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A machine-learned interatomic potential for silica and its

relation to empirical models

Linus C. Erhard

', Jochen Rohrer'™, Karsten Albe'™ and Volker L. Deringer?™

Silica (SiOy) is an abundant material with a wide range of applications. Despite much progress, the atomistic modelling of the
different forms of silica has remained a challenge. Here we show that by combining density-functional theory at the SCAN
functional level with machine-learning-based interatomic potential fitting, a range of condensed phases of silica can be accurately
described. We present a Gaussian approximation potential model that achieves high accuracy for the thermodynamic properties of
the crystalline phases, and we compare its performance (and performance-cost trade-off) with that of multiple empirically fitted
interatomic potentials for silica. We also include amorphous phases, assessing the ability of the potentials to describe structures of
melt-quenched glassy silica, their energetic stability, and the high-pressure structural transition to a mainly sixfold-coordinated
phase. We suggest that rather than standing on their own, machine-learned potentials for silica may be used in conjunction with
suitable empirical models, each having a distinct role and complementing the other, by combining the advantages of the long
simulation times afforded by empirical potentials and the near-quantum-mechanical accuracy of machine-learned potentials. This
way, our work is expected to advance atomistic simulations of this key material and to benefit further computational studies in

the field.
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INTRODUCTION

Silica (Si0,) is among the most common materials on Earth’, with
applications in window glass, oscillators?, aerogels?, and catalysts®.
This wide range of applications is due, in parts, to the existence of
various polymorphs with different properties. The ambient form of
crystalline silica, a-quartz, is a piezoelectric material®; the a-
cristobalite polymorph has a negative Poisson ratio indicating
unconventional elastic properties®. High-pressure phases like
stishovite are important for understanding reactions in the Earth’s
mantle’. Low-density zeolite polymorphs are used as catalysts in
the petrochemical industry®, and amorphous silica finds applica-
tion in optical fibres®.

Atomistic modelling by means of interatomic potentials has a
long history for silica, reflected in the sheer amount of models and
parameterisations available in the literature. Among the arguably
most successful silica potentials is that of van Beest, Kramer, and
van Santen (BKS)'—a two-body energy function fitted for a-
quartz that is also applicable to silica glasses'''3. This potential,
however, does not correctly predict the phase boundaries of the
different polymorphs'4. Re-parameterisations of BKS-type poten-
tials were developed for nanoclusters’® or for an improved
description of amorphous silica’®. There are also more complex
potentials implementing polarisation terms'”, charge transfer'8-2°,
and three-body effects®'2*. For example, the Tangney-Scandolo
potential'”, which includes self-consistently calculated dipoles,
improves the description of many properties of tetrahedral silica
compared to BKS?®. However, these potentials typically describe
only a subset of the crystalline and amorphous forms, and often
lack a fully accurate description of the (relative) energetic stability
of different polymorphs, resulting in inaccurate temperature—
pressure phase diagrams.

Machine learning (ML) based approaches have recently been
established as an alternative route to interatomic potential

fitting?53%. ML potentials are trained with quantum-mechanical
reference data, typically obtained from density-functional theory
(DFT), and reproduce the associated potential-energy surface at a
substantially lower computational cost—thereby making much
longer time scales and larger length scales accessible. Emerging
applications of ML potentials range from modelling structural
transitions in disordered matter’'3* to battery materials®* or
molecular crystal-structure prediction®®. Oxide materials are
becoming amenable to ML potential modelling as well—as
demonstrated, for example, in an early study for zinc oxide3®,
more recently for titania (TiO,, ref. 3’) and hafnia (HfO,, ref. 38), and
for surface studies of Ir0,3°. In the case of silica, Novikov and
Shapeev reported an ML potential with a view to analyse the role
of long-range interactions in the construction of the model;
however, this study was focused on the a-quartz polymorph*°.
Two recent studies described and validated ML potential fits for
liquid silica*'42.

