of this thesis to be
applicable to increasing numbers of CPUs in the future.

56



4 Runtime Profiling of AVX2 and AVX-512
Overhead

In the previous chapter, we showed how AVX2 and AVX-512 code often causes other code
to be slowed down. These experiments demonstrate the need for a profiler that quantifies
this remote AVX overhead. In particular, the experiments show the large performance
impact and show how the origin of the remote AVX overhead can be non-obvious given
that the affected code is often completely unrelated to the AVX2 or AVX-512 code. In
this chapter, we present a profiler which is able to quantify remote AVX overhead and
which provides information about the reasons for remote AVX overhead. Developers
and system administrators both benefit from having such information. While developers
require knowledge of the amount of overhead to make design decisions such as whether
or not to use AVX2 or AVX-512, system administrators need to be able to make informed
decisions on whether to deploy countermeasures such as those described in the following
chapters.

Our profiler is often even suited for use directly in production environments, unlike the
technique used to measure remote AVX overhead in the previous chapter. Our previous
experiments relied heavily on the ability to configure the use of AVX2 and AVX-512 in the
workloads as we compared the CPU time of variants of the same workload with and without
these instructions. This reconfiguration is problematic in most real-world situations where
developers or system administrators want to analyze their own workloads. In particular,
the experiments are rather labor-intensive as each measurement not only requires multiple
runs of a benchmark but may in some cases even require manual modification of the
applications involved to make use of AVX2 and AVX-512 configurable. We, for instance,
needed to modify the OpenSSL library to reenable AVX-512 implementations that had
previously been deactivated by the OpenSSL developers. Also, the experimental setup
requires the workload to be restarted to reconfigure the use of AVX2 and AVX-512. Often,
such intervention in the operation of applications is outright impossible. If, for example,
a cloud provider wants to investigate remote AVX overhead caused by the colocation of
virtual machines from different customers, the cloud provider is unable to modify and
restart these virtual machines at runtime. Finally, even if restarting applications is possible,
it may not be desirable. For example, taking a web service offline often results in a degraded
user experience even if the service is only stopped for a brief moment.

In contrast, in this chapter we describe a non-intrusive profiler that is able to quantify
remote AVX overhead at runtime with very little negative impact on the system [87]. We
start the chapter by reviewing existing related approaches to profiling in Section 4.1. In
Section 4.2, we then describe remote AVX overhead sampling as the underlying working
principle of our profiler. The profiler periodically pauses the software running on indi-
vidual CPU cores and analyzes the resulting frequency changes to determine whether

57



4 Runtime Profiling of AVX2 and AVX-512 Overhead

any frequency reduction present on the CPU is actually required by the current task. We
show how this technique can be extended to differentiate between the remote frequency
reduction caused by sibling hyper-threads and that caused by the frequency change delay.
We then show how the frequency reduction translates into overhead in Section 4.3, pre-
senting a model that predicts instruction throughput at different CPU frequencies for the
current workload. In Section 4.4, we describe a technique to identify AVX2 and AVX-512
processes that can potentially cause a frequency reduction. This technique can be used to
determine the processes responsible for the overhead detected by the profiler. We then
present an evaluation of the profiler based on the benchmarks from the previous chapter
in Section 4.5. Our evaluation indicates that our profiler can determine the remote AVX
overhead in a wide range of benchmarks with an average error of only 2.2% percentage
points. Our experiments also show that our profiler can be used in many production
environments with negligible impact on quality of service as it only slows the system
down by 2.1% on average. Finally, we discuss limitations of our profiler as well as potential
improvements in Section 4.6.

4.1 Existing Profilers

In many situations, software developers and users require information about nonfunctional
application properties. In particular, information about resource usage helps finding
bottlenecks that restrict performance and allows selective optimization of those bottlenecks.
Profilers - tools to collect such information about nonfunctional properties at runtime
— were originally proposed as an optimization aid that determined how often individual
parts of programs were executed [135]. Since then, profilers were extended to cover many
different properties ranging from physical properties such as energy consumption [214]
to microarchitectural events that allow software developers to determine the nature of
bottlenecks [259]. While there are many different approaches to profiling depending on
the supported hardware and the information to be collected, most profilers are either
instrumentation-based or sampling profilers.

Instrumentation-based profilers are tools that modify programs to insert code that collects
the required information [135]. For example, if each basic blocks of a program is modified
to increase a separate counter, the resulting information can be used to determine the
execution frequency of all statements of the program which allows the developer to identify
frequently executed code. Alternatively, the inserted code can utilize the performance
monitoring unit (PMU) found in recent CPUs such as those covered by this thesis [116,
pp- 18.1 ff.]. The PMU can be configured to count a range of microarchitectural events
with implications for performance. If the profiler, for example, inserts code that uses the
PMU to read the cumulative number of cache misses at various points in the program,
the resulting information can be used to identify particularly memory-heavy parts of the
program [7].

The main advantage of instrumentation-based profilers is that they are able to produce
a very detailed description of the behavior of the program if it is instrumented with
sufficiently high granularity. However, doing so can introduce substantial overhead both
in terms of program size and execution time. If a profiler wants to measure the execution

58



4.1 Existing Profilers

frequency of all basic blocks, even optimal placement of the inserted code results a 2x
slowdown for some programs [14]. Such overhead limits usage scenarios where a specific
minimum performance is required — for example, it is likely rarely viable to employ
instrumentation-based profiling in a production server environment. The overhead also
causes what is commonly called instrumentation perturbation [165]: As additional code
is executed, the timing behavior of the software changes resulting in modified memory
access patterns and event reordering, both of which affect the quality of the profiling
results.!

Even though instrumentation-based profiling is able to use the PMU for flexible mi-
croarchitectural analysis, such a profiler is not usable to measure remote AVX overhead
due to the reasons presented in Section 3.4. In particular, although the PMUs of recent
Intel CPUs are able to count the cycles spent at the three frequency levels — non-AVX,
AVX2, and AVX-512 frequencies — they do not provide any information about whether a
frequency reduction was necessary (local AVX overhead) or unnecessary (remote AVX
overhead) for the currently executed part of the workload.

In contrast to instrumentation-based profilers, sampling profilers achieve far lower over-
head, sometimes even enabling continuous profiling on production systems [8]. Sampling
profilers periodically interrupt the program, each time recording the location where the
program was interrupted [135]. The profilers then translate the resulting samples into
information similar to that provided by instrumentation-based profilers. If we assume
that sampling occurs at fixed time intervals, then the number of interrupts within a code
section correlates with the time spent in that section. On most systems, the same approach
can also be used to measure the occurrence of other performance events such as cache
misses [8] as the PMU can be configured to generate an interrupt after a fixed number of
events. In this case a large number of interrupts signal a large number of such events in
the corresponding part of the program. As described above, this approach is not usable to
measure remote AVX overhead, though, as the CPU lacks appropriate performance events.

Although literature does not describe any alternative to measure remote AVX overhead,
some related work strives to achieve similar goals. For example, the Linux kernel provides
an interface to detect whether individual tasks use AVX-512 [235]. During each context
switch, the kernel tests whether the 512-bit vector registers contain valid content and marks
the task as an AVX-512 task if they do. While this interface can be used to identify tasks that
could potentially cause remote AVX overhead, the kernel does not actually measure the
overhead. In fact, the mechanism would not be usable as part of a profiler which measures
remote AVX overhead for three reasons. First, as described by Linux documentation [235],
the values reported depend on the rate of context switches. Second, temporary use of
512-bit vector instructions remains unnoticed by the kernel if the application clears the
registers using the VZEROUPPER instruction before the next context switch [115, p. 5-550]
as suggested by documentation from Intel [113, p. 17-57].2 Third, the mechanism is unable
to differentiate between light and heavy 512-bit instructions, even if they cause different
degrees of frequency reduction.

' Other sources use the terms invasiveness [178] or intrusiveness [10] to describe the impact of the profiler
on application behavior.

2 The Linux kernel documentation states that performance counters can be used to obtain precise informa-
tion [235]. As we show in Section 3.4, this is not the case.

59



4 Runtime Profiling of AVX2 and AVX-512 Overhead

The work performed by Kumar et al. [142] is more similar to our goal of determining
the amount of remote AVX overhead. Kumar et al. present a technique to determine
whether code should use SIMD instructions or whether the corresponding function units
should be power-gated. Their approach uses instrumentation-based profiling based on
a runtime translation layer. The layer adds code to all basic blocks which counts how
often individual blocks are executed and which uses a bit mask to track whether any
recently executed instructions were SIMD instructions. To conserve energy, basic blocks
are then devectorized by the translation layer if too few recently executed instructions
were SIMD instructions. While we assume that the instrumentation-based profiler could
potentially be modified to measure remote AVX overhead, the approach suffers from two
substantial drawbacks. First, as with any instrumentation-based profiler, the approach
requires modifications to application code which may be difficult in, for example, cloud
computing or any other multi-tenant environment. Second, the analysis only covers a
single application and does not cover the operating system. In our case, the performance
of system calls in particular is often negatively affected by remote AVX overhead. In the
case of the nginx benchmark with AVX-512-enabled OpenSSL described in Chapter 3,
our experiments showed that the network stack was commonly affected by a frequency
reduction caused by preceding calls to OpenSSL. Therefore, the sampling profiler presented
in the next sections covers not only all applications executed on the system but also large
parts of the operating system kernel.

4.2 Detecting Unnecessary Frequency Reduction

In Chapter 3, we defined remote AVX overhead as the performance impact of remote fre-
quency reduction, i.e., it is the impact of 256-bit and 512-bit SIMD code on the frequency of
other less power-intensive code. In relative terms, remote AVX overhead can be expressed
as the actual CPU time required by a task divided by its ideal CPU time, i.e., the CPU time
that would be required by the task if there was no remote AVX overhead. These times, in
turn, are determined by the average actual CPU frequency during execution of the task and
the average ideal CPU frequency at which the task could have been executed in the absence
of any AVX2 or AVX-512 frequency reduction. Therefore, the remote AVX overhead can
be expressed as follows, where A, ¢(f1, f2) is a function that calculates the performance
change caused by a given frequency change:

_ Lactual - A

perf(ﬁzctual,avga ﬁdeal,avg) (4'1)
tideal

Recent Intel CPUs do not provide any low-overhead method to continuously monitor
the ideal CPU frequency. Therefore, we propose a sampling profiler which periodically
selects an individual logical CPU (i.e., a hyper-thread) in a round-robin fashion to sample
the unnecessary frequency reduction (i.e., fycruar and figeqr) at the given time [87]. For each
task, our profiler stores the number of samples during execution of the task. The profiler
also maintains two sums corresponding to the approximate actual performance (paetyar)

60



4.2 Detecting Unnecessary Frequency Reduction

factual ﬁdeal factual ﬁdeal factual ﬁdeal
[ [ [
B ’ Non-AVX |Pause| Non-AVX ‘ B ’ AVX-512 |Pause| AVX-512 ‘ B ’ AVX-512 | |Pause| Non-AVX ‘
(&) (&)
> > >
[} [} [}
o] o] o] R
= = 1 sl |
o o o
- Time - Time - Time
(a) No remote AVX overhead (b) No remote AVX overhead (c) Remote AVX overhead due
(no frequency reduction) (low frequency required) to frequency change delay

Figure 4.1: Unnecessary frequency reduction — the difference between actual CPU fre-
quency and the ideal frequency for the currenty executed code — is measured
by temporarily pausing individual CPU cores and then resuming a single hyper-
thread [87]. During this process, the CPU first switches to the non-AVX fre-
quency level and then to the ideal frequency for that hyper-thread. In the
absence of remote AVX overhead, frequency measurements fycruq and figeas
before and after these steps are identical (a-b). Differences indicate remote AVX
overhead (c).

and the approximate performance at ideal frequencies (p;zeq) and uses those two sums to
create an estimate of the remote AVX overhead:

Pideal Z ﬁlctualAperf(ﬁzctuals ﬁdeal)
0O~ =
Pactual Z factual

Unnecessary frequency reduction - i.e., a difference between fizeq; and fue1,a1 — Occurs
if a task does not use power-intensive SIMD instructions, yet the CPU core has recently
executed power-intensive SIMD instructions or the other hyper-thread of the physical
CPU core currently executes such instructions. In the following, we describe a technique
to sample both frequencies as well as a technique to differentiate between overhead caused
by hyper-threading and overhead caused by frequency change delays. Afterwards, in
Section 4.3, we describe how to determine the performance reduction caused by a frequency
change, i.e., we describe our implementation of Nperf-

(4.2)

4.2.1 Frequency Reduction Sampling

Whereas the actual frequency can easily be measured using performance events supported
by the PMU, the CPU lacks any performance event that allows direct measurements of the
ideal frequency. Instead, we propose a scheme where, whenever sampling a hyper-thread,
the profiler forces its physical CPU core to temporarily return to the non-AVX frequency
level. If the CPU then does not directly return to its previous lower frequency, the frequency
reduction is not necessary for the currently executed code. As shown in Figure 4.1, this
scheme involves a number of steps that are executed whenever a hyper-thread is sampled:

1. The profiler measures the actual frequency (marked as f,.,q in Figure 4.1). We
measure the frequency by executing 1000 NOP instructions while the PMU is con-
figured to count CPU cycles as well as the fixed-frequency reference cycles. The

61



4 Runtime Profiling of AVX2 and AVX-512 Overhead

ﬁzctual f * ﬁdeal

[J]
o
8’ Non-AVX | Pause I Non-AVX ‘

Active
Cores

Frequency

Time

Figure 4.2: If the number of active cores changes during the pause induced by the profiler,

62

the difference between the CPU frequencies before and after the pause is not
representative of the remote AVX overhead anymore. In the example shown
in the figure there is no remote AVX overhead, yet the frequency increases
during the pause. To isolate the impact of AVX instructions, our profiler only
measures fuciuq1, and uses this frequency together with the AVX frequency level
to calculate fiz.,; under the assumption that the number of active cores does
not change.

ratio between the two values is proportional to the CPU frequency. In addition,
the profiler configures the PMU to count the cycles at the three frequency levels as
described in Section 3.4. Most commonly, only one of the three counters produces a
non-zero result, which indicates the current frequency level of the CPU.

. The profiler sends an inter-processor interrupt to the sibling of the sampled hyper-

thread to instruct it to spin in the kernel while executing only non-AVX instructions.
The sampled hyper-thread itself then proceeds by spinning for 700 ps while interrupts
are disabled on both hyper-threads. As a result, the physical core does not execute
any SIMD instructions for a period longer than the AVX frequency change delay,
forcing it to transition to the non-AVX frequency level if it was previously operating
at a lower frequency level.

. While the sibling hyper-thread continues spinning, the hyper-thread to be sampled

continues regular operation. As the previously executed task continues, any power-
intensive SIMD instructions executed by the task, if present, quickly force the CPU to
assume a lower frequency level. Our profiler sleeps for additional 70 ps to allow the
workload to affect the CPU frequency. After this brief delay, the CPU frequency equals
the ideal frequency for the currently executed code (marked as fij.q; in Figure 4.1).

Usually, the remote frequency reduction can be calculated as the difference between
this frequency after the pause and the frequency before the pause. There is one
exception, though, as shown by Figure 4.2. If the number of active CPU cores
changes during the pause, the turbo level changes, so the frequency difference does
not represent the impact of AVX2 and AVX-512 anymore. This example shows that
our profiler is not actually interested in the ideal frequency after the pause, but rather
has to determine what would have been the ideal CPU frequency at the time of step



4.2 Detecting Unnecessary Frequency Reduction

ﬁdeal ﬁdeal,HT ﬁdeal ﬁdeal,HT
N N
Code(Sibling)’ Non-AvX | Pause lNon-AVX‘ Code (Sibling)’ AVX-512 | Pause | AVX-512 ‘
Code (Sampled) ’ AVX-512 || Pause | Non-AvX ‘ Code(Sampled)’ Non-AvX | Pause | Non-AVX ‘
z g
3 — o
5 S [ ]
[N [N

Time Time

(a) Overhead due to frequency change delay (b) Overhead due to hyper-threading

Figure 4.3: To determine the source of remote AVX overhead, our profiler optionally
measures the frequency again 70 ps after resuming the sibling hyper-thread. A
further frequency change, i.e., a difference between fijeq and figeq r indicates
that the sibling hyper-thread causes remote AVX overhead.

1. We therefore do not simply measure the frequency again after the pause. Instead,
the profiler measures the frequency level — non-AVX, AVX2 or AVX-512 — using the
technique from step 1 again. The profiler then uses both frequency levels as well
as the initial frequency measurement to determine what would have been the ideal
frequency before the pause.

This calculation is performed with the help of a table of the CPU frequencies at the
different turbo levels such as Table 3.1. The frequency measurement taken in step 1
is first compared to all frequencies for the initial frequency level to determine the
number of active cores, and the second frequency level is then used to lookup the
ideal frequency for this number of cores.

4. Finally, the sibling hyper-thread resumes regular operation.

While the steps above allow the profiler to determine the remote frequency reduction,
they do not provide any information on the reason for the frequency reduction. As
described in Section 3.3.2, remote frequency reduction can be caused either by frequency
change delays or by the sibling hyper-thread’s parallel execution of AVX2 or AVX-512 code.
Often, the user profits from knowing which of the two mechanisms contributes to remote
AVX overhead, as techniques to mitigate remote AVX overhead may only target overhead
caused by one of them. For example, core scheduling [154] only mitigates remote AVX
overhead caused by hyper-threading, whereas modifications to the CPUs DVEFS policy
such as that presented in the next chapter mainly influence the impact of frequency change
delays [86]. To be able to differentiate between the two types of overhead, our profiler
optionally adds an additional step to the steps described in the previous section:

5. As shown in Figure 4.3, the profiler waits for additional 70 s and measures the
frequency level again. Based on this frequency level, it calculates the ideal CPU
frequency figeq yr for the code on both hyper-threads combined. As any frequency
reduction after the previous step is caused by the code running on the sibling hyper-
thread, this final frequency enables the profiler to differentiate between the two

63



4 Runtime Profiling of AVX2 and AVX-512 Overhead

sources for remote AVX overhead. Whereas Figure 4.3a shows a situation where all
reduction is caused by frequency change delays and the CPU frequency remains high,
Figure 4.3b shows a situation where resuming the sibling hyper-thread causes the
frequency to drop to its original level. Consequently, the remote frequency reduction
caused by hyper-threading can be calculated as the difference between fj.q g and
fideal, While the impact of frequency change delays can be calculated as the difference

between figeqr pr and focryal-

As the additional timer interrupt slightly increases the overhead caused by the
profiler and we expect the additional information to be only infrequently required,
we disable this final step by default and only enable it when the user requests an
analysis of the sources of overhead.

Once these steps have completed, the next logical CPU to be sampled is selected in a
round-robin fashion. A high-resolution timer is configured to interrupt that logical CPU
at a random time between 10 and 30 ms in the future. Once elapsed, this timer causes the
selected logical CPU to sample its frequency reduction. Similar to Anderson et al. [8], we
randomize the time between samples to prevent aliasing effects — if the workload showed
periodic behavior, a fixed sampling frequency may fail to sample parts of the workload.
We select an average time of 20 ms between samples as we found the resulting sample rate
to provide accurate profiling results at acceptable overhead. See Section 4.6.1 for a more
complete discussion of the trade-off between accuracy and overhead.

This timer provides a non-obvious source for systematic measurement error when
implemented incorrectly. In particular, the implementation must ensure that the timer
interrupt does not activate an additional CPU core. Such additional active cores would
artificially increase the amount of remote AVX overhead because the difference between
the frequency levels depends on the number of active cores [119]. Whereas, for example,
the Intel Xeon Gold 6130 CPU reduces its frequency by 400 MHz when four CPU cores
are active, this difference increases to 1 GHz for five active cores. While our profiler, as
described above, tries to compensate for turbo level changes during the pause, it is unable
to detect the impact of additional active CPU cores if the whole sampling process is affected,
i.e., if the CPU switches to a lower turbo level before the initial frequency measurement.
In Linux, high-resolution timers are local to the logical CPU on which they are started, so
we prevent additional active CPU cores by always starting the timers on the logical CPU
that is supposed to be sampled next.

Another source for systematic measurement error stems from scheduling - if a new task
is selected during the sampling process, the ideal frequency determined after the pause
does not correspond to the task executed before the pause. We therefore skip samples
where we detect a context switch between steps 1 and 4.

4.3 DVFS Performance Prediction Model

Once the amount of unnecessary frequency reduction has been calculated, the frequency
reduction needs to be translated into an estimate of the performance reduction (A, f
in Equation 4.2). While the throughput of some applications scales linearly with CPU

64



4.3 DVFS Performance Prediction Model

Low CPU freq. CPU | Memory | CPU | Memory |  CPU

Only CPU-limited
High CPU freq. | CPU | Memory | cPU | Memory | cPU | code becomes faster

Time

Figure 4.4: Depiction of the CPU time required to execute a program that alternates CPU-
heavy phases with memory accesses — whenever the CPU is waiting for memory,
frequency changes do not impact performance. The figure is simplified - in
practice, CPUs overlap memory accesses with other instructions.

frequency, for others, it does not [101]. As we described earlier in Section 2.2.3, the reason
for this behavior of different workloads can be found in memory slack. Whenever, as shown
in Figure 4.4, the CPU is stalled waiting for resources whose latency does not vary based
on the CPU frequency, this frequency does not have any impact on performance. Such
resources include memory as well as large high-latency last-level caches that are operated
at a frequency different to the frequency of the CPU cores. As a result, memory-intensive
applications show particularly little performance changes when the CPU frequency is
changed.

The share of the time spent waiting for memory depends not only on the number of
memory accesses but also on the nature of the accesses. Even memory accesses with
identical latency do not cause the CPU to stall for the same amount of time, as modern
microarchitectures are often able to hide the latency of memory accesses via speculative
execution, out-of-order execution, store buffers, and support for multiple outstanding
loads. In addition, the latency of memory accesses is influenced by external factors such
as memory pressure generated by other cores. For example, most SPEC benchmarks show
less performance change when executed multiple times in parallel as the additional copies
contribute to memory pressure [101]. All these factors make it rather hard to predict the
performance of an application at a different frequency.

4.3.1 Existing Models

Existing approaches to DVFS performance prediction commonly try to reduce complex-
ity by creating simplified models of the system’s behavior. Empirical models form one
class of such models [229]. These models are created using a black-box approach and
exploit the correlation between performance changes caused by DVFES and performance
events reported by the hardware. For example, Weissel et al. [251] characterize system
behavior with a wide range of microbenchmarks which vary both in the rate of memory
accesses and total instructions executed per cycle. They manually determine the frequency
at which these benchmarks are slowed down by 10% and use the resulting data to pre-
dict the performance impact of frequency changes on other applications based on their
characteristics.

65



4 Runtime Profiling of AVX2 and AVX-512 Overhead

Interval Interval
Assumed critical path
. Memory Memory
(defines performance) . . . .
Time CPU Time Time CPU Time
CPU-Bound Code —T—— | |  —— — ==
DRAM Loads Time
Leading Load Leading Load
Not Leading
(discarded)

Figure 4.5: The leading-loads model divides time into intervals consisting of a leading
load and subsequent CPU-bound code. Any load started during the leading
load is ignored. The model assumes that the time during leading loads remains
constant, whereas the remaining time scales inversely to the CPU frequency.
Figure adapted from [229].

Snowdon et al. [224] instead divide total time into CPU time, memory time, and bus
time and calculate the latter two times as a linear combination of a number of performance
counters. They calculate suitable coefficients for this linear combination via linear regres-
sion and select appropriate performance events using an exhaustive search. Similarly, Lee
et al. [147] notice that the cycles per instructions (CPI) at a different frequency depend on
the CPI at the current frequency as well as the ratio between memory instructions and
total instructions. The resulting model effectively divides time into CPU-bound time and
memory-bound time.

Empirical models have two main drawbacks resulting from their need for training
data for calibration of model parameters. First, collecting this training data can be time
consuming, which is particularly problematic as the resulting model is specific to the
system configuration. Any changes not only to the CPU but also to hardware parameters
such as memory latency or throughput affect the model’s accuracy and may require
constructing a new model. Second, and perhaps more importantly, the correlation between
performance events and the impact of frequency changes may only be present for specific
types of workload, whereas the model may greatly over- or underestimate performance
changes for other applications. For example, models such as that by Snowdon et al. [224]
which divide time into purely CPU-bound time and purely memory-bound time are able
to produce good predictions for workloads where CPU-bound code and memory accesses
show little overlap. Modern out-of-order CPUs are often able to overlap the two to hide
the latency of memory accesses, though.

It is hard to model the impact of overlap between CPU-bound code and memory accesses
using empirical models as the impact depends on the structure of the program and the
properties of memory accesses. While, for example, Li et al. [155] describe an approach
to DVEFS prediction which takes overlaps into account, their design produces a separate
model for each individual application. This requirement for separate models stems from
the fact that the models estimate the impact of overlap time based on the computational
intensity of individual applications.

66



4.3 DVFS Performance Prediction Model

Assumed critical path

(defines performance) ) .
Stall CPU Time Stall CPU Time
/_/R 7~ ~N N o ~

CPU-Bound Code —F————| | ————

DRAM Loads Time

Figure 4.6: Stall cycle counting is a model which assumes that time while the CPU is stalled
remains constant whereas all other time scales inversely to the CPU frequency.
In contrast to the leading-loads model, overlaps between memory instructions
and other instructions are ignored.

In contrast to empirical models, mechanistic models are based directly on the mechanisms
that influence the impact of frequency changes on performance [229]. By modelling these
mechanisms using corresponding hardware events, empirical models commonly eliminate
the need for calibration. One mechanistic model that has shown to provide good accuracy
for recent superscalar out-of-order CPUs is the leading-loads model [72, 130, 207]. The
leading-loads model is based on the observation that overlapping loads commonly do
not contribute to the number of stall cycles. Instead, performance is defined by the time
required for a critical path through the program consisting of non-overlapping loads and
the CPU-intensive code between them, depicted by the red line in Figure 4.5. When this
critical path leads through non-overlapping memory accesses, CPU frequency changes
are assumed to have no impact on performance, while all remaining time is assumed to
scale according to the frequency. The non-overlapping memory accesses are called leading
loads.

To identify overlapping loads, the leading-loads model makes the simplifying assumption
that, as shown in Figure 4.5, the CPU time of any piece of code is defined by a series of
intervals consisting of a memory access — the leading load - followed by CPU-bound code
that depends on this memory access [72, 207]. Any memory accesses started while the
leading load is still in flight are discarded by the model. Instead, once the leading load has
completed, the next load access is classified as a leading load.

While this model is able to capture the parallelism provided by superscalar processors,
it requires performance monitoring events that are not widely available. The only prac-
tical application of a leading-loads model to date has been described by Su et al. who
show that the miss address buffer provided by some AMD CPUs can be used to identify
leading loads [229]. No similar mechanism is available for the Intel CPUs covered by this
thesis, making the leading-loads model impractical on such systems. The same applies
to extensions to the leading-loads model such as CRIT+BW [169] which includes factors
such as variable memory access latencies, prefetching and limited memory bandwidth.

Stall cycle counting [72, 130] as shown in Figure 4.6 is a simpler model that can be
implemented using the existing performance counters found in almost all recent CPUs.
The model assumes that there is negligible overlap between memory accesses and other
instructions and that therefore all time while the CPU is not stalled due to memory accesses
scales inversely to the CPU frequency. In contrast to empirical models that perform a

67



4 Runtime Profiling of AVX2 and AVX-512 Overhead

similar classification of time, stall cycle counting uses performance events that directly
measure stall cycles and therefore does not require any calibration. Otherwise, these
models are fairly similar — unlike the leading-loads model, neither models the overlap
between memory accesses and other instructions. Nevertheless, it has been shown that
stall cycle counting is able to predict performance with an error of only 2.1% on a simulated
out-of-order CPU [130].

4.3.2 Stall Cycle Counting for Intel Skylake-SP

For our profiler, we implement a model based on stall cycle counting as the technique
has shown to be easy to implement, yet provides estimates with acceptable prediction
errors. The main challenge when implementing stall cycle counting is the choice of
suitable performance events. On Intel Skylake-SP CPUs, the L2 cache operates at the same
frequency as the CPU core while the L3 cache does not [231, 95], so similar to existing
models [130] we choose the performance event that represents stalls due to L2 misses
caused by demand loads — CYCLE_ACTIVITY.STALLS_L2 MISS [116, p. 19-15] - to count
the stall cycles due to memory loads. In addition, we noticed that some benchmarks
frequently stall due to full store buffers, whereas existing models ignore stalls due to store
instructions. Unfortunately, the hardware does not provide any performance event that
directly counts stall cycles while the store buffer is full. Instead, the CPU only provides
EXE_ACTIVITY.BOUND_ON_STORES [116, p. 19-16] which counts all cycles where the store
buffer is full yet there is no outstanding load. The event includes cycles when the CPU is
not stalled, so we make the simplifying assumption that the CPU is always stalled when
the store buffer is full. Note that the performance counter also does not differentiate
between the different cache levels and therefore includes stores that miss L1 but hit the L2
cache. We assume that due to the low latency of the L2 cache most of the stalls are caused
by L2 misses, though.

We calculate the sum of the two performance events and divide it by the total number
of CPU cycles to calculate the time during which frequency changes have an impact on
performance. This time is then used to predict the expected speedup or slowdown after
an assumed frequency change according to the following equation where f,o,, and frex:
denote the current and the future frequency, respectively, c¢;,;, denotes the total CPU cycle
count, and ¢j3—ssqn and Cgtore—pound correspond to the two aforementioned performance
events.

ﬁlext

ClZ—stall':;s[t:lre—bound * (ﬁth _ ﬁww) +ﬁzow

Aperf (fnow, fnext) = (4.3)

To test the quality of the resulting model, we compare its predictions to direct measure-
ments of the corresponding slowdown. For our experiment, we let the model predict the
performance change for a range of SPEC CPU 2017 benchmarks when the frequency is
changed from 2.8 GHz to 1.9 GHz. We use these frequencies as they represent the largest
difference between the AVX-512 and non-AVX frequency levels on the Intel Xeon Gold
6130 CPU [119] that is used for the evaluation of our prototype. SPEC CPU 2017 is suitable
for our experiment as it was shown to contain both benchmarks that scale well with in-
creasing CPU frequency such as 538.imagick_r as well as benchmarks whose performance

68



4.3 DVFS Performance Prediction Model

B B Measured slowdown, single instance ! I Predicted slowdown, single instance
B8 Measured slowdown, 16 instances Predicted slowdown, 16 instances

LI 0

4

20 ‘ |
0 | I

]

Slowdown (%)

Figure 4.7: We evaluate the accuracy of our DVFS model by comparing its predictions
to direct measurements of the impact of a frequency change from 2.8 GHz to
1.9 GHz on benchmark completion times. Our model consistently overestimates
the impact of frequency changes as it does not take overlap between memory
accesses and other instructions into account.

is hardly affected by frequency changes such as 549.fotonik3d_r [101]. We repeat our
experiments with one SPEC benchmark instance as well as with 16 instances to simulate
situations with different amounts of memory pressure as the number of instances was
shown to have substantial impact on the behavior of the benchmarks [101].

Executing the benchmarks at 2.8 GHz is only possible if they do not execute AVX2 or
AVX-512 instructions. As some of the SPEC CPU 2017 benchmarks use the libmvec library
which provides SIMD implementations for math functions [158], we used the environment
variable GLIBC_TUNABLES to force the library to select implementations that do not cause
any frequency reduction.

Figure 4.7 shows the results of our experiments. For many benchmarks — especially
largely CPU-bound benchmarks - our model is able to closely predict the slowdown caused
by the frequency reduction. On average, our model predicts the performance with an error
of 4.3%. The error varies substantially across different benchmarks, though. For memory-
intensive benchmarks in particular, our model consistently overestimates the impact of
frequency changes on performance. This is expected given that our model ignores the
overlap between memory accesses and CPU-bound code - instead, CPU performance
during phases with overlap is assumed to scale linearly with the CPU frequency.

Previous work by Keramidas et al [130] evaluated stall cycle counting on a simulated
out-of-order CPU and therefore faced the same limitation. Nevertheless, the researchers
report a better average error of only 2.1%. We see two main reasons for the worse results
or our model. First, the CPU used for our experiments is far more complex than the
CPU simulated by Keramidas et al. For example, they simulated a CPU with a 64-entry
reorder buffer, whereas the reorder buffer of the Skylake-SP microarchitecture provides
space for 224 entries.? Skylake-SP CPUs are therefore likely more often able to overlap

3 Keramidas et al. state that they varied parameters such as the reorder buffer size and achieved similar
results, but do not provide any concrete values [130].

69



4 Runtime Profiling of AVX2 and AVX-512 Overhead

memory accesses with other instructions. Second, our model assumes that the latency
of memory accesses does not change if the CPU frequency is changed. This is mostly
true for accesses to external memory, but not for accesses to the last-level cache. In
particular, Intel Haswell CPUs were shown to increase their uncore frequency — and
thereby, consequently, the frequency of the last-level cache — when the CPU core frequency
was reduced [95]. We assume that the CPU used in our experiments implements a similar
scheme to utilize thermal headroom. In our case, such behavior results in higher uncore
frequencies and consequently lower L2 cache hit latencies during benchmark execution
at 1.9 GHz. The resulting performance improvement at this lower frequency causes our
model to further overestimate the performance impact of frequency changes for memory-
intensive applications which frequently hit the L3 cache.

While we assume that variable uncore frequencies impact the quality of our performance
model, we expect their impact to be much lower in real-world workloads with AVX2 and
AVX-512. Whereas the frequency reduction in the experiments shown in this section likely
resulted in substantial power reduction, AVX2 and AVX-512 reduce the frequency because
the CPU would otherwise violate power limits. Workloads with AVX2 and AVX-512 would
therefore leave far less thermal headroom for the CPU to increase its uncore frequency.
Note that uncore frequency changes likely have a similar impact on most other types of
models. We tried creating an empirical model based on an exhaustive search of suitable
performance events using the methodology of Snowdon et al. [224], but were unable to
improve upon the prediction quality of stall cycle counting.

In our profiler, we apply our performance model after each sample as shown by Equa-
tion 4.2. We count the required performance events during the 70 ps window after the
pause introduced by our profiler. We substitute f;,,,, and fex; With the actual and ideal
frequency, respectively, as shown in Equation 4.2.

4.4 Source of Overhead

While the design described above allows us to determine both the amount of unnecessary
frequency reduction as well as the resulting remote AVX overhead affecting individual
tasks, it does not provide any information on the origin of the remote AVX overhead. Often,
this information is crucial to mitigation the overhead, though. A system administrator
faced with substantial remote AVX overhead could, for example, move tasks to a separate
CPU core if they affect the performance of other tasks.

There are existing mechanisms designed to identify problematic AVX-512 tasks that can
cause remote AVX overhead, yet all fail to identify the source of remote AVX overhead
with sufficient accuracy. For example, as described in Section 4.1, the Linux kernel tests
whether the upper halves of the 512-bit vector registers hold valid contents during each
context switch [235]. This technique identifies some AVX-512 tasks, but does not provide
any information on whether the task executed heavy or light 512-bit SIMD instructions.
However, this information is also important as the frequency levels caused by the two
types of instructions differ. If we assume a system executing a task with heavy 512-bit
instructions and another task with light 512-bit instructions, the former task causes remote
AVX overhead while the latter task is negatively impacted by the overhead. In addition,

70



4.5 Evaluation

the interface often fails to notice tasks as register contents are only infrequently checked
as described in Section 4.1. It is possible to solve the latter problem by restricting access to
the 512-bit register file so that the first 512-bit SIMD instruction during each time slice
triggers an exception [85]. While we use this mechanism in Chapters 6 and 7, it is not able
to differentiate between heavy and light SIMD instructions, either.

The performance events implemented by the CPU do not provide any simple method
to identify tasks that cause remote AVX overhead, either. The CORE_POWER.THROTTLE per-
formance event [116, p. 19-8], for example, is often observed during execution of tasks
that cause remote AVX overhead as it counts the throttle cycles caused by frequency level
changes. The performance event does not differentiate between the hyper-threads of a
single physical core, though, so any of the applications running on the core during the
occurrence of the event can be the task responsible for the remote AVX overhead. In addi-
tion, if multiple subsequent tasks execute, for example, heavy 512-bit SIMD instructions,
only the first triggers a frequency reduction, so the performance event is never triggered
for the other tasks even if they contribute equally to remote AVX overhead.

Instead of these incomplete approaches, we exploit the fact that our profiler is already
able to detect frequency reduction caused by AVX2 and AVX-512. In Section 4.2, we
described how our profiler samples the frequency level before and after a pause. Different
frequency levels indicate remote AVX overhead, as they show that the current task can be
executed at a higher frequency than present before the pause. To detect tasks which cause
remote AVX frequency reduction, we invert this logic — if the frequency remains low even
after the pause, the current task requires a frequency reduction and, consequently, may
cause other tasks to experience remote AVX overhead. Whenever our profiler detects this
situation, it flags the current task according to the frequency level required.

While this technique likely provides greater accuracy as the alternatives listed above,
it is not perfect, either. In particular, insufficient sampling rates or observation periods
may caused the profiler to misidentify tasks that infrequently execute very small amounts
of AVX-512 code. In Section 4.6 we discuss improved hardware/software interfaces that
allow for continuous monitoring of tasks and therefore do not suffer from the statistical
error introduced by sampling.

