
Deriving Work Plans for Solving Performance

and Scalability Problems

Christoph Heger and Robert Heinrich

Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
{christoph.heger,robert.heinrich}@kit.edu

Abstract. The performance of an enterprise application (e.g. response
time, throughput, or resource utilization) is an important quality at-
tribute that can have a significant impact on a company’s success. When
a performance problem such as a performance bottleneck has been de-
tected, the root cause identified and a solution proposed, developers have
to identify the elements of the application often manually that will un-
dergo changes and determine how these elements must be changed in
order to implement the solution. Many existing approaches are able to
identify the elements that have to be modified but only few are able
to determine the necessary types of changes on these elements. Neither
of the approaches supports developers with a work plan sketching the
implementation steps. In this paper, we propose an approach to point
developers the way torwards an implementation of a performance or scal-
ability solution with an ordered set of work activities. Rules are used to
derive a work plan sketching the implementation of a solution for the
particular application based on an initial set of work activities. The rule-
based approach identifies impacted elements and determines how they
should be changed. We demonstrate the proposed approach with a solu-
tion of a performance bottleneck as an example.

Keywords: Software Performance Engineering, Solution Implementa-
tion Support, Rules, Impact Propagation.

1 Introduction

The performance (i.e. resource usage, timing behaviour and throughput) of an
information system directly influences the total cost of ownership (TCO) as well
as the user satisfaction which are highly business critical metrics. Performance
problems can be caused by various modifications such as error corrections, im-
provements, extensions or variations in user quantity and behaviour as well as
changing requirements. After a performance problem has been detected and the
root cause has been isolated, a performance expert often proposes a solution in
form of abstract work activities like spliting an interface that have to be im-
plemented in order to solve the problem. A solution can affect various parts of
the application such as the architecture, implementation and/or configuration.
Therefore, all elements (including possible side-effects) have to be identified that



will undergo changes as well as the necessary types of changes for these elements.
This time-consuming task is often done manually by developers or performance
experts in advance to get an understanding of the implementation effort of a
solution. Such cost factors can then be considered to select the most appropriate
solution when a variety of solutions exists.

Currently, developers are not supported in this regard at the implementa-
tion level. Existing approaches for solving performance problems, for exam-
ple [10,5,28,31], are model-based. Only Jing Xu considers in [31] to use the
effort estimation of the designer for the necessary design model changes in se-
lecting a solution among alternatives and suggests what should be changed, and
in what way, but not how to do it. The approaches neither consider an existing
code base nor support of the developer for implementing a solution at the imple-
mentation level. Existing impact propagation approaches on the other hand can
identify and classify following changes and the impacted elements (side-effects)
based on an initial set of changes [19] but neither of the approaches determines
a work plan for developers describing the essential work activities of a change’s
implementation.

In light of these observations, we propose an approach to support develop-
ers in implementing a performance or scalability solution at the implementation
level by deriving a work plan for the particular solution and application based
on an initial set of work activities as a part of Vergil. Vergil is an approach to
guide developers from a performance or scalability issue to solutions, by pro-
viding hypotheses about what to change, evaluating the changes in the context
of the particular application and ranking the solutions to support developers in
making a decision. The two major challenges in building a work plan are to iden-
tify the impacted elements and to determine how they are actually impacted;
respectively how they should be changed. Vergil considers changes on the ar-
chitecture level, implementation level and configuration level of the application.
Architecture level changes are evaluated with architecture level peformance mod-
els, like the Palladio Component Model [7] or Marte [1] for UML, in contrast to
implementation level changes that are evaluated with a system under test and
measurement-based experiments. Due to the different levels of abstraction, work
activities have to be traced down from the architecture level to the implemen-
tation level while developers are often most familiar with the implementation
artifacts of an application.

The proposed approach for building work plans uses rules to propagate the
impact within and between the architecture performance model and the source
code model of an application. The impact propagation uses a correspondence
model describing the equality of elements in the architecture performance model
and the source code model. Work plans describe which elements of the applica-
tion are impacted and how they should be changed. This offers three benefits
for developers: (1) they are aware of how to change the application, (2) they
are able to estimate the implementation effort based on work activities, and (3)
they can discuss alternative solutions based on the type and number of impacted
elements, and the types of changes required to implement a certain solution.