In the present work, we surpass the limitations of currently
available silica potentials by training an ML potential for a range of
crystalline polymorphs as well as models for liquid and amorphous
phases. The potential shows high thermodynamic accuracy,
enabled by the use of the strongly constrained and appropriately
normed (SCAN) functional of Sun et al.** for the computation of
reference data. Thus, the ML potential shows superior behaviour in
predictions of phase coexistence lines and high-pressure struc-
tural transitions compared to several existing, empirically fitted
interatomic potentials. The results also allow us to discuss, more
generally, the criteria for evaluating the quality of an ML potential
—thereby placing it in the context of more established simulation
methods in terms of their computational cost, predictive power,
and applicability to practical research questions.
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Fig. 1 Iterative exploration and potential fitting. We generated a GAP ML model for silica by fitting it to a gradually extended set of DFT
reference data, as is now increasingly done in the field**. Here, we initialised the process with simulation cells describing distorted crystalline
structures, isolated dimers, and snapshots of molecular-dynamics (MD) simulations with a fast empirical potential (blue), and then alternated
single-point DFT evaluation and GAP fitting (orange) with GAP-driven melt-quench simulations (green) until the database was considered
complete. The left-hand side of the figure illustrates the melt-quench protocol and includes selected snapshots (at points A, B, and C during
the simulations, respectively). In some iterations, we started from B-cristobalite rather than from randomised structures; some used NVT
(constant-volume) and others used NPT (constant-pressure) simulations. Full details of the protocol are given in the Supplementary

Information. The right-hand side of the figure is drawn in the style of ref.

104 where the same colour-coding is used to identify the different

components of an iterative random structure searching (GAP-RSS) protocol; see also references therein.

RESULTS
A machine-learned interatomic potential for silica

We fitted a ML potential for silica using the Gaussian approxima-
tion potential (GAP) framework?”*4, Initial versions were fitted to
reference data obtained with the computationally inexpensive
PBEsol functional for DFT; the final potential version was fitted to
data obtained using the SCAN functional, which our results show
to provide an accurate description of the material (see Supple-
mentary Fig. 1 for details). The use of existing reference structures
re-labelled with higher-level data has been shown previously to be
successful in GAP fitting (for example, LDA — dispersion-corrected
DFT for carbon®). In the following, we will analyse the effect of
changing the computational level more closely.

Figure 1 illustrates the development of the reference database,
which is one of the three defining ingredients of an ML potential
(in addition to the representation of the structure and the
regression task itself)*S. As in previous work with GAP*” and other
ML potentials*®, we used iterative fitting to explore the potential-
energy surface. Here, we started the iterative cycles by carrying
out molecular-dynamics (MD) simulations with a fast empirical
potential, so as to sample a range of structures that require only
single-point DFT computations for the generation of reference
data. Rather than in active learning, where a decision criterion is
implemented within the cycle, we here use ‘batch’ learning, where
sets of structures are fed back into the reference database in
multiple iterations until the composition of the database is
deemed sufficient. Details of the protocol are given in the
Supplementary Material. Figure 1 already indicates (if highly
qualitatively) the progressive improvement of the model: initial
liquid structures, generated with an empirical potential, contain
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many low-coordinated atoms (top left), whereas the structures
from the last GAP-MD iteration are largely ‘correctly’ coordinated
(4-fold silicon, 2-fold oxygen; bottom left), even in the liquid
phase. The latter may be partly a consequence of constant-volume
(NVT) simulations being carried out in this case.

Figure 2a shows the energy-volume curves of several silica
polymorphs as computed with DFT (using the SCAN functional)
and with the GAP. Accurately reproducing these curves is an
important initial quality indicator for the thermodynamic beha-
viour of the potential: the 0K energy-volume diagram of the
crystalline phases are highly relevant to both pressure- and
temperature-induced phase transitions. We find that the GAP
(lines in Fig. 2a) reproduces the SCAN-DFT data (symbols) very
well; as a consequence, the derived hydrostatic bulk moduli and
the ground-state volumes closely match the SCAN reference, with
the remaining deviations being indicative of the error in the ML
model. In addition, both the SCAN and GAP predictions are in
good agreement with earlier experimental observations (Table 1).