4.5 Evaluation

To be useful in a wide range of situations, profilers not only need to provide accurate
results. In addition, they must not introduce excessive overhead themselves, as such
overhead impacts application behavior and prevents use in production environments
where performance changes impact the quality of service. To determine how well our
design is able to fulfill these two goals, we implement a prototype in the form of a loadable
module for the Linux kernel. As floating-point math is generally discouraged in the
kernel [31, p. 114], we implement our DVES prediction model using fixed-point math with
16 fractional bits.

In the following, we describe our evaluation to quantify accuracy and overhead before
presenting additional experiments that show the impact of different design decisions. All
experiments described in this section are executed on a system with a Xeon Gold 6130

71



4 Runtime Profiling of AVX2 and AVX-512 Overhead

Bn Avx2 (direct measurement) BB Avx2 (profiler)
BB AVX-512 (direct measurement) ' AVX-512 (profiler)

S

o

3 30

<

g

3 20

S

: i ] ‘ | i I i ] i
(V]

° | iﬁ i il iﬂ dl il i iﬂ il il
) N e‘b (0 Q x e\, xS A Q! . (\‘9 =)
- & v\sc“o\ RO ’ o 3 e o & e W e 16@&

200 ® 99 4P & x\\\i\é ,LQ,‘)"& &€ o *
\0’66 & *,LQ)CJ + Rea %

Figure 4.8: A comparison to direct measurements of the remote AVX overhead shows that
our profiler is commonly able to determine the remote AVX overhead with
very little error.

CPU, 24 GiB DDR4 RAM operating at 2666 MHz, Fedora Linux 31, and the Linux 5.6.13
kernel.

4.5.1 Profiler Accuracy

To measure the accuracy of the output of our profiler, we compare it to the results of
the experiments described in the previous chapter. As these results were obtained using
direct measurements of remote AVX overhead, they provide a suitable ground truth.
We therefore replicate the exact experimental setup described in Section 3.3.5 where we
execute benchmarks from the Parsec benchmark suite alongside the x265 video encoder and
configure the video encoder to either use AVX2 or AVX-512 instructions. We choose x265
over OneDNN as the behavior of x265 is less homogeneous and therefore likely provides
a bigger challenge for our profiler. We exclude Parsec canneal as our previous analysis
shows that the IPC variation during execution of the benchmark causes performance
changes of the same order of magnitude as those caused by remote AVX overhead. In
addition, we replicate the experiment involving the nginx web server and OpenSSL and
vary the SIMD instructions used by OpenSSL. We instruct our profiler to measure the
remote AVX overhead inflicted on the Parsec benchmarks and the nginx web server.

Figure 4.8 shows both direct measurements of the remote AVX overhead generated in
the previous chapter as well as the results provided by our profiler. The experiments show
that our profiler is able to reliably determine the order of magnitude of the remote AVX
overhead present in the workloads. Often, this information alone is sufficient for the user
to make informed decisions on, for example, the use of countermeasures against remote
AVX overhead.

While such decisions most likely rarely require precise information on the amount of
remote AVX overhead, the experiment also shows that our profiler is commonly able to
quantify the overhead with very high precision. For AVX-512, the output of our profiler
has an average error of only 2.4 percentage points. For AVX2, our profiler achieves an

72



4.5 Evaluation

almost identical average error. Overall, our profiler tends to overestimate the impact of
AVX2 and tends to underestimate the impact of AVX-512.

Besides instrumentation perturbation — which we analyze in the following section -
we identify two potential sources for error in the core mechanism of our profiler. First,
each sample takes considerable amounts of time as the CPU is first paused for 700 ps
and then the application is monitored for further 70 ps. The length of the latter phase
defines the temporal resolution with which the profiler can detect remote AVX overhead.
If the application did not use AVX-512 before the pause but then starts to use AVX-512
instructions during the second phase, the frequency is not deemed to be unnecessarily
low at the time of the sample even though the application could have been executed at a
higher frequency before the pause. In theory, such situations should cause our profiler
to underestimate the remote AVX overhead of workloads such as nginx that frequently
switch between AVX-512, AVX2, and other code.

Second, our profiler fails to take into account that sometimes more than one application
thread is required to cause a frequency reduction. In particular heavy 256-bit and 512-bit
instructions only cause a frequency reduction when executed at a rate of more than one
instructions per two cycles [150] as described in Section 3.2.1. Even if a single thread does
not exceed this rate, two identical threads may exceed it if they are executed in parallel on
the same physical CPU core. In this situation, the application does not experience remote
AVX overhead as its two threads collectively cause the frequency reduction. However, our
profiler only executes a single thread during the second phase of each sample, so it does
not observe any frequency reduction. It therefore falsely concludes that there is remote
AVX overhead.

4.5.2 Impact of Instrumentation Perturbation

Neither of the two effects listed above is responsible for the comparably high error for
the nginx workload. Instead, a closer analysis shows that the profiler result indeed hardly
deviates from the actual remote AVX overhead that is present during the experiment. The
apparent error is caused by the fact that the web server experiences far less remote AVX
overhead when the profiler is active than when it is disabled. In the experiment described
in Chapter 3, AVX-512 reduced the throughput of nginx from 6783 to 5992 requests per
second, corresponding to 10.6% remote AVX overhead. While our profiler was running,
the throughput was instead reduced from 6509 to 5991 requests per second which closely
matches the 7.3% remote AVX overhead detected by our profiler.

As described in Section 4.1, this effect that a profiler changes the behavior of the profiled
workload is called instrumentation perturbation and is most often caused by overhead
caused by the profiler itself. In the case of the nginx workload, the overhead of our profiler
was the highest when no AVX2 or AVX-512 was used, whereas a configuration with AVX-
512 experienced no substantial slowdown. Our profiler likely causes different amounts
of remote AVX overhead because it pauses CPU cores for a fixed amount of time when
sampling the frequency reduction. If an application executes at a low frequency at the time
of the sample, its performance is less affected by the pause than if the application executes
at a high frequency, as in both cases execution resumes at a high CPU frequency after the
pause. This effect is only visible in workloads such as nginx affected by frequency change

73



4 Runtime Profiling of AVX2 and AVX-512 Overhead

’ I B without overhead classification ! 8 With overhead classification

<
® 15
(]
ey
s 10
>
o)
 ° iﬁ
5 0 T T n .. M . l
o
Aot e o0 B o A T I IR C R
o O & QT e @ @« A o J
& & 1% 1 A e C o°

Figure 4.9: For most workloads, our profiler causes very little overhead. The additional
sample phase required for the classification of remote AVX overhead does not
cause significant additional overhead.

delays and does not affect the remote AVX overhead caused by hyper-threading - if the
code executed on the sibling hyper-thread immediately reduces the frequency again after
it is unpaused, the pauses do not improve the average CPU frequency during execution of
the application.

4.5.3 Profiler Overhead

The overhead introduced by the profiler not only impacts its accuracy. Excessive overhead
would also make using the profiler with live production workloads difficult, as the overhead
can affect the quality of service of the workloads. Our profiler is implemented as a kernel
module and does not require any modifications to the kernel itself, which means that the
profiler does not cause any overhead while this kernel module is not loaded. While the
profiler is active, frequency reduction sampling does cause some overhead, though.

To measure the overall overhead caused by our profiler, we execute individual bench-
marks while our profiler is active and compare their completion time to that of runs without
the profiler. Figure 4.9 shows the overhead measured using this experiment. We repeat
the experiment with and without the optional additional timer interrupt to determine the
cause of remote AVX overhead (step 5 in Section 4.2.1) and find that the additional step has
negligible impact on performance. In both cases, only few benchmarks show statistically
significant overhead, with a maximum overhead of 8.3% for streamcluster. On average,
our profiler causes only a 2.1% overhead. This low impact on throughput shows that our
profiler is directly usable in most production environments.

Nevertheless, the overhead is far larger than we initially expected. Specifically, we
expected overhead to mainly stem from the pauses required to let individual CPU cores
recover their non-AVX frequency. As our profiler pauses one out of 16 cores for 700 ps
every 20 ms, these pauses directly result in approximately 0.2% overhead.* Some additional
overhead is caused by timer interrupts and by the fact that the sibling hyper-thread
is paused for additional 70 ps, yet even this additional overhead does not explain our
substantially larger measurements.

700us
20ms

4 We calculate the expected overhead caused by pauses as 11—6 : =0.22%.

74



4.5 Evaluation

Slowdown affects all threads
/—/%

Thread 1’ Running | Waiting Running ‘ Thread 1’ Running | Waiting Running ‘
Thread2’ Running IWaiting '% Running ‘ Thread2’ Running | Waiting '% Running ‘
Thread 3 ’ Running B Running ‘ Thread 3 ’ Running Is[owdown B Running ‘
Time — Time —
(a) Normal barrier synchronization (b) Amplification of overhead

Figure 4.10: Barrier synchronization is a synchronization technique where threads only
continue execution once all involved threads have reached the barrier (a) [65].
When individual threads are slowed down, this synchronization scheme am-
plifies the negative performance impact as all threads have to wait for the
thread that is slowed down (b).

’ —— Without profiler —— With profiler

Latency (ms)

0.01 0.1 1 10 100
Slowest percentile

Figure 4.11: The TailBench masstree benchmark [128] shows a substantially increased tail
latency when our profiler is active, as the CPU cores are periodically paused.

Instead, the increased overhead for some workloads is likely caused by the chosen syn-
chronization technique. Streamcluster in particular employs barrier synchronization [26]
which requires all participating threads to wait for the slowest thread to reach the bar-
rier [48]. As Figure 4.10 shows, barrier synchronization amplifies the impact if individual
threads are slowed down - if, in our case, one thread is paused by our profiler, all other
threads have to wait for 700 ps at the next barrier even if they otherwise require the same
amount of unpaused CPU time.

For latency-critical applications, low throughput degradation is not sufficient, though.
These applications also require that individual pauses introduced by our profiler do not
introduce excessive latency spikes. If we assume a latency-critical web service, for example,
any request processed by the service during the pause is delayed until the end of the pause.
We use the masstree benchmark from the TailBench 0.9 benchmark suite [128] to measure
the impact of our profiler on the latency of web services. We execute the benchmark
configured to perform 100000 requests using 32 threads. We plot the resulting latency
distribution with and without our profiler in Figure 4.11. The figure shows that our profiler
hardly affects the average latency of the key-value store, but increases the tail latency, as
a small fraction of the requests is slowed down by pauses.

75



4 Runtime Profiling of AVX2 and AVX-512 Overhead

B8 With hyper-threading (direct measurement)
I 8 without hyper-threading (direct measurement)
10 in Total overhead (profiler)
Impact of frequency change delays (profiler)

Figure 4.12: When overhead classification is enabled, our scheduler estimates how much of
the total remote AVX overhead is caused by frequency change delays. While
the estimates often deviate substantially from direct overhead measurements
in a configuration without hyper-threading, our scheduler is able to identify
nginx as a benchmark that is impacted particularly heavily by frequency
change delays.

Remote AVX
Overhead (%)

While the amount of slow responses may seem hardly noticeable, the architecture of
large-scale online services often amplifies the problem [62]. If such web services parallelize
the processing of individual requests on multiple servers, the response time of the slowest
server defines the response time of the whole web service. Therefore, responses from
the web server are frequently delayed even if each individual server is only infrequently
slowed down, similar in nature to the problem caused by barrier synchronization described
above.

The pauses that are responsible for most of the overhead caused by the profiler are a
central part of the mechanism used to measure remote AVX overhead and can therefore
not be avoided completely. We expect the overhead - or, in the case of latency-sensitive
web services, the percentile of affected requests — to scale linearly with the sample rate.
Reducing the sample rate likely reduces overhead at the cost of reduced accuracy for short
observation periods, though, as previous work has shown that the accuracy of sampling
profilers depends on the number of samples [8]. Besides sample rate reduction, another
mechanism to reduce overhead is to reduce the length of individual pauses whenever
possible. See Section 4.6 for a description of such and other potential optimizations as well
as hardware features that would enable profiling with less overhead.

4.5.4 Overhead Source Analysis

Our profiler is not only designed to quantify the overall remote AVX overhead affecting
individual applications but is also supposed to identify whether the overhead is caused
by hyper-threading or by frequency change delays. To test the accuracy of the latter
information, we repeat the experiment described in Section 4.5.1 for a subset of the
benchmarks, but enable the additional step during sampling that allows the profiler to
differentiate between the two sources of remote AVX overhead. We test nginx as an
application that is mainly affected by the frequency change delay, streamcluster as an
applications that is affected by both hyper-threading and the frequency change delay,

76



4.6 Discussion

and blackscholes and facesim as two applications where remote AVX overhead is almost
exclusively caused by hyper-threading.

Figure 4.12 shows direct measurements of the remote AVX overhead for the AVX-512
versions of the workloads both with and without hyper-threading. The figure also shows
the total overhead determined by our profiler as well as the fraction of overhead that
our profiler assumes to be caused by frequency change delays. Our profiler is able to
correctly identify that almost all overhead experienced by the nginx benchmark is caused
by frequency change delays. The profiler is also able to determine that the remaining
benchmarks are mainly slowed down by the frequency impact of hyper-threading. How-
ever, it appears that our profiler greatly overestimate the impact of frequency change
delays for the Parsec benchmarks.

This discrepancy does not necessarily indicate a problem of our design — instead, the
error is largely the result of our sub-optimal experimental setup. This setup misrepresents
the results of our profiler because we let it characterize runs with hyper-threading, but
compare the results to runs without hyper-threading. Hyper-threading potentially doubles
the impact of each individual frequency change delay, though — for example, if a single
hyper-thread executes AVX-512 instructions, both hyper-threads are slowed down. There-
fore, our experimental setup underestimates the amount of remote AVX overhead that is
actually present while the profiler is executed, resulting in an apparent overestimation of
the impact of frequency change delays.

While we expect our experimental setup to be responsible for a majority of the discrep-
ancy in our measurements, a limitation of our prototype likely also impacts the accuracy
of our profiler. Specifically, our profiler currently does not detect context switches on the
sibling hyper-thread during the sampling process. This is problematic when, for example,
our profiler pauses a core to measure the remote AVX overhead on one hyper-thread,
but the sibling hyper-thread switches from an AVX2 or AVX-512 task to a non-AVX task
directly after the pause. In this situation, our profiler may misclassify the overhead as
being caused by frequency change delays, even though it was actually caused by software
executed on the sibling hyper-thread.

4.6 Discussion

Our evaluation shows that the profiler can measure remote AVX overhead with an average
error of 2.4 percentage points for AVX-512 and 2.4 percentage points for AVX2. The error
varies substantially between the different applications. Whereas most Parsec benchmarks
show very little error, our profiler greatly underestimates the remote AVX overhead of
nginx. We argue that even such inaccuracies do not impact the usefulness of the profiler,
though. Instead, we expect our profiler to be mainly used to determine whether to apply
countermeasures against remote AVX overhead. In this case, users are mainly interested
in the order of magnitude of remote AVX overhead, which our profiler is able to determine
with high reliability.

Our evaluation identifies one weakness of our design, though. In particular, the pauses
during frequency reduction sampling have some potential to change application behavior
and to cause substantial overhead. In the following, we discuss potential optimizations to

77



4 Runtime Profiling of AVX2 and AVX-512 Overhead

frequency reduction sampling as well as hardware interfaces that could reduce perturbation
and increase accuracy.

4.6.1 Optimized Frequency Reduction Sampling

The pauses introduced by our profiler pose a problem both for latency-critical workloads
as well as workloads which use synchronization patterns which amplify the overhead
introduced by the pauses. In both cases, the resulting performance impact of our design is
mainly determined by the sampling rate — if virtual CPUs are sampled more frequently,
pauses occur at a faster rate. In addition, the length of individual pauses defines the over-
head per pause or, in the case of latency-critical applications, the maximum latency increase
caused by the profiler, so a reduced pause length would positively impact performance.

In our design, the sampling rate is a parameter that can be changed easily. As with any
sampling profiler, higher sample counts result in higher accuracy [8], i.e., lower sampling
rates require more time to yield the same profiling accuracy, though, which limits the
profiler’s viability for short-running workloads. Our profiler randomly samples random
parts of the workload, and low sample counts may lead to over- or underestimates of remote
AVX overhead depending on when the workload is paused. We did not evaluate the impact
of the sampling rate on accuracy as the results likely greatly depend on the completion
time of the benchmarks in use. Given that there is no sample rate that provides both high
accuracy and low overhead for arbitrary workloads, we propose a configurable sampling
rate similar to how Linux perf lets the user choose the sampling rate via a command line
parameter [191]. A configurable sampling rate allows use of the profiler with both short
workloads that require high accuracy as well as long-running workloads that require low
profiling overhead. System administrators or software developers employing our profiler
likely know the approximate duration of their workload as well as the acceptable impact
on performance and are therefore able to select a suitable sampling rate.

In contrast to the sampling rate, the length of individual pauses cannot be arbitrarily
modified as it is dictated by the underlying working principle of the profiler. Each pause
needs to be long enough so that the CPU regains its maximum non-AVX frequency during
the pause, a process which can take up to 670 ps. In our prototype, we therefore simply
pause physical cores for 700 ps. One method to reduce the length of the pause would be to
monitor the frequency level during the pause and to end the pause as soon as the CPU
has reached the non-AVX frequency level. This method is particularly effective if the CPU
core spends substantial time executing non-AVX code before most pauses. We decided
against implementing this optimization for several reasons.

First, the method is only effective for certain workloads. In particular, the method is
ineffective at times when remote AVX overhead is caused by hyper-threading — whenever
the sibling hyper-thread was executing AVX2 or AVX-512 code at the time of the sample,
the CPU waits for the full 670 us before changing its frequency. As shown in Chapter 3,
hyper-threading effects are often responsible for the majority of remote AVX overhead.
Also, the method is ineffective for workloads that make intensive use of AVX2 or AVX-512
instructions as such code requires the full pause duration. For example, we show that
streamcluster suffers from increased profiler overhead due to its use of barrier synchro-

78



4.6 Discussion

Code (Hyper-Thread 1)’ Non-AVX | AVX-512 | Non-AvX ‘

Code (Hyper-Thread 2)’ Non-AVX | AVX-512 | Non-AVX ‘

Normal Freq. Level - -
(670 s delay) ’ High I Low I High I Low I ‘
Simulated Freq. Level’ High I o I High ‘
(10 us delay, only HT1)
Remote AVX Remote AVX
- Overhead Overhead
[6) — —_—
—— Simulated Frequency | &
—— Actual Frequency ?-)'
[N
Time

Figure 4.13: To detect and quantify remote frequency reduction, the CPU could simulate
a DVFS policy with much shorter frequency change delays for the code run-
ning on individual hyper-threads. Remote frequency reduction can then be
identified by comparing the frequency selected by this simulated policy with
the actual frequency of the CPU core.

nization, yet this benchmark also highly profits from AVX-512 [41]. An AVX-512-enabled
version of streamcluster would therefore not benefit from variable pause durations.

Finally, we expect that adaptive pause durations have the potential to introduce system-
atic error to the profiling results. Adaptive pauses cause AVX2 and AVX-512 tasks to be
slowed down more than non-AVX tasks, as pauses during AVX2 or AVX-512 code always
last the full 700 us, whereas pauses during non-AVX code may be abbreviated. Longer
completion times of AVX2 and AVX-512 tasks may artificially increase the amount of
remote AVX overhead reported by the profiler if they elongate the timespan during which
these tasks are executed in parallel with other tasks.

4.6.2 Proposed Hardware Changes

While it may be possible to reduce the length of pauses introduced by the profiler for some
workloads, the pauses itself remain a necessity as the hardware does not provide any better
mechanism to determine unnecessary frequency reduction. In particular, as described in
Section 3.4, the CPU only provides performance events for cycles spent at the individual
frequency levels, but does not provide any fine-grained information about whether a
frequency reduction is necessary for the software running on individual hyper-threads.
Instead, the only information that can be drawn from the performance events is the lowest
frequency level of any software running on all sibling hyper-threads combined during the
previous 670 ps.

We expect that improved hardware-software interfaces can alleviate the need for intru-
sive profiling mechanisms such as the one described in this chapter. As future work, we
therefore propose the implementation of specialized performance monitoring events to
identify remote AVX overhead. Similar to the existing events, these events count cycles at

79



4 Runtime Profiling of AVX2 and AVX-512 Overhead

different frequency levels. However, in contrast to the existing events which represent
the actual CPU frequency of a physical CPU core, the proposed events represent the
ideal frequency level for the code running on an individual hyper-thread. The difference
between these sets of events then can be used to calculate the remote frequency reduction
and, consequently, the remote AVX overhead.

Given that the proposed performance events convey similar information as the existing
frequency level events, the proposed events can be implemented similarly to the existing
DVFS policy. For each individual hyper-thread, we propose implementing a simulation of
a slightly modified DVEFS policy, essentially replicating the hardware used to implement
the existing policy. As shown in Figure 4.13, this simulated policy differs in two ways from
the existing DVFS policy: First, the CPU uses a far shorter frequency change delay such
as 10 ps to detect the end of AVX2 and AVX-512 code. Second, the simulated policy only
takes the instructions executed on a single hyper-thread into account.

As shown in Figure 4.13, the frequency levels determined by this simulated DVFS policy
- in essence, a DVFS policy that changes frequencies shortly after the type of instructions
changes — are a much closer representation of the frequency level that is actually required
at each point in time. Whenever the corresponding events therefore indicate a lower
frequency than the one actually chosen by the CPU, the difference represents unnecessary
frequency reduction and, consequently, remote AVX overhead.

Such performance events allow the construction of a profiler that does not rely on
sampling — and therefore does not need to pause any CPU cores — but rather continuously
monitors the difference between required and actual CPU frequencies. This profiler
would likely provide both lower overhead as well as increased accuracy. We argue that the
required performance events are likely easy to implement, as the CPU already contains logic
to detect power-intensive instructions and to determine whether a frequency reduction is
required. It is likely not difficult to differentiate between hyper-threads, either, as the CPU
already already implements a wide range of hyper-thread-specific performance events [116,
pp- 19.3 f£.].

One challenge that has to be solved by future work, though, is that it is somewhat
difficult to predict whether the code executing on a single hyper-thread would cause
a frequency reduction if the other hyper-thread was idle. Often, a minimum rate of
power-intensive instructions is required to trigger a frequency reduction. For example,
as described in Section 3.2.1, recent Intel CPUs do not use the AVX-512 frequency level
unless they execute more than one heavy 512-bit instructions per two cycles [150]. A
program may not exceed this rate when executed alongside another application on the
same core, but may exceed it when executed in isolation. In this case, a profiler should
not misinterpret low instruction rates and assume that the program is affected by remote
AVX overhead. We propose that the CPU simply multiplies the rate of power-intensive
instructions by two when predicting necessary frequency reduction in order to prevent
overestimates of remote AVX overhead.

As described in Section 4.5.1, a similar problem also affects our profiler which monitors
only one hyper-thread in isolation when determining the required frequency level. A
multi-threaded application may not exceed the instruction rate necessary for a frequency
reduction if only one thread is scheduled on a CPU core. If the application occupies both
hyper-threads at the same time, it may cause increased frequency reduction, though. As

80



4.6 Discussion

our profiler pauses one hyper-thread and only detects the impact of the software running
on the other hyper-thread, it may overestimate the amount of remote AVX overhead
present. Our evaluation shows that the error caused by this effect does not result in
unacceptable accuracy.

81






5 Viability of Improved DVFS Policies

In Chapter 3, we showed that power-intensive 256-bit and 512-bit SIMD instructions can
slow down other code that does not use these instructions [141, 154]. This remote AVX
overhead is caused by two mechanisms: First, the dynamic voltage and frequency scaling
(DVFS) policy implemented by the CPU delays frequency changes, causing more cores
to run at low frequencies than necessary. Second, reduced frequencies affect all hyper-
threads of a physical CPU core equally even if only one hyper-thread uses power-intensive
SIMD instructions. The impact of frequency change delays in particular suggests that
improvements to the DVES policy could reduce the remote AVX overhead affecting code
that does not use AVX2 or AVX-512.

In this chapter we demonstrate that for most workloads the potential of improved DVFS
policies is very limited. Specifically, we show that improved DVFS policies are unable to
mitigate remote AVX overhead caused by hyper-threading which constitutes the majority
of all remote AVX overhead. In Section 5.1, we start by describing the parallels between
DVES policies and existing work on dynamic power management (DPM) and identify
techniques used for DPM that may be applicable to DVFS. We also show that in both fields
the break-even time defines whether an operation - changing the frequency in the case of
DVFS, shutting a device down in the case of DPM - yields a net benefit.

One important design goal common to both DPM and DVFS policies is to provide as
little overhead in worst-case scenarios as possible. It was shown that simple timeout-based
policies optimize worst-case overhead if the timeout equals the break-even time [163]. We
therefore describe an experiment to quantify the break-even time of frequency changes
triggered by AVX2 or AVX-512 code in Section 5.2 and show that the policy implemented
by Intel provides sub-optimal worst-case performance. In particular, in situations where
most cores are active, the break-even time of AVX-512 frequency changes can be as low as
156 ps, much lower than the delay of 670 ps implemented by Intel CPUs.

We simulate improved DVFS policies on a selection of workloads in Section 5.3. We
implement both a timeout-based policy based on the previously measured break-even
time as well as an ideal oracle algorithm that performs frequency changes without delay
whenever changes will be beneficial. On systems with hyper-threading, the improvement
achieved by the policies is very limited as frequency change delays play only a minor
role. While the original DVES policy results in 18.2% average remote AVX overhead, the
optimized timeout-based policy reduces this value to 15.2%. Even with the oracle policy
14.2% average overhead remains, showing the limited potential of improvements to the
DVES policy. Only when hyper-threading is disabled, both improved policies almost
completely mitigate remote AVX overhead.

In Section 5.4, we discuss these results. As our experiments in Chapter 3 show, most
remote AVX overhead is commonly caused by hyper-threading resource sharing. We
therefore argue that DVFS policy improvements alone cannot be a sufficient solution to

33



5 Viability of Improved DVFS Policies

the problem of remote AVX overhead and should be paired with techniques such as core
scheduling [154] or our OS-level solution presented in Chapter 6 that cover the impact of
hyper-threading instead.

5.1 Parallels to Dynamic Power Management

As described in Section 2.2.3, frequency changes have the desired effect — either energy
reduction or performance increase — only if the frequency is not changed again shortly
after. Otherwise, the overhead of the frequency changes dominates, both in terms of
energy because the CPU temporarily operates at sub-optimal voltages during a frequency
change [189] as well as in terms of performance because the CPU needs to be paused while
the clock synthesizer changes its frequency. For this thesis, this pause is of particular
interest as we mainly focus on the performance impact of AVX2 and AVX-512. Intel Ivy
Bridge CPUs, for example, were shown to pause for approximately 10 us [167] during
frequency changes, while we measure similar pauses for Intel Skylake CPUs in Chapter 3.
In the case of AVX2 and AVX-512, the throttling period during frequency reduction adds
to these costs.

When trying to avoid frequent clock changes, DVES policies for AVX2 and AVX-512
instructions can only decide whether and when to increase the CPU frequency. Reducing
the CPU frequency is mandatory to prevent excessive power consumption and voltage
droops as described in Section 3.2.2. As a result, recent Intel CPUs immediately reduce
their frequency when executing power-intensive instructions, but delay frequency boosts
by 670 ps to limit the worst-case overhead caused by frequency changes. However, any
unnecessary delay comes at the cost of performance as less power-intensive code is
executed at sub-optimal frequencies.

The resulting trade-off — frequency change overhead versus performance degradation
at reduced frequency levels — closely matches the trade-off posed by dynamic power
management (DPM), where a system can transition individual devices into a low-power
state to save energy [22]. Such state transitions commonly cause overhead in terms of
energy consumption. For example, while a hard disk drive requires almost no power when
the platters are stopped, accelerating them to their operational speed requires substantial
energy. The system therefore has to decide when to employ low-power states to save energy
during idle periods and when to leave devices active to prevent excessive state transition
overhead. As an example, Figure 5.1a shows a situation where disabling a device reduces
energy consumption, whereas Figure 5.1b shows a situation where energy consumption
is increased. Figures 5.1c and 5.1d demonstrate the close similarity between DPM and
AVX frequency management. While Figure 5.1c shows a situation where temporarily
increasing the CPU frequency increases performance, Figure 5.1d shows a frequency
change that reduces overall performance. As the figures show, the two problems are
closely related, which suggests that existing research targeted at reducing the overhead
caused by power state transitions can be applied to DVES to reduce remote AVX overhead
caused by frequency change delays.

In the case of DPM, the correct decision regarding a power state transition is defined by
the break-even time of that transition [163]. If a device remains in the low-power state for

84



5.1 Parallels to Dynamic Power Management

shutdown restart
o~ S
g Pavg
= O O i
o
Time Time
(a) DPM (total energy reduced) (b) DPM (total energy increased)
high frequency
-+ /—/% -+
2 T, a
o avg o
Ll e i B )
=} —_— )
o o F---1 e e e
< < Tavq
= pause pause = ’
-~ -~
Time Time
(c) DVFS (performance improved) (d) DVES (performance reduced)

Figure 5.1: Dynamic power management and DVFS provide similar trade-offs. Placing a
device in a low-power mode can result in energy savings (a), but may increase
energy due to mode transition overhead if the device is soon reactivated again
(b). Similarly, increasing the CPU frequency can improve performance (c), but
may fail to do so if the frequency is quickly reduced again, as then the frequency
transition overhead dominates (d).

longer than the break-even time, the system experiences a net energy reduction, whereas
energy consumption is increased if the low-power state does not last as long. If we assume
that Etrans = Eshutdown + Ewakeup and Tyrans = Tshutdown + Twakeup are the ener gy and the time
required for power state transitions and Pgeep and P ek, are the power during low-power
states and during normal operation, respectively, the break-even time Tj, is calculated as
follows:

Etrans — sleethrans
Tpe =

(5.1)

Prake — Psleep

Again, this formula is very similar to the break-even time observed for a change from
a low to a high CPU frequency, where it is only beneficial to increase the frequency if
it can remain high for longer than this break-even time. If we assume pj,, to be the
application performance at the low frequency, Wyochange = piowT is the work performed by
the application during the timespan T if no frequency change occurs. If we further assume
Phigh to be the application performance at the high frequency level and assume Tyyerheaq =
Tjown + Tyyp to be the additional CPU time required by frequency reduction (Tyown) and
frequency boost (T,,), the application can perform the work Wenange = phigh(T — Toverhead)
when the frequency is increased for the given duration. Solving Wyochange = Wenange for T
results in the following formula for the break-even time [86]:

_ PhighToverhead
phigh = Plow

(5.2)

be

85



5 Viability of Improved DVFS Policies

The main challenge of DPM is that it is usually not known in advance when individual
devices will be required again. In those cases, it is therefore not possible to know with
certainty whether a power state transition is desirable or not. Instead, power management
policies have to predict the length of the next idle period. Existing work presents many
different approaches to DPM with different prediction accuracy [163]. A simple, yet
widely used policy is to simply delay transitions to low-power states by a fixed timeout,
similar in nature to the DVES policy of recent Intel CPUs. Such a policy limits the rate of
state transitions and therefore the maximum overhead but is still able to exploit long idle
times to conserve energy. However, the timeout increases energy consumption as devices
invariably remain active for longer than necessary.

More energy can be saved by exploiting information about the workload. For example,
Srivastava et al. [228] propose predicting future idle times based on a nonlinear regression
function calculated from past active and idle times. They also observe that in some
workloads long idle times commonly follow long active periods and therefore propose
immediate transitions to low-power states for these workloads only if the preceding active
period is below a workload-dependent threshold. It is also possible to model systems and
workloads as stochastic processes using Markov chains and then, for example, to use linear
programming to find an optimal solution that minimizes energy [22].

These policies require the workload to be known in advance and are therefore not
viable if the workload changes over time. Dynamic situations instead require DPM to be
adaptive. One possible approach is to create multiple policies with different characteristics
and to select the policy best suited to the current workload. Such selection can be guided
either by a characterization of the workload at runtime using parameter learning [22] or
by an evaluation of the different policies based on how well they would have predicted
recent idle times [66]. In both cases, the policy that is deemed to be best for the workload
- or, alternatively, an interpolation of the best policies - is used to perform future DPM
decisions. Finally, it is also possible to train a neural network at runtime using the idle
times of the workload to predict future idle times [162].

The different approaches to DPM differ substantially in their energy consumption [163].
Stochastic approaches, in particular, were shown to provide good energy efficiency. In
practice, however, simple timeout-based approaches are prevalent. For example, the
ATA/ATAPI command set provides a standby timer which places disk drives into a standby
mode when it expires [249, p. 34]. Similarly, the X Window System provides a configurable
timeout which specifies the idle time after which displays are disabled [149] while Linux
commonly places wireless network connections into a low-power state after a fixed
period without any network traffic [160]. Simple timeout-based policies combine reduced
development costs with an energy efficiency that rivals that of more complex techniques
if the timeout is well-tuned to the system [22]. In many cases, an even more important
reason to select a timeout-based policy is that it results in predictable worst-case behavior,
though, both in terms of energy consumption as well as performance. Such bounds on
overhead are important given that both dynamic power management and DVFS policies
can potentially generate arbitrarily large overhead. If we assume, for example, a dynamic
power management scheme that places devices in a low-power state as soon as they
become idle, arbitrarily short idle periods lead to frequent state transitions and thereby to
unbounded overhead. Frequency changes can have similar unbounded overhead, which

86



5.2 Characterization of AVX Frequency Changes

demonstrates the need for frequency change delays such as that implemented by recent
Intel CPUs. While one of Intel’s patents describes a “hysteresis timer” used to limit the
rate at which functional units are power-gated [29], another describes a similar hysteresis
mechanism for frequency changes associated with wide SIMD instructions such as AVX2
or AVX-512 [201].

Commonly, the worst-case overhead is determined via comparison to an ideal off-line
policy — commonly called oracle — which has perfect knowledge of future system behavior.
At the beginning of each idle period, this policy can therefore determine whether to
immediately place devices in low-power states or whether to keep them active until they
are used again with perfect accuracy. The ratio between the energy required by a dynamic
power management policy and the energy required by the oracle policy for a worst-case
scenario is called the competitiveness of the former policy [127]. If we assume a simple
timeout policy, for example, this worst-case scenario is when the idle time equals the
timeout and therefore the device is reactivated directly after it was placed in a low-power
state. Ideal competitiveness is achieved when the timeout is configured to equal the break-
even time, as then the energy consumed by state transitions equals the energy consumed
during the idle period in the absence of any state transition. Such a policy is 2-competitive
- it consumes at most twice as much energy as the oracle policy.

5.2 Characterization of AVX Frequency Changes

The frequency change delay implemented by Intel CPUs is not 2-competitive. Instead, the
CPU commonly spends far more time at lower frequency levels than necessary to minimize
worst-case performance impact. This behavior contributes to the remote AVX overhead
demonstrated by our analysis in Chapter 3 for workloads that often switch between AVX
and non-AVX code.

In the following, we demonstrate that the DVFS policy implemented by Intel CPUs is not
2-competitive by showing that the break-even time of frequency changes severely differs
from the frequency change delay actually used by the CPU. To determine the break-even
time, we first measure the overhead of all possible frequency level transitions separately.
These measurements cover both increasing and reducing the frequency. We then use
Equation 5.2 and the performance differences between high and low frequency levels to
calculate the resulting break-even times. Our experiments to measure frequency change
overhead closely mirror those performed as part of our previous work [86], with only
minor changes to the experiment setup.!

5.2.1 Frequency Reduction Overhead

To measure the overhead when the frequency is changed from a higher frequency level
(non-AVX or AVX2 frequencies) to a lower frequency level (AVX2 or AVX-512 frequencies),

! During the experiments to measure the overhead during frequency reduction, we execute a piece of
AVX2 or AVX-512 code twice in quick succession. Our previous experiments left more time between the
two executions, thereby increasing the chance that turbo level changes affect the results [86]. Also, our
previous experiments did not differentiate between light AVX-512 and heavy AVX2 instructions.

87



5 Viability of Improved DVFS Policies

Time with frequency Time without frequency

| reduction overhead | reduction overhead |
(]
-8 Low-power instructions Power-intensive code Power-intensive code (repeated)
O

| | |
> | | |
E | | |
[J) | |
=} | | |
g I l l
— 1 L L
- Time

Figure 5.2: To measure the frequency reduction overhead, we execute the same code
consisting of more power-intensive instructions twice. We measure the time
required for both executions. The difference between the two times is the
frequency reduction overhead incurred during the first execution of the power-
intensive code.

we perform the experiment shown in Figure 5.2. We first execute a large amount of
instructions that can be executed at the former frequency level. We then measure the
time required to execute a fixed number of instructions requiring the latter frequency
level. In both cases, the number of instructions is chosen so that the code takes long
enough that the system has arrived at the lower frequency level by the time the code has
finished. We then repeat executing the latter code, with the only difference being that by
now the system is already at the appropriate frequency level for the given instructions.
We again measure the time required for execution and then calculate the overhead of the
frequency level change as the difference between the two times. As both the frequency
difference and, consequently, the expected overhead vary based on the number of active
cores, we repeat this experiment while executing between one and 15 threads that keep
additional physical cores busy. We not only measure the frequency reduction overhead
caused by FMA instructions of different sizes but also include 512-bit OR instructions
in our experiment as our previous experiments in Section 3.2 showed that light AVX-
512 instructions cause different types of frequency level transitions compared to heavy
AVX-512 instructions. For each configuration, we repeat the experiment 100000 times to
determine the variance of the results.