We demonstrate the approach using the solution of the “GOD” class antipat-
tern [25] as an example in the context of the MediaStore [7] application. We
use the Palladio Component Model as the architecture performance model and
Java as programming language. Both are established and relevant technologies in
industrial practice. Overall, in this paper, we make the following contributions:

1) We propose an approach to derive work activities sketching the implemen-
tation of a solution based on impact propagation between model elements.

2) We demonstrate the applicability of the approach with an example.

The remainder of the paper is structured as follows: In Section 2, we present
the foundations of our approach. In Section 3, we give an overview of Vergil
to position the content of this paper in the overall approach. In Section 4, we
introduce the MediaStore example. We present the approach for building Vergil’s
work plans in Section 5. In Section 6, we discuss related work and conclude the
paper in Section 7.

2 Foundations

The concept of work plans is inspired by the idea of the Karlsruhe Architectural
Maintainability Prediction (KAMP) [26,27] approach to estimate the change
effort based on a work plan. The goal of KAMP is to compare architectural de-
sign alternatives, which are represented by instances of the Palladio Component
Model (PCM) [7], by estimating the effort of a change request in the context of
each alternative. PCM is a software architecture simulation approach to analyze
software at the model level for performance bottlenecks and scalability issues.
It enables software architects to test and compare various design alternatives
without the need to fully implement the application or buying expensive execu-
tion environments. PCM has already been used to detect and solve performance
problems [28].

KAMP combines a top-down phase to determine the work activities and to
create the work plan, with a bottom-up phase in which developers assign an
effort estimation to each work activity in the plan. A work plan is a hierarchical
structured collection of work activities and is stepwise refined into small tasks by
identifying resulting changes and describing high-level changes on a lower level of
abstraction. KAMP relies on the following assumptions: (a) change efforts must
take into account all artifacts of system development and operation. Focusing
only on code is not sufficient, (b) there are specified change scenarios, and (c)
it is easier to estimate costs of small specific tasks than of coarse-grained tasks.
We also rely on this assumptions.

The change estimation process starts with identifying model elements directly
affected by a change request, such as an interface or component. To identify
resulting changes, the direction of the change propagation is reversed to the di-
rection of the reference-relation of architectural elements (architectural elements
which refer to (or use) other elements are related by a reference-relation). In the
case of include-/contains-relations (architectural elements which are contained
in each other), a change of the inner element is propagated to the outer element



and any change of the outer element is propagated to inner elements resulting in
a refined set of work activities. Additionally, KAMP considers also other work
activities like running unit or integration tests or deploying components [26].

The major difference between KAMP and our proposed approach is that
KAMP operates on models only while our approach also considers the code
basis. This allows for traceability and change impact propagation covering both,
code and models. KAMP results in an unsorted set of tasks that have to be exe-
cuted to realize a certain change request. As KAMP targets at effort estimation,
there is no need to arrange the tasks in an order. In contrast, the proposed ap-
proach aims at creating a work plan that can be followed by developers through
an ordered list of work activities.

3 Vergil Overview

We are currently developing the Vergil approach. The main goal of Vergil is
the provisioning of solutions (e.g. to split an interface or to move functionality
to a certain component) to developers for solving performance and scalabil-
ity problems. Vergil combines the advantages of model-based performance im-
provement approaches like [10,31,5] and extends them with the introduction of
measurement-based performance problem solution at the implementation level
by means of monitoring-driven testing techniques and work plans sketching the
implementation of the solution at the implementation level. The knowledge of
how to change a system is formalized in rules (henceforth called change hypothe-
ses) that are explored, evaluated and rated. The process consists of four major
activities as shown in Figure 1 as BPMN diagram [14]. In the context of this
paper, we are focussing only on the concepts of the work plans and the activities
Propagate Work Activities and Estimate Effort of Work Plans.

The process starts with the Extract Models activity [22] that takes the source
code of the application as input. The source code is parsed into the Source
Code Model (SCM). An architecture performance model (APM) is extracted
from the source code or when such a model already exists an existing one is
imported. The APM provides an architectural view of the application and is
used to evaluate architectural change hypotheses in the remainder of the process.
During extraction, a correspondence model (COM) is build that links model
elements in the APM and SCM that correspond to each other like interfaces. The
extracted models are forwarded to the Explore Change Hypotheses subprocess.