In the following, we present further tests of the GAP for elastic
constants of various polymorphs, as a more sensitive way of
assessing the quality of predicted forces in particular. Here, the
focus is on a comparison to experimental data and on contrasting
the accuracy of the GAP with that of existing, empirically fitted
potentials. In particular, we have chosen the models of
Broughton?3, Vashista?!, Munetoh?*, and the BKS'® and the Carré,
Horbach, Ispas, and Kob (CHIK)'® potentials. In the case of BKS, we
used a cut-off of 15 A; for simulations at high temperatures, we
also included a harmonic term for short distances according to
Shen et al.*°. For CHIK, which has been explicitly fitted to data for
amorphous and liquid silica, we used a cut-off of 65A for
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Fig. 2 Elastic properties. a Energy--volume curves of different silica polymorphs. Solid black lines correspond to calculations using the GAP
model for silica developed in the present work. The GAP agrees well with the SCAN-DFT data (coloured symbols). For the low-temperature
tridymite structure, however, the GAP predicts that it becomes unstable at certain strains and data are therefore only shown in the stability
region. b Root mean square error (RMSE) and mean absolute percentage error (MAPE) of elastic constants as predicted by various potentials

against experimental data for a-quartz'%, a-cristobalite®, coesite'°®

, and stishovite'®”. The Vashishta and Broughton potentials do not predict

a stable stishovite structure (“---"). Note that large deviations from a small reference value can lead to errrors exceeding 100%. Colour coding

from yellow to red emphasises the magnitude of the respective error.

Table 1. Ground-state volumes (V) and bulk moduli (K) for silica
polymorphs?.

K (GPa) V (A3/Si0,)

Expt. SCAN  GAP  Expt. SCAN  GAP
a-quartz 37.7% 39.7 36.6 37.8% 374 37.2
coesite 94,0% 1068 1064 33997  34.1 34.1
stishovite 295.0% 300.1 3075 229% 233 233
chabazite — 423 50.8 64.9%° 654 65.7
a-cristobalite  16.4° 15.5 13.5 428'° 423 425
moganite 322'9" 268 25.2 38.1'92 374 375
low-tridymite ~ — 19.0 18.7 440" 438 44,0
2A Birch-Murnaghan fit was used for hydrostatically deformed cells.

simulation of the amorphous and liquid phases and 10A for
crystalline phases as suggested in the original work’®.

In Fig. 2b, we report the root mean square error (RMSE) and the
mean absolute percentage error (MAPE) of the components of the
stiffness tensor as calculated using the various interatomic
potentials, with experimental values taken as benchmarks. We
find that the GAP model shows the lowest total RMSE and MAPE
among all potentials considered here: this is consistent with the
fact that ML potentials commonly include many (distorted) copies
of crystalline-phase unit cells in the reference database and are
therefore expected to accurately describe the associated regions
of the potential-energy surface. Moreover, larger discrepancies of
the GAP in the RMSE can be associated with large absolute values
of elastic constants (particularly for stishovite), and in these cases
the corresponding MAPEs are reasonable. Hence, studying both
RMSE and MAPE of the elastic constants provides a more detailed
view of the quality of the potential than looking at only one or
the other.

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

Phonons and phase diagrams

Phonons are important fundamental properties of materials, and
their computational demands (in terms of resources, and also
required accuracy) make them an interesting target for study with
ML potentials. For example, it was shown that, given a suitably
designed reference database, GAP models for silicon can be
brought to within 0.1-0.2 THz prediction error for a range of
existing and hypothetical crystalline allotropes>°. Phonons may
also be used to assess the quality of an ML potential as compared
to empirically fitted ones—as done, for example, in a recent study
for carbon*. We continue our assessment of silica potentials here
by studying phonon dispersion curves as well as the prediction of
phase diagrams, which requires accurate phonon data.

Figure 3 shows the phonon dispersion curve of a-quartz
predicted by the various potentials, compared to experimental
results from ref. >'. In line with earlier work on other materials**>°,
the GAP shows high accuracy and closely matches previous
experimental data (Fig. 3a). A small deviation in the highest mode
at [ (experiment: 6.25 + 0.14 THz; ref. ') is the only exception. The
situation is more varied for the faster, empirical potentials tested
here (Fig. 3b-f). For both the Broughton and the Vashishta
potentials, the phonon dispersion seems to be scaled by a near-
constant factor compared to experimental results; the Munetoh
and BKS potentials differ in aspects of the qualitative description.
For example, at the K point, the Munetoh potential predicts that
the three lowest modes nearly coincide, at variance with the
experiment. Although the CHIK potential gives a reasonable result,
the GAP reproduces the experimental data with the highest
accuracy among the tested potentials.

