
A Method for Aspect-oriented Meta-Model Evolution

Reiner Jung
Software Engineering Group,

Kiel University
reiner.jung@email.uni-

kiel.de

Robert Heinrich
Software Design and Quality,

Karlsruhe Institut of
Technology

heinrich@kit.edu

Eric Schmieders
Paluno - The Ruhr Institute for

Software Technology

eric.schmieders@paluno.uni-
due.de

Misha Strittmatter
Software Design and Quality,

Karlsruhe Institut of Technology

strittmatter@kit.edu

Wilhelm Hasselbring
Software Engineering Group,

Kiel University
hasselbring@email.uni-kiel.de

ABSTRACT

Long-living systems face many modifications and extensions 
over time due to changing technology and requirements. This 
causes changes in the models reflecting the systems, and 
subsequently in the underlying meta-models, as their 
structure and semantics are adapted to adhere these changes. 
Modifying meta-models requires adaptations in all tools re-
alizing their semantics. This is a costly endeavor, especially 
for complex meta-models.

To solve this problem we propose a method to construct 
and refactor meta-models to be concise and focused on a 
small set of concerns. The method results in simpler meta-
model modification scenarios and fewer modifications, as new 
concerns and aspects are encapsulated in separate meta-
models. Furthermore, we define design patterns based on the 
different roles meta-models play in software. Thus, we keep 
large and complex modeling projects manageable due to the 
improved adaptability of their meta-model basis.

Categories and Subject Descriptors

D.2.13 [Software Engineering]: Reusable Software

General Terms

Design, Languages

Keywords

Design Pattern, Aspect Modeling, Evolution, Meta-Model 
Extension

1. INTRODUCTION
Long-living software systems face diverse changes over 

time induced by new or altered requirements, and changes 
to environment and technology, such as service-oriented or 
cloud paradigms [9]. These changes require an adaptation

of the models representing the system and their underly-
ing meta-models due to domain alterations. Furthermore,
the boundary between design-time and run-time disappears
as models are used in all phases of the MAPE loop [7],
requiring models to support new features, such as trace-
ability. The Palladio [1] architecture simulator, for exam-
ple, has been originally developed to predict performance of
software systems, based on a component-based architecture
meta-model, which is called the Palladio Component Model
(PCM). Later, the PCM has been extended to support the
analysis of reliability [4], to support business process model-
ing and simulation [10], and even an extensions for software
process modeling and analysis have been proposed [11].
Such extensions cover specific views and concerns of a

software system and require alterations to the meta-models
providing the means to specify such systems. However, al-
terations of meta-models require the adaptation of editors,
simulators, transformations, and all other dependent soft-
ware components used in the development and operation of
software systems, which become more costly with increasing
size of meta-models and their semantics. To reduce evo-
lution costs and to foster meta-model re-use, meta-models
must be designed to be extendable in a non-invasive man-
ner. Furthermore, extensions should not require new meta-
meta-models as this makes already existing tooling useless.
In this paper, we propose an aspect-oriented meta-modeling
method that fulfills these criteria.

*

InternalAction

probability: EDouble

type: FailureType

FailureOccurrence

Description
*

specification : RandomVariable

type : ResourceType

ResourceDemand

New Class

Figure 1: Example excerpt from the PCM

We demonstrate the benefits of our method in compari-
son to related work using the following example: In PCM,
services which are provided by components, are specified
by flowchart-like submodels called Service Effect Specifica-
tions (SEFF), which comprise different kinds of actions,
amongst them InternalActions. An InternalAction contains
ResourceDemands which are important to predict the per-
formance of the system. While extending the PCM with
reliability properties, amongst other changes, a new con-



tainment reference was added from the InternalAction to the
introduced FailureOccurrenceDescription class (see Figure 1),
to be able to express the types of failures and their respec-
tive failure probability of an InternalAction. However, such
an intrusive extension approach has drawbacks. As further
content is added to meta-models they may become complex
and cluttered with features, which are not always needed.

In Section 2, we discuss how related approaches deal with
this example. In Section 3, we describe how the extension
could be made non-intrusively using our method. Four use
cases of the proposed method are discussed in Section 4. We
conclude the paper in Section 5 and discuss future work.