The Explore Change Hypotheses subprocess takes the SCM, COM, APM and
the Performance Problem Model (PPM) as input. The performance problem is
formalized as symptom trace through the application and results in the PPM.
A symptom like high response time or high CPU utilization references an SCM
element where it can be observed such as a method and a description of the
workload and usage profile as formalized in [29]. The subprocess starts with
the Test Change Hypotheses activity that takes the change hypotheses, the per-
formance requirements, the test environment and the models as input. In this
activity, the applicability of change hypotheses is tested and the effect of change



Fig. 1. Vergil Overview

hypotheses is evaluated to build solutions [31]. Change hypotheses provide the
knowledge about what can be changed to solve a performance problem. It con-
sists of a precondition that must be fulfilled in order to be applicable and a set of
transformation rules that apply the changes on the defined level of abstraction
(e.g. APM, SCM, etc.). Each change hypothesis also has a postcondition testing
if the desired effect has taken place as well as the work plan model template. A
condition can consist of any number of structural (on the SCM, PPM and APM
model) and behavioral (on measurement or prediction results) conditions test-
ing static and dynamic requirements of the hypothesis. The conditions are rules
expressed in first-order logic. First-order logic has already been used before in
literature to formalize performance antipatterns [11]. The exploration algorithm
selects sets of change hypotheses with fulfilled precondition and evaluates their
effect through instantiating the changes in the context of the particular appli-
cation and on the hypothesis’ level of abstraction (e.g. APM, SCM, etc.) and
evaluates the performance. To give an example, two approaches for automated
model refactoring for solving performance problems are presented in [4] and [31].
The performance evaluation is done by calibrating and simulating the APM in-
stance or executing measurements with the system under test. The postcondition
is tested with the returned results and if fulfilled, the impacted elements of the
application are identified as well as how they are actually impacted building the
Work Plan Models (WPMs) and its initial work activities based on the tem-
plates. The performance evaluation and the postcondition also ensure, that the
changes do not lead to a performance degradation [3]. If the evaluation results



of a single change hypothesis do not satisfy the performance requirements (for
example response time, throughput, or CPU utilization), the current algorithm
uses backtracking (as suggested by Arcelli and Cortellessa [3]) to find composite
solutions (combinations of two or more change hypotheses) that fulfill the per-
formance requirements. The solutions and the corresponding WPMs fulfilling
the requirements are forwarded to the Propagate Work Activities activity. Prop-
agation rules and the WPM of each solution are used to identify all impacted
elements of a solution and to determine the necessary type of work activity for
each element to complete the WPM.

The solutions and completed WPMs are forwarded to the Evaluate Work Ac-
tivities activity. In this activity, the work activities and their referenced elements
are validated that they can be changed [3] based on the information in the devel-
oper’s preferences. In the developer’s preferences, developers express what they
prefer to change (e.g. configuration of a component, implementation etc.) and
what they are unwilling to change (or cannot change), for example the archi-
tecture or particular parts of the application. If elements are impacted that the
developer is unwilling to change or cannot change such as legacy systems or the
architecture, the solution is discarded. Arcelli and Cortellessa raised the con-
cern to take constraints such as costs and legacy constraints (e.g. the database
cannot be changed) into account when proposing solutions [3]. The remaining
solutions and WPMs are forwarded to the Extract Work Plans activity in which
the WPMs are translated from their graph-based structure into an ordered list
of work activities for the developers. The solutions and work plans are then
forwarded to the Estimate Effort of Work Plans activity.

In the Estimate Effort of Work Plans activity, the developers are asked for
an estimation of the effort they will need to complete the work plan. The effort
estimation is a manual task done by the developers themself. The effort can
vary between individual developers depending on their knowledge, experience
and practice. Hence, it is possibly unreliable when done automatically. The ef-
fort is provided as unitless quantities, leaving the decision of the concrete unit
of measurement by the developers, and is provided for all atomic work activi-
ties. The unit of measurement has to be the same for all work activities. The
effort can be estimated, for example, in person (-hours, -days, or -months) [31],
or story points (in the context of agile development such as SCRUM [24]) as
well as function points which is also an established means for effort estima-
tion [2]. In the case of experienced development teams, that have historic data
from previous development projects for cost model calibration, the usage of a
cost model such as COCOMO [8] is also possible. The process uses the given
unitless quantities of each atomic work activity such as adding a method to an
interface as input to compute the total effort estimation for a work plan. The
estimated effort addresses the concern of taking the costs of solution alternatives
into account [3,31]. The solutions and the work plans with estimated effort are
forwarded to the Rank Solutions activity.