Great care must be taken to reduce noise caused by external factors. In particular,
we discard all results that indicate a CPU time difference of more than 100 ps as doing
so has shown to be a simple yet effective method to filter out outliers caused by our
program being preempted. We also use the Linux CPU hotplugging functionality to
deactivate all additional cores as the turbo frequency would change if additional cores
were intermittently activated, for example, to process any interrupts.?2 We configure Linux
to process interrupts on the first logical CPU whenever possible, while performing our
runtime measurements on another core or, in the case of single-core configurations, on
the second hyper-thread of the that core.

Figure 5.3a shows the overhead of frequency reduction as measured using this experi-
ment. The results closely match the findings of our analysis of frequency level transitions

2 At the time of writing the Linux kernel contains a bug that affects the CPU frequencies of cores after they
have been temporarily disabled [176]. We therefore reboot the system before performing experiments for
a different number of active cores.

88



5.2 Characterization of AVX Frequency Changes

—6— 128-bit FMA — 256-bit FMA —6— 256-bit FMA — 128-bit FMA
—— 256-bit FMA — 512-bit FMA —— 512-bit FMA — 256-bit FMA
—o— 128-bit FMA — 512-bit FMA —o— 512-bit FMA — 128-bit FMA
128-bit FMA — 512-bit OR 512-bit OR — 128-bit FMA
(V] (V]
& 2
© ] © 2
5 2 40 53 10
> © > @©
O o O o
c c c o
$g 20 ST 5
g3 g3
- 0 - 0
0 5 10 15 0 5 10 15
Active cores Active cores
(a) Frequency reduction (b) Frequency increase

Figure 5.3: Both reducing and increasing the frequency is associated with overhead. The
former causes more overhead than the latter as it involves a throttling period
with reduced instruction throughput.

in Chapter 3.2.2 which shows that the overhead is mainly defined by two factors. First,
the number of frequency changes during a frequency level transition varies, with each
frequency change causing a stall of approximately 10 ps. Second, the number of throttling
periods to prevent voltage droops varies — while all transitions involve a throttling period
that causes a fourfold throughput reduction, some involve a second throttling periods
with twice the throughput.

As expected from these observations, transitions from 128-bit to 512-bit FMA instruc-
tions incur the highest average cost of 42.7 us as they involve two separate frequency
changes as well as two throttling periods. Transitions which involve only one frequency
change cause less overhead. For example, transitions from 128-bit to 256-bit FMA instruc-
tions cost 34.4 pus on average while transitions from 256-bit to 512-bit FMA instructions
cost 28.4 ps on average. Transitions from 128-bit FMA to 512-bit OR instructions cause the
lowest average overhead of only 25.9 us as they only involve a single throttling period.
Note that the overhead hardly varies based on the number of active cores. This result
stands in contrast to our expectation of slightly lower overhead for larger numbers of
active cores. We expected that, as the CPU operates at a lower frequency level during
the throttling period when many cores are active, throttling should cause slightly less
overhead. Any such effect is likely hidden by the variance of our results.

5.2.2 Frequency Boost Overhead

Transitions from low to high frequency levels do not require any throttling and therefore
cause less overhead. However, despite frequency boosts being conceptually simpler,
measuring the associated overhead is far more complicated than in the case of transitions
from high to low frequency levels. In the previous section, we executed the same code
twice, while only one of the two runs included a frequency level transition. The CPU
time difference of the two runs represented the overhead of the transition. Applying the
same principle to frequency boosts is impractical, though, because frequency increases

89



5 Viability of Improved DVFS Policies

15
11.3 us
7 10 overhead t, € [fj, ty]
g 5 lower bound t; upper bound t,
l_
0.86 ps 0.59us
0

600 650 700 750 800 850 900 950
Run

Figure 5.4: We measure the overhead of frequency boosts by repeatedly measuring the
time required for a very short section of code. Before and after the frequency
change, the time correlates to the frequency. During the frequency change the
time is dominated by the pause while the CPU’s PLL is reconfigured.

are delayed by 670 ps. In our previous experiment, we tried to minimize the CPU time of
our test program to minimize CPU time variation caused by external factors, yet the delay
stipulates much longer CPU times. In addition, the delay makes comparisons between
the CPU times of the two runs much more complicated. Runs without any frequency
level transition are only performed at the higher frequency level, while runs with a
frequency level transition are partially affected by the lower frequency level. Calculating
the overhead therefore requires precise knowledge of the point in time at which the
frequency level transition starts. Due to the difficulty of determining this time with sub-
microsecond accuracy, we deem the approach impractical for obtaining precise estimates
of the frequency change overhead.

Instead, we exploit the fact that increasing the frequency is substantially less complex
than reducing it. Whereas frequency reduction involves a throttling period as described
above, the only source for overhead when increasing the frequency is the pause while the
CPU core’s PLL is reconfigured for the new clock speed. We therefore use a technique
described by Mazouz et al. [167] who determine the length of this pause by repeatedly
measuring the time required for a short section of ADD instructions. We modify this
technique to measure AVX frequency level transitions by initially forcing the system to
operate at the AVX2 or AVX-512 frequency level and then repeatedly measuring the time
required for a fixed number of 128-bit or 256-bit FMA instructions. This code snippet
requires less than 1ps to execute; we repeat it for a total duration of 1.5ms.> As the
instructions allow operation at higher frequencies, the system will eventually trigger a
frequency change to the non-AVX or AVX2 frequency level.

As shown in Figure 5.4, the time required to execute the code snippet corresponds to
the frequency, with a higher frequency level resulting in lower CPU times. The frequency
change itself poses an exception, as the resulting pause substantially increases the CPU
time required. We therefore select the highest runtime measured during the experiment
and then calculate the average runtime before and after this sample. The runtime before
the sample is generally higher than that afterwards, so the difference between the highest

3 While, as shown in Section 3.2.3, frequency boosts commonly occur after a delay of 670 s, we observed
longer delays during our experiments involving 512-bit OR instructions, similar to observations by Yussuf
Khalil [131]. We are unaware of the cause for these varying delays.

90



5.2 Characterization of AVX Frequency Changes

2,000
1,500
¥ 1,000
500

—6— 256-bit FMA — 128-bit FMA
—— 512-bit FMA — 256-bit FMA
—e— 512-bit FMA — 128-bit FMA

512-bit OR — 128-bit FMA

Break-even
time (us)

Active cores

Figure 5.5: The break-even times of AVX2 and AVX-512 frequency level transitions depend
on the number of active cores. While the frequency change overhead is fairly
constant across different core counts, the performance difference increases as
more cores become active.

runtime and the previous runtime forms a lower bound for the frequency change overhead
whereas the difference between the highest runtime and the following runtime forms an
upper bound. For our experiment, we simply calculate the frequency change overhead
as the mean of the two values, assuming that the most of the resulting statistical error
is cancelled out when we repeat the experiment 100000 times. As above, we repeat this
experiment for various numbers of active cores while we deactivate inactive cores and let
the first logical CPU process most interrupts.

Figure 5.3b shows the frequency level transition overhead determined by this experiment.
Similar to above, we observe little variation of the overhead depending on the number
of active CPU cores. In contrast to frequency reduction, the cost of frequency boosts
does not depend on the frequency levels involved, either, with all types of frequency level
transitions requiring approximately 10 ps. This result is expected given that the overhead
is mainly caused by a single fixed-duration pause during the frequency change itself.

5.2.3 Break-Even Time of Frequency Changes

Computing the break-even time requires not only the overhead caused by frequency
changes but also information on the performance degradation at low frequencies (p;,,, and
Phigh in Equation 5.2). To simplify the calculation, we assume that CPU performance is per-
fectly proportional to CPU frequency which allows substituting the performance variables
Plow and ppigp, with the frequencies fjo,, and fpign at the lower and higher frequency level.
In Section 4.3, we showed that this assumption is invalid especially for memory-intensive
applications which experience stall durations independent from the CPU frequency. We
also described techniques to achieve a more accurate estimate of the performance impact
of frequency changes. However, in this section we do not need this level of accuracy.
We merely want to demonstrate the sub-optimal behavior of the fixed-timeout policy of
existing Intel CPUs. Even though our analysis consequently only covers workloads with
negligible memory stalls, we show that the delay implemented by these CPUs usually
deviates so drastically from the break-even time that our results likely also apply to most
other types of workloads affected by remote AVX overhead.

We insert the frequencies for different numbers of active cores as well as the measured
overhead into Equation 5.2 to calculate the break-even time. Figure 5.5 shows the results of

91



5 Viability of Improved DVFS Policies

this calculation. Given that the frequency change overhead is fairly constant for different
core counts, the break-even time mainly varies based on the frequency swing caused by
AVX2 and AVX-512. When only one core is active, these instructions cause very little
frequency reduction — on the Intel Xeon Gold 6130 CPU, the CPU frequency is only
reduced by 200 MHz by AVX-512 [119] as the single active core can use all the available
thermal budget. Therefore, the resulting break-even times are high, ranging from 876 ps
for transitions between AVX-512 and non-AVX frequencies to 1464 us for transitions
between AVX2 and non-AVX frequencies. These values are reduced to 156 ps and 313 s,
respectively, when all cores are active, as the higher frequency reduction - 900 MHz in
the case of the Xeon Gold 6130 CPU and AVX-512 code [119] — means that frequency
increases more quickly compensate for frequency change costs.

The low break-even times for large numbers of active cores demonstrate the problem of
Intel’s DVFS policy. The 670 ps delay implemented by Intel CPUs provides good worst-
case competitiveness for single-threaded workloads using heavy 512-bit instructions as
the delay roughly matches the corresponding break-even time, yet such scenarios are
hardly representative for server workloads. Instead, most server workloads are multi-
threaded. When more than half of the CPU cores are active, the break-even time generally
is much lower than the frequency change delay, resulting in far lower competitiveness
and increased overhead. We demonstrated the resulting impact in Chapter 3 where we
showed that some workloads are slowed down by more than 10%.

Note that recent Intel CPUs provide only a single constant delay for different numbers
of active cores, even though our experiments show that the break-even time varies. To
provide optimal worst-case behavior, the CPUs should select different delays for different
numbers of active cores. In the following, we concentrate on measuring the potential of
improved delays for scenarios where all cores are active and leave implementing such
adaptive behavior as future work. We argue that it should be simple to extend the DVFS
policy of existing CPUs as the policy already takes the number of active cores into account
when selecting a suitable turbo frequency level.

5.3 Simulating Improved Frequency Scaling

Our previous analysis showed that the existing DVFS policy implemented by existing Intel
CPUs is sub-optimal. However, the analysis does not quantify the improvement expected
from improved DVFS policies. In the following, we therefore compare three different DVFS
policies to demonstrate the remaining potential for performance improvements. First, as a
baseline, we determine the overhead caused by a policy that delays all frequency boosts
by 670 ps, similar to that implemented by Intel CPUs. Second, we determine the overhead
caused by a policy that instead uses a delay of only 150 ps. This delay roughly matches
the break-even time of transitions between the AVX-512 and non-AVX frequency levels
and should therefore be approximately 2-competitive. Finally, we compare these policies
to an oracle policy that always performs frequency changes without any delay if the time
that can be spent at the higher frequency level is long enough that a frequency change is
beneficial. For the latter two policies, no hardware implementation is available. We decide
against implementing all three policies in a full system simulator such as gem5 [27]. As

92



5.3 Simulating Improved Frequency Scaling

Trace = Simulator CPU time

Ed *
- A ~
- | ~
- ~
- | ~

2-competitive
policy

OneDNN +

=
Parsec L

perf sched
record

nginx

Original policy Oracle

(instrumented)

Figure 5.6: To evaluate DVFS policies, we use a simulator which scales CPU time according
to the CPU frequency selected by the policies. The simulator operates on traces
that provide information on AVX-512 usage.

the CPU microarchitecture implemented by such simulators generally does not match
that of the Intel CPUs covered by this thesis, it would have been unclear whether the
timing produced by these simulators would be representative of existing CPUs. Instead, we
implement a simple simulator that operates on traces generated from workloads executed
on a Skylake-X CPU to capture realistic system behavior.

Figure 5.6 shows the design of this setup. The input to the simulator consists of a trace
of CPU activity which contains information about which application is running on each
logical CPU and whether the applications use AVX-512. The simulator itself simulates the
impact of the DVFS policies on performance by scaling the length of trace entries according
to the CPU frequency selected by the policies as shown in Figure 5.7. In addition, the
simulator inserts a delay whenever the CPU frequency is changed to simulate frequency
change overhead. Whenever the trace indicates that the CPU executes AVX-512 code, the
simulator forces a transition to the low AVX-512 frequency level. Whenever the trace
indicates that no AVX-512 instructions are used, the simulated DVES policy is applied to
increase the CPU frequency.

As the simulator divides the duration of individual trace entries by the simulated CPU
frequency, the trace itself needs to be recorded at a constant CPU frequency. Recording
the trace on a system that uses Intel’s DVFS policy would negatively affect the accuracy of
the simulation results as the DVFS policy would make AVX-512 phases appear to require
disproportionally more time. In all other aspects, the trace should be as representative of
server CPUs as possible. In particular, it should be recorded at a frequency similar to the
non-AVX frequency of server CPUs as otherwise reduced memory stalls would affect the
recorded times.

To simulate a CPU which constantly operates at the non-AVX frequency of the Xeon Gold
6130 server CPU used for most of our previous experiments, we executed the workloads
on a system with an Intel Core 19-7940X CPU. As described in Section 3.2.2, this CPU in
combination with a mainboard targeted at overclocking* allows deactivating any AVX
frequency reduction. In addition, the CPU is able to execute AVX-512 code at higher
frequencies than the non-AVX frequencies of most server CPUs. We configure the system

4 We generate our traces on a system with a Intel Core 19-7940X CPU, the Asus TUF X299 Mark 2 mainboard,
and 32 GiB 2666 MHz DDR4 RAM.

93



5 Viability of Improved DVFS Policies

Constant-
’ Non-AVX | AVX-512 | Non-AVX | AVX-512 ‘
frequency trace | | < — _—
Simulator output ’ Non-AVX D AVX-512 | D Non-AVX D AVX-512
A
Simulated frequency L
// A \/(\ ~
. 1 T Time
Frequency Local frequency Remote frequency reduction
change overhead reduction (frequency change delay)

Figure 5.7: To simulate different DVFS policies, our simulator scales the duration of in-
dividual trace entries by the simulated frequency. Whenever the simulated
frequency changes, frequency change overhead is added to the simulator output.
The example shows a timeout-based DVFS policy.

so that all parts of the workload to operate at the same constant CPU frequency of 2.8 GHz,
thereby matching the non-AVX frequency of the Intel Xeon 6130.

While we are able to prevent frequency changes, we are, unfortunately, unable to remove
other artifacts of the CPU’s power management policy such as overhead due to throttling.
As aresult, some parts of the trace appear slightly slower than they would be in the absence
of autonomous CPU power management. We do not expect this behavior to have any
substantial impact on our simulation results as the issue affects all simulated DVFS policies
equally. We mainly compare the different policies, while absolute remote AVX overhead
results are of less importance. In the following, we also show that the time unnecessarily
spent at lower frequencies by Intel’s original DVFS policy has a much larger impact on
performance than any such frequency change overhead.

We generate traces of two types of workloads, similar to our experiments performed in
Section 3.3.5 to quantify remote AVX overhead. First, we generate traces of workloads
where various Parsec benchmarks are executed in parallel to OneDNN benchdnn. We use
perf sched record [192] while these workloads are running to generate scheduler traces.
All traces are recorded while OneDNN benchdnn is configured to use AVX-512. In addition,
we generate a trace using an instrumented version of the nginx benchmark described in
Chapter 3. We configure nginx to serve a compressed static file via HTTPS and instrument
OpenSSL to write timestamps to a file whenever the library starts or finishes encryption
of data blocks. These timestamps represent use of AVX-512 and form the input to our
simulator. All workloads are restricted to four physical cores to reduce the size of the
resulting traces.

Similar to the experiments in Chapter 3, we use the CPU time of the benchmark -
either nginx or a Parsec benchmark — as the target metric to determine the performance
achieved by the DVFS policy. More specifically, to calculate the slowdown caused by
frequency changes, we compare this CPU time to the CPU time required if the benchmark
is executed at the non-AVX frequency and no frequency changes occur. Figure 5.8 shows
the slowdown determined by our simulation. We make three main observations:

First, in the case of the original DVFS policy (labelled “Stock” in the figure), the absolute
overhead differs from that determined during our experiments described in Chapter 3.

94



5.3 Simulating Improved Frequency Scaling

’ B8 stock 8 2-Competitive BB Oracle

40

20

0 N”lllmllllllm 1w M

\\ .
%\0 x\° o @d\ o2 &6&? «\X\ RO \(\e\\fp " ,000 e

Remote AVX Overhead (%)

.3 \ Q
& 5 B R (S AN R
\0\’6(’ 6(\(\ 6(\(\ 6(\(\ e&‘ ,\\\)\6 (\x‘\ (< (\X 6
a 6 o of &\(\X o ) RO \
o (¢) o \
0(\6 [¢) 0(\9, 0(\6 0

Figure 5.8: The 2-competitive DVFS policy substantially reduces remote AVX overhead for
the Parsec benchmarks executed alongside OneDNN benchdnn --rnn, almost
to the level achieved by the ideal oracle policy. However, the overhead caused
by hyper-threading generally dominates, so the impact of the DVFS policies
is limited. In contrast, nginx is substantially affected by excessive frequency
change delays, so the improved policies are able to reduce the remote AVX
overhead.

The reason for this discrepancy mostly likely lies in the different number of threads which
influences the length of the time slices allocated by the scheduler. As we described in
Section 3.3.5, the time slice length has a substantial impact on remote AVX overhead. For
example, in our simulations, Parsec ferret shows a much higher context switch rate than
during the experiments described in Chapter 3. Therefore, the simulator measures more
remote AVX overhead. As described above, such discrepancies are not relevant for our
analysis as we are mainly interested in a comparison between the different DVES policies.

Second, 2-competitive frequency scaling with a lower frequency change delay con-
sistently outperforms the original frequency scaling policy provided by the CPU. The
impact is mostly very small, though, with the exception of the nginx single-application
benchmark that was already shown to especially suffer from the frequency change delay
in Section 3.3.5. Whereas the original DVFS policy results in 18.2% overhead on average,
2-competitive frequency scaling achieves an average overhead of 15.2%.

Third, the oracle policy consistently provides even better performance at an average
overhead of 14.2%. This is expected given that the oracle policy has knowledge of future
system behavior and can minimize overhead by increasing the CPU frequency without
delay. Again, the impact is very small, though, which demonstrates that the performance
potential of improved frequency scaling policies is very limited for two-application work-
loads. This result is consistent with our results presented in Chapter 3 which showed that
most remote AVX overhead in these workloads is caused by hyper-threading, with little
overhead directly attributed to frequency change delays.

As our experiments simulated a system with hyper-threading, we perform an additional
experiment to show the impact of improved DVES policies in systems without hyper-
threading. While such CPUs are rare in current server systems, they may become more

95



5 Viability of Improved DVFS Policies

’ B stock I B 2-Competitive B8 Oracle ‘

S5

o

© 8

£ 40

9] 6

3

< 2

3]

: U )

g 0 0 i

9]

o2 N\ ,b(, 0Q 9\«\ ‘0 \Q
o (Nf.:c’ \006‘5“ (\x(,'b(\ (\(\Xdeé(\ & 6(\(\)(&@( & 0\((\><‘\e «\’A C\ o ’AQ\ é(\(\x“

(\x\o\% 60(\)( ST o S @ (\x’\\\)\ o o e é(\(\x

o A N2 [§) (§) o (\ oL

Figure 5.9: On a system without hyper-threading, improved DVFS policies have a greater
impact on remote AVX overhead. In this setup, all remote AVX overhead is
caused by the suboptimal frequency change delay implemented by the original

policy.

common in future many-core or heterogeneous CPUs.> We repeat our simulations on
traces generated using only one hyper-thread per physical core. Figure 5.9 shows the
results of this experiment. In this configuration, both the 2-competitive DVFS policy
and the oracle policy are able to mitigate almost all remote AVX overhead. A detailed
analysis shows that this is because most of the original policy’s remote AVX overhead
is caused by excessively long frequency change delays whereas the frequency change
overhead itself is hardly noticeable. On average, the original policy causes 8.5% overhead,
of which 0.1 percentage points can be attributed to frequency change overhead, while the
remainder is caused by the execution of non-AVX code at the AVX-512 frequency level. In
the given configuration, only nginx is affected by far more frequency change overhead
as it switches very frequently between non-AVX and AVX-512 code. Consequently, it is
the only benchmark where substantial overhead remains even with the improved DVFS
policies.

5.4 Discussion

Our experiments uncover a deficiency in Intel’s DVFS policy and show a straightforward
solution to improve performance. In many scenarios, the frequency change delay is too
long and should be reduced to match the break-even time. Perhaps the CPU should even
take the number of active CPU cores into account when selecting a suitable frequency
change delay. While our analysis shows that such changes have a positive effect on most
workloads suffering from remote AVX overhead, the impact is low for workloads where
hyper-threading causes most remote AVX overhead. Nevertheless, we expect that these
improvements are worth pursuing given that the effort required to optimize frequency
change delays is likely low. As the remaining remote AVX overhead is often substantial,

> At the time of writing, Intel integrates CPU cores without hyper-threading in its heterogeneous desktop
CPUs [205] and has announced server CPUs with such cores [4].

96



5.4 Discussion

improved DVES policies should be paired with software techniques such as that described
in Chapter 6 to further reduce remote AVX overhead.
Our analysis has two main limitations which we discuss in the following:

Impact of Memory Stalls.  Our calculation of break-even times does not take memory stalls
into account. Applications that spend most of their time waiting for memory have longer
break-even times as these applications experience less performance improvement when the
CPU frequency is increased. Future work has to determine whether timeout-based DVFS
policies should choose the frequency change delay according according to model-based
predictions of the performance at higher CPU frequencies [229]. Given how large the
difference between Intel’s delay and the break-even time is in the absence of memory
stalls, we argue that such complex policies are likely unnecessary. Instead, we expect that
an implementation with a single static optimized frequency change delay is already able to
reap most of the potential performance benefits. Note that most benchmarks used in our
simulation were shown to provide throughput in proportion to the CPU frequency [86],
so the lack of a DVFS performance model does not have much impact on our simulation
results.

Impact of Voltage Changes. When we calculate the break-even time, we only measure
the direct impact of frequency changes and throttling to determine the frequency change
overhead. We do not measure the impact of voltage changes on energy consumption,
even though voltage changes were shown to impact energy efficiency [189]. During
any frequency change, the CPU temporarily operates at a sub-optimal voltage level and
therefore consumes more energy. In a power-limited system, reduced energy efficiency
directly translates into reduced performance, so voltage changes contribute to frequency
change overhead. The resulting performance impact is likely negligible as both our
experiments as well as those performed by Travis Downs [68] show the voltage to change
by only a few millivolts. In addition, even in the worst case, this sub-optimal voltage
setting is only used for few dozens of microseconds per frequency change [167].

Voltage changes also impact the latency of frequency boosts as the voltage needs to be
increased before the frequency can be changed [167]. This impact on frequency change
latency does not pose any issue for the frequency changes caused by AVX2 and AVX-512,
though, as the frequency change delay means that frequency increase is scheduled far in
advance. If, for example, the voltage change requires 20 pus and the CPU uses a frequency
change delay of 100 ps, the CPU can simply start changing the voltage 80 ps after the start
of the frequency change delay.

97






6 Separating AVX-512 and Non-AVX-512
Code

Remote AVX overhead has substantial negative impact on overall system performance if
power-intensive AVX2 and AVX-512 code is executed in temporal or spatial proximity to
other less power-intensive code. As shown in the previous chapter, improved frequency
scaling policies implemented by the CPU have very little potential to mitigate this per-
formance impact. In this chapter, we therefore present a software approach which is
able to mitigate most remote AVX overhead without restricting where and how software
developers can use AVX-512 instructions to improve performance.

Our design restricts co-scheduling of AVX-512 and non-AVX-512 code. In contrast to
the frequency scaling policies described in the previous chapter, this software approach
is able to target both sources of remote AVX overhead and therefore presents a solution
for a wider range of applications. Improved frequency scaling policies are able to reduce
the impact of frequency change delays, but are unable to mitigate remote AVX overhead
caused by hyper-threading. While a technique to mitigate the latter type of remote AVX
overhead exists in the form of core scheduling [154], it in turn does not prevent remote
AVX overhead caused by frequency change delays.

Our approach is based on core specialization, i.e., it designates individual CPU cores for
specific types of code. In particular, it specifies a number of AVX-512 cores and restricts
execution of AVX-512 code to these cores [85]. We select the number of these cores
dynamically based on the number of threads executing AVX-512 code so that the cores
rarely execute non-AVX-512 code. The resulting separation of different types of code
results in two main effects: First, AVX-512 and non-AVX-512 code are rarely co-scheduled
on sibling hyper-threads at the same time, so core specialization prevents most remote AVX
overhead caused by hyper-threading. Second, as non-AVX-512 code is mainly executed
on other cores, it is less likely to directly follow AVX-512 code on the same core, which
reduces the remote AVX overhead caused by frequency change delays.

The chapter is structured as follows: First, we revisit existing approaches to mitigate
remote AVX overhead (Section 6.1). We describe basic requirements and make a case
why mitigation techniques should be implemented in the OS to benefit from the available
information about runtime conditions. We then show how core specialization can be used
to mitigate remote AVX overhead (Section 6.2). We describe a suitable scheduling policy
that differentiates between AVX-512 and non-AVX-512 tasks and we present methods to
detect power-intensive AVX-512 code. While core specialization can be implemented in
different ways, we present a concrete implementation in the Linux kernel (Section 6.3).
Our prototype replicates the scheduler’s run queues to differentiate between different
types of tasks and uses task stealing to move tasks to appropriate cores. As the resulting
migration of tasks between cores can negatively impact performance, we also provide a

99



6 Separating AVX-512 and Non-AVX-512 Code

mechanism to gauge the overall impact of core specialization on performance (Section 6.4).
We evaluate our prototype with a range of workloads and show that it can substantially
reduce the performance impact of remote AVX overhead (Section 6.5). Whereas AVX-
512 slows the workloads down by 12.3% on average with an existing scheduler, core
specialization reduces the average remote AVX overhead to 1.2%. We also show that
in most cases the additional complexity introduced by core specialization causes very
little overhead itself. We conclude the chapter with a discussion of the limitations of our
approach and sketch potential improvements (Section 6.6). In particular, as the concepts
presented in this chapter are not limited to AVX-512 but instead will likely also apply to
many power-intensive instruction sets introduced by future CPUs, we describe extensions
to the CPU which would make core specialization more effective and efficient.

6.1 Existing Mitigation Techniques

Existing work has tried a variety of techniques to solve problems associated with rare use of
power-intensive instructions. Few of these techniques specifically target the performance
impact of AVX2 or AVX-512 instructions. Due to different reasons, all existing work falls
short of providing a practical, generic mitigation technique for remote AVX overhead. In
this section, we describe the approaches as well as their drawbacks and derive a set of
requirements for our approach.

As described in Section 3.3.3, remote AVX overhead was first reported for workloads
involving the nginx web server and the OpenSSL library [141]. Shortly after the report,
the OpenSSL developers chose to resolve the problem by completely disabling AVX-512 for
all Skylake-SP and Skylake-X processors [195], likely due to a lack of practical alternatives.
Preventing remote AVX overhead by removing any power-intensive instructions from a
program has two major drawbacks, though. First, the technique is rather labor-intensive.
For each program that uses AVX-512 or other power-intensive instructions, the overall
performance impact in a range of expected workloads has to be assessed by the developers
who have to compare the performance gain brought by the instructions with the amount
of remote AVX overhead. We argue that any mitigation technique against remote AVX
overhead should be automatic. It should not require any manual modification of individual
programs. Second, the technique is unable to adapt to individual workloads. In the case
of OpenSSL, some workloads — in particular workloads which spend much of their time
encrypting or decrypting data — are able to benefit from the substantial local speedup
caused by AVX2 and AVX-512 [82, 81], whereas others, as described in Chapter 3, are
not. An application that uses OpenSSL with AVX-512 is optimized for the former type
of workloads, whereas an application where AVX-512 has been disabled is optimized
for the latter type of workloads, but neither application performs equally well in both
scenarios. Inability to adapt to the situation is particularly problematic in the case of
software libraries such as OpenSSL which are expected to be used in a wide variety of
applications and usage scenarios. We argue that any mitigation technique against remote
AVX overhead should not prevent the use of power-intensive instructions in scenarios
where their use is beneficial.

100



6.1 Existing Mitigation Techniques

As it is commonly only known at runtime whether or not power-intensive instructions
are beneficial, this requirement in fact rules out any technique that selects a specific
implementation when or before launching an application. The amount of remote AVX
overhead as well as the speedup brought by power-intensive instructions often depends
on external input. For example, the type of web server requests is not known in advance,
but the complexity of the requests may decide whether AVX-512-enabled cryptography
routines are beneficial or not. Moreover, such external input can change over time, thereby
changing the nature of the workload. To adapt to runtime conditions, mitigation techniques
that select different implementations to maximize performance would have to include a
profiler to determine the impact of power-intensive instructions. While we are not aware of
any such technique in the context of remote AVX overhead, selective devectorization [142]
uses a similar approach for power-gating. It employs runtime profiling to determine
whether individual parts of the program are executed in sufficiently SIMD-heavy program
phases to warrant the use of power-intensive SIMD units. If this profiler detects code that
is used in phases when there is little other SIMD code, a just-in-time compiler devectorizes
the code so that the SIMD unit can be disabled.

Any such profiling in user space has another substantial drawback. Often, remote AVX
overhead is the product of interaction between different applications — for example, one
application running on one hyper-thread slows the application on the other hyper-thread
down. If a power-intensive application consists almost completely of power-intensive
AVX2 or AVX-512 code, a user-space profiler analyzing this application likely observes a
large speedup associated with these instructions and does not disable them, even if other
applications, unbeknownst to the profiler, are slowed down. We argue that due to this
distributed nature of remote AVX overhead any mitigation technique should either be
implemented in the OS or, if implemented in other parts of the software stack, should be
provided with information by the OS on whether power-intensive instructions provide a
system-wide benefit. Such a setup is required as only the OS can potentially have sufficient
information over all applications and their operating frequencies and instruction usage.

To the best of our knowledge, the only existing OS-level mitigation technique to date
has been described by Aubrey Li who showed that core scheduling can be used to mitigate
remote AVX overhead caused by hyper-threading [154]. Core scheduling as provided
by the Linux kernel is a mechanism which restricts the co-scheduling of different tasks
on sibling hyper-threads and which was originally proposed to mitigate hardware side-
channel vulnerabilities [53]. It is implemented by assigning a core_sched cookie to each task.
The scheduler then only allows co-scheduling of tasks with identical cookie values [56].
Aubrey Li showed that setting cookies based on AVX-512 usage can be used to restrict
co-scheduling of AVX-512 and non-AVX-512 tasks as shown in Figure 6.1.! His prototype
uses the simple — yet, as we show in Section 4.1, defective — mechanism provided by the
Linux kernel to identify AVX-512 applications based on register contents during context
switches. Any application that has recently used 512-bit vector registers is assumed to

! The approach by Aubrey Li [154] is similar in nature to voltage smoothing by Reddi et al. [202] where
co-scheduling on different physical CPU cores is restricted to reduce voltage droops. Whereas Aubrey
Li’s prototype co-schedules power-intensive AVX-512 tasks, voltage smoothing prevents co-scheduling of
power-intensive tasks to limit peak power consumption.

101



6 Separating AVX-512 and Non-AVX-512 Code

Corel Core 2
Different types of code (| [y AVX-512| | | [HT Non-AvX-512]
on sibling hyper-threads
cause remote AVX overhead ’ HT Non-AVX-512‘ ’ HY AVX'SlZ‘

(a) Traditional schedulers (co-scheduling of AVX-512 and non-AVX-512 code)

Corel Core?2 Corel Core 2
[HT Non-AVX-512| |HT AVX-512 | [HT Non-AVX-512| [HT AVX-512 |
|HT Non-AVX-512] [HT AVX-512 ] |HT Non-AVX-512] [HT Idle |

(b) Core scheduling (two AVX-512 tasks) (c) Core scheduling (one AVX-512 task)

Figure 6.1: Core scheduling can be used to mitigate remote AVX overhead caused by
hyper-threading. Whereas most schedulers arbitrarily co-schedule AVX-512
and non-AVX-512 tasks (a), core scheduling only allows execution of tasks of
the same type on sibling hyper-threads (b). The technique has the drawback
that sometimes hyper-threads have to remain idle (c).

potentially cause a frequency reduction. Whenever such a task is scheduled, its sibling
hyper-thread is only allowed to execute tasks that are also known to use AVX-512.

Aubrey Li’s approach has two main limitations that we aim to improve upon in our work:
First, core scheduling is able to mitigate remote AVX overhead caused by the effects of
hyper-threading, but is not able to prevent slowdown in programs which frequently change
between AVX-512 and non-AVX code such as the web server example described above.
We improve upon core scheduling by identifying AVX-512 tasks with a finer temporal
granularity and via modifications to scheduling to prevent remote AVX overhead caused by
frequency change delays. Second, as shown in Figure 6.1c, core scheduling leaves individual
hyper-threads idle if there is no suitable AVX-512 task ready to be scheduled [154]. If, for
example, there was only one runnable AVX-512 task, but a sufficient number of runnable
non-AVX tasks to fully utilize all logical CPUs, core scheduling would not co-schedule
any of these tasks on the same physical CPU core as the AVX-512 task. As a result,
its sibling hyper-threads would remain unoccupied. Leaving individual hyper-threads
idle commonly reduces performance. While there are scenarios where it is beneficial to
schedule only a single task on a physical CPU core, hyper-threading commonly provides
substantial performance improvements as it improves resource utilization [210, 39, 237,
232]. We therefore argue that any technique against remote AVX overhead should be
work-conserving and should utilize all available logical CPUs. Our approach explicitly
allows co-scheduling of AVX-512 tasks and non-AVX-512 tasks when necessary to achieve
work-conserving scheduling.

6.2 Core Specialization for AVX-512 Applications

Our mitigation technique against remote AVX overhead is based on core specialization.
Core specialization is a software technique where the OS designates individual cores

102



6.2 Core Specialization for AVX-512 Applications

Corel Core 2 Core3 Core 4 Corel Core2 Core3 Core 4
AVX-512 AVX-512 AVX-512 AVX-512
Non-AVX-512 || Non-AvX-512 || Non-Avx-s12 | | AV*312
Non-AVX-512| |Non-AVX-512| |Non-AVX-512| [Non-AVX-512
Non-AVX-512|
; T
Low frequency High frequency Low freq.
(a) Without core specialization (b) With core specialization

Figure 6.2: Existing operating systems colocate AVX-512 and non-AVX-512 applications
(a), which may result in a frequency reduction for all cores. Core specialization
limits use of AVX-512 to a subset of the physical CPU cores instead (b). All
other cores are not affected by frequency reduction, so the code running on
these cores is not affected by remote AVX overhead.

to perform different types of work. In the past, core specialization has been shown to
be beneficial for asymmetric multi-core systems where some tasks are better executed
on few fast cores whereas others are better suited for execution on a larger number of
small low-power cores [209] or where cores provide different functionality [94, 6]. Core
specialization has also been employed to reduce cache misses on symmetric multi-core
systems. For example, the system can be configured to let cores execute different parts of
the application [146] or to execute system calls on separate cores [225].

As remote AVX overhead is mainly caused by either spatial or temporal proximity
between power-intensive and less power-intensive code, we use core specialization to
separate the two types of code. Our approach is inspired by suggestions from Tiwari et
al. [236] and Daniel Lemire [151] who propose reducing the number of cores used for
AVX2 and AVX-512 code without describing a concrete design. We let the OS designate
some cores as AVX-512 cores which are allowed to execute any type of code, whereas
all other cores are designated as non-AVX-512 cores and are not allowed to execute any
AVX-512 instructions [85]. Figure 6.2 shows the impact of this design on CPU frequencies.
If, as shown in Figure 6.2a, all cores are able to execute both AVX-512 and non-AVX-512
code, non-AVX-512 code is slowed down by frequency reduction on all cores, resulting
in remote AVX overhead. If, as shown in Figure 6.2b, most cores are instead limited to
non-AVX-512 code, these cores will never transition to the AVX-512 frequency level and
will never suffer from the resulting remote AVX overhead. Only the designated AVX-512
cores will reduce their frequencies, but these execute comparatively less non-AVX-512
code that could be affected by remote AVX overhead. As more code is executed at its ideal
frequency, the CPU cores are able to better utilize their power budget. Finally, less CPU
time and energy is lost to transitions between different frequency levels as the type of code
executed by individual cores does not change as often. Whereas non-AVX-512 cores never
switch to the AVX-512 frequency level, AVX-512 cores rarely switch to other frequency
levels as they mostly execute AVX-512 code.