2. RELATED WORK
Meta-model extension with the Eclipse Modeling Frame-

work (EMF) has been addressed by different approaches,
based on EMF features, object oriented pattern, and addi-
tional frameworks. In this section we discuss them briefly.

2.1 EMF Meta-Model Extension
EMF has a meta-model extension mechanism, where a

meta-model can load another meta-model and then define
new classes or reference and subclass classes from the loaded
meta-model. To add properties to a class, a subclass is cre-
ated with the additional properties.

Our example can be implemented with this method, by
creating a new meta-model, load the PCM, and subclass
InternalAction in the new meta-model. Then add FailureOc-
currenceDescription to the new meta-model and provide the
proper containment references between both classes.

However, this method has drawbacks. First, multiple ex-
tensions cannot be used simultaneously when developed in-
dependently. Second, if the method is iterated to realize
multiple extensions, they form a chain of meta-models mak-
ing it impossible to use an arbitrary subset of them. And
third, tools for the original meta-model are unable to load
models based on extended meta-models, requiring tool adap-
tation, even if the additions are irrelevant for its operation.

2.2 Decorator Pattern
The decorator design pattern [6] can also be used as an

extension mechanism in EMF. It enables addition of infor-
mation to a class without the aforementioned drawbacks.
However, the pattern requires to foresee future class exten-
sions and it introduces additional classes resulting in a more
complex meta-model. Software utilizing such meta-models
must deal with stacked decorators, which results in more
complex code, and some editor frameworks, like GMF or
Spray, are unable to handle the decorator pattern.

A realization of the illustrative example shows this com-
plexity: The decorator implementation is realized through
three classes AbstractInternalAction replacing InternalAction
in the class hierarchy, ConcreteInternalAction representing
the properties of InternalAction, and AbstractDecorator real-
izing the model extensions through a reference to AbstractIn-
ternalAction. In a new meta-model FailureOccurrenceDescrip-
tion is specified together with a subclass of AbstractDecorator
containing the reference to FailureOccurrenceDescription.

2.3 EMF Profiles
EMF is a framework to define meta-models and construct

models. In contrast to UML, it lacks the facility of profiles,
a situation the EMF profile approach [16] aims to change.
In contrast to UML profiles, which allow only one stereotype
per class, EMF profiles support multiple stereotypes even of

the same type. This enables them to be used as a meta-
model extension mechanism.
When applying EMF profiles to our example, specifies

FailureOccurenceDescription as stereotype for InternalAction
keeping the original meta-model unaffected. However, EMF
profiles rely on an extended meta-meta-model which cannot
be used with genmodels to create Java classes, in contrast to
plain Ecore meta-models. It can only be accessed through
an API similar to dynamic EMF which is significantly slower
and harder to debug, as types are not handled by the Java
compiler. Furthermore, this excludes widely used modeling
tools and frameworks, like the Xtext DSL framework, the
auto-layout and diagram framework KLighD [17], and the
Xtend transformation language.

3. META-MODELING METHOD
Meta-models undergo many modifications and extensions.

We therefore propose patterns to construct, maintain and
extend meta-models, which work together with existing EMF
tooling and follow a set of design principles [16]. Central to
our method is the differentiation in aspect and base meta-
models. Aspect meta-models allow for extending base meta-
models in a non-intrusive way. Thus, our method fosters
re-use of aspect and base meta-models. In contrast to EMF
profiles or the decorator pattern approach, our method does
not require a new framework or meta-meta-model hindering
its use together with existing techniques and tooling. Fur-
thermore, we identified different types of meta-models which
are determined by their roles in software systems. These
contextual roles together with the distinction of aspect and
base meta-model form the basis for a non-intrusive meta-
model design and evolution method.