In the Rank Solutions activity, a multi-criteria decision analysis to rank the
solutions is done. This activity addresses the issue of taking costs and constraints



into account in deciding on an appropriate solution when a variety of choices
exist [3,31]. The solution rating is done with a combination of the Simple Multi-
Attribute Rating Technique (SMART) [12] and the Analytic Hierarchy Process
(AHP) [23] taking the performance impact, cost factors, constraints and the
developer’s preferences into account. Developers are then able to discuss the
proposed solutions based on the work plans, the impacted elements—and how
they are actually impacted, the costs, and the estimated performance improve-
ment. The selected solution and its work plan are the final result of the process.

4 MediaStore Example

One of the 14 notion- and domain-independent software performance antipat-
tern defined by Smith and Williams is the “GOD” class [25]. The antipattern de-
scribes the problem of poorly distributed application intelligence when one class
is performing all the work or contains all the application’s data. A proposed so-
lution [25] is to employ the locality principle and to move the functionality close
to where it is needed. We have already investigated the “GOD” class antipattern
and shown how it is automatic detectable with systematic experiments based on
measurements in our previous work [30].

In this section, we use the “GOD” class as motivating example with the Medi-
aStore [7] application. The MediaStore allows its users to upload and store audio
files as well as to download audio files encoded in a less or equal audio bit rate
compared to the uploaded one. The MediaStore is implemented with Java En-
terprise Edition. The “GOD” class in the example is the MediaStoreBean that
is accessed from the WebGUIBean and provides all the functionality as shown in
Figure 2 (the Java source code elements are shown in UML notation for the
sake of illustration). We omitted other components of the MediaStore applica-
tion which are irrelevant for the example for the sake of simplicity. A detailed
overview on the application is given in [7]. Figure 2 is devided into the Current
State and Current Deployment showing the state of the application with the
problem and the Target State and Target Deployment showing the application
with the solution. The WebGUIBean and the MediaStoreBean are deployed on
different servers. The WebGUIBean has to communicate with the MediaStoreBean
to register or login users causing high response times for both operations. The
change hypothesis of Vergil is to split the interface IMediaStoreBean and to
move the functionality closer to the WebGUIBean. The hypothesis evaluates the
changes on a higher level of abstraction for simplicity and uses a PCM of the
MediaStore application. The automated refactoring of architectural models for
solving performance problems has been shown, for example, in [4]. The change
hypothesis provides the work activities to split the IMediaStoreBean interface,
to add a new interface (in this example the IUserManagementBean interface), to
move the methods register and logIn to the new interface, and to update the
deployment descriptor of the application. The propagation of the provided work
activities in the source code adds the work activities to split the MediaStoreBean
class, to add a new class (in this example the UserManagementBean), to move



Fig. 2. MediaStore Example Overview

the methods implementing interface methods to the new class, and to update
the methods of the WebGUIBean to call the corresponding methods of the new
interface. The necessary work activities and their proposed order are shown in
Figure 2. The determined work plan for the refactoring is shown in Table 1.

In this work plan, there are composite activities (split, move), that can consist
of other composite activities or atomic activities (add, update, delete). All com-
posite activities are broken down until they are expressed by atomic activities.
The follow-up activities (test and deploy) result from the atomic and composite
work activities.