Our implementation of core specialization for AVX-512 workloads consists of a number
of components which are shown in Figure 6.3 and which we describe in the following
sections. The central component of our design is a modified scheduler (1) which differ-

103



6 Separating AVX-512 and Non-AVX-512 Code

Division depends on
number of tasks (2)

Non-AVX- l AVX-512
512 Cores Cores

--.-H
14

4(
SN

I ’ ’ 4 e - - \ I

\ - - - .
Scheduled on At A e [ Cores restricted,
5 i , , e R - \ | <« . .
all cores @) R Lo high priority (D)
/ AR
(A g Vo
L /,:;;: 512 bit register access L
Non-AVX-512 AVX-512

Task - Task
System call/timeout

?
Automatic characterization of tasks 3)/@)

Figure 6.3: Our approach to core specialization for AVX-512 workloads consists of several
building blocks; a scheduler which restricts 512-bit SIMD operations to specific
cores ((D), a policy to determine a good number of cores for AVX-512 code ((2)),
and mechanisms to determine whether individual tasks use AVX-512 (3)/@).

entiates between AVX-512 tasks and non-AVX-512 tasks and which prevents execution of
AVX-512 tasks on non-AVX-512 cores. We present our modifications to the scheduling
policy in Section 6.2.1. The scheduler also has to determine the number of AVX-512 and
non-AVX-512 cores based on the number of runnable AVX-512 and non-AVX-512 tasks
(2 as we describe in Section 6.2.2. Both techniques require knowledge about whether
individual tasks execute AVX-512 code or not. In Section 6.2.3, we therefore describe a
technique to detect the beginning of execution phases involving AVX-512 code based on
register accesses (3) while Section 6.2.4 contains a description of heuristics to identify the
end of AVX-512 phases (4).

6.2.1 Scheduling Policy

As we describe above, there are two main requirements for the scheduling policy. First, the
scheduler should minimize remote AVX overhead, i.e., it should minimize co-scheduling of
AVX-512 tasks and non-AVX-512 tasks. Second, as described in Section 6.1, the scheduler
should be work-conserving, i.e., it should not let individual hyper-threads idle if there are
any runnable tasks. These two requirements are often conflicting. For example, if there is
only one AVX-512 task, a work-conserving scheduler has to execute a non-AVX-512 task on
its sibling hyper-thread, yet such task placement causes remote AVX overhead. Whereas
core scheduling [154] potentially leaves hyper-threads idle during execution of AVX-512
tasks, our approach implements a different compromise between the two requirements.
In particular, our scheduler never tries to leave hyper-threads idle even if the result is
increased remote AVX overhead, because hyper-threading commonly improves resource
utilization and therefore performance. Our scheduler operates according to the following
principles [85]:

104



6.2 Core Specialization for AVX-512 Applications

o The scheduler never allows non-AVX-512 cores to execute AVX-512 tasks as even
short sections of AVX-512 code potentially cause remote AVX overhead for the
following 670 ps.

« In contrast, the scheduler allows AVX-512 cores to execute any type of code. While,
as described above, the resulting co-scheduling increases remote AVX overhead, it
also improves resource utilization.

« On AVX-512 cores, the scheduler prioritizes AVX-512 tasks and only executes non-
AVX-512 tasks if no additional AVX-512 task is runnable.? Minimizing non-AVX-512
code running on AVX-512 cores minimizes co-scheduling of the two types of tasks
and therefore also minimizes remote AVX overhead.

The resulting policy frequently requires tasks to be migrated to different cores. In
particular, if a task becomes an AVX-512 task, it needs to be migrated to an AVX-512 core
to continue running. Similarly, if a task becomes a non-AVX-512 task, it should be quickly
migrated to a non-AVX-512 core as it is otherwise preempted by AVX-512 tasks with higher
priority and may be starved of CPU time. Modern systems with support for large numbers
of logical CPUs commonly maintain separate queues of runnable tasks — for example, one
such run queue per each individual logical CPU - to reduce lock contention [60]. On such
systems, tasks that are not suited for execution would remain in the run queue of their
previous logical CPU, requiring explicit migration to a different queue.

Commonly, migration is done by a load-balancing mechanism that moves tasks from
longer queues to shorter queues. Our scheduler features modified load balancing that only
migrates tasks if the destination CPU is able to execute the tasks, i.e., AVX-512 tasks are
never migrated to non-AVX-512 CPUs. If load balancing is responsible for moving tasks
to suitable CPU cores, the load balancing mechanism needs to react quickly to task type
changes and changing CPU load. Otherwise, tasks may be slowed down due to placement
on an unsuitable CPU core, while logical CPUs may become idle due to a lack of suitable
tasks. We describe the impact of this requirement on the implementation of our prototype
in Section 6.3.1.

Our scheduler does not try to minimize the number of active CPU cores. Each task
migration has the potential to activate a CPU core that was previously idle, which in
turn could reduce the CPU’s turbo frequency level. As described in Section 2.2.3, in this
thesis we focus on fully utilized systems which operate at the lowest turbo level. Future
work should analyze the behavior of our approach on lightly loaded systems to determine
whether it should be combined with techniques such as those proposed by Lawall et
al. [145] to reduce the number of active CPU cores.

2 Such a prioritization scheme has previously been proposed by Shen et al. for heterogeneous multipro-
cessors, where the scheduler selects the task with the highest instruction set requirements runnable on
the core [218]. Our approach is conceptually similar except that we essentially create heterogeneity in
software and are able to dynamically vary the number of AVX-512 cores.

105



6 Separating AVX-512 and Non-AVX-512 Code

6.2.2 Number of AVX-512 Cores

Good utilization of all CPU cores and effective mitigation of remote AVX overhead does
not only depend on good placement of tasks but also on the number of AVX-512 cores. In
particular, whenever there is an excessive number of AVX-512 cores, they frequently have
to execute non-AVX-512 tasks to keep utilization high, resulting in increased co-scheduling
of AVX-512 and non-AVX-512 tasks and therefore increased remote AVX overhead. In
contrast, when there is an excessive number of non-AVX-512 cores the AVX-512 cores will
experience high load while the non-AVX-512 cores will often idle as there are no suitable
non-AVX-512 tasks.

Our design determines the number of AVX-512 cores based on the number of AVX-512
and non-AVX-512 tasks.> We define the AVX-512 load as the number of AVX-512 tasks
divided by the number of AVX-512 cores:

Nigsks,AVX

loadAVX = (6.1)

Neores, AVX
The non-AVX-512 load is similarly defined as the number of non-AVX-512 tasks divided
by the number of non-AVX-512 cores:

Niasks,non—AVX

loadpon—avx = (6.2)

Ncores,non—AVX

Large differences between the two values indicate sub-optimal scheduling. If, for
example, the AVX-512 load is larger than the non-AVX-512 load, it is more likely that
the non-AVX-512 cores are underutilized, while a larger non-AVX-512 load indicates a
higher chance that AVX-512 cores execute non-AVX-512 tasks. In addition, different loads
indicate that either AVX-512 or non-AVX-512 tasks are given more CPU time, whereas
identical loads indicate fair scheduling.

The aim of our scheduler is therefore to select a number of AVX-512 cores which results
in approximately equal loads.* Whenever a task becomes an AVX-512 task, the scheduler
compares loadayx and load,,,—avx. Whenever the former is higher than the latter or
whenever there are idle non-AVX-512 cores, the current core should be marked as an
additional AVX-512 core. The same check also occurs during each scheduler invocation
on non-AVX-512 cores. The scheduler also compares the load values during scheduler
invocations on AVX-512 cores if the scheduler would have to choose a non-AVX-512 task.
At this point, if loadsyx would still be lower than load,,,—avx after an AVX-512 core was
removed, the current core should be marked as a non-AVX-512 core.

The scheduler only applies these changes to the core type if the previous change to any
core is more than 20 ms in the past to limit the rate of changes. Higher rates would impact
the effectiveness of our approach — whenever an AVX-512 core becomes a non-AVX-512

% In addition to the load factor, schedulers for latency-critical applications have taken the CPU utilization

into account [198]. Such schedulers often limit CPU utilization to prevent latency spikes due to varying
load. Our scheduler tries to maximize CPU utilization and therefore ignores CPU utilization when
determining the number of AVX-512 cores.

The algorithm described in this section leads to a slightly lower load on AVX-512 cores. This is intentional
as AVX-512 cores can execute non-AVX-512 tasks if necessary, whereas lower load on non-AVX-512 cores
may lead to idle cores and underutilization of the CPU.

106



6.2 Core Specialization for AVX-512 Applications

core, it is potentially affected by remote AVX overhead during the next 670 ps as it has
recently executed AVX-512 code. In addition, the scheduler will always ensure that there
is at least one AVX-512 core and one non-AVX-512 core in the system, as otherwise one of
the corresponding types of tasks could be starved.

6.2.3 Detecting AVX-512 Code

Our scheduler can only restrict AVX-512 code to AVX-512 cores if the tasks containing
the code are marked accordingly. While we experimented with manual annotations in
the applications denoting AVX-512 code regions in previous work [83, 187], such manual
annotation is labor-intensive. Therefore, in this thesis we propose automatic detection of
512-bit SIMD operations based on register accesses [85].

As described in Section 4.1, Linux already contains a technique to identify tasks that
use AVX-512 by sampling the register state during context switches: If there is valid
512-bit register content, the kernel records the timestamp [235]. This approach exploits
the behavior of the XSAVE instruction used in recent Intel CPUs to save the floating-point
register state during context switches [114, pp. 13-1 ff.]. Due to the large size of the
floating-point register file — the 32 512-bit registers introduced by AVX-512 alone require
2 KiB of memory when saved — the XSAVE instruction determines which parts of the register
file are in active use and only saves those parts. If XSAVE saves 512-bit register state during
a context switch, these registers have been filled with valid state by the application, so the
application has recently used AVX-512.

Sampling the register state during context switches is not a suitable technique for our
design as short sections of AVX-512 code, despite their potential to reduce CPU frequencies,
often go unnoticed. To reduce power and context switch overhead Intel suggests executing
the VZEROUPPER instructions after each section of AVX2 or AVX-512 code [113, p. 17-57].
This instruction clears all SIMD register content except for the lowest 128 bits of the first
eight SIMD register, which causes the 512-bit register state to show up as unused during
the next context switch. Furthermore, the approach operates only on whole tasks and
can not distinguish between different parts of a program consisting of both AVX-512 and
non-AVX-512 code such as a web server using AVX-512-enabled cryptography.

While it would alternatively be possible to mark all pages containing valid 512-bit SIMD
instructions and then use page faults to identify AVX-512 code similar to the approach
pursued by region scheduling [146], the coarse granularity imposed by page sizes risks
that non-AVX-512 code is marked as AVX-512 code. Any such mischaracterization of
code potentially causes excessive thread migrations between the two types of cores. As
migrating a thread is associated with overhead, these false positives during detection of
AVX-512 code should be minimized.

Instead of these techniques, we take inspiration from work by Li et al. [157] who
disabled the floating-point unit of some of their CPU cores to simulate an asymmetric
multiprocessor system on existing symmetrical off-the-shelf CPUs. Whenever a thread
tries to execute a floating-point instruction on a core where support is disabled, the core
triggers an undefined instruction exception. Li et al. show that this exception can be used
as part of a fault-and-migrate mechanism to migrate the thread to a core with support
for the instruction. We use a modified version of this approach not only to prevent

107



6 Separating AVX-512 and Non-AVX-512 Code

Opmask Registers XCRO Register SIMD Registers
256 bits 128 bits 128 bits
—_—
k7 ‘ Bit 9 ZMM31
ko ) Hi16_zZMM j ZMM16
ZMM_Hi256 ZMM15 YMM15 XMM15
Opmask : g P
ZMMO YMMO XMMO
AVX
SSE
Bit0

Figure 6.4: The XCRO register defines which parts of the register set can be saved using the
XSAVE instruction [116, p. 2-20]. If an instruction accesses a register while the
corresponding bit in XCRO is 0, an exception is raised. We clear the ZMM_H1i256,
and Hi1l6_ZMM registers to detect execution of 512-bit SIMD instructions.

execution of 512-bit SIMD instructions on non-AVX-512 cores but also to mark any thread
executing such an instruction as an AVX-512 task [85]. The main difference between our
implementation and that of Li et al. is that we do not completely disable the floating-point
unit but rather selectively disable access to 512-bit registers.

We exploit the fact that individual CPU cores prevent execution of SIMD instructions if
the operating system does not implement context switching for the required registers [114,
ch. 13]. In particular, the aforementioned XSAVE instruction stores register state into a
memory region specified by the OS and therefore relies on the OS to allocate sufficient
memory. To inform the CPU core about the set of registers that can be safely written,
the OS uses a bitmap in the XCRO register to instruct the CPU core about the registers
that shall be saved. As shown in Figure 6.4, the XCRO register contains a bit representing
the upper 256 bit of the first 16 ZMM registers — these were extended by AVX-512 from
256 bit to 512 bit — as well as a bit representing an additional set of 16 512-bit ZMM registers
introduced by AVX-512. Whenever an instruction modifies registers that are not saved
and restored during context switches, the data is potentially lost, so the CPU does not
allow 512-bit register accesses if either of these two bits is not set>. Instead, the CPU raises
an undefined instruction exception. We therefore clear both bits on all non-AVX-512 cores.
Whenever an undefined instruction exception is triggered by these cores, the OS then
marks the current task as an AVX-512 task and, as described above, the load balancing
mechanism migrates the task to a suitable AVX-512 core.

This mechanism correctly identifies all instructions that could potentially cause tran-
sitions to the AVX-512 frequency level and prevents execution of such instructions on
non-AVX-512 cores, thereby completely preventing any frequency reduction to the AVX-
512 frequency level. However, the mechanism causes false positives in two situations

5> In addition, AVX-512 introduced a set of mask registers. As AVX-512 instructions of all sizes require these
registers, the corresponding bit in XCRO cannot be used to detect particularly power-intensive instructions.

108



6.2 Core Specialization for AVX-512 Applications

where tasks are flagged as AVX-512 tasks even though they can be executed at a higher
frequency level:

1. Other undefined instruction exceptions such as those triggered by invalid opcodes
also cause the task to be marked as an AVX-512 task. To minimize overhead in the
common case — execution of AVX-512 instructions — our design intentionally does
not differentiate between different causes for exceptions. Instead, the operating
system simply resumes the task on an AVX-512 core. There, any invalid opcode will
simply cause a second exception which will then be handled properly by the OS.
Performance-wise, this behavior is not problematic as illegal instructions are rare
and commonly cause the application to be terminated.

2. Only 512-bit multiplications and floating-point operations trigger a transition to the
lowest frequency level [113, p. 2-13]. Ideally only tasks executing these instructions
would be flagged as AVX-512 tasks, yet our approach intercepts all 512-bit register
accesses and therefore also flags code that only triggers transitions to the intermediate
AVX2 frequency level. This behavior exposes an inherent limitation of the hardware-
software interface provided by current Intel CPUs, as the coarse-grained control
provided by XCRO does not allow differentiation between different types of operations.
While this limitation reduces the effectiveness of our approach, we expect false
positives to be less problematic than false negatives, as a single false negative can
slow a non-AVX-512 core down for 670 ps, causing substantial remote AVX overhead
in the process. Note that the limitation essentially prevents the approach to be used
to identify 256-bit SIMD instructions, as the bits in XCR0 that prevent access to 256-bit
registers cause widely used instructions such as light 256-bit SIMD operations or
instructions such as VZEROUPPER to trigger exceptions [115, pp. 2-32, 5-550]. Neither
of these instructions cause any frequency reduction. See Section 6.6.4 for a discussion
of this limitation as well as of an improved hardware-software interface.

Our manipulation of XCRO on non-AVX-512 cores not only triggers undefined instruction
exception but also general protection faults. In particular, the XRSTOR instruction used
to restore the register state causes such faults if the program tries to restore the state of
registers that were disabled. The faults pose a problem as use of XRSTOR is not restricted to
kernel space. For example, the dynamic linker uses XSAVE and XRSTOR during lazy binding,
where references to symbols from shared libraries are resolved once the corresponding
functions are first called [18]. The dynamic linker implements lazy binding by initially
configuring all references to shared libraries to point to its own symbol-binding function
instead of the referenced library symbols. When this function is first called for any specific
reference, it looks up the target address and rewrites the reference accordingly before
calling the referenced function directly for the first time. During the process, this symbol-
binding function must ensure that none of the arguments provided by the application
are lost, i.e., it needs to save and later restore the corresponding registers. In glibc’s
dynamic linker, the symbol-binding function _dl1_runtime_resolve uses XSAVE to save any
floating-point arguments to the function to be resolved®, which causes general protection

¢ glibc 2.37, sysdeps/x86_64/d1-trampoline.h, line 121

109



6 Separating AVX-512 and Non-AVX-512 Code

faults when XCR0 is modified to prevent execution of 512-bit SIMD operations. We handle
this fault by simply temporarily allowing 512-bit register access on the specified core,
before reinstating our changes to XCRO at the time of the next context switch — naturally,
if there is valid 512-bit register content at this time, the current task needs to be marked
as an AVX-512 task. While this change temporarily allows undetected execution of power-
intensive 512-bit SIMD operations on non-AVX-512 cores, we expect lazy binding to be a
rare event in most workloads that is mostly restricted to application startup.

After such a situation or when the number of AVX-512 cores is reduced, the OS changes
XCRO on the affected cores to prevent further execution of 512-bit SIMD operations. At
this point, the OS has to ensure that there is no valid 512-bit register state left on the
core. Such register state would become inaccessible once XCRO has been modified, yet
the corresponding parts of the register file cannot be deactivated, causing even narrow
SIMD operations to affect the CPU frequency. The change to XCRO therefore has to be
accompanied by the VZEROUPPER or VZEROALL instructions to clear the problematic register
state.

6.2.4 Detecting Non-AVX-512 Code

AVX-512 code is often limited to specific program phases. During these phases, the task
should be marked as an AVX-512 task using the mechanism described above, but after the
phase the task should be marked as a non-AVX-512 task again and should be migrated to a
non-AVX-512 core to prevent remote AVX overhead. For example, if we take the web server
scenario described by Vlad Krasnov [141], the cryptography routines of the web server
should be executed on AVX-512 cores, whereas the remainder of the web server should be
executed on non-AVX-512 cores at high CPU frequencies. The mechanism described in
the previous section does not provide any information about the end of AVX-512 program
phases, though, as no further exceptions are triggered on AVX-512 cores. In fact, there is
no practical mechanism provided by the CPU to automatically detect the absence of any
such type of instruction. Therefore, the OS has to resort to heuristics to detect the end of
AVX-512 program phases.

Li et al. propose a simple timeout after which the application is automatically assumed
to not use any instruction of concern anymore [157] (Figure 6.5a). Alternatively, they test
whether during this timeout the application has made use of floating-point instructions
again and extend the timeout whenever it does (Figure 6.5a). While these two approaches
are simple, they present a tradeoff between effectiveness and low overhead. In particular,
short timeout durations are associated with overhead from additional timer interrupts,
exceptions, and perhaps even unnecessary task migration between non-AVX-512 and
AVX-512 cores if the timeout expires while the task is still using AVX-512. In contrast, long
timeouts substantially impact the ability to prevent remote AVX overhead, as any non-AVX
code executed before the timeout expires is likely executed at reduced frequencies as the
task is still running on an AVX-512 core. Li et al. evaluate their prototype with timeouts in
the range of multiple milliseconds resulting in acceptable overhead, yet these timeouts are
far longer than the AVX frequency change delay. For such configurations, experiments
conducted by Peter Brantsch [35] show timeout-based approaches to be ineffective for
the mitigation of remote AVX overhead. His prototypes only provided performance gains

110



6.2 Core Specialization for AVX-512 Applications

Repeated timeouts (until no

Timeout AVX-512 instructions are detected)

Actualcode’ Non—AVXI AVX-512 | Non-AVX ‘ Actualcode’ Non»AVXI AVX-512 | Non-AVX ‘
Heuristic ’ Non-AVX l AVX-512 l Non-AVX ‘ Heuristic ’ Non-AvX | AVX-512 | Non-AVX ‘
Time Time
(a) Simple timeout (b) Periodic usage checks
SystSm call

Actual code ’ Non-AVX l AVX-512 l 4 Non-AVX ‘

Heuristic ’ Non-AVX | AVX-512 | Non-AVX ‘

Time

(c) Syscall-based heuristic

Figure 6.5: Several heuristics can be used to detect the end of AVX-512 phases. The OS
can assume that the phase has ended after a fixed timeout has expired (a) as
suggested by Li et al. [157]. Alternatively, the OS can repeat the timeout until
no further AVX-512 instructions have been executed (b). We mainly employ the
heuristic proposed by Peter Brantsch [35] where we mark tasks as non-AVX
tasks as soon as they execute any system call.

if timeouts were in the range of few microseconds, but such short timeouts likely cause
excessive overhead for any workload with long AVX-512 phases.

As an alternative, Peter Brantsch therefore suggests marking tasks as non-AVX-512
tasks whenever they execute system calls [35] as shown in Figure 6.5c. The rationale
behind this heuristic is that AVX-512 is commonly used in very computationally heavy
parts of a program, whereas such parts commonly do not perform any I/O. Any system call
therefore has a high probability of marking the end of a computationally heavy phase and
therefore the end of AVX-512 code. We employ this approach in our prototype, combined
with a simple timeout mechanism as a fallback in case programs do not execute any system
calls for extended periods of time after the end of AVX-512 program phases.

We extend the approach with a second heuristic that detects very short non-AVX-512
phases for which a migration to a non-AVX-512 core is more costly than execution of the
non-AVX-512 phase at lower frequency levels. In particular, we measure the CPU time
during individual non-AVX-512 phases. Whenever most recent non-AVX-512 phase have
been shorter than 100 ps, system calls do not cause any change to the task type. Instead,
we assume that the task will quickly execute AVX-512 code again after the system call.
To determine whether most recent non-AVX-512 phases have been short, we map the
CPU time to 1 or 0 depending on whether it was shorter than 100 ps and then calculate an
exponential moving average of that value. If this heuristic falsely determines that a task
type change is detrimental to performance, the timeout mechanism described above will
eventually rectify the mistake and mark the task as a non-AVX-512 task.

111



6 Separating AVX-512 and Non-AVX-512 Code

6.3 Implementation

The design described above is not limited to any specific instruction set and the concepts
are also applicable to other CPUs with similar frequency management. In particular, the
design can likely be used on future CPUs with other power-intensive instructions if, for
example, similar mechanisms to intercept these power-intensive instructions are available.
For current Intel CPUs with support for AVX-512, we created a concrete prototypical
implementation based on the Linux 5.9 kernel. In the following, we present our implemen-
tation and discuss additional aspects of this prototype which are specific to the underlying
scheduler and operating system as well as the specific hardware. In particular, we first
explain why we constructed our scheduler on top of the MuQSS scheduler instead of
the more common CFS scheduler. We then describe the required modifications to the
scheduler’s data structures. Finally, as the mechanism described in Section 6.2.3 breaks
CPU feature detection on x86 CPUs, we describe a technique to create the illusion that all
cores continuously support AVX-512.

6.3.1 Choice of Scheduler

The Linux Completely Fair Scheduler (CFS) [173] is the most widely used scheduler on
Linux systems. While our evaluation would therefore benefit from basing our scheduler on
CFS, we found that CFS provides far too slow load balancing. As described in Section 6.2.1,
migration of tasks to suitable cores is commonly performed by the scheduler’s load
balancing mechanism. Core specialization requires particularly quick load balancing as
tasks placed on unsuitable cores are unable to make progress. CFS performs periodic load
balancing where the scheduler compares the length of the ready queues of different logical
CPUs and transfers tasks to a different CPU to equalize load. To limit overhead, this load
balancing is rather infrequent, which means that non-AVX-512 cores would frequently
idle while AVX-512 cores would frequently execute non-AVX-512 tasks.

Other schedulers provide faster load balancing. For example, the Multiple Queue Skiplist
Scheduler (MuQSS) [139] is an out-of-tree scheduler for Linux which bases scheduling
decisions on virtual deadlines. In this scheduler, each logical CPU is associated with one
run queue. The scheduler not only considers tasks in this queue but, depending on the
configuration, also tasks from other run queues to improve response times. In particular,
in the “interactive” configuration the scheduler migrates the task with the earliest deadline
to the current CPU on each invocation. As this fast load balancing mechanism fulfills the
requirements of core specialization, we base our prototype on MuQSS 0.204 running in
interactive mode for the Linux 5.9 kernel [138].

Unlike CES, MuQSS implements run queue sharing where multiple logical CPUs can be
associated with the same run queue [140]. By default, MuQSS lets all logical CPUs on a
single chip share one run queue for even shorter response times - if all logical CPUs share
one run queue, no migration of tasks between different queues is needed at all. As our
experiments indicate that this setup is slower than setups with less run queue sharing [88],
we configure MuQSS to only share run queues among sibling hyper-threads instead.

112



6.3 Implementation

AVX-512 Core

Migration according to
needs of scheduling policy

Non-AVX-512 Core

I
AVX-512 S AVX-512
Run Queue 1 ! Run Queue
v’ \‘
]
Non-AVX-512 | ! Non-AVX-512
Je—— 1 ! >
Run Queue xl | Run Queue
|
Y\ l,
A Default . ; Default K
" Run Queue - Run Queue )

<

~ -

~ Priorization/selection of suitable -

tasks according to scheduling policy

Figure 6.6: Our prototype implements different handling of the task types via replicated
run queues. On non-AVX-512 cores, the main scheduling algorithm never picks
tasks from the run queue containing AVX-512 tasks. On AVX-512 cores, in
contrast, non-AVX-512 tasks are only executed if the other run queues are

empty.

6.3.2 Tripled Run Queues

We modify MuQSS to differentiate between three different types of tasks [85]. As described
in Section 6.2.1, the scheduler treats AVX-512 and non-AVX-512 tasks differently. In
addition, we introduce a third default task type. Default tasks are tasks which are not
affected by core specialization. These tasks are executable on all CPU cores and are
executed with the same priority as AVX-512 tasks when executed on AVX-512 cores. The
third task type is needed to prevent starvation of system tasks that are pinned to individual
CPUs. During execution of a default task, the OS enables support for AVX-512 even if the
task is executed on a non-AVX-512 core.

Initially, all tasks in the system are default tasks. Only when a task is explicitly marked
as an AVX-512 or non-AVX-512 task via system call, core specialization will be applied
when scheduling the task. Whenever such a non-default task is forked to create a child task,
the child task inherits its non-default task type. We expect all OS shells to automatically
mark themselves as non-AVX-512 tasks after login to enable core specialization for all
tasks created directly by users. During our evaluation we did not modify the shell as such
lasting modifications could have interfered with other experiments on the system. Instead,
we constructed a separate application whose sole purpose is to launch another command
with a non-default task type.

To enable the scheduler to differentiate between the three task types, we simply replicate
all run queues three times as shown in Figure 6.6 [85]. One queue per physical CPU - the
AVX-512 run queue - holds the runnable AVX-512 tasks, while the other two queues - the
non-AVX-512 run queue and the default run queue - hold the runnable non-AVX-512 and
default tasks respectively. Non-AVX-512 cores only select tasks from the non-AVX-512

113



6 Separating AVX-512 and Non-AVX-512 Code

and the default run queue. In contrast, AVX-512 cores select tasks from the AVX-512 and
the default run queues, but also fetch tasks from the non-AVX-512 run queue if no other
tasks are available, thereby implicitly prioritizing AVX-512 tasks over non-AVX-512 tasks.
The same logic applies when the scheduler fetches tasks from remote run queues with an
earlier deadline than the tasks in the local run queues, which results quick migration of
tasks suitable for execution on the local CPU.

6.3.3 AVX-512 Feature Detection

As described in Section 6.2.3, tasks are placed into the appropriate run queue based on
register use. One important problem of this fault-and-migrate mechanism used to detect
512-bit SIMD operations is that it breaks CPU feature detection. In particular, applications
first have to test whether both the CPU and the OS support AVX-512 before using its
instructions. The method proposed by Intel to detect whether 512-bit SIMD operations
are safe to use consists of three steps [114, p. 15-5]. First, the application has to use the
CPUID instruction to check whether the processor supports the XGETBV instruction. Second,
the application has to execute XGETBV to retrieve the value of the XCRO register and has to
test whether the bits are set which signal that the OS provides context switch support
for 512-bit registers. Third, the application has to use CPUID to check whether the CPU
supports AVX-512. As described earlier, our approach clears two relevant bits in XCRO
which causes existing applications to wrongly assume that AVX-512 is not supported by
the OS if the applications are executed on non-AVX-512 cores.

This problem could easily be solved by adding another level of indirection. If all applica-
tions are forced to execute a system call to retrieve the list of supported CPU features, the
OS can return identical information on all CPU cores. Such an interface is, for example,
implemented by macOS which only enables context switch support for AVX-512 after the
first AVX-512 instruction has executed by the application.” However, existing applications
for other operating systems use the standard method described by Intel to detect whether
AVX-512 is available and need to be modified to use other methods. While such modifica-
tions are likely simple for newly-built applications or existing open-source applications,
closed-source applications are often hard to modify. We therefore argue that there is a
need for a technique to fix CPU feature detection for unmodified programs.

Instead of introducing system calls, related work has proposed to intercept the existing
instructions used for CPU feature detection. Specifically, Reddy et al. suggest that pro-
cessors should be configurable to raise exceptions upon execution of instructions such as
CPUID [203]. On Intel CPUs, exceptions for CPUID can be enabled by setting a bit in the
MSR_MISC_FEATURES_ENABLES register.® In the exception handler, the OS can then emulate
the instruction to return the desired results.

7 See Apple Darwin xnu-7195.121.3, osfmk/1386/fpu.c, |. 174ff.
https://github.com/apple/darwin-xnu/blob/xnu-7195.121.3/0sfmk/1i386/fpu.c#L174

This bit does not appear to be documented by Intel, although it is used by the Linux kernel. See
set_cpuid_faulting() in Linux 5.9, arch/x86/kernel/process.c:250. In some of our experiments, we
use this bit via the libvirtcpuid library [245] to prevent applications from using AVX2 and AVX-512. If the
bit is not available, it is possible to intercept CPUID by running all processes in a virtualization environment
as suggested by Belay et al. [19] because the CPUID instruction triggers a VM exit [116, p. 25-2].

114


https://github.com/apple/darwin-xnu/blob/xnu-7195.121.3/osfmk/i386/fpu.c#L174

6.4 Estimation of Effectiveness

Our fault-and-migrate implementation does not affect the results of CPUID. Instead, it
modifies XCRO, so our prototype needs to intercept the XGETBV instruction. This instruction
is harder to intercept as the CPU does not provide any viable mechanism that causes
the instruction to trigger exceptions.” We therefore propose static binary rewriting of
programs to replace any XGETBV found by a disassembler with an invalid opcode to trigger
an undefined instruction exception. The exception handler then inspects the faulting
instruction to determine whether the fault was triggered by a replaced XGETBV instruction
and, if it was, emulates the instruction in the kernel returning a result that indicates support
for AVX-512. Such modifications can be automatically performed on all application binaries
and libraries. We only perform these modifications on a copy of the applications used
during our experiments as we want the system to be usable with a stock Linux kernel to
generate reference measurements for our evaluation.

6.4 Estimation of Effectiveness

While our scheduler is able to mitigate remote AVX overhead in many cases, it is not suited
for all kinds of applications. In particular, the task migrations caused by our scheduler
require application state to be transferred from one core to another [52]. In some cases,
the additional cache misses cost more performance than is gained via improved CPU
frequencies. To measure the impact of task migrations on particularly memory-heavy
applications, we construct a synthetic worst-case example. Our program first performs
50000 dependent random read accesses to a memory region with a fixed size. After each
read access, it also performs a write access to the same cache line to invalidate copies of
the cache line in the local caches of other cores. The pairs of read and write accesses are
interleaved with 512-bit SIMD instructions so that the code is executed on an AVX-512
code. The program then executes a system call to force the task to be marked as a non-
AVX-512 task. It then performs the same memory accesses again, but without any AVX-512
instructions. During this phase, the program is most likely executed on a non-AVX-512
core, so the working set has to be transferred to this core. All steps are repeated 20000
times to trigger approximately 40000 task type changes.

Figure 6.7 shows the performance improvement caused by our prototype when the
program is executed 48 times in parallel on a 16-core CPU with hyper-threading, with
negative values instead indicating increased overhead. We vary the size of the memory
region accessed by the program to vary the number of potential cache misses per thread
migration. Regardless of the size of the memory region, our prototype fails to improve
performance. This result is expected given that the program is particularly memory heavy
and therefore hardly profits from increased CPU frequencies. In addition, the program
suffers from overhead caused by core specialization. For small working sets, this overhead
is mainly caused by the scheduler itself as it is invoked far more frequently than without
core specialization. For large working sets, even more overhead is caused by cache line
bouncing as the data is frequently moved between cores.

 XGETBV triggers exceptions if the OS disables support for XSAVE. This method of intercepting XGETBV
is impractical, though, as many other instructions including all AVX and AVX2 instructions become
unavailable as well [114, pp. 14-15 f.].

115



6 Separating AVX-512 and Non-AVX-512 Code

o X
y2g ©
(e}
EZ R -10
£ 3=
:0: qg).g —20
g8 & -3
Q
E o —40
o 1 10 100
Data size (KiB)

Figure 6.7: Core specialization has a negative performance impact on a particularly
memory-heavy program that mainly consists of dependent, unpredictable
memory accesses. Large working sets in particular cause lots of cache line
bouncing as the task is migrated between cores. Even small working sets do
not show any improvement when executed with core specialization, though,
as the memory-heavy code is hardly effected by frequency changes.

The experiment shows that there are situations where core specialization is harmful
to performance. In these cases, other techniques to mitigate the impact of remote AVX
overhead such as our scheduler modifications described in Chapter 7 should be selected
instead. Deciding between different countermeasures against remote AVX overhead
requires a mechanism to gauge the effectiveness of our prototype. We propose a program
which performs the following steps to measure the overall performance impact of core
specialization:

1. The program counts the total number of instructions executed in user-space within a
fixed duration using performance counters in order to get a baseline measurement of
system throughput. Instructions executed in kernel-space must be not be counted as
they may be caused by the scheduler itself. If these instructions were included, high
thread migration rates would result in higher instruction rates and, consequently,
exaggerated throughput readings.

2. The program disables core specialization and configures the scheduler to choose
from all run queues on all cores without any prioritization between the different
types of tasks.

3. The program then repeats the measurement from the first step again to measure
throughput when core specialization is disabled. The difference between the two
instruction rates is an indicator for whether core specialization is beneficial for
performance or not.

This mechanism depends on the assumption that the workload behaves identically
during the first and the third step and that there are no instruction rate differences caused
by execution phase changes. To reduce the error introduced by such execution phase
changes, the steps outlined above should be repeated several times. It is unlikely that
disabling and re-enabling core specialization repeatedly coincides with an execution phase
change.

116



6.5 Evaluation

6.5 Evaluation

We evaluate our scheduler with the intent to demonstrate its ability to mitigate remote
AVX overhead. To do so, we first perform direct measurements of remote AVX overhead
and conduct a comparison between core specialization and the core scheduling design
proposed by Aubrey Li [154]. We then describe further experiments to show that the
efficacy of our prototype stems from increased average CPU frequencies. Finally, we also
quantify the overhead caused by our prototype and show that the technique described in
Section 6.4 can be used to predict whether our prototype results in an overall performance
improvement.

As in most previous chapters, all experiments are conducted on a system with an Intel
Xeon Gold 6130 CPU, 24 GiB DDR4 RAM, and the Fedora 31 Linux distribution. For
comparisons with the unmodified MuQSS scheduler, we use MuQSS 0.204 and Linux 5.9
as our prototype is based on this version of the scheduler. As Linux 5.9 does not support
core scheduling, experiments with core scheduling use the Linux 5.14 kernel.'® During
our experiments, we use the same versions of the benchmarks previously described in
Section 3.3.5. All benchmarks are repeated ten times unless specified otherwise.

6.5.1 Effectiveness

To demonstrate the effectiveness of our prototype, we measure the remote AVX overhead
in our prototype and compare it to the remote AVX overhead when the same system uses
the MuQSS scheduler. For both configurations, we repeat a range of the experiments
from Section 3.3.5 where we measured the CPU times of workloads with AVX-512 and
compared it to identical workloads without AVX-512 to determine the amount of remote
AVX overhead. The benchmarks include benchmarks from the Parsec 3.0 [25] benchmark
suite executed alongside OneDNN benchdnn either configured to use AVX-512 or only SSE4
instructions. These benchmarks mainly demonstrate the impact of our prototype on remote
AVX overhead caused by hyper-threading - if OneDNN uses AVX-512 and is executed on
the sibling hyper-thread next to a Parsec thread, the Parsec benchmark is slowed down by
remote frequency reduction. As in Chapter 3, we configure the Parsec benchmarks and
benchdnn to use 32 threads each so both are able to utilize all CPU resources available
to them. We measure the CPU time of the Parsec benchmarks to calculate the amount
of remote AVX overhead. To demonstrate the impact on remote AVX overhead caused
by frequency change delays, we also repeat the web server benchmark derived from
experiments by Vlad Krasnov [141]. We configure the nginx web server to serve a static
page with on-the fly compression using OpenSSL for encryption. The web server is
configured to use the ChaCha20-Poly1305 encryption scheme as its implementation in
OpenSSL was shown to trigger a reduction to the AVX-512 frequency level. We execute

10 We were unable to use the same kernel version for all experiments as MuQSS is not available for the
5.14 kernel [136] whereas core scheduling was introduced in this kernel version [54]. While the version
difference may impact the comparison of our approach to related work in Section 6.5.1, we argue that any
such impact is likely small. Specifically, each calculation of remote AVX overhead only involves a division
of two CPU time measurements from a single kernel version. Performance changes between the two
kernel versions that are unrelated to scheduling should have little impact on the resulting relative value.