3.1 Fundamental Properties of Meta-Models
Meta-models represent an abstract notation designed to

describe concepts and knowledge of a specific domain, view
or aspect of a system, like architecture description, perfor-
mance annotations, business processes, or medical history.
In EMF, meta-models comprise, inter alia, classes, at-

tributes and references. Classes contain attributes and ref-
erences, based on primitive types and classes, respectively.
References are distinguished in normal or aggregation ref-
erences, and containment references. The latter describe
explicitly the containment hierarchy of the meta-model.
The containment references form a directed graph where

the classes are nodes and references are edges. A meta-model
which allows to form self-contained models is one where all
classes can be reached by a path over containment references
from a root node. We call the aggregation of all paths an
containment graph. The meta-models in this paper need to
fulfill these criteria.
Beside syntactical properties, meta-models have semantics

which are not always defined explicitly. In general, a meta-
model can be divided in parts defining structure, expressions
and common primitives, which is very similar to computer
languages. The semantic of the structural part can therefore
be specified with type system methods, while expressions
can be described with operational semantic rules. For EMF
based meta-models, tooling is already available to specify
the semantics of a meta-model [2].

3.2 Aspect and Base Meta-Model Relationship
Core and cross-cutting concerns are represented in aspect-

oriented modeling (AOM) through base and aspect models
[15]. In some AOM approaches base and aspect model use



the same meta-model to ease model weaving. However, in
context of domain-specific languages and the complexity of
long-living systems, base and aspect models conform to dif-
ferent meta-models expressing different concerns. This al-
lows to focus meta-models on the concerns they describe
instead of their technical realization. Furthermore, aspect
meta-models used as an extension method, are created af-
ter the base meta-model and introduce therefore new classes
and terms not present in the base meta-model.

In our example, the existing base meta-model comprises
InternalAction and ResourceDemand, while the new aspect
meta-model expresses failure properties through FailureOc-
curanceDescription. The relationship between FailureOccu-
ranceDescription and InternalAction can be realized in two
different ways. First, in case of an aspect meta-model de-
signed to be re-used with different base meta-models, a base
model query and reference meta-model must be added to
the aspect meta-model (cf. [12]). Second, in case of ex-
tending a specific meta-model, a much simpler pattern can
be used, where the FailureOccuranceDescription owns a refer-
ence pointing to an InternalAction realizing the annotation.
While our minimalistic example only comprises a single

class in the aspect meta-model, conceptually aspect meta-
models can be of any size. They can be used to encapsulate
and separate cross-cutting and other concerns, like deploy-
ment, behavior and configuration. The distinctive feature
between base and aspect meta-model is the direction of the
references, which must originate in the aspect meta-model
and end in the base meta-model. These two roles of meta-
models are contextual, meaning a base meta-model in one
relationship could be the aspect meta-model in another.

The previously expressed containment graph requirement
of meta-models and the directionality property for aspect
references, can be used as a separation criterion for legacy
meta-models. However, the criterion only shows potential
candidates. Therefore, the concerns represented by the meta-
model parts must be consulted to select valid candidates.
After a selection is made, the identified meta-models are of-
ten in violation of the directionality property, which can be
corrected by reversing references like in our example.

A special case for our method is the use of models at run-
time in transformations or interpreters. Due to the non-
intrusive nature of the method, looking up aspect informa-
tion for a specific node is time consuming. However, this can
be circumvented with an additional mapping meta-model
providing references in the inverse direction (see Section 4).

3.3 Contextual Meta-Model Patterns
In the previous section, we differentiated between base

and aspect meta-models. However, meta-models can also be
distinguished by their tasks or use cases. First, navigation
and traceability are functions required in many modeling
contexts. Second, meta-models are used to describe derived
information. And third, meta-models are used to model
expressions, data structures, and state.

Model navigation is generally realized by explicitly defined
references in a meta-model, and as stated before, by inverse
references implied by the containment hierarchy, as realized
in EMF [18]. We, therefore, encourage meta-model designers
to remove explicit inverse references as they are unnecessary
and make meta-model comprehension more difficult.