In the scenario above, we initially have an architectural change proposed and
embodied in the change hypothesis. Vergil uses the PCM as starting point for
building the work plan of architectural changes. We propagate the impact to the
implementation using the correspondence between model elements and source



Table 1. Work Plan MediaStore Example

Work Activity Effort [Minutes]

Split interface IMediaStoreBean
Add NewInterface 10

Move method register to NewInterface
Add method register to NewInterface 5
Delete method register from IMediaStoreBean 5

Update method register of WebGUIBean 15

Move method logIn to NewInterface
Add method logIn to NewInterface 5
Delete method logIn from IMediaStoreBean 5

Update method logIn of WebGUIBean 15

Split class MediaStoreBean
Add class NewClass 10

Move method register to NewClass
Add method register to NewClass 10
Delete method register from MediaStoreBean 5

Move method logIn to NewClass
Add method logIn to NewClass 10
Delete method logIn from MediaStoreBean 5

Update Deployment Descriptor 5
Test application 30
Deploy application 60

Estimated Effort 195

code elements. Therefore, we extract a model from the source code (for ex-
ample with a tool such as the Java Model Parser and Printer [15]). A corre-
spondence, for example, describes the equality relation of the element of type
interface IMediaStoreBean in the PCM instance of the application and the
IMediaStoreBean interface in the source code.

5 Vergil’s Work Plans

A work plan sketches what essentially needs to be done to implement the solution
by modelling abstract work activities without prescribing (and limiting the devel-
oper) on how the solution is concretely implemented in the application. A work
plan is an ordered set of work activities. A work acitivity can be atomic such as
add, delete, or update an element like a class, interface, or method, or composite
such as split, move, merge, swap, or replace elements. The concept of work activ-
ities is inspired by the taxonomy of change types which has been introduced by
Lehnert et al. in [18]. This taxonomy is similar to the work activity concept used
in KAMP. Both approaches consider a graph-based representation of the software
artifacts and use atomic operations and composite operations to categories modi-
fications. The formalization of the work plan is shown in Figure 3. The work plan
also lists follow-up activities such as redeployment or testing activities.

A composite activity can be composed of other composite and atomic activ-
ities. Refinement rules are used to break composite activities in the work plan
down into atomic activities. For example, the composite work activity “Move”
to move a method from one interface to a new one consists of the atomic work



Fig. 3. Work Plan meta-model

activities “Add” to add the method to the new interface and “Delete” to delete
the method from the old interface. The evolution of the work plan model through
the application of such a refinement rule for the latter work activitiy is shown as
an example in Figure 4. The underlying graph transformation rule matches ele-
ments of type Method in the SCM that are referenced from aMove work activitiy
but are not already referenced by a Delete work activitiy. For all matches, the
rule adds the Delete work activity as refinement expressed through the added
refinedBy relation to the work plan.

The refinedBy and dependsOn relations between work activities in the work
plan model instance are used to extract the ordered list of work activities for the
developers. An activity like “Split” that has a refinedBy relation to an “Move”
activity is added as child of that activitiy in the work plan. An activitiy like
“Split” that has a dependsOn relationship to another “Split” activity is added
after that activity in the work plan.

WorkPlan

SplitIMediaStoreBean:Interface

Moveregister:Method

refinedBy

WorkPlan

SplitIMediaStoreBean:Interface

Moveregister:Method

refinedBy

Delete
refinedBy

Evolution

After Rule Application

Before Rule Application

Fig. 4. Refinement Rule “Delete Method” Example

The initial work activities are provided by the change hypothesis as work plan
template and the impacted elements are determined by the instantiation of the
changes.

The impact on an element can cause an impact on other elements that are
in a relation. To identify all elements and how they are impacted, Vergil uses
impact propagation rules to identify additional impacted elements that are in a
relation to already impacted elements and the work aktivities in the work plan
referencing the impacted elements. The propagation uses the work plan model
as starting point and correspondences of elements in different model instances
for propagation between APM and SCM (vertical propagation) and the relation



within APM and SCM for propagation wihtin the models (horizontal propaga-
tion). The correspondence model describes the equality relation (One-To-One
relation) of elements from different model instances and meta models but the
same underlying application. The correspondences are described in the corre-
spondence model. The correspondence model is independent from other meta
models. It only references elements from other model instances. For each im-
pacted element, the rule knows the resulting work activitiy and adds it to the
work plan together with a reference on the impacted element. Rules are also used
to conclude follow-up activities such as adding tests when a new interface is cre-
ated or the redeployment of components when elements of the implementation
of that component are impacted.

For example, when an interface in SCM is referenced from a Split work ac-
tivity, then the rule knows that a class implementing that interface has to be
splitted too. Figure 5 shows the evolution of the work plan model through apply-
ing the rule for the split interface work activity as an example. The rule matches
all classes that are not referenced from a Split work activity and that implement
the interface which is referenced from a Split work activity. For all matches, the
rule adds the Split work activity to the work plan model and a reference to the
impacted class.