117



6 Separating AVX-512 and Non-AVX-512 Code

’ B MuQssHE Core Scheduling !l B Core Specialization ‘

zg8 ¥
< o
£8 10 i l | ‘ i
i : L L
(]
& 3 o0 ﬁ IQ IIQ | [] I-E al | B = .
(\‘l\ (X (,\‘\ 'b\ ((\ 5 ‘e .(\ 5
o® \1\5(:00\ 06\\)6’6 xc"’(\“e x‘\"‘QQS\ o = ° “e&“\(\ o o OV\\*)N\Q
C 's) N\ W . K R o
$$X‘()\’A e()$$)( O(\e() 0(\@0 O(\QS) $$Xs\\\)\ N $x‘> (e $$X @
0(\60 o¢ o (\Qp o® 20$ O(\

Figure 6.8: We compare the CPU time of a range of applications with and without AVX-
512 to calculate the remote AVX overhead during execution with MuQSS, an
approach based on core scheduling, and our core specialization prototype.
It can be seen that both core scheduling and core specialization are able to
mitigate most remote AVX overhead. Core scheduling cannot be applied to
single-application workloads such as nginx, though.

the wrk [254] load generator on two physical cores while the web server is restricted to
one hyper-thread of each of the remaining 12 cores to isolate the impact of frequency
change delays and to prevent remote AVX overhead caused by hyper-threading. Similar
to our experiments in Section 4.3.2, we disabled AVX and AVX2 instructions in glibc to
prevent nginx and the Parsec benchmarks from reducing the CPU frequency themselves
during our experiments.

In addition to the comparison between our prototype and MuQSS, we compare our ap-
proach to a simplified version of Aubrey Li’s core scheduling approach [154]. As described
in Section 6.1, this approach uses core scheduling cookies to prevent co-scheduling of
AVX-512 and non-AVX-512 tasks on the same physical core at the same time. As Aubrey
Li’s prototype uses the existing mechanism found in the Linux kernel to detect AVX-512
tasks which we deem unreliable, we manually assign different core scheduling cookies to
OneDNN and the Parsec benchmarks to achieve reliable separation of the two applications.
Our core scheduling experiments do not include the nginx workload - as the workload
only consists of a single application and all threads frequently switch between AVX-512
and non-AVX code, manual marking as described above is not possible. While a more
fine-grained classification of threads may be possible, nginx is mainly affected by frequency
change delays which are not covered by core scheduling as we describe in Section 6.1.

Figure 6.8 shows the remote AVX overhead during experiments with unmodified MuQSSs,
core scheduling, and our prototype. As expected, our prototype is effective at mitigating
remote AVX overhead. While co-scheduling caused by the unmodified MuQSS scheduler
results in an average remote AVX overhead of 12.3% when the workloads use AVX-512,
only a 1.2% slowdown remains during runs in our prototype compared to an identical
setup without AVX2 or AVX-512. Our prototype also performs better than core scheduling
which is unable to improve the performance of nginx and features a remaining average
remote AVX overhead of 3.5% for the other workloads.

118



6.5 Evaluation

FaMuQss (5SE4) 1B MuQss (Avx-512) BB Core Scheduling(Avx-512) Bl Core Specialization (AVX-512)

3 T T T T T T T

Frequency (GHz)
[\
w

2
. (\$ \C é{\ Q’b\ R € X . (\e N PR o
N \4»56\0 5\3‘@ x@(\(\ x‘\%('ee\ S z‘*‘«\@ (e(\((\\ <<\°\ © @Q‘\o %«NQ
\o© £0 \\ \) ) oo «(‘a e xS ®
0 \\ e A\ NN NS N .
O\AV\)( 80“ 0(\60 Q(\eo o® o W O‘\QO §\V\*S O o
o B 0 \
0(\e O(\ (\e

(a) Average CPU frequency during execution of the benchmark (note the restricted y axis range)

’ 08 MuQss (5Se4) BEMuQSS (AvX-512) BB Core Scheduling(AVX-512) B B Core Specialization (AVX-512) ‘

[V}
_g's ‘ ‘ T T T T
Y 15
g
@ 1
.2
*g 0.5
2 o \
ok e o 2 O o X2 @ ) o5
o> S(X\O\ 6\3“’0 (:b*(\(\e ‘\%ces\ x\e(( ((\((\6 eo\«\\“ c\\)s\- '59\\0 < $x“\Q
¢ X0 \4 \§ ) O o\ % x5 oY
&\\\*‘0\ o™ (\60$ (\e0$ ot $$x‘\\\) e()&V\ \A"f’( 0\\\$ N
e e
0(\90 o 9) 9 0(\60 o (\e0$ N

(b) Instructions per second

Figure 6.9: Core specialization improves average CPU frequencies (a). In some cases, the
frequencies achieved by our prototype for AVX-512 workloads are even higher
than those measured when OneDNN only uses SSE4. Overall, our prototype
has little impact on instructions per cycle (b) despite the increased code size
and more thread migrations.

While core specialization generally appears effective at mitigating remote AVX overhead,
not all benchmarks benefit equally. In particular, our prototype is only partially effective
for some benchmarks such as nginx or canneal while other benchmarks counterintuitively
even become faster when OneDNN uses AVX-512. To determine the reasons for the
differences between the workloads, we analyze the CPU frequency during execution
of nginx and the Parsec benchmarks. Figure 6.9a shows the average frequency during
the runs conducted as part of our previous experiment. Our frequency measurements
show why some workloads become faster when executed with core specialization. In
particular, workloads such as bodytrack or canneal operate at a reduced frequency level
with SSE4 and MuQSS, whereas our prototype causes the system to almost reach 2.8 GHz as
expected in the absence of AVX frequency reduction. This result is counterintuitive given
that the 128-bit operations of SSE4 themselves are not expected to cause any frequency
reduction. Further analysis shows that SSE4 only causes a frequency reduction when the

119



6 Separating AVX-512 and Non-AVX-512 Code

__ 10
&
b
) 0+t == = =3 I
2 ' * t
o
3
-10
S
N 2O @ A (@ A % s o WQ°
5 \\0 (\(\ e y\e( L ((\\ 0‘5 \_\O N)
NIEYEN & A C AN e S
(\%\ o 06 \)6 ‘\ «\

Figure 6.10: To measure the overhead of core specialization itself, we compared the comple-
tion time of various Parsec benchmarks and the throughput of nginx without
AVX-512 to MuQSS. In these scenarios, core specialization hardly has any
impact on performance.

two applications are co-scheduled on sibling hyper-threads. We assume that the frequency
reduction is caused by a mixture of light 256-bit SIMD instructions executed by the Parsec
benchmarks and heavy 128-bit SIMD instructions in OneDNN. Documentation from Intel
indicates that such a mixture can cause a frequency reduction even if the individual
instructions are able to be executed at the highest frequency level [113, p. 2-14].

Our frequency measurements also show why substantial remote AVX overhead re-
mains when nginx is executed in our prototype. In particular, the frequency achieved
by core specialization remains below the frequency achieved in the absence of AVX-512
instructions. This result is caused by a sub-optimal number of AVX-512 cores. As the
task types frequency change, the number of AVX-512 tasks shows high variation, which
poses a challenge for our method to allocate AVX-512 cores described in Section 6.2.2.
Whenever our prototype allocates more AVX-512 cores then necessary, non-AVX-512 tasks
are frequently executed on AVX-512 cores, resulting in substantial remaining remote AVX
overhead. Additional experiments where we manually designate only a single core as an
AVX-512 core result in improved frequencies and lower remote AVX overhead.

Our frequency measurements fail to explain the results for other benchmarks. In partic-
ular, benchmarks such as blackscholes, fluidanimate, or freqmine experience substantial
remaining overhead even though their average frequency is close to the ideal non-AVX
frequency. To explain these results, we measure the instructions per cycle (IPC) during
execution of the benchmarks. The results of this experiment are shown in Figure 6.9b. It
can be seen that the benchmarks suffer from slightly reduced IPC when executed with
our prototype. Such reduced IPC can, for example, be caused by increased cache line
bouncing as tasks and their working sets are frequently migrated to different cores. Also,
the increased size of the scheduler code may cause the scheduler to more frequently
displace application data from the cache. While our experiments do not show why IPC is
reduced, they show that the impact of our prototype on IPC is generally minor. Instead,
CPU frequency improvements are responsible for most of the performance impact of our
prototype.

120



1
2
3
4
5
6
7
8

6.5 Evaluation

Listing 6.1: Synthetic workload to trigger task type changes at varying rates depending
on the value of N.
int fd = open("/dev/zero", O_RDONLY);
while (true) {
/* very short AVX-512 phase x/
asm volatile("vpord_zmm@,_zmmO,_zmmO");
/* system call to end the AVX-512 phase */
char c;
read(fd, &c, 1);
/* very little non-AVX code */
for (int 1 = 0; i < N; i++) {
asm volatile("nop");

}

6.5.2 Overhead

While or previous experiments show the beneficial impact of core specialization on work-
loads with AVX-512, they do not show the performance impact in the absence of such
power-intensive instructions. As the latter case is potentially more common than the for-
mer, the increased complexity of our scheduler and the resulting increased cache footprint
must not cause any substantial slowdown for non-AVX-512 applications. To measure the
overhead caused by our scheduler for such workloads, we measure the completion time
of individual Parsec applications in isolation — without any parallel AVX-512 application
— and compare it to the completion time achieved with MuQSS. We also compare the
throughput of the nginx web server with OpenSSL configured to use SSE4. Figure 6.10
shows the overhead caused by our prototype calculated as the increase of completion
time increase or, in the case of nginx, throughput reduction. The results show that any
performance impact of core specialization on such non-AVX-512 workloads is very limited.

6.5.3 Short Non-AVX-512 Phases

An important reason for the limited overhead caused by core specialization is that our
prototype prevents task type changes if it detects very short average non-AVX-512 phases
as described in Section 6.2.4. We demonstrate the importance of this heuristic using the
program shown in Listing 6.1 which is designed to frequently switch between AVX-512 and
non-AVX-512 code. The program executes a loop consisting of a 512-bit SIMD instruction,
a system call, and a varying number of non-AVX instructions defined by the variable N.
The AVX-512 instruction causes our prototype to mark the task as an AVX-512 task and to
migrate it to an AVX-512 core. The system call then potentially causes the task type change
to be immediately reverted again, likely triggering a migration back to a non-AVX-512
core. This code in the system call handler is only executed when our prototype detects
that the average non-AVX-512 phase is sufficiently long.

Figure 6.11 shows the performance improvement over MuQSS caused by our prototype
for 48 instances of the program executed in parallel, where negative numbers indicate

121



6 Separating AVX-512 and Non-AVX-512 Code

—— Complete prototype —— No detection of short non-AVX-512 phases

o &

g o

T o

3

o

£ g —50
S

& s
E

10° 10" 102 10® 10* 10° 10° 107 108
N

Figure 6.11: We demonstrate the necessity for detection of short non-AVX-512 phases
by measuring the impact of core specialization on the program shown in
Listing 6.1. When the detection of short non-AVX-512 phases is disabled, the
large rate of thread migrations severely impacts performance.

overhead caused by core scheduling. We also repeat the experiment with a modified version
of our prototype where the heuristic to detect short non-AVX-512 phases is disabled. In
both cases, our prototype fails to provide any performance benefit for very short non-AVX-
512 phases while improving performance for lower task migration rates. The overhead
differs between the two configurations, though.

When the heuristic is enabled, our prototype correctly detects when the non-AVX phase
is too short, in which case it always categorizes the tasks as AVX-512 tasks. As a result, the
scheduler marks almost all cores as AVX-512 cores. Our prototype reserves one core for
non-AVX-512 tasks to prevent starvation for these tasks, so the performance of workloads
completely consisting of AVX-512 code is slightly reduced. When the heuristic is disabled,
the overhead caused by core specialization is far larger. In this case, the scheduler is invoked
during each system call and each AVX-512 instruction, thereby massively increasing the
total number of instructions executed. The difference between the two configurations
shows that the heuristic to detect short non-AVX-512 phases is essential to limit worst-case
overhead.

6.5.4 Estimation of Effectiveness

Even with the heuristic to detect short non-AVX-512 phases, our prototype is detrimental to
the performance of some workloads. Therefore, we described a tool to determine whether
core specialization results in a net performance improvement in Section 6.4. To show that
this tool is able to detect both types of excessive overhead — overhead stemming from
cache line bouncing as described in Section 6.4 and overhead stemming from excessive
task type change rates as described in Section 6.5.3 — we test the tool using the programs
described in the two sections. In both cases, we compare the output of the tool with the
results of direct measurements shown in Figures 6.7 and 6.11. To determine the absolute
accuracy of the output in real-world scenarios, we also use the tool to predict the impact
of core specialization on the nginx workload used in the previous sections configured to
use AVX-512.

122



6.6 Discussion

Our experiments demonstrate the reliability of the tool. It correctly shows that the
memory-heavy workload described in Section 6.4 never benefits from core specialization
and that configurations with large working sets are particularly badly affected. The tool
also shows that the program shown in Figure 6.1 only benefits from core specialization
during runs with N = 10% and N = 10’. Such reliable estimates of the outcome of core
specialization mean that the tool can be used to determine whether core specialization
should be activated or whether other less intrusive techniques such as that described
in the next chapter should be used instead. Note that this use case does not require
precise absolute estimates of the performance impact. Nevertheless, an evaluation with
nginx shows high accuracy. While our tool measures a performance improvement by
4.3%, a direct comparison of the throughput with MuQSS and our prototype shows an
improvement by 4.2%.

6.6 Discussion

As our evaluation shows, core specialization can be used to mitigate the remote AVX
overhead in many workloads. However, its effectiveness is limited both by the overhead
of task type changes and the resulting thread migrations and by imprecise detection of
power-intensive program phases. In the following, we therefore first discuss potential
techniques to reduce the cost of thread migrations, arguing that these techniques are
likely either ineffective or difficult to implement. As non-uniform memory access (NUMA)
systems potentially increase the cost of thread migration, we also describe how our
approach needs to modified to support NUMA systems. We then describe the limitations
of fault-and-migrate when used to detect power-intensive instructions such as AVX-512.
As fault-and-migrate is the best mechanism available on current CPUs, we conclude
the chapter by outlining a hardware-software interface that would enable more precise
detection of power-intensive program phases on future CPUs.

6.6.1 Reducing Migration Overhead

As described above, the additional overhead introduced by core specialization is one of the
main limiting factors for the effectiveness of our design. More efficient thread migration
would make the approach usable with much shorter non-AVX-512 phases. There are three
main sources for overhead. First, during each scheduler invocation, more code is executed
to check the replicated run queues and to determine whether AVX-512 cores should be
added or removed. Second, the scheduler is potentially invoked far more often if there are
frequent transitions between AVX-512 and non-AVX-512 program phases. Third, the task
migrations themselves potentially increase cache line bouncing as the working set of the
tasks needs to be transferred between different CPU cores.

While the impact on cache line bouncing is unavoidable, the overhead caused by sched-
uler invocations itself can potentially be reduced. One potential approach would be to
separate core scheduling from the kernel’s scheduler and use a hybrid threading model
where the application performs core specialization completely in user space. Ioannis
Papamanoglou combined such an approach with manual instrumentation of the target

123



6 Separating AVX-512 and Non-AVX-512 Code

application and achieved good results for a nginx benchmark similar to that used in our
evaluation [187]. We expect it to be possible to combine user-level core specialization
with automatic detection of AVX-512 code as described in this thesis and with a upcall
mechanism to inform the application about the number and location of AVX-512 cores.
Such a hybrid approach would likely introduce less overhead because specialized, less
complex user-level scheduling algorithms could be used and because less CPU context
would have to be transferred during thread migration. We leave construction of such a
hybrid approach as future work due to the increased implementation complexity.

Alternatively, very short AVX-512 phases of a thread could be emulated on the thread’s
current non-AVX-512 core instead of migrating the thread to an AVX-512 code. This tech-
nique is commonly called trap-and-emulate [3] and is commonly used in virtual machine
monitors to emulate privileged instructions [196]. Similarly, proxy execution [99] is a tech-
nique where individual instructions are executed on a different CPU core, but the thread
is then resumed on the original core. Both mechanisms cause some overhead themselves
- e.g., because emulation of individual instructions is always far more costly than direct
execution — but may cause less overhead than full migration of the thread for very short
sections of AVX-512 code. However, as AVX-512 is mainly used for computationally heavy
code, we do not expect such short AVX-512 phases to be common, so we do not expect
any substantial performance improvements from trap-and-emulate or proxy execution
implementations.

6.6.2 NUMA Support

To simplify development, our prototype only targeted systems with uniform memory
access. On NUMA systems, task migration between different NUMA nodes often incurs
an extra penalty as accessed data has to be fetched from memory attached to a different
NUMA node [43]. The load balancing of existing schedulers therefore commonly tries to
minimize migration across NUMA nodes. Our scheduler currently does not ensure that
there are AVX-512 cores available on each NUMA node, so tasks may be forced to migrate
to a different NUMA node if there is no AVX-512 core on their current NUMA node. To
improve NUMA support in our prototype, it is therefore necessary to modify AVX-512
core allocation to reserve a sufficient number of cores on all NUMA nodes. In addition,
the core scheduler algorithm needs to be modified to prefer tasks from the current NUMA
node.

6.6.3 Imprecise Detection of Power-Intensive Code

Another important limitation of our prototype is that it is unable to differentiate between
heavy and light 512-bit instructions. Whereas the former instruction type causes a tran-
sition to the lowest AVX-512 frequency level, the latter only triggers the intermediate
AVX2 frequency level [113, p. 2-13]. Our method to detect AVX-512 code only relies on
the register size to categorize tasks. The prototype therefore co-schedules heavy and light
512-bit SIMD code, even though doing so exposes the latter type of code to remote AVX
overhead.

124



6.6 Discussion

Kernel Handler
Powerinterrupt - - - _ _, %
Application [ AVX-512 L] AVX-512
R S— —~—
Throttling period Frequency change

(a) No action taken by the OS

Core 1 (low frequency)

Application AVX-512
Core2 "
Kernel B
Power interrupt - - _ _ _ _,2 Migration

Application | AVX-512

(b) Frequency change is prevented via migration to a different core

Figure 6.12: Interrupts triggered before the CPU reduces its frequency (power interrupts)
would enable the OS to precisely detect power-intensive tasks responsible for
frequency reduction (a). In the interrupt handler, the OS could prevent further
execution of power-intensive code to prevent the frequency reduction (b).

Similarly, our prototype is not able to prevent the remote AVX overhead caused by
heavy 256-bit SIMD instructions such as many AVX2 floating-point instructions. Our
method to detect power-intensive instructions could be extended to cover 256-bit register
accesses as well. See Section 7.4.1 in the next chapter for a description of the corresponding
modifications. However, the modified mechanism would then trigger exceptions during
execution of many instructions that do not cause any frequency change such as light
256-bit operations and even instructions such as VZEROUPPER. These instructions are more
common than 512-bit operations, so the resulting task migrations would often cause
excessive overhead.

6.6.4 Proposed Hardware Changes

As detecting power-intensive code based on register accesses is inaccurate, we argue
that future CPUs should provide enhanced mechanisms to detect power-intensive code.
We expect such hardware-software interfaces to become increasingly important as CPUs
become more and more power-limited as outlined in Section 2.3. In particular, we expect
future CPUs to provide more and more instruction set extensions that increase power vari-
ability as such specialized hardware has shown to be energy-efficient [234]; we therefore
expect these CPUs to use similar frequency scaling policies as those found on current Intel
CPUs. A hardware-software interface to detect power-intensive code in order to enable
techniques such as core specialization has to fulfill two main requirements not fulfilled by
existing mechanisms:

125



6 Separating AVX-512 and Non-AVX-512 Code

1. Information provided by the CPU has to be accurate. Migrating tasks to a different
core even though they do not cause any remote frequency reduction is harmful, as is
not migrating tasks even though they cause a frequency reduction.

2. Information provided by the CPU has to be actionable. The OS has to be able
to prevent any frequency changes by, for example, migrating tasks to a different
core. In this sense, the CORE_POWER.THROTTLE performance event [116, p. 19-8] is a
somewhat accurate indicator of frequency reduction, but does not provide actionable
information. When the event is detected, the CPU core has already begun reducing
its frequency.

We argue that existing hardware is easily modified to provide a hardware-software
interface that fulfills these two requirements. Currently, before a CPU core changes its
frequency level, there is a throttling period during which the core decides on whether a
frequency change is required as described in Section 3.2.2. As shown in Figure 6.12, a power
interrupt can be added to this throttling period which signals that the CPU has determined
that a frequency change is necessary. We suggest delivering the power interrupt only to the
hyper-thread executing the power-intensive code that triggered the interrupt. Techniques
such as that described in Section 4.6.2 can be used to identify this hyper-thread. In cases
where a frequency reduction is only necessary due to the combination of the code running
on both hyper-threads, the interrupt can be delivered to both hyper-threads.

In the interrupt handler, the OS can prevent the frequency change by moving the task
to a different CPU core or by scheduling a different task, in which case it instructs the
CPU core to cancel the frequency change as no more power-intensive code is expected.
Alternatively, the OS can return from the interrupt handler and let the CPU continue
executing the power-intensive task, in which case the CPU immediately performs the
frequency change. System stability is not endangered if the OS instructs the CPU core to
cancel the frequency change and then continues to execute power-intensive code on that
core. In the case of such a misprediction, the CPU simply restarts the throttling period
upon execution of the next power-intensive instruction, so no excessive voltage droops
are possible.

126



7 Scheduling for Improved Performance
Isolation

In the previous chapters, we described remote AVX overhead primarily as a system-wide
performance problem. It is also a performance isolation problem, though, as AVX2 and
AVX-512 tasks slow other tasks down. Such remote slowdown can be problematic even if
the benefits of AVX2 and AVX-512 mean that system-wide performance is not reduced.
In particular, if the affected tasks have real-time requirements, the remote slowdown
may cause the tasks to miss their deadline. Also, cloud customers commonly rent virtual
CPUs or fractions of virtual CPUs in the expectations that these CPU shares represent
specific throughput, yet remote AVX overhead may cause users to receive less performance
for their money than expected. In this chapter, we therefore describe a technique that
specifically improves performance isolation in heterogeneous workloads with AVX2 or
AVX-512 by reducing the impact of AVX tasks on other tasks. In particular, we describe a
scheduler which prioritizes tasks affected by remote AVX overhead at the expense of the
tasks which cause the overhead. This policy shifts the effective performance impact of
remote AVX overhead so that mainly those tasks which cause it are slowed down.

We start by describing existing approaches to fair scheduling and performance isolation
(Section 7.1). These approaches commonly try to achieve performance isolation by guar-
anteeing that specific tasks receive at least a certain share of the CPU time [239, 45, 227].
We then show how these approaches fail to provide performance isolation in the presence
of remote AVX overhead as they fail to take frequency changes into account (Section 7.2).

As time-based scheduling is unable to provide performance isolation, we describe
alternative scheduling metrics for AVX2, AVX-512, and other power-limited systems
(Section 7.3). While existing scheduling concepts based on energy usage exist, we explain
why they cannot be implemented for AVX2 and AVX-512 workloads on current hardware
and argue for simpler modifications to existing time-based scheduling instead. In particular,
we show how modifying CPU time accounting can improve performance isolation if the
task causing remote AVX overhead is billed for the CPU time essentially lost to remote AVX
overhead, while the task suffering from remote AVX overhead is not. We then describe
how to implement such a scheme in existing time-based schedulers (Section 7.4). As
part of our design, we describe a technique to identify tasks using AVX2, AVX-512, or
similar power-intensive instruction set extensions derived from our fault-and-migrate
implementation described in Chapter 6. In addition, we describe a technique to calculate
remote AVX overhead based on information from the PMU and we describe how to modify
CPU time accounting to prioritize tasks affected by this overhead. We also describe
a concrete implementation in the Linux kernel based on the MuQSS scheduler as our
approach requires fast load balancing to be effective (Section 7.5).

127



7 Scheduling for Improved Performance Isolation

We evaluate the resulting prototype based on a range of workloads (Section 7.6) and show
how it greatly improves performance isolation for workloads that are able to utilize the
additional CPU time allocated by our scheduler. Overall, for a wide range of benchmarks,
our scheduler reduces the remote performance impact of AVX2 from 7.3% to 2.1%, while the
remote performance impact of AVX-512 is reduced from 23.5% to 6.4%. Our evaluation also
shows that our scheduler has very low overhead, making the approach viable in situations
where core specialization, the approach described in the previous chapter, causes excessive
overhead. Finally, we discuss limitations of our prototype and possible areas for future
improvement (Section 7.7).

7.1 Fairness and Performance Isolation

Performance isolation and quality of service have long been identified as an important
goal of scheduling algorithms [50]. Since then, previous work has described a wide range
of techniques to ensure performance isolation to varying degrees. For example, priority
scheduling with hard priorities is an early scheduler algorithm that was designed to
guarantee low latency and high throughput for specific high-priority applications [50].
However, its susceptibility to starvation of low-priority tasks means that it provides very
weak performance isolation for these tasks and is therefore rarely used in modern systems.

Instead, many modern systems use “fair scheduling” which allocates equal resources
to individual tasks [129]. For example, the Linux Completely Fair Scheduler (CFS) allo-
cates equal CPU time to individual tasks of equal priority [173]. CFS implements fair
queueing [63] which is a simple and flexible method to achieve fairness and which can
be applied not only to CPU times but to other metrics as well which we exploit in the
following. Previous work has, for example, applied fair queueing to networking [63]
and disk operations [38]. CFS implements fair queuing by measuring the virtual runtime
(vruntime) which corresponds to the time individual tasks spend on the CPU [121]. During
each scheduling decision, CFS then always selects the task with the lowest virtual runtime
of execution. If we assume that the virtual runtime of a task is identical to the CPU time
used by the task — which is, as we describe in following, not always the case — each task is
allocated an identical share of CPU time, resulting in completely fair scheduling. Such fair
scheduling achieves only a very weak form of performance isolation, though. In particular,
the CPU shares given to individual tasks depend on the total number of tasks in the system.
Whenever the number of tasks rises, the CPU time available to individual tasks is reduced
accordingly.

Many use cases require stronger performance isolation [239]. For example, real-time
applications may require a fixed share of CPU time to perform their task. Similarly, cloud
providers commonly want to reserve minimum shares of CPU time to individual customers.
In both cases, the scheduler must adhere to these limits despite arbitrary numbers and
types of concurrently running tasks. Jones et al. propose CPU reservations [122] as a
technique to let users declare their CPU time requirements. Their scheduler precalculates
a cyclical schedule that adheres to all specified CPU reservations. Such precalculated
schedules are inflexible in the presence of I/O operations, though, as individual tasks are
always scheduled at a regular interval.

128



7.1 Fairness and Performance Isolation

Instead of using precalculated schedules, many recent approaches instead implement
guaranteed CPU time allocations by modifying fair scheduling. Linux CFS weights the
virtual runtime of individual tasks by their priority so that tasks with a higher priority are
allocated more CPU time [121]. The Xen Borrowed Virtual Time scheduler uses the same
principle to implement CPU share guarantees by weighting the CPU time of individual
virtual machines according to the desired CPU time shares [45]. If, for example, one
virtual machine is supposed to be allocated 50% of CPU time whereas two other virtual
machines shall be allocated 25% each, the CPU time of the first is effectively divided by
two to calculate the virtual CPU time used for scheduling decisions. The same technique
is used by the newer Xen Credit Scheduler [227] and the group scheduling provided by
CFS [239]. Both not only are able to guarantee minimal CPU time allocations but also
provide additional mechanisms to limit the maximum CPU usage of tasks or groups of tasks.
All these approaches demonstrate the flexibility of fair scheduling to provide different
performance isolation policies, which is why the approach described in the remainder of
this chapter uses a similarly modified scheduler based on fair queuing. The approaches
also have in common that they purely use CPU time as the underlying metric to quantify
CPU throughput. They therefore completely discard the impact of CPU frequency on
throughput. Tasks executed at a lower CPU frequency obtain less than their fair share of
CPU time.

In power-limited systems, this is particularly problematic as frequency changes are
unavoidable and cannot be controlled by the operating system. As an example, we assume
a non-AVX application that requires half of the available CPU time to provide acceptable
quality of service when executed at normal CPU frequencies. The approaches described
above will allocate half of the CPU time to the application independently from the CPU
frequency, which is sufficient if the application is scheduled alongside another non-AVX
application. If the application is scheduled alongside an AVX-512 application, though, its
CPU time share is not sufficient to provide acceptable quality of service due to the reduced
frequency.

While there are a number of approaches that modify time-based scheduling to take
frequency changes into account, none of them target power-limited systems where one
application affects the performance of another application. Instead, they commonly target
frequency changes issued by the operating system. For example, Dynamic Time-Slice
Scaling (DTS) [120] stretches time slices to improve fairness when different applications
are executed at different frequencies. Similarly, Hagimont et al. [96] propose scaling
of the credits in a credit-based scheduler to implement CPU quotas that translate into
fixed throughput despite frequency changes.! These approaches cannot mitigate the
performance isolation problems caused by AVX2 and AVX-512 as they are unable to
differentiate between local and remote AVX frequency reduction. On the contrary, the
schedulers would increase the CPU time allocated to AVX2 and AVX-512 applications
executing at low frequencies and would therefore amplify the performance isolation
problem caused by these applications.

1 Wen et al. [252] similarly modify credit-based scheduling. While their evaluation focuses on a reduction
of frequency changes, their prototype likely also improves performance isolation.

129



7 Scheduling for Improved Performance Isolation

’ Buavx2 I 1 AVX-512 ‘

40

20

1 fé;ﬁ.. .ﬂ;@g# j;ﬁﬁ

S N\ - X e - X S -2

\S ot (X é\)Q & (S \S QN XQ - o0 \Q

\QO (o W = e e( . VO \\ ) X (o) N)
OM\‘ (,’6(\ I \’b(’ « N 0\((\ > o .

Slowdown (%)

Figure 7.1: The completion time of benchmarks executed alongside x265 configured to use
AVX2 or AVX-512 is generally substantially higher than if x265 uses no such
power-intensive instructions. The completion time change demonstrates the
lack of performance isolation between the applications.

7.2 Quantifying AVX2 and AVX-512 Performance Isolation
Problems

To quantify the impact of remote AVX overhead on performance isolation in systems with
existing time-based fair schedulers, we repeat the experiment from Section 3.3.5 where we
execute a number of Parsec benchmarks alongside the x265 video encoder. We deviate
from our earlier experiment in one key aspect as we do not measure the CPU time as a
metric for performance. Instead, we measure the impact of AVX2 and AVX-512 on the
completion time of the benchmarks as changes to the completion time indicate reduced
performance isolation.

Figure 7.1 shows the increase of completion time when x265 uses AVX2 or AVX-512
instructions. The figure shows that AVX-512 in particular causes severely decreased
performance isolation as the benchmarks are slowed down by 13.7% on average. For AVX2,
the average slowdown is lower (1.7%), with some applications even experiencing increased
throughput, even though our earlier experiment in Chapter 3 indicated increased CPU
time. This counter-intuitive result is caused by the fact that x265 keeps fewer threads
busy in parallel when using AVX2 than when using only SSE4 instructions. As a result,
our experimental setup underestimates the performance change caused by remote AVX
overhead.

Whereas four instances of x265 configured to use eight threads each use 24.6 logical
CPUs on average when configured to use only SSE4, AVX2 reduces the average CPU
utilization to 20.8 logical CPUs. As a result, the benchmark executed alongside x265 is
allocated a larger share of the CPU when x265 uses AVX2, which compensates for the
CPU time increase due to remote AVX overhead. The reduced scalability of x265 is likely
caused by the dependencies between different operations performed by the video encoder.
If the performance of some operations is increased, the corresponding thread waits longer
for other threads to finish their work until it can continue.

For comparison, Figure 7.2 shows the results of an identical experiment, except for a
different background task. Instead of x265, the benchmarks are executed alongside an

130



7.3 Metrics for Performance Isolation

’ I AvX2 0 BAVX-512 ‘

Slowdown (%)
Do
(e

. z | I i
\Y . X e N X S 02
A& 20 e® R\ o @ N & (o® N\
O S \ e e e W\ & \J >
,&(}4\5C \Ooé\\ & S @ ‘ ‘\\\5\6’5(\\ e “é&(\c\ s\N"’Q
3

Figure 7.2: When the benchmarks are executed alongside a synthetic loop executing the
specified instruction type instead of x265, its completion times consistently
increase. The results in Figure 7.1 therefore underestimate the impact of remote
AVX overhead on performance isolation.

application that executes instructions of the specified type in a loop and can therefore
scale well to the specified number of threads. As expected, this experiment shows the
completion time of all benchmarks to increase when executed alongside the AVX2 version
of the application. In this setup, the benchmarks were slowed down by 5.1% on average,
while the AVX-512 version of the application slowed the benchmarks down by 15.9% on
average. Both results — those for x265 and those for the synthetic background application
— show that AVX2 and AVX-512 instructions significantly impact performance isolation on
systems with existing time-based schedulers.

7.3 Metrics for Performance Isolation

Our experiment shows that time is not suitable as the sole underlying metric for perfor-
mance isolation techniques as it is only loosely correlated with throughput in power-limited
systems. Instead, on these systems, scheduling also needs to take power draw into account
as a task with high power draw potentially affects the CPU frequencies experienced by
other tasks. In the following, we describe alternatives to time-based scheduling policies
and discuss their drawbacks. We then present overall remote performance impact as the
scheduling metric used by scheduler described in this chapter.

One potential approach for improved performance isolation in power-limited systems
would be to base scheduling on energy consumption instead of CPU time utilization,
because the performance impact of remote AVX overhead is accompanied by a lack of
energy isolation. In particular, the power consumption of affected tasks is reduced during
execution at reduced frequencies, so a scheduler that allocated a fixed share of the power
budget to these tasks would mitigate the performance impact of remote AVX overhead on
the tasks. Such a scheduler would increase their CPU time share at the expense of tasks
responsible for remote AVX overhead.

Previous work describes a number of designs which provide scheduling based on energy
consumption. For example, ECOSystem [262] and Currentcy [261] show how to implement
proportional scheduling under energy constraints where tasks receive shares of the power

131



7 Scheduling for Improved Performance Isolation

Virtual Runtime Accounting

Task A Task B
> Local AVX Overhead Remote AVX
(@] .
= e PP Overhead Time-based
= heduli "
g scheduling
L
Task A (AVX-512) Task B (Non-AVX) Our previous +
work [88]
Time This thesis + o+

Figure 7.3: Modifications to virtual runtime accounting can improve performance isolation
between AVX tasks and tasks impacted by remote AVX overhead. Our previous
work [88], for example, does not bill tasks for the CPU time effectively lost due
to remote AVX (represented by the hatched brown area). In this thesis, the task
that caused the overhead - in this case, task A — is instead billed for this time.

budget. Bellosa et al. [20] apply this approach to power-limited systems with thermal
constraints, while Cinder [208] extends the approach and introduces further mechanisms
to manage energy allocations and to improve isolation between different tasks. If it was
possible to determine the CPU power consumption of individual tasks with sufficient
accuracy and temporal resolution, similar approaches would likely be able to solve the
performance isolation problems caused by remote AVX overhead.

Task-level accounting of power consumption poses a substantial challenge, though. In
particular, sensors which measure the power consumption of individual physical CPU cores
are unable to differentiate between code running on sibling hyper-threads, so the operating
system instead has to rely on CPU energy consumption models. We are unaware of any
such model which takes the increased power draw of AVX2 and AVX-512 instructions
into account. While some previous approaches to energy-based scheduling completely
ignore that different programs cause different CPU power consumption [262, 208], others
estimate the energy consumption using linear models based on performance counters [20].
However, there are no performance counters on current hardware that track use of AVX2
or AVX-512 instructions on a per-hyper-thread basis as shown in Section 3.4. We expect it
to be impossible to construct an energy model that covers the impact of these instructions
on current CPUs, making it impossible to mitigate the impact of remote AVX overhead via
scheduling based on energy consumption.

As an alternative to energy-based scheduling, our own previous work [88] therefore
proposed a modification of simple time-based fair scheduling to take remote AVX overhead
into account. Instead of picking the task with the lowest CPU time, the proposed scheduler
bases its decision on the CPU time of individual tasks minus the remote AVX overhead
experienced by the tasks, i.e., it scales virtual runtimes according to remote AVX overhead.
As an example, Figure 7.3 shows a context switch from an AVX-512 application (blue) to a
non-AVX application (brown). In this case, the scheduler bills the AVX-512 application for
its full CPU time (hatched and solid blue area), whereas the non-AVX application is not
billed for the CPU time effectively lost to remote AVX overhead (hatched brown area). As

132



7.3 Metrics for Performance Isolation

[0}
-8 ’ | Non-AVX | AVX-512 | Non-AVX | AVX-512 | Non-AVX | ‘
o
o | L L1 L
[S]
c
(O]
>
o
(O]
i
Time
()
E —
c
E =
= —— AVX-512 Task
©
£ — Non-AVX Task
£

Time

Figure 7.4: Our proposed scheduler bases its decision on overall remote performance
impact. Remote AVX overhead - indicated by the shaded regions in the figure -
is added to the virtual runtime of the task causing the overhead and is subtracted
from the virtual runtime of the task that is slowed down. As a result, the latter
task is allocated more CPU time.

a result, the non-AVX task is scheduled more frequently. While the resulting scheduler
achieves a substantially fairer distribution of CPU time compared to previous time-based
schedulers, it fails to provide strong performance isolation between AVX-512 and non-
AVX tasks. Specifically, it fails to take into account that overall system performance is
degraded by remote AVX overhead, similar to how time-based fair schedulers reduce the
performance of individual tasks if additional tasks are created.