On a more abstract level, references have different seman-
tics: A reference in an aspect meta-model represents a join
point, while the reference from InternalAction to ResouceDe-
mand is a containment reference implying that both classes

together form one entity. A traceability reference expresses
the fact that one node is derived from another node or sub-
graph. Traceability information is used in transformations
to guide model weaving, or to relate analysis results based
on derived models back to the original model.
Frequently, meta-models are complex and not always suited

directly for the analysis. Therefore, specialized models are
derived, which require meta-models specific to the task, e.g.,
queuing models. After the analysis traceability references
are used to relate the results back to the original model,
otherwise the result is meaningless. These references are ei-
ther part of the meta-model for the derived model (requires
access to the meta-model), or alternatively are represented
by a utility meta-model realizing the mapping either through
a hash map, relating derived model nodes to original model
nodes, or a more complex mapping based on subgraphs.
The third group of meta-models is related to the execution

or interpretation of models, which is a reoccurring task in
long-living systems, like software behavior forecasts or mea-
surement evaluation. They require data structures, expres-
sions, and states which have different characteristics. Data
meta-models do not possess references to meta-models of
other types, as they are only used to store data. Execution
meta-models comprise notational features determined by un-
derlying paradigms, used to specify behavior. They require
access to a type system (cf. [13]) and to data structures.
The third meta-model type is used to preserve the state of
an interpreter, comprising references to the data and execu-
tion meta-model. It provides the base to combine data and
execution meta-model, and can be seen as the equivalent of
program counter and registers in hardware.

4. USE CASES
In context of long living software systems, we identified

four key use cases: editors, transformations, simulations or
evaluations, and runtime models (cf. [16]), which highlight
different characteristics meta-models must fulfill.

4.1 Editors
EMF based editors can be constructed with various frame-

works, like Xtext1, or KLighD [17]. In context of our illus-
trative example, we have an editor supporting PCM as base
meta-model unaware of a new aspect meta-model. However,
it is still usable, as the base meta-model is unchanged. This
is especially helpful when we cannot modify the editor.
In editors, where we can modify the code base, an exten-

sion mechanism for aspect handling can be integrated, e.g.,
OSGi-based plug-ins. Node editing in the base model could
then be checked for breaking references and handled accord-
ingly, either by prohibiting the modification or by updating
the reference in the aspect model. Furthermore, the corre-
sponding aspect editor could be opened. A behavior already
supported by DSL editors based on Xtext or KLighD.

4.2 Transformations
Transformations have manifold properties relating to their

context, the involved meta-models, and the level of abstrac-
tion [3]. A transformation relies heavily on navigation to
query the source model and determine the correct inser-
tion point of new nodes in the target model. In context of
AOM, we assume separate transformations for aspect and
base meta-model. An aspect model contains references to
an external base model. While the origin of these references

1
http://www.eclipse.org/Xtext/



lie inside the scope of the aspect transformation, the desti-
nation is located in the base model. To transform the ref-
erences correctly, the aspect transformation requires model
traces relating base source model nodes to their target coun-
terparts. This information can either be collected during a
run of the base transformation, or calculated by a function.

4.3 Simulation and Evaluation
Interpreters, simulators, and model checkers are used to

analyze or predict software behavior. From a modeling point
of view, they require terms for evaluation, data, and state
which are processed by an algorithm implementing the se-
mantics of the tool. In context of base and aspect models,
a simulator for a base meta-model is not aware of nodes
which are annotated by external information. While it is
useful for aspects not relevant to the simulation, it limits
the expressiveness of the simulation. Therefore, we devise
an extension mechanism. First, a utility model describes
inverse references for the aspect references to improve the
lookup time for aspect annotations. This map can be com-
puted at start time. Second, an aspect interpreter is invoked
within the present context of the base model simulator pro-
cessing the aspect. The extension of the base simulator can
be realized technically in different ways, like injection, load-
time weaving or with OSGi-plugins.

4.4 Runtime Models
Run-time models provide abstract views on systems and

their contexts during run-time [8] derived from design-time
models and run-time monitoring data [5, 12]. Autonomic
managers utilize these views to self-adapt a system to reach
the systems goals [14]. While analysis tools which operate
on design-time models [1] exist, approaches, such as [19],
propose tailored views for relevant aspects of the system
to avoid complex and overloaded views. In context of our
method, this is achieved with derived models in conjunction
with built-in or a separate traceability model.

5. CONCLUSION
Our lightweight method guides the construction and evo-

lution of meta-models in the context of long-living software.
In contrast to other methods and approaches we do not clut-
ter meta-models with helper constructs, nor do we require
new frameworks incompatible with the tooling landscape.