WorkPlan

SplitIMediaStoreBean:Interface

Moveregister:Method

refinedBy

Delete

refinedBy

Evolution

Before Rule Application WorkPlan

SplitIMediaStoreBean:Interface

Moveregister:Method

refinedBy

Delete

refinedBy

After Rule Application

SplitMediaStoreBean:Class

dependsOn

Fig. 5. Horizontal Propagation Rule “Split Interface” Example

6 Related Work

In this section, we review impact propagation approaches for their support of
determining work plans to implement solutions and we discuss common effort
estimation approaches.

Impact Propagation. Most approaches that have been proposed to assess the
propagation of change impacts are limited to source code as shown by a re-
cent study [17] and are often able to identify impacted elements only. Some of
the proposed rule-based approaches, such as the approaches of Keller et al. [16]
or Briand et al. [9], are able to classify how the impacted element is actually
impacted and has to be changed while others are not able to detect impacts
in heterogeneous software artefacts like source code and models. The research
conducted by Lindvall and Sandahl [20] outlines the applicability of traceability



relations for impact analysis. The use of correspondence relations between dif-
ferent views and viewpoints has been shown by Eramo et al. in [13]. A more
detailed review of existing approaches and their limitations is provided in [19].
An introduction to the topic of change impact analysis discussing techniques
and problems is given in [6].

The impact analysis approach of Lehnert et al. [19] combines impact analysis,
multi-perspective modelling, and horizontal traceability to determine further
change propagation. The impact propagation technique is based on the type
of dependency which exists between EMF-based models and the type of change
which is applied on one of the model elements. The underlying hypothesis is that
the change type, dependency type and the types of involved artifacts determine
if and how a change ripples to related artifacts. Therefore, a set of impact propa-
gation rules is used to identify all impacted elements in a recursive manner. The
rules are derived, as example, from relations defined in the meta-models of ar-
tifacts such as inheritance-relations between classes or implementation-relations
between classes and interfaces as well as from Correspondences according to de-
sign methodologies such as the equivalence between UML and Java classes or
between UML and Java packages [19]. The type of changes is expressed through a
taxonomy of change types comprising of atomic operations (add, delete, update)
and composite operations (move, replace, split, merge, swap), where the latter
can consist of sequences of atomic and composite operations. Each rule receives
the changed element, the type of change, and a list of all related elements as
input. From this input, a list of all impacted element(s) along with the result-
ing change type(s) is computed. This output is then again fed into the impact
analysis process. The propagation takes the dependency relation into account
to limit the size of impact sets. The rules determine how impacted elements are
actually impacted [19].

The main objective of impact propagation approaches is to identify the im-
pacted elements. Few of them also deal with the determination of how an element
must be changed. Neither of the approaches has the objective to build a model
that abstractly models the implementation of the changes with the necessary
work activities. Our proposed approach extends the concepts of existing impact
propagation approaches, i.e. [19], by building such a model describing the refac-
toring of the application that can be transfered into a work plan for developers.

Effort Estimation. Three categories of related work on change effort estima-
tions can be distinguished – complexity metrics (esp. of source code), estima-
tions based on the extent of changes in requirements, and architecture-based
procedures. One of the most common complexity metric for software systems is
the cyclomatic complexity [21]. Complexity metrics only take into account the
structure of the system. They can be elicited automatically but their conversion
into effort or costs is unclear and empirically not consistent proven. There are
various approaches to initial effort estimation of software development projects
based on requirements, cf. algorithmic effort estimation and effort-based project
planning [8]. Changes to requirements are triggers for changes in the system but
drawing inference from the extent of changes in requirements about efforts for



implementing the changes is not possible without considering the system archi-
tecture. Some existing approaches target at scenario-based software architecture
analysis but lack a formalized architecture description or are limited to soft-
ware development but do not take into account management tasks. An overview
of related work on architecture-based effort estimation is given in [26]. KAMP
combines several strengths of existing approaches. It makes explicit use of formal
software architecture models, provides guidance and automation via tool sup-
port, and considers development as well as management effort. KAMP evaluates
maintainability for concrete change requests. It estimates change efforts using
semi-automatic derivation of work plans, bottom-up effort estimation, and guid-
ance in investigation of estimation supports (e.g., design and code properties,
team organization, development environment, and other influence factors).