In this thesis, we propose to base scheduling on what we term the overall remote
performance impact of applications on other applications instead, taking both CPU time
usage and frequency reduction into account. We define this overall remote performance
impact of an application as the performance improvement that all other applications
combined would experience if the application was removed from the system.

Traditionally, if two applications are scheduled on the same core, each is allocated half
the CPU time, therefore reducing the potential CPU throughput of the other application by
the equivalent of 0.5 CPU cores. As Figure 7.3 shows, remote AVX overhead in particular
changes this value. In the depicted situation, the effective performance impact of the
AVX-512 application not only includes its own execution at the AVX-512 frequency level,
represented by the solid blue area in the figure, but also both local and remote AVX
overhead, shown as the hatched areas. Removing the AVX-512 application would more
than double the performance of the non-AVX application as it would no longer be affected
by remote AVX frequency reduction. In contrast, removing the non-AVX application
would only free the brown solid area for use in the AVX-512 application, resulting in less
than doubled performance for the latter application.

As depicted in Figure 7.4, a scheduler based on overall remote performance impact
would therefore calculate the CPU time effectively lost to remote AVX overhead, i.e., the
brown hatched area in the figure, and would subtract it from the virtual runtime of the

133



7 Scheduling for Improved Performance Isolation

affected task, similar to our previous work [88]. In contrast to our previous work, the
scheduler would also add the time to the virtual runtime of the task that caused the remote
AVX overhead. Such a scheduler completely mitigates the effect of remote AVX overhead.
If, for example, we assume a single-CPU scenario with one AVX-512 task and one non-AVX
task, the scheduler will prioritize the latter task to distribute CPU time in a way that both
tasks have an overall remote performance impact equivalent to 0.5 CPU cores. As a result,
the throughput of the non-AVX task is exactly as if it was executed alongside a second
non-AVX task.

7.4 Modified CPU Time Accounting

Implementing a fair scheduler based on overall remote performance impact instead of CPU
time is conceptually simple. Existing schedulers already deviate from purely using CPU
time for their scheduling decisions, instead factoring in task properties such as priority.
For example, the Linux CFS scheduler maintains counters of the tasks’ virtual runtime
as described above which represent CPU time scaled by the tasks’ priority [121]. During
each invocation, the scheduler then selects the task with the lowest virtual runtime. For
fair scheduling based on overall remote performance impact, such a scheduler merely has
to be modified to select the task with the lowest accumulated remote performance impact
instead. In this case, the main challenge is to estimate the remote performance impact of
individual tasks.

In the following, we describe a solution to this challenge consisting of three main steps.
First, the scheduler observes SIMD register usage to differentiate between tasks which
potentially cause AVX frequency reduction and tasks which may suffer from remote AVX
overhead (Section 7.4.1). Second, after each time slice of the latter tasks, the scheduler
estimates the remote AVX frequency reduction based on performance counters and calcu-
lates the resulting performance impact (Section 7.4.2). Third, for tasks negatively affected
by remote AVX overhead, the scheduler takes the overhead into account by recording
less virtual runtime than was actually used by the application (Section 7.4.3). Whenever
such a deduction from the virtual runtime occurs, the scheduler also adds the difference
to the virtual runtime of the last task that used the corresponding SIMD registers as the
remote AVX overhead contributes to the task’s overall remote performance impact. In the
following, we term the latter two steps frequency reduction compensation.

7.4.1 Attribution of Frequency Changes

To correctly modify the virtual runtimes to improve performance isolation, the scheduler
needs to be able to differentiate between tasks that potentially cause remote AVX overhead
and tasks that experience remote AVX overhead. We differentiate between three different
classes of tasks according to the lowest possible frequency level during execution of the
tasks:

1. AVX-512 tasks can potentially cause a reduction to the AVX-512 frequency level and
are assumed to never suffer from remote AVX overhead.

134



7.4 Modified CPU Time Accounting

2. AVX2 tasks can only cause a reduction to the AVX2 frequency level and may suffer
from remote AVX overhead caused by AVX-512 tasks.

3. Non-AVX tasks can not cause any AVX frequency reduction and can therefore suffer
from remote AVX overhead caused by any AVX2 or AVX-512 tasks.

As we described in the previous chapters, differentiating between the different types of
tasks is non-trivial. For our scheduler, we employ the technique described in Section 6.2.3
which temporarily disables access to 512-bit registers to cause the corresponding AVX-512
to trigger exceptions. The technique involves clearing the ZMM_Hi256 and Hi16_ZMM bits
in the XCRO register [85] which disables saving and restoring 512-bit registers during
context switches. To prevent data loss, the CPU consequently prevents the execution of
any instruction accessing these registers. In the previous chapter, we used the resulting
exceptions to identify AVX-512 tasks.

In this chapter, we slightly extend the technique as our scheduler also needs to be able
to identify AVX2 tasks based on their access to 256-bit registers [88]. During each context
switch, our scheduler not only clears the aforementioned bits but also the 2 of XCR® which
controls context switching for 256-bit SIMD registers [114, p. 13-10]. As above, clearing
this bit prevents the execution of 256-bit SIMD instructions. As this technique affects CPU
feature detection, it requires the OS to intercept the CPUID instruction and accesses to the
XCRO register as previously described in Section 6.3.3

Directly after each context switch, the newly scheduled task is regarded as a non-AVX
task. Once the task executes a 256-bit or 512-bit SIMD instruction and triggers an exception,
the operating system sets the AvX bit and marks the task as an AVX2 task. Until the next
context switch, subsequent 256-bit instructions do not cause further exceptions. The next
512-bit instruction, in contrast, triggers a second exception and causes the OS to mark
the task as an AVX-512 task. In response to this exception, the OS also re-enables the
remaining bits in XCRO that were cleared during the previous context switch so that no
further AVX-512 instructions cause unnecessary exceptions.

7.4.2 Estimating Remote AVX Overhead

Whenever a task operates at a lower frequency than what could have possibly been caused
by the task itself, the virtual runtimes of the tasks need to be modified according to
the resulting remote AVX overhead. Therefore, whenever the scheduler notices such a
lower frequency during a context switch, it needs to calculate the amount of remote AVX
overhead. As we described in Section 4.2, the remote AVX overhead can be expressed as
the actual time required for a task divided by the ideal time, i.e., the CPU time for execution
at the ideal frequency, of the same task:

Lactual
= 2L = Aperf(ﬁlctual,aug, ﬁdeal,avg) (7.1)
tideal
In this chapter, for simplicity, we instead express the remote AVX overhead as the CPU
time difference At between t,.;,4; and tigeq;, Where t,.4,4 is the length of the previous time

slice: 1
At = toctual = tideal = tactual(1 — ) 72)
actua idea actua Aperf(ﬁzctual,avgs fideal,avg)

135



7 Scheduling for Improved Performance Isolation

In this equation, Ap,, s is the model that is used to predict the performance change
caused by the given frequency change. We employ the mechanistic model developed in
Section 4.3.2 which splits time into memory-bound and CPU-bound phases and which
assumes that only CPU-bound phases are affected by frequency changes. The model
estimates the split based on two performance counters that count the L2 stall cycles and
the cycles while the CPU is bound by stores. Inserting the model into Equation 7.2 and
simplifying yields the following equation which the scheduler uses to calculate remote
AVX overhead:

Cl2—stall*tCstore—bound
Ctotal

* (fideal,avg - ﬁzctual,avg) + ﬁzctual,avg
At = taeryar |1 -

ﬁdeal,aug (7 3)

(Ctotal — Cl2—stall — Cstore—bound) (ﬁdeal,avg - ﬁlctual,ang)

Factual Ctotalﬁdeal,avg

Calculating At requires the scheduler to know both the average actual frequency during
the time slice as well as the average ideal frequency. Measuring the former frequency is
trivial as the PMU provides both the number of CPU clock cycles as well as the number of
cycles of a fixed-frequency reference clock as fixed-function performance counters [116,
pp- 19.2 f.]. The scheduler divides the CPU clock cycles by the reference clock cycles to
calculate the average actual CPU frequency.

In contrast, the ideal frequency cannot be measured directly but rather has to be cal-
culated from the actual frequency. The difference between the ideal and actual CPU
frequencies depends on a number of factors. First, it depends on the frequency levels in-
volved - for example, a non-AVX application running at AVX-512 frequencies experiences
a bigger frequency reduction than an application running at AVX2 frequencies. Second,
the difference depends on the turbo level which in turn depends on the number of active
CPU cores. As shown in Table 3.1 using the example of the Intel Xeon Gold 6130 CPU,
larger numbers of active cores cause a larger difference between the three frequency levels.

Both these factors can change at any point between successive scheduler invocations,
which complicates calculating the difference between the average actual and ideal fre-
quencies. Only parts of the time between successive scheduler invocations may have
been affected by remote AVX overhead and cores may have become active at any point in
time. Therefore, in our experience, counting the number of active cores and measuring the
frequency level only once during the scheduler invocation does not provide a sufficiently
precise estimate of the ideal frequency. Instead, our scheduler performs the four steps
shown in Figure 7.5a to continuously monitor the frequency level and to derive the average
ideal frequency [88]:

(D The scheduler continuously monitors the fraction of cycles spent at the three fre-
quency levels via configurable performance counters.> Note that two of the four
available performance counters are already in use by the DVFS performance predic-
tion model. We therefore use the remaining two performance counters to count the

2 Both RDMSR and RDPMC can be used to read the performance counters [115, pp. 4-533 f.]. Only the latter
instruction should be used in frequently executed scheduler code due to its far lower latency, though.

136



7.4 Modified CPU Time Accounting

1-2cores

(D Measure average frequency level

|

(2 Calculate expected frequencies

l

(3 Compare to determine turbo level

|

(@ Calculate ideal frequency 0 0.2 0.4 0.6 08 1
Share of AVX-512 frequency cycles

fideal,az;g

ﬁu‘tual,avg

Expected Frequency (GHz)

(a) Steps during calculation (b) Frequencies for different turbo levels

Figure 7.5: The ideal frequency needs to be calculated from the measured actual CPU
frequency, which involves several steps. The scheduler compares the actual
CPU frequency with the expected frequencies at the different turbo levels
to determine the average turbo level during the time slice before using this
information to calculate the corresponding ideal frequency [88].

cycles at the AVX2 (c;) and AVX-512 (c1) frequency levels and calculate the cycles
at the non-AVX frequency level (cy) as the difference between the total CPU cycles
(ctotar) and these two cycle counts:

Co = Ctotal —C1 — C2 (7-4)

@ If the cycle counts indicate that there is remote AVX overhead, the scheduler calcu-
lates the expected average frequencies for different numbers of active cores at the
given distribution of cycles. In general, the average frequency f of a system that
spends the times ¢; at the frequency levels f; can be calculated as follows:

fe=uf (7.5)

tiotal

The scheduler does not measure time, though, but rather counts CPU cycles which
take a varying amount of time depending on the CPU frequency. We therefore
substitute t; = c;/f;, where c; are the cycles at the three AVX frequency levels as
described above, while fp, fi, and f; are the corresponding frequencies for a given
number of active cores as published by Intel [119]. After simplification, we arrive at
the following equation for the expected CPU frequency at a given turbo level:

f(‘)flf‘Z(CO +c1+ Cz)
fifaco + fofac1 + fofice
Further substituting ¢y = c;o1q1 — ¢1 — ¢2 and as well as ry = ¢1/ctotal and 73 = 2/ Crotal
as the share of cycles spent at the AVX2 and AVX-512 frequency levels yields the
following final formula:

f(eoscrc2) = (7.6)

fohifo
(fo = f)for1 + (o = fo) firz + fifo

f(ri,rm) = (7.7)

137



7 Scheduling for Improved Performance Isolation

Figure 7.5b plots this expected frequency for the different turbo levels of an Intel
Xeon Gold 6130 under the assumption that r; = 0, i.e., the system only operates at
either the non-AVX or the AVX-512 frequency level.

3 The scheduler then compares the measured actual CPU frequency facrual,a0g With the
expected frequencies at the different turbo levels as calculated above to identify the
turbo level present during the time slice. In many cases, the measured frequency
will not match any of the expected frequencies directly, especially if the number of
active cores changed during the time slice. In this case, we select the closest two
frequencies and calculate an interpolation factor that yields the measured frequency.
This interpolation factor corresponds to the average turbo level during the time slice.
In the example shown in Figure 7.5b, we assume that the system spends half of the
time at the lowest turbo level, while the other half is spent at the second lowest turbo
level.

@ Finally, the scheduler uses the collected information to calculate the ideal frequency
during the time slice. In particular, the scheduler evaluate the function in Equation 7.7
for the detected turbo level again, but change the fraction of cycles at the AVX2 and
AVX-512 frequency levels to ideal conditions without any remote AVX overhead. If,
for example, an AVX2 application executed predominantly at the AVX-512 frequency
level, the scheduler would calculate the frequency for ¢ = o, ¢] = ¢; + ¢, and ¢}, = 0,
effectively assuming that all AVX-512 frequency level cycles were instead spent at
the AVX2 frequency level. If, as described above, none of the turbo levels perfectly
matches the measured frequency, we instead evaluate the function twice for the
closest turbo levels and interpolate between the results to calculate the ideal CPU
frequency. In Figure 7.5b, for example, figeal,a0q is calculated as the mean value of the
frequencies at the lowest and the second lowest frequency level.

7.4.3 Frequency Reduction Compensation

Once both factual,aog a0d figear,ang are known, the remote AVX overhead At can be calculated
using Equation 7.3. The scheduler then in turn uses At to calculate the overall remote
performance impact from the CPU time of individual tasks. In particular, as described
in Section 7.3, At is subtracted from the virtual runtime of the task suffering from the
remote AVX overhead and is added to the task that is assumed to have caused the overhead.
The modification of the virtual runtime of the task affected by the overhead is performed
directly during the context switch away from this task [88]. Before reinserting the task
into the ready queue, the scheduler simply subtracts At from its virtual runtime. As the
task is in a known state and local to the CPU that calculated the remote AVX overhead,
direct manipulation of the task is trivial. Adding At to the virtual runtime of the task that
caused the remote AVX overhead is more complicated as it presents two challenges:

« The first challenge is that the scheduler has to identify the tasks that cause the remote
AVX overhead. Precise tracking of tasks that cause AVX2 or AVX-512 is impracti-
cal for two reasons. First, multiple tasks are often jointly responsible for remote
AVX overhead if all executed AVX2 or AVX-512 instructions during the last 670 ps.

138



7.5 Thread Mobility

Tracking and memorizing all AVX2 and AVX-512 code phases is computationally
expensive, so we instead completely attribute the remote AVX overhead to the last
task that used AVX2 or AVX-512.

Second, identifying this last task is often difficult. In particular, the exceptions used
to detect AVX2 or AVX-512 code only mark the beginning of AVX2 or AVX-512
phases, whereas the precise end of such phases is unknown. On a system with hyper-
threading, it is therefore often not known which of the two sibling hyper-threads of
a physical CPU core has most recently executed AVX2 or AVX-512 code.

We therefore use only an approximation where our scheduler attributes all remote
AVX overhead to the task which most recently caused an exception due to use of
AVX2 or AVX-512 on the given physical core or which was most recently descheduled
after using AVX2 or AVX-512. Implementing this approximation is computationally
efficient as the scheduler can simply place the current task’s process ID in a per-core
variable whenever the task triggers an exception by executing AVX2 code or AVX-512
code as well as whenever the scheduler is invoked following such an exception.

Even though this approximated policy may misattribute remote AVX overhead to
the wrong task, we expect misattribution to have limited long-term impact on how
the scheduler distributes CPU time. In particular, we expect that in most workloads
all AVX2 and AVX-512 tasks to be equally affected by misattribution, so the effects
on virtual runtimes cancel each other out.

» The second challenge is that the scheduler has to efficiently manipulate the virtual
runtime of tasks that are not currently running. Our scheduler has to add the
remote AVX overhead to the virtual runtime of the task that most likely caused
the overhead, but the state of that task is unknown and direct manipulation of the
virtual runtime requires expensive synchronization as the change may otherwise
cause inconsistencies. In particular, for tasks placed in a sorted ready queue, the
task’s position in the queue needs to reflect the task’s virtual runtime, so any change
to the variable holding the task’s virtual runtime needs to be accompanied with an
update of the ready queue. As the task may have been migrated to another CPU
core, locking this ready queue may limit scalability of the scheduler.

To alleviate the need to modify the ready queue of other CPUs, we add an additional
field to the task structure that holds the accumulated penalty due to remote AVX
overhead caused by the task. This field is only accessed via atomic instructions to
remove the need for synchronization. The scheduler only adds the accumulated
penalty to the task’s virtual runtime when other modifications to the virtual runtime
are performed so that the existing scheduler code ensures correct placement in the
ready queue.

7.5 Thread Mobility

Frequency reduction compensation as described above results in a scheduler whose virtual
runtimes equal the overall remote performance impact of the tasks. In most scenarios,

139



7 Scheduling for Improved Performance Isolation

Non-AVX (hyper-thread 2) ‘

AVX-512 (hyper-thread 1) ‘

Code
[ S—

Virtual Runtime

Time
—— AVX-512 Task Non-AVX Task

Figure 7.6: The virtual runtime of tasks slowed down by remote AVX overhead progresses
at a lower rate than that of other tasks. If the scheduler is unable to choose
between a sufficient number of different tasks on each logical CPU, the virtual
runtime of different logical CPUs can diverge. To minimize the virtual runtime
differences and to achieve good performance isolation, the scheduler has to
periodically migrate tasks between different CPUs.

this scheduler achieves good performance isolation as it prioritizes tasks slowed down
by remote AVX overhead over other tasks. In some situations, no such prioritization is
possible. In particular, schedulers commonly use separate ready queues for individual
logical CPUs to improve scalability on multi-core systems [60]. Individual ready queues
may not provide the scheduler with different types of tasks to choose from. Figure 7.6
shows a situation where a physical CPU core executes only a single AVX-512 task on
one hyper-thread and a single non-AVX task on the other hyper-thread, with no other
runnable tasks placed in the ready-queue of the two logical CPUs. In this situation, the
scheduler is forced to execute the only runnable task on each hyper-thread and is unable
to provide good performance isolation. Instead, the virtual runtime of the AVX-512 task
quickly outgrows the virtual runtime of the non-AVX task.

Whenever the runnable tasks outnumber the logical CPUs, this problem is easily solved
by increasing the mobility of tasks across CPUs.? In the example given above, the scheduler
could migrate a non-AVX task from another CPU core to the hyper-thread used by the
AVX-512 task, thereby reducing the CPU time allocated to the latter task.

As the goal of such migrations is to equalize the virtual runtime of all tasks in the system,
the scheduler should always prefer to migrate tasks with a lower virtual runtime than
those already on the destination CPU. Therefore, the virtual runtimes of tasks running on
different logical CPUs need to be comparable. These requirements — good thread mobility
and comparable virtual runtimes — mean that the CFS scheduler is not suitable as the
basis for our scheduler. In particular, as described in Section 6.3.1, CFS only infrequently
performs load-balancing to migrate threads to cores with lighter load. This load balancing
does not compare virtual runtimes but only takes the number of tasks on the individual

® The requirement that there need to be more tasks than logical CPUs does not impact the usability of our

design. Instead, if the number of tasks is equal or less than the logical CPUs, a technique such as that
presented in the previous chapter can be used to place AVX tasks and non-AVX tasks on separate cores,
thereby eliminating remote AVX overhead.

140



7.6 Evaluation

CPUs into account. In fact, the virtual runtimes maintained by CFS are not comparable
across different CPUs. Instead, the virtual runtimes of a CPU that was temporarily idle
remain lower than those on a CPU that was always fully loaded. Whenever a task is
migrated to a different CPU, its virtual runtime is changed to match that of other tasks at
the destination CPU.*

As described in Section 6.3.1, other schedulers behave differently. The MuQSS scheduler
is a scheduler based on virtual deadlines which targets low latency and high responsiveness.
As a result, MuQSS provides mechanisms for increased thread mobility which provide a
good starting point for our prototype. Most importantly, MuQSS implements much faster
load balancing between different logical CPUs. Whereas CFS only periodically compares
CPU load, MuQSS checks whether to migrate tasks from other CPUs at each scheduler
invocation.’ The underlying load balancing criteria of MuQSS are configurable at runtime.
In its non-interactive mode, MuQSS behaves similar to CFS in that the scheduler elects to
execute a task from a different CPU if the run queue of that CPU holds more tasks and if
the task has a lower virtual deadline than the tasks on the current CPU. In the interactive
mode, the run queue length comparison is removed - instead, the scheduler always checks
all runqeues and selects the task with the lowest virtual deadline. As checking all run
queues results in the behavior described above where tasks with lower virtual runtime are
migrated to replace AVX2 or AVX-512 tasks, we select MuQSS in its interactive mode as
the basis for our prototype.

In addition, MuQSS can be configured so that multiple logical CPUs share a single run
queue [140]. In the non-interactive mode, such run queue sharing improves responsiveness
as all CPUs sharing a run queue always pick the task with the earliest deadline even if that
task previously executed on a different CPU. In the interactive mode, run queue sharing
has little impact - instead, increased lock contention on the run queues potentially results
in higher overhead. We therefore disable run queue sharing in our prototype. Attempts in
our previous work to employ run queue sharing [88] did not yield any positive impact.

While, as described above, the core mechanisms of MuQSS are suitable for our prototype,
we had to perform extensive further modifications to the scheduler. In particular, our
experiments showed that the deadline-based policy implemented by MuQSS fails to achieve
good fairness even in the absence of remote AVX overhead. MuQSS would therefore not
be able to provide good performance isolation for workloads involving AVX2 or AVX-512,
either. To create a scheduler that combines good fairness with fast load balancing, we
modify MuQSS to use a scheduling policy very similar to the policy of CFS. In particular,
we replace the virtual deadlines of MuQSS with the virtual runtimes used by CFS. Finally,
we implement frequency reduction compensation as described above within the resulting
fair scheduler.

7.6 Evaluation

We perform an evaluation of our prototype with a subset of the two-application workloads
presented in Section 3. The main goal of our evaluation is to show that our scheduler

4 Linux 5.9, kernel/sched/fair.c, lines 4160 ff.
> Linux 5.9 with MuQSS 0.204 [138], kernel/sched/MuQSS.c, lines 3844 ff.

141



7 Scheduling for Improved Performance Isolation

Im AvX2-Baseline HE AVX2 - Fair Relative Throughput BB AVX2 - Prototype
AVX-512 - Baseline [ 1 AVX-512 - Fair Relative Throughput | B AVX-512 - Prototype

N
o

Slowdown (%)
[\~
(e}

ﬁil Tt 1 i il ©

T EII iﬁii IIII EII EEI

0 bl i3
\e° o o o R & xe o X R R
o 2 W\ O S < R \ S \O W
NSRS A Sl o @ & o
\0\’6(' AY) ,\\\)\ 3 “e’b S

Figure 7.7: We evaluate performance isolation by measuring the slowdown caused by
enabling AVX2 or AVX-512 in the x265 video encoder when x265 is executed
in parallel to a benchmark application. For many benchmarks, our prototype
can greatly reduce the slowdown.

provides improved performance isolation in situations with remote AVX overhead, i.e., that
AVX2 or AVX-512 tasks have less influence on the performance of other tasks. Section 7.6.2
describes the result of an experiment to measure this performance isolation.

As our prototype increases the complexity of the scheduling routines, we also perform
an analysis of the overhead of our scheduler compared to a similar scheduler without
frequency reduction compensation in Section 7.6.3. To demonstrate that our scheduler
provides competitive performance compared to CFS despite its radically different imple-
mentation based on MuQSS, we also present a comparison to CFS in Section 7.6.4.

7.6.1 Setup

All following experiments are conducted on the same system that was used for the ex-
periments in Chapters 3 and 6. This system is equipped with an Intel Xeon Gold 6130
CPU and 24 GiB DDR4 RAM. All experiments are performed using Fedora 31 and kernels
derived from Linux 5.9. In particular, our prototype is built upon MuQSS 0.204 [138] and
has all available mitigations for CPU vulnerabilities enabled. As in earlier chapters, we
use the Parsec 3.0 benchmark suite [25]. Unless specified otherwise, all experiments are
repeated ten times.

7.6.2 Performance Isolation

To measure the impact of frequency reduction compensation on performance isolation,
we execute a range of non-AVX benchmarks alongside the x265 video encoder configured
to use either AVX-512, AVX2, or only SSE4 instructions. Ideally, in a scenario with ideal
performance isolation, the benchmark is not slowed down when the video encoder causes
remote AVX overhead. We therefore measure the slowdown of the benchmarks as the ratio
between the completion time of runs with AVX2 or AVX-512 compared to the completion
time of the benchmark when x265 uses SSE4. This setup differs from the experiments
described in Chapter 3 where we measured CPU time. Our scheduler is supposed to

142



7.6 Evaluation

compensate for increased CPU time by prioritizing the non-AVX benchmark so that
completion time remains constant.

We compare three different schedulers. The baseline for our experiments is provided by
our prototype, but with frequency reduction compensation disabled. Without frequency
reduction compensation, this scheduler basically implements the same scheduling algo-
rithm also used by the ubiquitous CFS scheduler found in the mainline Linux kernel, but
is based on MuQSS as described in Section 7.5. In particular, this baseline scheduler does
not take remote AVX into account when calculating virtual runtimes. The second sched-
uler — labelled “Prototype” in Figure 7.7 — is our prototype, but with frequency reduction
compensation enabled. This scheduler is designed to completely eliminate any impact of
remote AVX overhead on the completion time of non-AVX tasks. This prototype differs
from our earlier work which only reduced the virtual runtimes of tasks slowed down
by remote AVX overhead, but which did not increase the virtual runtimes of the tasks
causing the overhead [88]. To demonstrate the impact of the improvements described
in this thesis, we also include a third scheduler in our comparison which consists of our
prototype minus the code responsible to increase the virtual runtime of AVX2 and AVX-512
tasks. This third scheduler is labelled “fair relative throughput” in Figure 7.7. Note that this
previous variant of frequency reduction compensation was not designed to achieve good
performance isolation, but rather targeted a different fairness metric where the impact of
remote AVX overhead was evenly spread across all tasks in the system.

Figure 7.7 shows the slowdown of our benchmarks for all three schedulers. The figure
shows that our prototype provides much lower slowdown - and, consequently, much
better performance isolation — than the other two schedulers. On average, the runs with
the baseline scheduler show an average slowdown of 7.3% when x265 uses AVX2 and of
23.5% for AVX512. Our prototype, instead, shows only an average absolute performance
difference® reduces this slowdown to 2.1% and 6.4%, respectively. As expected, the im-
provement is commonly twice as large as that provided by our previous fair scheduling
algorithm which only results in a slowdown of 2.9% for AVX2 and 12.6% for AVX-512.

Not all benchmarks are equally affected by frequency reduction compensation, though.
While our scheduler is able to completely mitigate the performance impact of remote AVX
overhead on benchmarks such as ferret, fluidanimate, or swaptions, it is unable to ensure
good performance isolation for benchmarks such as blackscholes, bodytrack, or canneal.
Further analysis shows that the former group of benchmarks scales better than the latter.
While all benchmarks were configured to create 32 threads, canneal, for example, only
used 7 logical CPUs on average, whereas swaptions was able to use 31.3 logical CPUs. This
difference shows an inherent limitation of our design — prioritization of tasks suffering
from remote AVX overhead only improves performance isolation if the tasks are able to
make use of the additional CPU resources.

To demonstrate that this limitation is indeed responsible for the remaining slowdown,
we repeat the experiments, but limit execution to two physical cores. We configure both
the benchmark and x265 to launch four threads each. Figure 7.8 shows the results of
this experiment. The figure shows that performance isolation is greatly improved. While

6 Speedup, as experienced by some of the benchmarks, is also unwanted, so we calculate an average of the
absolute values.

143



7 Scheduling for Improved Performance Isolation

Im AvX2-Baseline HE AVX2 - Fair Relative Throughput BB AVX2 - Prototype
AVX-512 - Baseline [ 1 AVX-512 - Fair Relative Throughput | B AVX-512 - Prototype

S 40

c

3

-g 20

o

n 0 Tﬁ; i Iﬂ;‘ T iﬁi - w l I i IU; = Iﬁi T TﬁI E3 Iﬁx - IU, = IWI H

\&° ’od\ = G“Q o ((e\, N N2 5:@( o \i\QS
&° N o 8¢ & € ™ o AN N

\0\3(}1‘5 \006\\ @ A \\\i\é’b(\ (e S’QSQ’A«\ 5\“"&

Figure 7.8: As we expect that limited scalability is responsible for the bad performance
isolation experienced by some of the benchmarks in our earlier experiment,
we repeat the experiment, but restrict the tasks to two physical CPU cores. In
this configuration, performance isolation is greatly improved.

(0]
Eg 10
c o
o O
sf o= - i il - - 3 il % & I
g
ST -10
\ . S PR )
\&° 'oé“ 20 6\)Q W& 3 e N XS XN \Q
O s NIPY: & @ D © W X N
C & @ (G Ao e C %
oW IR e

Figure 7.9: Comparing our prototype to an identical scheduler without frequency reduction
compensation shows that frequency reduction compensation adds very little
overhead.

AVX-512 causes an average slowdown of 28.3% for a configuration with the baseline
scheduler, our prototype achieves almost complete performance isolation, with only an
average slowdown of 2.5% remaining.

Finally, we repeat this previous set of experiments but replace the x265 video encoder
with a synthetic program executing SSE4, AVX2 or AVX-512 instructions as described in
Section 7.2, as our earlier experiments showed that the limited scalability of x265 slightly
affected the results. The experiments with the synthetic background load showed similar
behavior as those with x265. Frequency reduction compensation reduced the average
absolute performance change caused by AVX2 from 8.7% to 1.2%, while the performance
change caused by AVX-512 was reduced from 26.9% to 2.3%.

7.6.3 Overhead

The scheduler must not only provide good performance isolation, but must also provide
good performance overall. Therefore, the scheduler itself must not introduce excessive
overhead. There are two main reasons why the techniques described in this chapter

144



7.6 Evaluation

increase the CPU time required by the scheduler, though. First, whenever the scheduler
has to evaluate the DVFS performance model and has to calculate the remote frequency
reduction, the additional code increases the cost of schedule invocations. Most of this code
is only executed for workloads involving AVX2 or AVX-512 tasks, though. For workloads
without these instructions, the schedule only reads the two performance counters that
count the cycles spent at the lower frequency levels and then concludes that no further
work is necessary. Second, detecting AVX2 and AVX-512 tasks involves up to two additional
exceptions between successive context switches. These exceptions also only occur during
execution of AVX2 and AVX-512 tasks.

To quantify the overhead of frequency reduction compensation for both workloads with
and without AVX frequency reduction, we perform experiments where we measure the
completion time of applications in our prototype and compare it to execution in a baseline
scheduler. As described above, this baseline scheduler is identical to our prototype, but
with all code required for frequency reduction compensation removed, including the code
to detect AVX2 and AVX-512 tasks. We test both non-AVX applications from the Parsec
benchmark suite as well as the x265 video encoder as an example for an AVX2/AVX-512
application. We repeat the dedup benchmark 100 times to improve the accuracy of the
result.

Figure 7.9 shows the overhead caused by frequency reduction calculated as the com-
pletion time increase during runs using our prototype. On average, frequency reduction
compensation causes 1% overhead, with many benchmarks experiencing statistically in-
significant overhead. In most cases, we expect the benefits of improved performance
isolation to outweigh this overhead.

7.6.4 Comparison with CFS

The overhead experiment above uses our own fair scheduler as a reference to determine
the overhead introduced by frequency reduction compensation. This scheduler is based
on MuQSS, which is not representative for most Linux systems - instead, almost all
Linux systems use Linux’ default scheduler, CFS. CFS may provide significantly different
performance characteristics, though.

To show that our prototype is a viable alternative to CFS and that the experiments
above do not misrepresent the prototype’s performance, we therefore also need to show
that our reference scheduler provides competitive performance compared to CFS. MuQSS
itself has already been shown to provide similar performance to CFS. For example, D.
Shakoori Gustafsson [217] measured slightly worse Hackbench [74] performance, but
slightly increased performance when compiling software, while Con Kolivas, the author of
MuQSS, reported similar performance for a wider range of workloads [137]. We perform
additional experiments to show that our modifications to MuQSS to achieve fair scheduling
to not carry any excessive performance impact.

In particular, we repeat the overhead experiments from the previous section, but compare
our reference scheduler without frequency reduction compensation to CFS. Figure 7.10
shows the result of this experiment. Our observations mirror those made about MuQSSs.
While there are performance differences between our scheduler and CFS, these differences
are generally small. Note that while CFS experienced years of development and was likely

145



7 Scheduling for Improved Performance Isolation

’II CFSH B Our scheduler ‘

o

Eo 2

‘é g 1.5

28 1

o ©

EE 05

O g 0
\e® O e’b\ o0 @ @ xe 0 xe§ G Q°
o o ® o) S < e \ & \O W

e \ooey;‘ o (ARG o e P
) QN g e S

Figure 7.10: Comparing our baseline scheduler - i.e., our prototype, but without frequency
reduction compensation — to CFS shows that our scheduler generally provides
competitive performance.

extensively optimized, our scheduler did not experience the same treatment, so there is
probably potential for further performance improvement.

7.7 Discussion

Our evaluation shows that our scheduler is able to almost completely mitigate the slow-
down caused by AVX2 and AVX-512 for many benchmarks. Even for those benchmarks
where significant slowdown remains, our scheduler is able to improve performance iso-
lation. This improvement comes at very little cost — the prototype causes very little
additional overhead, which demonstrates the general viability of the approach. There is
still much potential for future improvements, though, as our prototype still has a number
of limitations which we describe in the following.

7.7.1 Attribution of Remote AVX Overhead

One limitation of our prototype is its tendency to mischaracterize tasks. Similar to the
techniques described in the previous chapter, our scheduler identifies tasks causing remote
AVX overhead only based on the size of registers used by the tasks. The scheduler is
not able to distinguish between heavy and light SIMD instructions, which can cause the
scheduler to attribute remote AVX overhead to the wrong task. For example, applications
executing only light 512-bit instructions are never compensated for any slowdown due
execution at the AVX-512 frequency level, but may instead be billed for remote AVX
overhead caused by other tasks executing heavy 512-bit instructions. In such situations,
performance isolation is impacted.

We argue that only very specific workloads are affected by this problem, while our
evaluation shows that our scheduler successfully improves performance isolation for other
workloads. As detailed in Section 4.1, the CPU does not provide any better mechanism to
differentiate between the different types of code. Our scheduler would therefore likely
benefit from the changes to the PMU described in Section 4.6.2, where we propose perfor-

146



7.7 Discussion

mance events that track whether the code currently executed on the CPU needs specific
frequency levels.

As described in Section 3.4, the hardware does not provide precise information on which
hyper-thread made most recent use of AVX2 and AVX-512, either. Instead, our scheduler
bases attribution of remote AVX overhead on its information on recent exceptions and
context switches. The resulting heuristic, as previously described, is often inaccurate if
both hyper-threads use AVX2 or AVX-512. As a result, the scheduler may not treat multiple
AVX2 or AVX-512 threads fairly and may instead bill some of the threads for more remote
AVX overhead than they actually caused. We expect collecting more accurate information
in hardware to be very inexpensive once support for the additional performance events
described above has been added. Whenever code is detected that requires a frequency
reduction, the CPU merely has to update a hardware register to indicate the corresponding

hyper-thread.

7.7.2 Throttle Cycles

Another slight inaccuracy during calculation of remote AVX overhead is that our sched-
uler only takes cycles spent at the different frequency levels into account but ignores
throttling periods that occur during transitions between the levels. In some situations, one
thread may trigger a frequency change, while the following thread is slowed down by the
resulting throttling. Our prototype already uses the maximum number of configurable
performance counters — two for frequency level tracking, two for the DVFS performance
model — and is therefore not able to additionally track throttle cycles. As the throttling
periods are generally very short and will, in most cases, only affect the task causing the
frequency reduction, we expect the resulting impact on performance isolation to be small.
Our evaluation supports this thesis as our scheduler is able to completely mitigate the
performance impact of x265 for many benchmarks.