Our next steps are to create a detailed description of var-
ious meta-models types and their implications on tooling,
and the evaluation of our method in the PCM moderniza-
tion effort to provide a solid core PCM with a wide palette
of extensions covering a multitude of knowledge domains.

6. ACKNOWLEDGMENTS
This work was partially supported by the DFG (German

Research Foundation) under the Priority Program SPP1593:
Design For Future – Managed Software Evolution (grant HA
2038/4-1, RE 1674/6-1, PO 607/3-1) and the Helmholtz As-
sociation of German Research Centers.

7. REFERENCES
[1] S. Becker, H. Koziolek, and R. Reussner. The Palladio

component model for model-driven performance
prediction. J. of Systems and Software, 82:3–22, 2009.

[2] L. Bettini. Implementing java-like languages in xtext
with xsemantics. In S. Y. Shin and J. C. Maldonado,
editors, SAC, pages 1559–1564. ACM, 2013.

[3] M. Biehl. Literature Study on Model Transformations.
Technical Report ISRN/KTH/MMK/R-10/07-SE,
Royal Institute of Technology, July 2010.

[4] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner.
Architecture-based reliability prediction with the
Palladio component model. IEEE Transactions on
Software Engineering, 38(6):1319–1339, 2012.

[5] K. I. Eder, N. M. Villegas, F. Trollmann,
P. Pelliccione, H. A. Müller, D. Schneider, L. Grunske,
B. Rumpe, M. Litoiu, and A. Perini10. Assurance
using models at runtime for self-adaptive software
systems. In State-of-the-Art Survey on Models at
Runtime. Springer, Berlin, LNCS, 2013.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Pearson Education, 1994.

[7] C. Ghezzi. The fading boundary between development
time and run time. In Web Services (ECOWS), 2011
9th IEEE European Conf. on, page 11, Sept 2011.

[8] H. Giese and T. Vogel. Model-driven engineering of
adaptation engines for self-adaptive software.
Universität Potsdam, 2013.

[9] W. Hasselbring, R. Heinrich, R. Jung, A. Metzger,
K. Pohl, R. Reussner, and E. Schmieders. iobserve:
Integrated observation and modeling techniques to
support adaptation and evolution of software systems.
Research report, Kiel University, Kiel, Germany,
October 2013.

[10] R. Heinrich, J. Henss, and B. Paech. Extending
Palladio by business process simulation concepts. In
KPDAYS, pages 19–27, 2012.

[11] O. Hummel and R. Heinrich. Towards automated
software project planning - extending Palladio for the
simulation of software processes. In KPDAYS, pages
20–29, 2013.

[12] R. Jung, R. Heinrich, and E. Schmieders.
Model-driven instrumentation with Kieker and
Palladio to forecast dynamic applications. In
KPDAYS, pages 99–108, 2013.

[13] R. Jung, C. Schneider, and W. Hasselbring. Type
systems for domain-specific languages. In S. Wagner
and H. Lichter, editors, Software Engineering 2013
Workshopband, volume 215 of Lecture Notes in
Informatics, pages 139–154, Bonn, February 2013.
Gesellschaft für Informatik e.V.

[14] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. Computer, 36(1):41–50, 2003.

[15] J. Kienzle, W. A. Abed, and J. Klein. Aspect-oriented
multi-view modeling. In AOSD, pages 87–98, 2009.

[16] P. Langer, K. Wieland, M. Wimmer, and J. Cabot.
EMF Profiles: A lightweight extension approach for
emf models. JOT, 11(1):1–29, 2012.

[17] C. Schneider, M. Spönemann, and R. von Hanxleden.
Just model! – Putting automatic synthesis of
node-link-diagrams into practice. In Proceedings of
VL/HCC, San Jose, CA, USA, 15–19 September 2013.

[18] D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. EMF: Eclipse Modeling Framework.
Addison-Wesley, Boston, MA, 2. edition, 2009.

[19] T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and
B. Becker. Incremental model synchronization for
efficient run-time monitoring. In Models in Software
Engineering, number 6002 in LNCS, pages 124–139.
Springer Berlin Heidelberg, Jan. 2010.