In our proposed approach, we use the work plan-based concept of KAMP
as the foundation for effort estimation by developers to consider cost factors
in making a decision among solution alternatives as well as to build a model
of the refactoring. We apply the concept of work activities not only on the
architecture performance model as it is currently provided by KAMP but also
on implementation level artifacts. We also introduce relations in the work plan
model that are used to extract an ordered list of work activities.

7 Conclusion

Sketching the implementation of a solution is an essential part of guiding de-
velopers to the solution of performance and scalability problems. Vergil’s work
plans aim to provide this support for the proposed solutions. The work plans
as an ordered list of work activities guide developers without prescribing how
the implementation is concretely realized. Developers are able to discuss and
compare solution alternatives based on the impacted elements and the necessary
type of change, they are aware of how they have to change the application and
which parts of the application are affected and they can estimate the imple-
mentation effort for each solution before making a decision on which solution
will be implemented. Vergil uses rules and a graph-based representation of the
application to determine the necessary work activities and to build the work
plans. We demonstrated the approach with an example while the validation of
the approach is part of our current research. We plan to conduct an emperical
case study to validate the approach with a group of developers at SAP.

Due to the graph-based approach, we are not limited to a particular archi-
tecture performance model like the Palladio Component Model or to a specific
programming language like Java as long as a graph-based representation is avail-
able. Rules may have to be adjusted and new ones have to be created in order
to take other models such as UML or Entity Relationship diagrams into account
that describe the application from a different perspective.

We plan to implement the proposed approach in the context of Vergil’s frame-
work that is currently under development. Vergil’s automated work plan builder
will then be used in the validation of the overall approach.



Acknowledgements. We would like to thank Alexander Wert, Roozbeh Farah-
bod, Michael Langhammer and Max Kramer for the discussions and their feed-
back. We would also like to thank Jonas Kunz and Sven Kohlhaas for their
support. This work is supported by the German Research Foundation (DFG),
grant RE 1674/6-1, and the Priority Programme SPP1593: Design For Future –
Managed Software Evolution.

References

1. UML Marte, http://www.omgmarte.org
2. Albrecht, A.J.: Measuring application development productivity. In: Proceedings

of the Joint SHARE/GUIDE/IBM Application Development Symposium, vol. 10
(1979)

3. Arcelli, D., Cortellessa, V.: Software model refactoring based on performance anal-
ysis: Better working on software or performance side? In: FESCA (2013)

4. Arcelli, D., Cortellessa, V., Di Ruscio, D.: Applying model differences to automate
performance-driven refactoring of software models. In: Balsamo, M.S., Knotten-
belt, W.J., Marin, A. (eds.) EPEW 2013. LNCS, vol. 8168, pp. 312–324. Springer,
Heidelberg (2013)

5. Arcelli, D., Cortellessa, V., Trubiani, C.: Antipattern-based model refactoring for
software performance improvement. In: Proceedings of the 8th International ACM
SIGSOFT Conference on Quality of Software Architectures. ACM (2012)

6. Arnold, R.S., Bohner, S.A.: Software Change Impact Analysis. IEEE Computer
Society Press (1996)

7. Becker, S., Koziolek, H., Reussner, R.: The palladio component model for model-
driven performance prediction. Journal of Systems and Software 82(1) (2009)

8. Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., Selby, R.: Cost
models for future software life cycle processes: Cocomo 2.0. Annals of Software
Engineering 1(1) (1995)

9. Briand, L.C., Labiche, Y., O’sullivan, L.: Impact analysis and change manage-
ment of uml models. In: Proceedings of the International Conference on Software
Maintenance, ICSM 2003. IEEE (2003)

10. Cortellessa, V., Di Marco, A., Eramo, R., Pierantonio, A., Trubiani, C.: Approach-
ing the model-driven generation of feedback to remove software performance flaws.
In: 35th Euromicro Conference on Software Engineering and Advanced Applica-
tions, SEAA 2009. IEEE (2009)