7.7.3 Compatibility with Profiling Tools

The limited number of configurable performance counters does not only impact the
calculation of the remote AVX overhead, but also impacts the compatibility between our
scheduler and existing profiling tools. Our current prototype assumes exclusive access
to the PMU, but even if it was designed with parallel access in mind, profilers such as
perf [193] would require additional configurable performance counters to be available.
To improve compatibility between our scheduler and existing profilers, we propose
adding a mechanism to temporarily free up performance counters. For example, frequency
reduction compensation could be completely disabled while a profiler requires performance
counters, thereby making all configurable and fixed performance counters available to
the profiler. Doing so would temporarily affect performance isolation, which we expect
not to be a problem in most cases. In particular, profiling is an infrequent activity that is
mostly performed during software development, in which cases the performance impact
caused by remote AVX overhead may be acceptable. However, such situations are an
example for instrumentation perturbation as the presence of the profiler changes system
behavior and affects profiler results. Instead of completely disabling frequency reduction

147



7 Scheduling for Improved Performance Isolation

compensation, we therefore propose to only disable the DVFS performance model and to
assume that performance is proportional to CPU frequency. Doing so frees up two of the
four performance counters. At the same time, performance isolation is somewhat impacted
for memory-bound workloads which do not scale less with changing CPU frequencies.
Nevertheless, most of the code for frequency reduction is still active, so we expect far less
instrumentation perturbation than if frequency reduction compensation is completely
disabled.

7.7.4 NUMA-Support

Finally, our prototype does not support NUMA systems because we strived for keeping
software complexity as low as possible and because we lacked access to suitable multi-
socket systems. Task migration between different NUMA nodes is often more costly than
migration within one NUMA node [43]. In particular, if the working set of a task is local
to a specific NUMA node, migrating the task to a different node causes many expensive
memory accesses across NUMA nodes. Our approach requires frequent load balancing
which likely causes more of such expensive migrations than, for example, CFS. Future
work should quantify the resulting overhead and should, if necessary, implement stricter
limits to when the scheduler migrates tasks across NUMA nodes.

148



8 Conclusion

In recent years, CPUs have become more and more power limited to the point where
performance is mainly limited by power. As different instructions require different amounts
of energy, CPUs have therefore started to execute different types of code at different
frequencies. Such behavior allows the CPU to execute code only consisting of simple
instructions with little energy consumption at very high frequencies, fully utilizing the
available power budget. Power-intensive instructions, in contrast, require the system to
temporarily reduce its CPU frequency.

In some cases, this frequency reduction can potentially affect other code running on
the same CPU core, thereby slowing this other code down and preventing the CPU from
fully exploiting its power budget. In the case of Intel CPUs where AVX2 and AVX-512
instructions show such effects, the resulting slowdown — remote AVX overhead - is up to
30% for less power-intensive programs running in parallel with AVX-512 programs [55]
and up to 10% for web servers which use AVX-512 to encrypt or decrypt data [141]. Future
CPUs are projected to remain power-limited, so the same effects are likely also observed
in many additional future CPU microarchitectures.

In this thesis, we showed that the impact of remote AVX overhead can often be mitigated.
Specifically, we described a set of tools usable in scenarios with remote AVX overhead. We
presented a profiler that is able to quantify remote AVX overhead with an average error
of 2.2 percentage points by temporarily pausing individual CPU cores and analyzing the
resulting frequency changes. We then showed that improved frequency scaling policies
implemented by the CPU itself can almost completely eliminate remote AVX overhead for
many workloads executed on systems without any hardware multi-threading such as Intel
hyper-threading. However, such improved frequency scaling policies are not available
on current CPUs and, more importantly, do not provide any substantial performance
advantage on systems with hardware multi-threading. We therefore also showed how
remote AVX overhead can be reduced in software by limiting co-scheduling of AVX-512
and non-AVX-512 tasks and restricting the former tasks to a small set of AVX-512 cores.
This software approach can reduce the performance impact of remote AVX overhead by
90.4% on average for a wide range of workloads, but again suffers from limitations imposed
by existing CPUs — in particular, it is only applicable to AVX-512, but not AVX2, and
it is unable to differentiate between different types of AVX-512 instructions. While we
therefore deem it impractical to completely mitigate remote AVX overhead on current
systems, it is possible to at least prevent it from having a substantial impact on performance
isolation. To this end, we presented a modification to existing time-based fair schedulers
which prioritizes tasks affected by remote frequency reduction in order to counteract
their slowdown due to remote AVX overhead. This scheduler reduces the performance
impact of an AVX2 application on parallel non-AVX applications from an average 7.3%

149



8 Conclusion

slowdown down to a 2.1% slowdown, with similar improvements achieved for workloads
with AVX-512 applications.

The evaluation of our prototypes demonstrates their viability, but also leads to a number
of additional conclusions. Most importantly, our experiments show that the frequency
reduction caused by power-intensive code should be at least partially managed by software.
In particular, given that the OS has the most complete information on which tasks are
affected by the resulting slowdown and has the most control over scheduling, we argue that
the OS should be more involved in frequency management for power-limited systems. Our
experiments also uncover a range of limitations of the hardware that limit the effectiveness
of our designs. We therefore sketch a number of improved hardware-software interfaces
for future CPU designs that provide the OS with more information on currently executed
code as well as more control over frequency changes.

8.1 Future Work

While this thesis presents a comprehensive work on AVX frequency effects and as such
answers a wide range of associated research questions, it also uncovers a number of ques-
tions that remain unanswered. Most of these questions stem from limitations of our work
- we discuss these limitations in the previous chapters (see Sections 4.6, 5.4, 6.6, and 7.7).
Many of these limitations are the result of deliberate efforts to reduce the complexity of
our prototypes and future work is likely to achieve improved results with more refined
approaches. In addition, we demonstrate how the interfaces provided by existing CPUs
are inadequate for our work and how improved CPUs likely allow for better mitigation
of remote AVX overhead. We propose that future work should experimentally imple-
ment improved hardware-software interfaces to determine the potential for performance
improvements.

Finally, the limited scope of our work leaves a substantial related research area for future
work. Specifically, this thesis only covers a specific type of power-intensive accelerators.
The SIMD units of AVX2 and AVX-512 are tightly coupled accelerators [51] directly
connected to individual CPU cores, whereas other accelerators such as GPUs are commonly
implemented as loosely coupled accelerators connected to buses external to the CPU cores.
Such accelerators potentially cause similar problems as power-intensive closely coupled
accelerators, yet require different approaches.

For example, many recent CPUs for desktop or mobile systems have an integrated GPU
and employ techniques to dynamically allocate parts of the power budget to CPU cores
and the GPU [34]. If the GPU of these systems is idle, the full power budget is available to
the CPU cores, while the CPU cores reduce their frequency when an application uses the
GPU. Such power management can lead to performance isolation problems similar to those
covered in Chapter 7. Future work should test whether scheduling based on energy or
schedulers that deprioritize the CPU portion of GPU applications similar to our approach
described in Chapter 7 can improve performance isolation.

150



Bibliography

[12]

[13]

[GLIBC] Fix glibc AVX frequency problems. https://bugs.launchpad.net/linux/
+bug/1727136.

Karim Abbas. Handbook of Digital CMOS Technology, Circuits, and Systems. Springer
Nature, 2020.

Ole Agesen et al. “The Evolution of an x86 Virtual Machine Monitor”. In: ACM
SIGOPS Operating Systems Review 44.4 (2010), pp. 3-18.

Paul Alcorn. Intel Unveils New Xeon Roadmap, E-Cores Coming to the Data Center.
https://www. tomshardware. com/news/intel - unveils - new - xeon - roadmap -
brings-e-cores-to-the-data-center. Feb. 2022.

AMD Ryzen™ Technology: Precision Boost 2 Performance Enhancement. https://
www .amd.com/en/support/kb/faq/cpu-pb2.

Alexandre Aminot et al. “Floating Point Units Efficiency in Multi-Core Processors”.
In: Proceedings of the 28th International Conference on the Architecture of Computing
Systems (ARCS 2015). VDE. 2015, pp. 1-8.

Glenn Ammons, Thomas Ball, and James R. Larus. “Exploiting Hardware Perfor-
mance Counters with Flow and Context Sensitive Profiling”. In: ACM Sigplan
Notices 32.5 (1997), pp. 85-96.

Jennifer M. Anderson et al. “Continuous Profiling: Where Have All the Cycles
Gone?” In: ACM Transactions on Computer Systems (TOCS) 15.4 (1997), pp. 357-390.

Murali Annavaram, Edward Grochowski, and John Shen. “Mitigating Amdahl’s
Law Through EPI Throttling”. In: Proceedings of the 32nd International Symposium
on Computer Architecture (ISCA’05). IEEE. 2005, pp. 298-309.

Ziya Aral and Ilya Gertner. “Non-Intrusive and Interactive Profiling in Parasight”.
In: ACM Sigplan Notices 23.9 (1988), pp. 21-30.

Arm DynamlIQ Shared Unit-110 Technical Reference Manual — Cluster configurations.
https : / / developer . arm. com/ documentation /102639 / 0201 / The - DynamIQ -
Shared-Unit-110/Cluster-configurations. ARM.

Muhammad Ali Awan and Stefan M. Petters. “Race-to-halt energy saving strategies”.
In: Journal of Systems Architecture 60.10 (2014), pp. 796-815.

Saisanthosh Balakrishnan et al. “The Impact of Performance Asymmetry in Emerg-
ing Multicore Architectures”. In: Proceedings of the 32nd International Symposium
on Computer Architecture (ISCA’05). IEEE. 2005, pp. 506-517.

151


https://bugs.launchpad.net/linux/+bug/1727136
https://bugs.launchpad.net/linux/+bug/1727136
https://www.tomshardware.com/news/intel-unveils-new-xeon-roadmap-brings-e-cores-to-the-data-center
https://www.tomshardware.com/news/intel-unveils-new-xeon-roadmap-brings-e-cores-to-the-data-center
https://www.amd.com/en/support/kb/faq/cpu-pb2
https://www.amd.com/en/support/kb/faq/cpu-pb2
https://developer.arm.com/documentation/102639/0201/The-DynamIQ-Shared-Unit-110/Cluster-configurations
https://developer.arm.com/documentation/102639/0201/The-DynamIQ-Shared-Unit-110/Cluster-configurations

Bibliography

[14]

[15]

[16]

[17]

[27]

[28]

152

Thomas Ball and James R. Larus. “Optimally Profiling and Tracing Programs”. In:
ACM Transactions on Programming Languages and Systems (TOPLAS) 16.4 (1994),
pp. 1319-1360.

Antonio Barbalace et al. “Popcorn: Bridging the Programmability Gap in Heteroge-
neous-ISA Platforms”. In: Proceedings of the Tenth European Conference on Computer
Systems (EuroSys’15). 2015, pp. 1-16.

John Bardeen and Walter Hauser Brattain. “The Transistor, A Semi-Conductor
Triode”. In: Physical Review 74.2 (1948), p. 230.

Adrian Barredo et al. “Efficiency Analysis of Modern Vector Architectures: Vector
ALU Sizes, Core Counts and Clock Frequencies”. In: The Journal of Supercomputing
(2019), pp. 1960-1979.

David M. Beazley, Brian D. Ward, and Ian R. Cooke. “The Inside Story on Shared
Libraries and Dynamic Loading”. In: Computing in Science & Engineering 3.5 (2001),
pp- 90-97.

Adam Belay et al. “Dune: Safe User-level Access to Privileged CPU Features”.
In: Proceedings of the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’12). USENIX Association. 2012, pp. 335-348.

Frank Bellosa et al. “Event-Driven Energy Accounting for Dynamic Thermal Man-
agement”. In: Proceedings of the Workshop on Compilers and Operating Systems for
Low Power (COLP’03). Vol. 22. 2003.

benchdnn — OneDNN 2.3.2. https://github.com/oneapi-src/oneDNN/blob/v2.3.
2/tests/benchdnn/README . md.

Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. “A Survey of Design
Techniques for System-Level Dynamic Power Management”. In: IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 8.3 (2000), pp. 299-316.

Malini K. Bhandaru and Eric J. DeHaemer. Providing energy efficient turbo operation
of a processor. US Patent 9,354,689. May 2016.

Sharath K. Bhat et al. “Harnessing Energy Efficiency of Heterogeneous-ISA Plat-
forms”. In: ACM SIGOPS Operating Systems Review 49.2 (2016), pp. 65-69.

Christian Bienia. “Benchmarking Modern Multiprocessors”. Ph.D. Thesis. Princeton
University, Jan. 2011.

Christian Bienia et al. “The PARSEC Benchmark Suite: Characterization and Ar-
chitectural Implications”. In: Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques (PACT’08). 2008, pp. 72-81.

Nathan Binkert et al. “The gem5 Simulator”. In: ACM SIGARCH Computer Architec-
ture News 39.2 (2011), pp. 1-7.

Emily Blem, Jaikrishnan Menon, and Karthikeyan Sankaralingam. “Power Struggles:
Revisiting the RISC vs. CISC Debate on Contemporary ARM and x86 Architectures”.
In: Proceedings of the 19th International Symposium on High Performance Computer
Architecture (HPCA’13). IEEE. 2013, pp. 1-12.


https://github.com/oneapi-src/oneDNN/blob/v2.3.2/tests/benchdnn/README.md
https://github.com/oneapi-src/oneDNN/blob/v2.3.2/tests/benchdnn/README.md

[39]

[40]
[41]

[42]

Nadav Bonen et al. Performing local power gating in a processor. US Patent 9,772,674.
Sept. 2017.

Shekhar Borkar. “Low Power Design Challenges for the Decade”. In: Proceedings of
the 2001 Asia and South Pacific Design Automation Conference (ASP-DAC’01). 2001,
pp- 293-296.

Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel: From I/O Ports
to Process Management. 3rd ed. O'Reilly Media, Inc., 2005.

Keith A. Bowman, Steven G. Duvall, and James D. Meindl. “Impact of Die-to-
Die and Within-Die Parameter Fluctuations on the Maximum Clock Frequency
Distribution for Gigascale Integration”. In: IEEE Journal of Solid-State Circuits 37.2
(2002), pp. 183-190.

Keith A. Bowman et al. “A 16 nm All-Digital Auto-Calibrating Adaptive Clock
Distribution for Supply Voltage Droop Tolerance Across a Wide Operating Range”.
In: IEEE Journal of Solid-State Circuits 51.1 (2015), pp. 8-17.

Alexander Branover, Denis Foley, and Maurice Steinman. “Amd Fusion APU: Llano”.
In: IEEE Micro 32.2 (2012), pp. 28-37.

Peter Brantsch. “Core Specialization for AVX-512 Using Fault-and-Migrate”. Mas-
ter’s Thesis. Operating Systems Group, Karlsruhe Institute of Technology (KIT),
Germany, July 2019.

Ferdinand Braun. “Ueber die Stromleitung durch Schwefelmetalle”. In: Annalen der
Physik 229.12 (1875), pp. 556-563.

Dominik Brodowski et al. “CPU frequency and voltage scaling code in the Linux
(tm) kernel”. In: Linux kernel documentation (2013). https://www.kernel.org/doc/
Documentation/cpu-freq/governors.txt, p. 66.

John Bruno et al. “Disk Scheduling with Quality of Service Guarantees”. In: Pro-
ceedings of the 1999 IEEE International Conference on Multimedia Computing and
Systems (ICMCS’99). Vol. 2. IEEE. 1999, pp. 400—405.

James R. Bulpin and Ian A. Pratt. “Multiprogramming Performance of the Pentium 4
with Hyper-Threading”. In: Second Annual Workshop on Duplicating, Deconstruction
and Debunking (WDDD). 2004, p. 53.

C-States — ACPIL https://en.wikichip.org/wiki/acpi/c-states.

Juan M. Cebrian, Lasse Natvig, and Magnus Jahre. “Scalability analysis of AVX-512
extensions”. In: The Journal of Supercomputing (2019), pp. 1-16.

Timothy J. Chainer et al. “Improving Data Center Energy Efficiency With Ad-
vanced Thermal Management”. In: IEEE Transactions on Components, Packaging
and Manufacturing Technology 7.8 (2017), pp. 1228-1239.

Rohit Chandra et al. “Scheduling and Page Migration for Multiprocessor Compute
Servers”. In: ACM SIGOPS Operating Systems Review 28.5 (1994), pp. 12-24.

Anantha P. Chandrakasan, Samuel Sheng, and Robert W. Brodersen. “Low-Power
CMOS Digital Design”. In: IEICE Transactions on Electronics 75.4 (1992), pp. 371-382.

153


https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://en.wikichip.org/wiki/acpi/c-states

Bibliography

[45]

[46]

[47]

[48]

[49]

[50]

[53]
[54]

[55]

[59]

154

Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. “Comparison of the Three
CPU Schedulers in Xen”. In: ACM SIGMETRICS Performance Evaluation Review 35.2
(2007), pp. 42-51.

Minki Cho et al. “Postsilicon Voltage Guard-Band Reduction in a 22 nm Graphics
Execution Core Using Adaptive Voltage Scaling and Dynamic Power Gating”. In:
IEEE Journal of Solid-State Circuits 52.1 (2016), pp. 50-63.

George Chrysos. “Intel® Xeon Phi coprocessor (codename Knights Corner)”. In:
Hot Chips 24 Symposium (HCS). IEEE. 2012, pp. 1-31.

James Cipar et al. “Solving the straggler problem with bounded staleness”. In:
Proceedings of the 14th USENIX Conference on Hot Topics in Operating Systems
(HotOS’13). USENIX Association, 2013.

Lucian Codrescu et al. “Hexagon DSP: An Architecture Optimized for Mobile
Multimedia and Communications”. In: IEEE Micro 34.2 (2014), pp. 34—-43.

Edward G. Coffman Jr. and Leonard Kleinrock. “Computer scheduling methods and
their countermeasures”. In: Proceedings of the April 30-May 2, 1968, Spring Joint
Computer Conference (AFIPS’68 (Spring)). 1968, pp. 11-21.

Katherine Compton, Scott Hauck, et al. “An Introduction to Reconfigurable Com-
puting”. In: IEEE Computer 9 (2000).

Theofanis Constantinou et al. “Performance Implications of Single Thread Migra-
tion on a Chip Multi-Core”. In: ACM SIGARCH Computer Architecture News 33.4
(2005), pp. 80-91.

Jonathan Corbet. Core scheduling. https://lwn.net/Articles/780703/. Feb. 2019.

Jonathan Corbet. Core scheduling lands in 5.14. https://lwn.net/Articles/
861251/. July 2021.

Jonathan Corbet. Many uses for Core scheduling. https://lwn.net/Articles/
799454/. Sept. 2019.

Core Scheduling. https://www.kernel.org/doc/html/latest/admin-guide/hw-
vuln/core-scheduling.html.

Marius Cornea. “Intel® AVX-512 Instructions and Their Use in the Implementation
of Math Functions”. In: Intel Corporation (2015).

Ian Cutress. Intel’s 10nm Cannon Lake and Core i3-8121U Deep Dive Review. https:
//www . anandtech. com/show/13405/intel - 10nm- cannon - lake - and - core-i3-
8121u-deep-dive-review. Jan. 2019.

Ian Cutress. The AMD 2nd Gen Ryzen Deep Dive: The 2700X, 2700, 2600X, and 2600
Tested. https : / /www . anandtech . com/ show/ 12625/ amd - second - generation -
ryzen-7-2700x-2700- ryzen-5-2600x-2600. Apr. 2018.

Sivarama P. Dandamudi. “Reducing Run Queue Contention in Shared Memory
Multiprocessors”. In: Computer 30.3 (1997), pp. 82—-89.

Andrew Danowitz et al. “CPU DB: Recording Microprocessor History”. In: Com-
munications of the ACM 55.4 (2012), pp. 55-63.


https://lwn.net/Articles/780703/
https://lwn.net/Articles/861251/
https://lwn.net/Articles/861251/
https://lwn.net/Articles/799454/
https://lwn.net/Articles/799454/
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/core-scheduling.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/core-scheduling.html
https://www.anandtech.com/show/13405/intel-10nm-cannon-lake-and-core-i3-8121u-deep-dive-review
https://www.anandtech.com/show/13405/intel-10nm-cannon-lake-and-core-i3-8121u-deep-dive-review
https://www.anandtech.com/show/13405/intel-10nm-cannon-lake-and-core-i3-8121u-deep-dive-review
https://www.anandtech.com/show/12625/amd-second-generation-ryzen-7-2700x-2700-ryzen-5-2600x-2600
https://www.anandtech.com/show/12625/amd-second-generation-ryzen-7-2700x-2700-ryzen-5-2600x-2600

[64]

[65]

[66]

[68]

[69]

[72]

(73]

Jeffrey Dean and Luiz André Barroso. “The Tail at Scale”. In: Communications of
the ACM 56.2 (2013), pp. 74-80.

Alan Demers, Srinivasan Keshav, and Scott Shenker. “Analysis and Simulation of a
Fair Queueing Algorithm”. In: ACM SIGCOMM Computer Communication Review
19.4 (1989), pp. 1-12.

Robert H. Dennard et al. “Design of Ion-Implanted MOSFET’s with Very Small
Physical Dimensions”. In: IEEE Journal of Solid-State Circuits 9.5 (1974), pp. 256-268.

Jay Desai. Barrier Synchronization in Threads. https://medium.com/@jaydesai36/
barrier-synchronization-in-threads-3c56f947047. June 2020.

Gaurav Dhiman and Tajana Simunic Rosing. “Dynamic Power Management Using
Machine Learning”. In: Proceedings of the 2006 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD’06). 2006, pp. 747-754.

Travis Downs. Dirty upper 256 causes everything to run at AVX-512 frequencies.
https://www. realworldtech.com/forum/?threadid=179700&curpostid=179700.
Aug. 2018.

Travis Downs. Gathering Intel on Intel AVX-512 Transitions. https://travisdowns.
github.io/blog/2020/01/17/avxfreql.html. Jan. 2020.

Markus Dreseler et al. “Fused Table Scans: Combining AVX-512 and JIT to Dou-
ble the Performance of Multi-Predicate Scans”. In: 2018 IEEE 34th International
Conference on Data Engineering Workshops (ICDEW). IEEE. 2018, pp. 102-109.

Dual-Core Intel® Xeon® Processor 5100 Series Datasheet. Intel Corporation, Aug.
2007.

Hadi Esmaeilzadeh et al. “Dark Silicon and the End of Multicore Scaling”. In:
Proceedings of the 38th Annual International Symposium on Computer Architecture
(ISCA’11). IEEE. 2011, pp. 365-376.

Stijn Eyerman and Lieven Eeckhout. “A Counter Architecture for Online DVFS
Profitability Estimation”. In: IEEE Transactions on Computers 59.11 (2010), pp. 1576—
1583.

Krisztian Flautner, Steve Reinhardt, and Trevor Mudge. “Automatic Performance
Setting for Dynamic Voltage Scaling”. In: Wireless networks 8.5 (2002), pp. 507-520.

Matt Fleming. A survey of scheduler benchmarks. https://lwn.net/Articles/
725238/. June 2017.

Andrei Frumusanu. Intel 3rd Gen Xeon Scalable (Ice Lake SP) Review: Generationally
Big, Competitively Small. https://www.anandtech.com/show/16594/intel-3rd-
gen-xeon-scalable- review. Apr. 2021.

Johan de Gelas. Intel Xeon E5 Version 3: Up to 18 Haswell EP Cores. https://www.
anandtech.com/show/8423/intel-xeon-e5-version-3-up-to-18-haswell-ep-
cores-. Sept. 2014.

155


https://medium.com/@jaydesai36/barrier-synchronization-in-threads-3c56f947047
https://medium.com/@jaydesai36/barrier-synchronization-in-threads-3c56f947047
https://www.realworldtech.com/forum/?threadid=179700&curpostid=179700
https://travisdowns.github.io/blog/2020/01/17/avxfreq1.html
https://travisdowns.github.io/blog/2020/01/17/avxfreq1.html
https://lwn.net/Articles/725238/
https://lwn.net/Articles/725238/
https://www.anandtech.com/show/16594/intel-3rd-gen-xeon-scalable-review
https://www.anandtech.com/show/16594/intel-3rd-gen-xeon-scalable-review
https://www.anandtech.com/show/8423/intel-xeon-e5-version-3-up-to-18-haswell-ep-cores-
https://www.anandtech.com/show/8423/intel-xeon-e5-version-3-up-to-18-haswell-ep-cores-
https://www.anandtech.com/show/8423/intel-xeon-e5-version-3-up-to-18-haswell-ep-cores-

Bibliography

[77] Johan de Gelas. The Intel Xeon E5 v4 Review: Testing Broadwell-EP With Demanding

[78]

[79]

[82]

[83]

[84]

[86]

[87]

156

Server Workloads. https://www.anandtech.com/show/10158/the-intel-xeon-e5-
v4- review. Mar. 2016.

Patrick P Gelsinger. “Microprocessors for the New Millennium: Challenges, Op-
portunities, and New Frontiers”. In: 2001 IEEE International Solid-State Circuits
Conference (ISSCC). Digest of Technical Papers. IEEE. 2001, pp. 22-25.

Alex Gendler, Ernest Knoll, and Yiannakis Sazeides. “I-DVFS: Instantaneous Fre-
quency Switch During Dynamic Voltage and Frequency Scaling”. In: IEEE Micro
41.5 (2021), pp. 76-84.

Fabian Giesen. avx_sigh.md — why doesn’t radfft support AVX on PC? https://gist.
github.com/rygorous/32bc3ea8301dba09358fd2c64e02d774. May 2018.

Martin Goll and Shay Gueron. “Vectorization of Poly1305 Message Authentication
Code”. In: Proceedings of the 12th International Conference on Information Technology:
New Generations (ITNG’15). IEEE. 2015, pp. 145-150.

Martin Goll and Shay Gueron. “Vectorization on ChaCha Stream Cipher”. In: Pro-
ceedings of the 11th International Conference on Information Technology: New Gener-
ations (ITNG’14). IEEE. 2014, pp. 612-615.

Mathias Gottschlag and Frank Bellosa. Mechanism to Mitigate AVX-Induced Fre-
quency Reduction. 2018. arXiv: 1901.04982 [cs.DC].

Mathias Gottschlag and Frank Bellosa. “Reducing AVX-Induced Frequency Varia-
tion With Core Specialization”. In: The 9th Workshop on Systems for Multi-core and
Heterogeneous Architectures(SFMA). Dresden, Germany, Mar. 2019.

Mathias Gottschlag, Peter Brantsch, and Frank Bellosa. “Automatic Core Special-
ization for AVX-512 Applications”. In: Proceedings of the 13th ACM International
Systems and Storage Conference (SYSTOR’20). 2020, pp. 25-35.

Mathias Gottschlag, Yussuf Khalil, and Frank Bellosa. Dim Silicon and the Case for
Improved DVES Policies. 2020. arXiv: 2005.01498 [cs.0S].

Mathias Gottschlag, Tim Schmidt, and Frank Bellosa. “AVX Overhead Profiling:
How Much Does Your Fast Code Slow You Down?” In: Proceedings of the 11th ACM
SIGOPS Asia-Pacific Workshop on Systems (APSys’20). 2020, pp. 59-66.

Mathias Gottschlag et al. “Fair Scheduling for AVX2 and AVX-512 Workloads”. In:
Proceedings of the 2021 USENIX Annual Technical Conference (USENIX ATC ’21).
USENIX Association. 2021, pp. 745-758.

Redha Gouicem et al. “Fewer Cores, More Hertz: Leveraging High-Frequency Cores
in the OS Scheduler for Improved Application Performance”. In: Proceedings of the
2020 USENIX Annual Technical Conference (USENLX ATC "20). USENIX Association.
2020, pp. 435-448.

Peter Greenhalgh. Big. LITTLE processing with ARM Cortex-A15 & Cortex-A7. https:
//www.eetimes.com/big- little- processing-with-arm- cortex-al5- cortex-
a7/.Oct. 2011.


https://www.anandtech.com/show/10158/the-intel-xeon-e5-v4-review
https://www.anandtech.com/show/10158/the-intel-xeon-e5-v4-review
https://gist.github.com/rygorous/32bc3ea8301dba09358fd2c64e02d774
https://gist.github.com/rygorous/32bc3ea8301dba09358fd2c64e02d774
https://arxiv.org/abs/1901.04982
https://arxiv.org/abs/2005.01498
https://www.eetimes.com/big-little-processing-with-arm-cortex-a15-cortex-a7/
https://www.eetimes.com/big-little-processing-with-arm-cortex-a15-cortex-a7/
https://www.eetimes.com/big-little-processing-with-arm-cortex-a15-cortex-a7/

[92]

[93]

[95]

[96]

[99]

[100]

[101]

[102]

[103]

[104]

Aaron Grenat et al. “Increasing the Performance of a 28nm x86-64 Microprocessor
Through System Power Management”. In: Proceedings of the 2016 IEEE International
Solid-State Circuits Conference (ISSCC). IEEE. 2016, pp. 74-75.

Ed Grochowski et al. “Best of Both Latency and Throughput”. In: IEEE International
Conference on Computer Design: VLSI in Computers and Processors, 2004. ICCD 2004.
Proceedings. IEEE. 2004, pp. 236-243.

Amina Guermouche and Anne-Cécile Orgerie. “Experimental analysis of vectorized
instructions impact on energy and power consumption under thermal design power
constraints”. In: (2019). Research Report.

Vishakha Gupta et al. “Kinship: Efficient Resource Management for Performance
and Functionally Asymmetric Platforms”. In: Proceedings of the ACM International
Conference on Computing Frontiers. ACM. 2013, p. 16.

Daniel Hackenberg et al. “An Energy Efficiency Feature Survey of the Intel Haswell
Processor”. In: Proceedings of the 2015 IEEE International Parallel and Distributed
Processing Symposium Workshop (IPDPSW). IEEE. 2015, pp. 896-904.

Daniel Hagimont et al. “DVFS Aware CPU Credit Enforcement in a Virtualized
System”. In: Proceedings of the ACM/IFIP/USENIX 14th International Middleware
Conference (Middleware 2013). Springer. 2013, pp. 123-142.

Per Hammarlund et al. “Haswell: The Fourth-Generation Intel Core Processor”. In:
IEEE Micro 34.2 (2014), pp. 6-20.

Jie Han and Michael Orshansky. “Approximate Computing: An Emerging Paradigm
For Energy-Efficient Design”. In: 2013 18th IEEE European Test Symposium (ETS).
IEEE. 2013, pp. 1-6.

Richard A. Hankins et al. “Multiple Instruction Stream Processor”. In: Proceedings
of the 33rd International Symposium on Computer Architecture (ISCA’06). IEEE. 2006,
pp- 114-127.

Nikos Hardavellas et al. “Toward Dark Silicon in Servers”. In: IEEE Micro 31.4 (2011),
pp- 6—15.

Ranjan Hebbar SR and Aleksandar Milenkovi¢. “Impact of Thread and Frequency
Scaling on Performance and Energy Efficiency: An Evaluation of Core i7-8700K
Using SPEC CPU2017”. In: 2019 SoutheastCon. IEEE. 2019, pp. 1-7.

Ranjan Hebbar SR and Aleksandar Milenkovi¢. “SPEC CPU2017: Performance,
Event, and Energy Characterization on the Core i7-8700K”. In: Proceedings of the
2019 ACM/SPEC International Conference on Performance Engineering. 2019, pp. 111~
118.

John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. 5th ed. Morgan Kaufmann, 2012. 1sBN: 9780123838728.

Seongmoo Heo, Kenneth Barr, and Krste Asanovi¢. “Reducing Power Density
Through Activity Migration”. In: Proceedings of the 2003 International Symposium
on Low Power Electronics and Design. 2003, pp. 217-222.

157



Bibliography

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

158

Gael Hofemeier and Robert Chesebrough. “Introduction to Intel AES-NI and Intel
Secure Key Instructions”. In: Intel, White Paper (2012).

H. Peter Hofstee. “Power Efficient Processor Architecture and The Cell Processor”.
In: Proceedings of the 11th International Symposium on High-Performance Computer
Architecture (HPCA’05). IEEE. 2005, pp. 258—-262.

Mark Horowitz, Thomas Indermaur, and Ricardo Gonzalez. “Low-Power Digital
Design”. In: Proceedings of 1994 IEEE Symposium on Low Power Electronics. IEEE.
1994, pp. 8-11.

Chung-Hsing Hsu and Ulrich Kremer. “The Design, Implementation, and Evaluation
of a Compiler Algorithm for CPU Energy Reduction”. In: Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implementation.
2003, pp. 38-48.

Song Huang, Shucai Xiao, and Wu-chun Feng. “On the Energy Efficiency of Graph-
ics Processing Units for Scientific Computing”. In: Proceedings of the 2009 IEEE
International Symposium on Parallel & Distributed Processing (IPDPS°09). IEEE. 2009,
pp- 1-8.

Wei Huang et al. “Scaling with Design Constraints: Predicting the Future of Big
Chips”. In: IEEE Micro 31.4 (2011), pp. 16-29.

Thomas Ilsche. “Energy Measurements of High Performance Computing Systems:
From Instrumentation to Analysis”. Ph.D. Thesis. TU Dresden, July 2020.

Hiroshi Inoue. “How SIMD Width Affects Energy Efficiency: A Case Study on
Sorting”. In: 2016 IEEE Symposium in Low-Power and High-Speed Chips (COOL
CHIPS XIX). IEEE. 2016, pp. 1-3.

Intel® 64 and IA-32 Architectures Optimization Reference Manual. Intel Corporation,
Sept. 2019.

Intel® 64 and IA-32 Architectures Software Developer’s Manual - Volume 1: Basic
Architecture. Intel Corporation, May 2018.

Intel® 64 and IA-32 Architectures Software Developer’s Manual - Volume 2 (2A, 2B,
2C & 2D): Instruction Set Reference, A-Z. Intel Corporation, May 2018.

Intel® 64 and IA-32 Architectures Software Developer’s Manual - Volume 3 (3A, 3B,
3C & 3D): System Programming Guide. Intel Corporation, May 2018.

Intel® Turbo Boost Technology in Intel® Core™ Microarchitecture (Nehalem) Based
Processors. Tech. rep. http://web . archive.org/web/20081221055920 / http :
//download.intel.com/design/processor/applnots/320354.pdf?iid=tech_tb+
paper. Nov. 2008.

Intel® Xeon® Processor E5 v3 Product Family — Specification Update. Intel Corpora-
tion, Feb. 2016.

Intel® Xeon® Processor Scalable Family — Specification Update. Intel Corporation,
Feb. 2018.


http://web.archive.org/web/20081221055920/http://download.intel.com/design/processor/applnots/320354.pdf?iid=tech_tb+paper
http://web.archive.org/web/20081221055920/http://download.intel.com/design/processor/applnots/320354.pdf?iid=tech_tb+paper
http://web.archive.org/web/20081221055920/http://download.intel.com/design/processor/applnots/320354.pdf?iid=tech_tb+paper

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

Gangyong Jia et al. “DTS: Using Dynamic Time-slice Scaling to Address the OS
Problem Incurred by DVFS”. In: Proceedings of the 2012 IEEE International Conference
on Cluster Computing Workshops. IEEE. 2012, pp. 65-72.

M. Jones. Inside the Linux 2.6 Completely Fair Scheduler. https://lwn.net/Articl
es/725238/. Sept. 2018.

Michael B. Jones, Daniela Rosu, and Marcel-Cétalin Rosu. “CPU Reservations and
Time Constraints: Efficient, Predictable Scheduling of Independent Activities”. In:
ACM SIGOPS Operating Systems Review 31.5 (1997), pp. 198-211.

Russ Joseph, David Brooks, and Margaret Martonosi. “Control Techniques to Elim-
inate Voltage Emergencies in High Performance Processors”. In: Proceedings of
the Ninth International Symposium on High-Performance Computer Architecture
(HPCA-9 2003). IEEE. 2003, pp. 79-90.

Jim Kahle. “The Cell Processor Architecture”. In: Proceedings of the 38th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’05). IEEE. 2005,

pp- 3-3.

Manuel Kalmbach et al. TurboCC: A Practical Frequency-Based Covert Channel with
Intel Turbo Boost. 2020. arXiv: 2007.07046 [cs.CR].

Vijay Kiran Kalyanam et al. “A Proactive Voltage-Droop-Mitigation System in a
7nm Hexagon™ Processor”. In: 2020 IEEE Symposium on VLSI Circuits. IEEE. 2020,

pp- 1-2.

Anna R. Karlin et al. “Competitive Randomized Algorithms for Nonuniform Prob-
lems”. In: Algorithmica 11.6 (1994), pp. 542-571.

Harshad Kasture and Daniel Sanchez. “TailBench: A Benchmark Suite and Evalua-
tion Methodology for Latency-Critical Applications”. In: 2016 IEEE International
Symposium on Workload Characterization (ISWC). IEEE. 2016, pp. 1-10.

Judy Kay and Piers Lauder. “A Fair Share Scheduler”. In: Communications of the
ACM 31.1 (1988), pp. 44-55.

Georgios Keramidas, Vasileios Spiliopoulos, and Stefanos Kaxiras. “Interval-Based
Models for Run-Time DVFS Orchestration in SuperScalar Processors”. In: Proceed-
ings of the 7th ACM International Conference on Computing Frontiers. 2010, pp. 287-
296.

Yussuf Khalil. “Analysis and Optimization of Dynamic Voltage and Frequency
Scaling for AVX Workloads Using a Software-Based Reimplementation”. Bache-
lor’s Thesis. Operating Systems Group, Karlsruhe Institute of Technology (KIT),
Germany, Sept. 2019.

Jack S. Kilby. “Invention of the Integrated Circuit”. In: I[EEE Transactions on Electron
Devices 23.7 (1976), pp. 648—654.

Nam Sung Kim et al. “Leakage Current: Moore’s Law Meets Static Power”. In:
Computer 36.12 (2003), pp. 68-75.

159


https://lwn.net/Articles/725238/
https://lwn.net/Articles/725238/
https://arxiv.org/abs/2007.07046

Bibliography

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

160

Young Duk Kim et al. “A 7nm High-Performance and Energy-Efficient Mobile
Application Processor with Tri-Cluster CPUs and a Sparsity-Aware NPU”. In: 2020
IEEE International Solid-State Circuits Conference (ISSCC). IEEE. 2020, pp. 48—-50.

Donald E. Knuth. “An Empirical Study of FORTRAN Programs”. In: Software:
Practice and Experience 1.2 (1971), pp. 105-133.

Con Kolivas. 5.14 and the future of MuQSS and -ck once again. http://ck-hack.
blogspot.com/2021/08/514 - and - future- of - mugss - and - ck - once . html. Aug.
2021.

Con Kolivas. First MuQSS Throughput Benchmarks. http://ck-hack.blogspot.
com/2016/10/first-mugss-throughput-benchmarks.html. Oct. 2016.

Con Kolivas. linux-5.9-ck1, MuQSS version 0.204 for linux-5.9. https://ck- hack.
blogspot.com/2020/10/1linux-59 - ckl - mugss - version- 0204 - for. html. Oct.
2020.

Con Kolivas. MuQSS - The Multiple Queue Skiplist Scheduler. http://ck.kolivas.
org/patches/mugss/sched-MuQSS. txt.

Con Kolivas. Runqueue sharing experiments with MuQSS. https://ck-hack.blogs
pot.com/2017/11/runqueue-sharing-experiments-with-mugss.html. Nov. 2017.

Vlad Krasnov. On the dangers of Intel’s frequency scaling. https://blog.cloudfla
re.com/on-the-dangers-of-intels-frequency-scaling/. Oct. 2017.

Rakesh Kumar, Alejandro Martinez, and Antonio Gonzalez. “Efficient Power Gating
of SIMD Accelerators Through Dynamic Selective Devectorization in an HW/SW
Codesigned Environment”. In: ACM Transactions on Architecture and Code Opti-
mization (TACO) 11.3 (2014), p. 25.

Rakesh Kumar et al. “Heterogeneous Chip Multiprocessors”. In: Computer 38.11
(2005), pp. 32-38.

Viren Kumar and Alexandra Fedorova. “Towards Better Performance Per Watt in
Virtual Environments on Asymmetric Single-ISA Multi-core Systems”. In: ACM
SIGOPS Operating Systems Review 43.3 (2009), pp. 105-109.

Julia Lawall et al. “OS Scheduling with Nest: Keeping Tasks Close Together on
Warm Cores”. In: Proceedings of the Seventeenth European Conference on Computer
Systems (EuroSys’22). 2022, pp. 368—383.

Min Lee and Karsten Schwan. “Region Scheduling: Efficiently Using the Cache
Architectures via Page-level Affinity”. In: ACM SIGARCH Computer Architecture
News. Vol. 40. 1. ACM. 2012, pp. 451-462.

Sang-Jeong Lee, Hae-Kag Lee, and Pen-Chung Yew. “Runtime Performance Pro-
jection Model for Dynamic Power Management”. In: Asia-Pacific Conference on
Advances in Computer Systems Architecture. Springer. 2007, pp. 186-197.

Charles R. Lefurgy et al. “Active Management of Timing Guardband to Save Energy
in POWER?7”. In: Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO-44). IEEE. 2011, pp. 1-11.


http://ck-hack.blogspot.com/2021/08/514-and-future-of-muqss-and-ck-once.html
http://ck-hack.blogspot.com/2021/08/514-and-future-of-muqss-and-ck-once.html
http://ck-hack.blogspot.com/2016/10/first-muqss-throughput-benchmarks.html
http://ck-hack.blogspot.com/2016/10/first-muqss-throughput-benchmarks.html
https://ck-hack.blogspot.com/2020/10/linux-59-ck1-muqss-version-0204-for.html
https://ck-hack.blogspot.com/2020/10/linux-59-ck1-muqss-version-0204-for.html
http://ck.kolivas.org/patches/muqss/sched-MuQSS.txt
http://ck.kolivas.org/patches/muqss/sched-MuQSS.txt
https://ck-hack.blogspot.com/2017/11/runqueue-sharing-experiments-with-muqss.html
https://ck-hack.blogspot.com/2017/11/runqueue-sharing-experiments-with-muqss.html
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

Rob Lembree. X Display Power Management Signaling (DPMS) Extension Protocol
Specification. https://www.x.org/releases/X11R7.7/doc/xextproto/dpms.html.
1996.

Daniel Lemire. AVX-512 throttling: heavy instructions are maybe not so dangerous.
https://lemire.me/blog/2018/08/25/avx-512-throttling-heavy-instructio
ns-are-maybe-not-so-dangerous/. Aug. 2018.

Daniel Lemire and Travis Downs. AVX-512: when and how to use these new instruc-
tions. https://lemire.me/blog/2018/09/07/avx-512-when-and-how-to-use-
these-new-instructions/. Sept. 2018.

Ari Lemmetti et al. “AVX2-optimized Kvazaar HEVC intra encoder”. In: 2016 IEEE
International Conference on Image Processing (ICIP). IEEE. 2016, pp. 549-553.

Jingwen Leng et al. “Safe Limits on Voltage Reduction Efficiency in GPUs: a Direct
Measurement Approach”. In: Proceedings of the 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-48). IEEE. 2015, pp. 294-307.

Aubrey Li. “Core scheduling: prevent fast instructions from slowing you down”.
Linux Plumbers Conference. Sept. 2019. URL: https://linuxplumbersconf.org/
event/4/contributions/430/.

Bo Li, Edgar A. Ledn, and Kirk W. Cameron. “COS: A Parallel Performance Model for
Dynamic Variations in Processor Speed, Memory Speed, and Thread Concurrency”.
In: Proceedings of the 26th International Symposium on High-Performance Parallel
and Distributed Computing. 2017, pp. 155-166.

Sheng Li et al. “CACTI-P: Architecture-Level Modeling for SRAM-based Struc-
tures with Advanced Leakage Reduction Techniques”. In: Proceedings of the 2011
IEEE/ACM International Conference on Computer-Aided Design (ICCAD’11). IEEE.
2011, pp. 694-701.

Tong Li et al. “Operating System Support for Overlapping-ISA Heterogeneous
Multi-core Architectures”. In: Proceedings of the 16th International Symposium on
High Performance Computer Architecture. IEEE. 2010, pp. 1-12.

Libmvec — glibc wiki. https://sourceware.org/glibc/wiki/libmvec.

Ankur Limaye and Tosiron Adegbija. “A Workload Characterization of the SPEC
CPU2017 Benchmark Suite”. In: 2018 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE. 2018, pp. 149-158.

Linux Wireless — Dynamic power save. https://wireless.wiki.kernel.org/en/
users/documentation/dynamic-power-save. 2015.

H. J. Lu. Bug 21396 - Use AVX2 memcpy/memset on Skylake server. https://source
ware.org/bugzilla/show_bug.cgi?id=21396. Apr. 2017.

Huaxiang Lu et al. “SOC Dynamic Power Management Using Artificial Neural
Network”. In: International Conference on Natural Computation. Springer. 2006,
pp. 555-564.

161


https://www.x.org/releases/X11R7.7/doc/xextproto/dpms.html
https://lemire.me/blog/2018/08/25/avx-512-throttling-heavy-instructions-are-maybe-not-so-dangerous/
https://lemire.me/blog/2018/08/25/avx-512-throttling-heavy-instructions-are-maybe-not-so-dangerous/
https://lemire.me/blog/2018/09/07/avx-512-when-and-how-to-use-these-new-instructions/
https://lemire.me/blog/2018/09/07/avx-512-when-and-how-to-use-these-new-instructions/
https://linuxplumbersconf.org/event/4/contributions/430/
https://linuxplumbersconf.org/event/4/contributions/430/
https://sourceware.org/glibc/wiki/libmvec
https://wireless.wiki.kernel.org/en/users/documentation/dynamic-power-save
https://wireless.wiki.kernel.org/en/users/documentation/dynamic-power-save
https://sourceware.org/bugzilla/show_bug.cgi?id=21396
https://sourceware.org/bugzilla/show_bug.cgi?id=21396

Bibliography

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]
[176]

[177]

162

Yung-Hsiang Lu et al. “Quantitative Comparison of Power Management Algo-
rithms”. In: Proceedings of the Design, Automation and Test in Europe Conference
and Exhibition 2000 (DATE’00). IEEE. 2000, pp. 20—-26.

Philipp Machauer. “Faires Scheduling unter Beachtung von AVX-512-Frequenzef-
fekten”. Bachelor Thesis. Operating Systems Group, Karlsruhe Institute of Tech-
nology (KIT), Germany, Sept. 2020.

Allen D. Malony, Daniel A. Reed, and Harry A. G. Wijshoff. “Performance Mea-
surement Intrusion and Perturbation Analysis”. In: IEEE Transactions on Parallel &
Distributed Systems 3.04 (1992), pp. 433-450.

Giuseppe Massari et al. “Towards Fine-Grained DVFS in Embedded Multi-core
CPUs”. In: Proceedings of the 31st International Conference on Architecture of Com-
puting Systems (ARCS 2018). Springer. 2018, pp. 239-251.

Abdelhafid Mazouz et al. “Evaluation of CPU Frequency Transition Latency”. In:
Computer Science - Research and Development 29.3-4 (2014), pp. 187-195.

Chris McClanahan. History and Evolution of GPU Architecture. https://mcclanaho
ochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf. 2010.

Rustam Miftakhutdinov, Eiman Ebrahimi, and Yale N Patt. “Predicting Performance
Impact of DVFS for Realistic Memory Systems”. In: Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-45). IEEE.
2012, pp. 155-165.

Damian Miralles and Jessica Iwamoto. “Accelerating software radios by means of
SIMD Instructions. A case for the AVX2 and AVX512 Extensions”. In: Proceedings
of the GNU Radio Conference. Vol. 3. 1. 2018.

Jeffrey C. Mogul et al. “Using Asymmetric Single-ISA CMPs to Save Energy on
Operating Systems”. In: IEEE Micro 28.3 (2008), pp. 26—41.

Daniel Molka et al. “Characterizing the Energy Consumption of Data Transfers
and Arithmetic Operations on x86-64 Processors”. In: International Conference on
Green Computing. IEEE. 2010, pp. 123-133.

Ingo Molnar. “Modular scheduler core and completely fair scheduler [CFS]”. In:
Linux-Kernel mailing list (Apr. 2007).

G. E. Moore, C. T. Sah, and F. M. Wanlass. “Metal-Oxide-Semiconductor Field-Effect
Devices for Micropower Logic Circuitry”. In: Micropower Electronics (1964), pp. 41—
55.

Gordon E. Moore. Cramming More Components onto Integrated Circuits. 1965.

Guillaume Morin. [BUG] incorrect scaling_max_freq with intel_pstate after offline/on-
line. https://www.spinics.net/lists/kernel/msg3814544 . html. linux-kernel
mailing list.

Vijay Nagarajan et al. “A Primer on Memory Consistency and Cache Coherence”.
In: Synthesis Lectures on Computer Architecture 15.1 (2020), pp. 1-294.


https://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf
https://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf
https://www.spinics.net/lists/kernel/msg3814544.html

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

Oscar Naim and Anthony J. G. Hey. “Invasiveness of Performance Instrumentation
Measurements on Multiprocessors”. In: Proceedings of the IFIP WG10.3 Working
Conference on Applications in Parallel and Distributed Computing (1994), pp. 319-
328.

John Nickolls. “GPU Parallel Computing Architecture and CUDA Programming
Model”. In: Hot Chips 19 Symposium (HCS). IEEE. 2007, pp. 1-12.

Eriko Nurvitadhi et al. “Accelerating Binarized Neural Networks: Comparison
of FPGA, CPU, GPU, and ASIC”. In: 2016 International Conference on Field-Pro-
grammable Technology (FPT). IEEE. 2016, pp. 77-84.

Gerard O’Regan. A Brief History of Computing. 3rd ed. Springer, 2021. 1SBN: 978-3-
030-66599-9.

Takanori Okuma, Tohru Ishihara, and Hiroto Yasuura. “Real-Time Task Scheduling
for a Variable Voltage Processor”. In: Proceedings of the 12th International Symposium
on System Synthesis (1S55°99). IEEE. 1999, pp. 24-29.

OPENMP API Specification: Version 5.0 November 2018 - OMP_WAIT_POLICY. https:
//www.openmp.org/spec-html/5.0/openmpse55. html.

OpenSSL — Cryptography and SSL/TLS Toolkit. https://www.openssl.org/.

Santiago Pagani et al. “TSP: Thermal Safe Power - Efficient power budgeting for
Many-Core Systems in Dark Silicon”. In: Proceedings of the 2014 International
Conference on Hardware/Software Codesign and System Synthesis. 2014, pp. 1-10.

Ajit Pal. Low-Power VLSI Circuits and Systems. Springer, 2015. 1SBN: 978-81-322-
1937-8.

Ioannis Papamanoglou. “Constructing a Library for Mitigating AVX-Induced Per-
formance Degradation”. Master’s Thesis. Operating Systems Group, Karlsruhe
Institute of Technology (KIT), Germany, Mar. 2019.

Irma Esmer Papazian. “New 3rd Gen Intel® Xeon® Scalable Processor (Codename:
Ice Lake-SP)”. In: Hot Chips 32 Symposium (HCS). 2020, pp. 1-22.

Sangyoung Park et al. “Accurate Modeling of the Delay and Energy Overhead of
Dynamic Voltage and Frequency Scaling in Modern Microprocessors”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 32.5
(2013), pp. 695—708.

David A. Patterson and John L. Hennessy. Computer Organization and Design: The
Hardware/Software Interface. 4th ed. The Morgan Kaufmann Series in Computer
Architecture and Design. Morgan Kaufmann, 2012. 1sBN: 9780123747501.

perf-record - Run a command and record its profile into perf.data. perf Manual -
PERF-RECORD(1). Apr. 2021.

perf-sched - Tool to trace/measure scheduler properties (latencies). perf Manual —
PERF-SCHED(1). Nov. 2021.

perf: Linux profiling with performance counters. https://perf.wiki.kernel.org/
index.php/Main_Page.

163


https://www.openmp.org/spec-html/5.0/openmpse55.html
https://www.openmp.org/spec-html/5.0/openmpse55.html
https://www.openssl.org/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page

Bibliography

[194]
[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

164

Phoronix Test Suite. https://phoronix-test-suite.com/.

Andy Polyakov. crypto/x86_64cpuid.pl: suppress AVX512F flag on Skylake-X. https:
//9ithub.com/openssl/openssl/commit/79337628702dc5ff5570f02d6h92eeb02a
310e18. Dec. 2017.

Gerald J. Popek and Robert P. Goldberg. “Formal Requirements for Virtualizable
Third Generation Architectures”. In: Communications of the ACM 17.7 (1974),
pp. 412-421.

Product Brief: Intel® Core™ X-Series Processor Family. https://www.intel.com/
content/www/us/en/products/docs/processors/core/x-series-processor-
family-brief.html.

Henry Qin et al. “Arachne:Core-Aware Thread Management”. In: Proceedings of the
13th USENIX Symposium on Operating Systems Design and Implementation (OSDI’18).
USENIX Association. 2018, pp. 145-160.

Arun Raghavan et al. “Computational Sprinting”. In: Proceedings of the 18th IEEE
International Symposium on High Performance Computer Architecture. IEEE. 2012,

pp- 1-12.

Bharathwaj Raghunathan et al. “Cherry-Picking: Exploiting Process Variations
in Dark-Silicon Homogeneous Chip Multi-Processors”. In: Proceedings of the 2013
Design, Automation & Test in Europe Conference & Exhibition (DATE’13). IEEE. 2013,
pp. 39-44.

Daniel J. Ragland et al. Processors, methods, and systems to adjust maximum clock
frequencies based on instruction type. US Patent App. 15/055,578. Aug. 2017.

Vijay Janapa Reddi et al. “Voltage Smoothing: Characterizing and Mitigating Volt-
age Noise in Production Processors via Software-Guided Thread Scheduling”. In:
Proceedings of the 43rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO-43). IEEE. 2010, pp. 77-88.

Dheeraj Reddy et al. “Bridging Functional Heterogeneity in Multicore Architec-
tures”. In: ACM SIGOPS Operating Systems Review 45.1 (2011), pp. 21-33.

Nir Rosenzweig, Zeev Sperber, and Efraim Rotem. Method and apparatus to control
current transients in a processor. US Patent 9,411,395. Aug. 2016.

Efraim Rotem et al. “Alder Lake Architecture”. In: Hot Chips 33 Symposium (HCS).
IEEE. 2021, pp. 1-23.

Efraim Rotem et al. “Power-Management Architecture of the Intel Microarchitec-
ture Code-Named Sandy Bridge”. In: IEEE Micro 32.2 (2012), pp. 20-27.

Barry Rountree et al. “Practical Performance Prediction Under Dynamic Voltage Fre-
quency Scaling”. In: 2011 International Green Computing Conference and Workshops.
IEEE. 2011, pp. 1-8.

Arjun Roy et al. “Energy Management in Mobile Devices with the Cinder Operating
System”. In: Proceedings of the Sixth Conference on Computer Systems (EuroSys’11).
2011, pp. 139-152.


https://phoronix-test-suite.com/
https://github.com/openssl/openssl/commit/79337628702dc5ff5570f02d6b92eeb02a310e18
https://github.com/openssl/openssl/commit/79337628702dc5ff5570f02d6b92eeb02a310e18
https://github.com/openssl/openssl/commit/79337628702dc5ff5570f02d6b92eeb02a310e18
https://www.intel.com/content/www/us/en/products/docs/processors/core/x-series-processor-family-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/core/x-series-processor-family-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/core/x-series-processor-family-brief.html

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

Juan Carlos Saez et al. “A Comprehensive Scheduler for Asymmetric Multicore
Systems”. In: Proceedings of the 5th European Conference on Computer Systems
(EuroSys’10). ACM. 2010, pp. 139-152.

Subhash Saini et al. “The Impact of Hyper-Threading on Processor Resource Uti-
lization in Production Applications”. In: 2011 18th International Conference on High
Performance Computing. IEEE. 2011, pp. 1-10.

Michael S. Schlansker and B. Ramakrishna Rau. “EPIC: Explicitly Parallel Instruction
Computing”. In: Computer 33.2 (2000), pp. 37-45.

Tim Schmidt. Covert Channel based on AMD Precision Boost 2. Bachelor Thesis. Oct.
2019.

Robert Schone et al. “Energy Efficiency Features of the Intel Skylake-SP Proces-
sor and Their Impact on Performance”. In: 2019 International Conference on High
Performance Computing & Simulation (HPCS). IEEE. 2019, pp. 399-406.

Simon Schubert et al. “Profiling Software for Energy Consumption”. In: 2012 IEEE
International Conference on Green Computing and Communications. IEEE. 2012,
pp. 515-522.

Joseph Schuchart et al. “The Shift from Processor Power Consumption to Per-
formance Variations: Fundamental Implications at Scale”. In: Computer Science -
Research and Development 31.4 (2016), pp. 197-205.

Christian Schwarz. “Stage-Aware Scheduling in a Library OS”. Bachelor’s Thesis.
Operating Systems Group, Karlsruhe Institute of Technology (KIT), Germany, Mar.
2018.

David Shakoori Gustafsson. Linux CPU Schedulers: CFS and MuQSS Comparison.
2021.

Hao Shen and Frédéric Pétrot. “Novel Task Migration Framework on Configurable
Heterogeneous MPSoC Platforms”. In: Proceedings of the 2009 Asia and South Pacific
Design Automation Conference (ASP-DAC’09). IEEE Press. 2009, pp. 733-738.

William Shockley. “The Theory of p-n Junctions in Semiconductors and p-n Junc-
tion Transistors”. In: Bell System Technical Journal 28.3 (1949), pp. 435-489.

Teja Singh et al. “Zen: A Next-Generation High-Performance x86 Core”. In: 2017
IEEE International Solid-State Circuits Conference (ISSCC). IEEE. 2017, pp. 52-53.

Magnus Sjalander, Margaret Martonosi, and Stefanos Kaxiras. “Power-Efficient
Computer Architectures: Recent Advances”. In: Synthesis Lectures on Computer
Architecture 9.3 (2014), pp. 1-96.

Skylake (client) - Microarchitectures - Intel. https://en.wikichip.org/wiki/intel/
microarchitectures/skylake_(client).

Skylake (server) - Microarchitectures - Intel. https://en.wikichip.org/wiki/
intel/microarchitectures/skylake_(server).

165


https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)

Bibliography

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

166

David C. Snowdon et al. “Accurate Run-Time Prediction of Performance Degrada-
tion under Frequency Scaling”. In: Workshop on Operating Systems Platforms for
Embedded Real-Time Applications (OSPERT 2007). 2007, p. 58.

Livio Soares and Michael Stumm. “FlexSC: Flexible System Call Scheduling with
Exception-Less System Calls”. In: Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation (OSDI’10). USENIX Association. 2010,
pp- 33—46.

Avinash Sodani et al. “Knights Landing: Second-Generation Intel Xeon Phi Product”.
In: IEEE Micro 36.2 (2016), pp. 34—46.

Gaurav Somani and Sanjay Chaudhary. “Application Performance Isolation in
Virtualization”. In: 2009 IEEE International Conference on Cloud Computing. IEEE.
2009, pp. 41-48.

Mani B. Srivastava, Anantha P. Chandrakasan, and Robert W. Brodersen. “Predic-
tive System Shutdown and Other Architectural Techniques for Energy Efficient
Programmable Computation”. In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 4.1 (1996), pp. 42-55.

Bo Su et al. “Implementing a Leading Loads Performance Predictor on Commod-
ity Processors”. In: Proceedings of the 2014 USENIX Annual Technical Conference
(USENIX ATC’14). 2014.

M. Aater Suleman et al. “Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures”. In: ACM SIGARCH Computer Architecture News 37.1
(2009), pp. 253-264.

Simon M. Tam et al. “SkyLake-SP: A 14nm 28-Core Xeon® Processor”. In: 2018
IEEE International Solid-State Circuits Conference-(ISSCC). IEEE. 2018, pp. 34-36.

Rizwan Ali Tau Leng et al. “An Empirical Study of Hyper-Threading in High
Performance Computing Clusters”. In: Linux HPC Revolution 45 (2002).

Michael B. Taylor. “A Landscape of the New Dark Silicon Design Regime”. In: IEEE
Micro 33.5 (2013), pp. 8-19.

Michael B. Taylor. “Is Dark Silicon Useful? Harnessing the Four Horsemen of the
Coming Dark Silicon Apocalypse”. In: 49th ACM/EDAC/IEEE Design Automation
Conference. IEEE. 2012, pp. 1131-1136.

The /proc filesystem. https://www.kernel.org/doc/Documentation/filesystems/
proc.txt.

Praveen Kumar Tiwari et al. Accelerating x265 with Intel® Advanced Vector Exten-
sions 512. Tech. rep. Intel, May 2018.

Nathan Tuck and Dean M. Tullsen. “Initial Observations of the Simultaneous
Multithreading Pentium 4 Processor”. In: 2003 12th International Conference on
Parallel Architectures and Compilation Techniques. IEEE. 2003, pp. 26—34.

Turbo Boost Max Technology 3.0 (TBMT) - Intel. https://en.wikichip.org/wiki/
intel/turbo_boost_max_technology.


https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://en.wikichip.org/wiki/intel/turbo_boost_max_technology
https://en.wikichip.org/wiki/intel/turbo_boost_max_technology

[239]

[240]

[241]
[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

[252]

[253]

Paul Turner, Bharata B. Rao, and Nikhil Rao. “CPU bandwidth control for CFS”. In:
Linux Symposium. 2010, p. 245.

Kimiyoshi Usami et al. “Automated Low-Power Technique Exploiting Multiple
Supply Voltages Applied to a Media Processor”. In: IEEE Journal of Solid-State
Circuits 33.3 (1998), pp. 463-472.

M Michael Vai. VLSI Design. CRC Press, 2000.

Ashish Venkat and Dean M. Tullsen. “Harnessing ISA Diversity: Design of a
Heterogeneous-ISA Chip Multiprocessor”. In: ACM SIGARCH Computer Archi-
tecture News 42.3 (2014), pp. 121-132.

Ganesh Venkatesh et al. “Conservation Cores: Reducing the Energy of Mature
Computations”. In: ACM Sigplan Notices 45.3 (2010), pp. 205-218.

Ganesh Venkatesh et al. “QsCores: Trading Dark Silicon for Scalable Energy Effi-
ciency with Quasi-Specific Cores”. In: Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-44). IEEE. 2011, pp. 163-174.

Nicolas Viennot. GitHub — twosigma/libvirtcpuid: libvirtcpuid provides transparent
CPUID virtualization, all in userspace. https://github.com/twosigma/libvirtcpu
id. Two Sigma.

Jons-Tobias Wambhoff et al. “The TURBO Diaries: Application-controlled Frequency
Scaling Explained”. In: Proceedings of the 2014 USENIX Annual Technical Conference
(USENIX ATC 14). USENIX Association. 2014, pp. 193-204.

Zhenghong Wang and Ruby B. Lee. “Covert and Side Channels due to Processor
Architecture”. In: Proceedings of the 22nd Annual Computer Security Applications
Conference (ACSAC’06). IEEE. 2006, pp. 473-482.

Hiroshi Watanabe and Koh M. Nakagawa. “SIMD vectorization for the Lennard-
Jones potential with AVX2 and AVX-512 instructions”. In: Computer Physics Com-
munications 237 (2019), pp. 1-7.

Ralph O. Weber. “Information Technology—-ATA/ATAPI Command Set-3 (ACS-3)”.
In: Working Draft Project American National Standard 13 (Oct. 2013).

Mark Weiser et al. “Scheduling for Reduced CPU Energy”. In: Mobile Computing.
Springer, 1994, pp. 449-471.

Andreas Weissel and Frank Bellosa. “Process Cruise Control: Event-Driven Clock
Scaling for Dynamic Power Management”. In: Proceedings of the 2002 International

Conference on Compilers, Architecture, and Synthesis for Embedded Systems. 2002,
pp. 238-246.

Chengjian Wen et al. “PCFS: A Power Credit based Fair Scheduler under DVES for
Multi-core Virtualization Platform”. In: 2010 IEEE/ACM Int’l Conference on Green
Computing and Communications & Int’l Conference on Cyber, Physical and Social
Computing. IEEE. 2010, pp. 163-170.

Alberto Wiltgen et al. “Power Consumption Analysis in Static CMOS Gates”. In:
2013 26th Symposium on Integrated Circuits and Systems Design (SBCCI). IEEE. 2013,

pp- 1-6.

167


https://github.com/twosigma/libvirtcpuid
https://github.com/twosigma/libvirtcpuid

Bibliography

[254]
[255]

[256]

[257]

[258]

[259]

[260]

[261]

[262]

[263]

168

wrk — a HTTP benchmarking tool. https://github.com/wg/wrk.

Qiang Wu et al. “A Dynamic Compilation Framework for Controlling Micropro-
cessor Energy and Performance”. In: Proceedings of the 38th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’05). IEEE. 2005, 12—pp.

X265, the free H.265/HEVC encoder. https://www.videolan.org/developers/x265.
html.

Fen Xie, Margaret Martonosi, and Sharad Malik. “Compile-Time Dynamic Voltage
Scaling Settings: Opportunities and Limits”. In: Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and Implementation. 2003, pp. 49—
62.

Xiph.org Video Test Media [derf’s collection]. https://media.xiph.org/video/
derf/.

Ahmad Yasin. “A Top-Down Method for Performance Analysis and Counters
Architecture”. In: 2014 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE. 2014, pp. 35-44.

Yi-Ping You, Chingren Lee, and Jenq Kuen Lee. “Compiler Analysis and Supports
for Leakage Power Reduction on Microprocessors”. In: 15th International Workshop
on Languages and Compilers for Parallel Computing (LCPC 2002). Springer. 2002,
pp- 45-60.

Heng Zeng et al. “Currentcy: Unifying Policies for Resource Management”. In:
Proceedings of the 2003 USENIX Annual Technical Conference (USENLX ATC’03).
USENIX Association. 2003.

Heng Zeng et al. “ECOSystem: Managing Energy as a First Class Operating System
Resource”. In: ACM SIGOPS Operating Systems Review 36.5 (2002), pp. 123-132.

Gangyi Zhu, Peng Jiang, and Gagan Agrawal. “A Methodology for Characterizing
Sparse Datasets and Its Application to SIMD Performance Prediction”. In: Proceed-
ings of the 28th International Conference on Parallel Architectures and Compilation
Techniques (PACT’19). IEEE. 2019, pp. 445—-456.


https://github.com/wg/wrk
https://www.videolan.org/developers/x265.html
https://www.videolan.org/developers/x265.html
https://media.xiph.org/video/derf/
https://media.xiph.org/video/derf/

List of Figures

1.1 Remote AVX overhead . .. . . .. . . . . ... .. ...

2.1 Synchronous sequential logic . . . . . . . ... ...
2.2 Main reasons for pipeline stalls and countermeasures . . . . . ... ...
2.3 Out-of-order processor structure . . . . . . ... ... ... ... ... ..
24 CMOSlogic . . . . . .
2.5 Skylake-SP frequency/voltage domains . . . . . ... ... ... ... ..
2.6 Voltagedroop . . . . . . . . ..
2.7 Voltage droop mitigation techniques . . . . . . . ... ... ... ... ..

3.1 Throughput, energy, and power of a single coreat3.5GHz . . . . . . ..
3.2 All-core turbo frequency, IPC, and voltage during transitions to more
power-intensivecode . . . . .. ... Lo
3.3 Single-core turbo frequency, IPC, and voltage during transitions to more
power-intensivecode . . . . .. ... L
3.4 Frequency, IPC, and voltage during transitions to less power-intensive code
3.5 Performance of OneDNN and OpenSSL ChaCha20-Poly1305 on one core
andonallcores . .. ... ... ...
3.6 Remote frequency reduction . . . . ... ... L oL
3.7 Average CPU frequencies while running OneDNN and x265 . . ... ..
3.8 Remote AVX overhead caused by AVX2 and AVX-512 . . . ... ... ..
3.9 Frequency levels while running OneDNN and x265 . . . ... ... ...

4.1 Measurement of unnecessary frequency reduction . . . . ... ... ...
4.2  Impact of turbo level changes during profiler-induced pauses . . . . . . .
4.3 Determining the source of remote AVX overhead . ... ... ... ...
4.4 Impact of memory stalls on performance . . ... ... ... ... ... ..
4.5 Leading-loads performance predictionmodel . . . . . . . ... ... ...
4.6 Stallcyclecounting . . . . ... Lo
4.7 Prediction accuracy of our DVFS performance model . . ... ... ...
4.8 Comparison between profiler output and direct measurements . . . . . .
4.9 Overhead caused by ourprofiler . . . . . . . ... ... ... ... ... .
4.10 Impact of profiler overhead on barrier synchronization . . ... ... ..
411 Impact of our profiler on masstree latency . . ... ... ... ... ...
4.12 Accuracy of overhead classification . . . ... ... ... ... ... ...
4.13 Hardware-software interface to detect remote frequency reduction

5.1 Comparison between dynamic power management and DVES . . . . . .
5.2 Experiment to measure frequency reduction overhead . . . . . . . . . ..

10
11
13
16
18
19
20

35

40

41
43

45
47
50
51
54

61
62
63
65
66
67
69
72
74
75
75
76
79

85
88

169



List of Figures

170

5.3
54
5.5
5.6
5.7
5.8
5.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

7.1

7.2

7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

Overhead when reducing or increasing the frequency . . . . .. ... .. 89
Experiment to measure the overhead of frequency boosts . . . . . . . .. 90
Break-even times of AVX2 and AVX-512 frequency level transitions . . . 91
Design of our DVFS policy simulator . . . . ... ... .......... 93
DVES policy simulation . . . . ... ... ... ... . oL 94
Overhead for 2-competitive and oracle DVES policies . . . . .. ... .. 95
Overhead for 2-competitive and oracle DVFS policies without hyper-

threading . . . . . . . . .. .. 96
Core scheduling for AVX-512 applications . . . . ... ... ....... 102
Core specialization for AVX-512 applications . . . . . .. .. ... .... 103
Design for AVX-512 core specialization . . . . ... ... .. ... .... 104
XCRO bits and their associated registers . . . . . ... ... ... ... .. 108
Heuristics to detect the end of AVX-512phases . . . . .. ... ... ... 111
Replication of runqueues . . . . . .. ... ... ... L. 113
Overhead for a very memory-heavy program . . . . . ... ... ... .. 116
Remote AVX overhead with MuQSS, core scheduling, and core specialization 118
Impact of core specialization on frequency and IPC . . . . .. ... ... 119
Overhead caused by core specialization . . . . ... ... ... ... .. 120
Impact of detection of short non-AVX-512 phases . . ... ... ... .. 122
Powerinterrupts . . . . . . ... oL L 125

Performance impact of AVX2 and AVX-512 on benchmarks executed along-

side X265 . . . . L L e 130
Performance impact of AVX2 and AVX-512 on benchmarks executed along-

side a synthetic program . . . . ... ... ... o o L. 131
Modified virtual runtime accounting . . . . . . .. ... ... L. 132
Scheduling based on overall remote performance impact . . . . ... .. 133
Calculation of the ideal frequency . . . . ... ... ... ... ... ... 137
Divergence of virtual runtimes on different CPUs . . . . . .. ... ... 140
Performance isolation in two-application benchmarks . . . . . .. .. .. 142
Performance isolation for benchmarks restricted to two cores . . . . .. 144
Overhead introduced by frequency reduction compensation . . ... .. 144
Performance comparison between CFS and our baseline scheduler . . . . 146



List of Tables

2.1 Dennard scaling and leakage-limited scaling . . . . .. ... ... . ...

3.1 Intel Xeon Gold 6130 Frequencies

3.2 Frequency level performanceevents . . . . . . ... ... ... ... ...

171






Listings

6.1 Synthetic workload to trigger task type changes . . . . . ... ... ... 121

173



	Abstract
	Zusammenfassung
	Introduction
	Scope
	Contributions
	Student Theses and Publications
	Document Structure

	Background: Power-Limited Computing
	Transistor Scaling and Processor Design
	Pipelining and Out-Of-Order Processors
	SIMD and Multi-Core Processors

	CMOS Power Consumption
	Dynamic Voltage and Frequency Scaling
	Voltage Guard Band
	DVFS Policies

	Dennard Scaling and Leakage-Limited Scaling
	Power-Limited DVFS
	Energy-Efficient Accelerators
	Heterogeneous Systems


	Performance Implications of AVX2 and AVX-512
	Local Impact on Performance and Power
	Frequency Management for AVX2 and AVX-512
	AVX2 and AVX-512 Frequency Levels
	Frequency Reduction
	Delayed Frequency Increase

	AVX Overhead
	Local AVX Overhead
	Remote AVX Overhead
	Implications of Frequency Change Delays
	Implications of Hyper-Threading
	Impact on Real-World Software
	Impact of Speculative Execution

	Information Available at Runtime
	Applicability to Other Microarchitectures

	Runtime Profiling of AVX2 and AVX-512 Overhead
	Existing Profilers
	Detecting Unnecessary Frequency Reduction
	Frequency Reduction Sampling

	DVFS Performance Prediction Model
	Existing Models
	Stall Cycle Counting for Intel Skylake-SP

	Source of Overhead
	Evaluation
	Profiler Accuracy
	Impact of Instrumentation Perturbation
	Profiler Overhead
	Overhead Source Analysis

	Discussion
	Optimized Frequency Reduction Sampling
	Proposed Hardware Changes


	Viability of Improved DVFS Policies
	Parallels to Dynamic Power Management
	Characterization of AVX Frequency Changes
	Frequency Reduction Overhead
	Frequency Boost Overhead
	Break-Even Time of Frequency Changes

	Simulating Improved Frequency Scaling
	Discussion

	Separating AVX-512 and Non-AVX-512 Code
	Existing Mitigation Techniques
	Core Specialization for AVX-512 Applications
	Scheduling Policy
	Number of AVX-512 Cores
	Detecting AVX-512 Code
	Detecting Non-AVX-512 Code

	Implementation
	Choice of Scheduler
	Tripled Run Queues
	AVX-512 Feature Detection

	Estimation of Effectiveness
	Evaluation
	Effectiveness
	Overhead
	Short Non-AVX-512 Phases
	Estimation of Effectiveness

	Discussion
	Reducing Migration Overhead
	NUMA Support
	Imprecise Detection of Power-Intensive Code
	Proposed Hardware Changes


	Scheduling for Improved Performance Isolation
	Fairness and Performance Isolation
	Quantifying AVX2 and AVX-512 Performance Isolation Problems
	Metrics for Performance Isolation
	Modified CPU Time Accounting
	Attribution of Frequency Changes
	Estimating Remote AVX Overhead
	Frequency Reduction Compensation

	Thread Mobility
	Evaluation
	Setup
	Performance Isolation
	Overhead
	Comparison with CFS

	Discussion
	Attribution of Remote AVX Overhead
	Throttle Cycles
	Compatibility with Profiling Tools
	NUMA-Support


	Conclusion
	Future Work

	Bibliography
	List of Figures
	List of Tables
	Listings