11. Cortellessa, V., Di Marco, A., Trubiani, C.: An approach for modeling and detecting
software performance antipatterns based on first-order logics. Software and Systems
Modeling (2012)

12. Edwards, W.: How to use multiattribute utility measurement for social decision
making. IEEE Transactions on Systems, Man and Cybernetics 7(5) (1977)

13. Eramo, R., Pierantonio, A., Romero, J.R., Vallecillo, A.: Change management in
multi-viewpoint system using asp. In: 2008 12th Enterprise Distributed Object
Computing Conference Workshops. IEEE (2008)

14. O.M. Group. Business process model and notation, bpmn (2011)
15. Heidenreich, F., Johannes, J., Seifert, M., Wende, C.: Jamopp: The java model

parser and printer. Techn. Univ., Fakultät Informatik (2009)
16. Keller, A., Schippers, H., Demeyer, S.: Supporting inconsistency resolution through

predictive change impact analysis. In: Proceedings of the 6th International Work-
shop on Model-Driven Engineering, Verification and Validation, p. 9. ACM (2009)



17. Lehnert, S.: A review of software change impact analysis. Ilmenau University of
Technology, Tech. Rep. (2011)

18. Lehnert, S., Farooq, Q., Riebisch, M.: A taxonomy of change types and its ap-
plication in software evolution. In: 2012 IEEE 19th International Conference and
Workshops on Engineering of Computer Based Systems (ECBS) (April 2012)

19. Lehnert, S., Riebisch, M., et al.: Rule-based impact analysis for heterogeneous
software artifacts. In: 2013 17th European Conference on Software Maintenance
and Reengineering (CSMR). IEEE (2013)

20. Lindvall, M., Sandahl, K.: Traceability aspects of impact analysis in object-oriented
systems. Journal of Software Maintenance: Research and Practice 10(1) (1998)

21. McCabe, T.J.: A complexity measure. In: Proceedings of the 2nd International
Conference on Software Engineering, ICSE 1976, Los Alamitos, CA, USA. IEEE
Computer Society Press (1976)

22. Parsons, T.: Automatic Detection of Performance Design and Deployment An-
tipatterns in Component Based Enterprise Systems. PhD thesis, University College
Dublin (2007)

23. Saaty, T.: The analytic hierarchy and analytic network processes for the measure-
ment of intangible criteria and for decision-making. In: Multiple Criteria Decision
Analysis: State of the Art Surveys. Springer, New York (2005)

24. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Pearson (2002)
25. Smith, C.U., Williams, L.G.: Software performance antipatterns. In: Workshop on

Software and Performance (2000)
26. Stammel, J., Reussner, R.: Kamp: Karlsruhe architectural maintainability predic-

tion. In: Proceedings of the 1st Workshop des GI-Arbeitskreises Langlebige Soft-
waresysteme (L2S2): Design for Future-Langlebige Softwaresysteme (2009)

27. Stammel, J., Trifu, M.: Tool-supported estimation of software evolution effort in
service-oriented systems. In: Joint Proceedings of the First International Workshop
on Model-Driven Software Migration (MDSM 2011) and the Fifth International
Workshop on Software Quality and Maintainability (SQM 2011), vol. 708 (2011)

28. Trubiani, C., Koziolek, A.: Detection and solution of software performance antipat-
terns in palladio architectural models. In: ICPE (2011)

29. van Hoorn, A., Rohr, M., Hasselbring, W.: Generating probabilistic and intensity-
varying workload for web-based software systems. In: Kounev, S., Gorton, I., Sachs,
K. (eds.) SIPEW 2008. LNCS, vol. 5119, pp. 124–143. Springer, Heidelberg (2008)

30. Wert, A., Oehler, M., Heger, C., Farahbod, R.: Automatic Detection of Perfor-
mance Anti-patterns in Inter-component Communications. In: Proceedings of the
10th International Conference on Quality of Software Architecture, QoSA 2014
(2014)

31. Xu, J.: Rule-based automatic software performance diagnosis and improvement.
Performance Evaluation 69(11) (2012)


	Deriving Work Plans for Solving Performance and Scalability Problems
	1 Introduction
	2 Foundations
	3 Vergil Overview
	4 MediaStore Example
	5 Vergil’s Work Plans
	6 Related Work
	7 Conclusion
	References