Beyond a-quartz, Supplementary Fig. 2 shows GAP-computed
phonon dispersion curves for the a-cristobalite and stishovite
polymorphs. In both cases, the GAP results agree reasonably well
with experiments>>°3, although there are some deviations at the
M-point for a-cristobalite, and at higher frequencies for stishovite.
For high-pressure stishovite, we observe the vanishing of the
lowest acoustic phonon at around 65 GPa, and the vanishing of
the lowest optical mode at the I'-point for pressures above 110
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Fig. 3 Phonon dispersions of a-quartz. Phonon dispersion curve of a-quartz, along the I' - M — K — I" pathway through reciprocal space, as
computed using the a GAP, b Broughton, ¢ Munetoh, d Vashishta, e CHIK, and f BKS potentials (red and blue lines, respectively), compared to
experimental data by Dorner et al. (taken from ref. >'; black symbols connected by lines to guide the eye).

GPa, in good agreement with the computational study of Tsuchiya
et al. (ref. >%).

In Fig. 4, we assess the thermodynamic behaviour of various
potentials by considering the predicted phase stability of a-quartz,
coesite, and stishovite as a function of temperature and pressure.
The phase diagrams shown in Fig. 4 were constructed within the
quasi-harmonic approximation (Methods section) and are com-
pared to experimental data from refs. >> and °°. The Broughton and
Vashishta potentials do not yield a stable stishovite structure,
which does therefore not appear in the corresponding phase
diagram, and neither is the a-quartz-coesite coexistence line
predicted correctly with either of the potentials. The Munetoh
potential gives a good description of the high-pressure
coesite-stishovite boundary, but is rather inaccurate for that of
a-quartz—-coesite. The CHIK potential predicts the coesite-stishovite
coexistence line at too high pressures; moreover, it does not

npj Computational Materials (2022) 90

predict a-quartz to be stable at ambient conditions. This behaviour
is similar to that of the BKS potential, as already analysed in earlier
studies’. The BKS potential predicts stishovite to be stable at
ambient conditions; instead, coesite and a-quartz become stable at
negative pressures. The GAP, on the other hand, is capable of
accurately describing both coexistence lines.

We emphasise that we do not include B-quartz and other
higher-temperature polymorphs here, due to issues with imaginary
modes and the need for a more advanced model to describe the
thermodynamics. The a- quartz coexistence line near ambient
pressure is therefore not included in the diagrams shown in Fig. 4.

Structure and energetics of disordered silica

An important task for interatomic potential models is the accurate
atomistic simulation of amorphous phases, which is often difficult

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences
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Fig. 4 Phase diagrams. Stability regions of the three silica polymorphs a-quartz, coesite, and stishovite were determined using the quasi-
harmonic approximation using the a GAP, b Broughton, ¢ Munetoh, d Vashishta, e CHIK, f BKS potential. The red and blue lines are the
experimental transition lines from Bohlen and Boettcher®® and Akaogi et al.>®, respectively. Since we used the quasi-harmonic approximation,

the GAP data are only shown up to 1,000 K.

(or even impossible) for DFT-based methods because of their
computational cost. In Fig. 5a—c, we assess the ability of various
interatomic potentials to describe amorphous silica in rapid
quench simulations. There is a natural limitation to such tests
because ML potentials are computationally much more demand-
ing than their empirically fitted counterparts—therefore, extre-
mely slow quenches, e.g., as reported in ref. >’ (with simulation
times of up to 1pus with BKS), are challenging for GAP or any
similar ML potential. This does not, however, preclude the
usefulness of faster quenching as a way to assess the predictions
of various potential models side-by-side. In this sense, the present
tests provide a “slice” through the entire parameter space that
controls the properties of amorphous silica.

Figure 5a shows the total structure factor, S(g), of amorphous
SiO, structural models created by empirical interatomic potentials.
Whilst simulations with all potentials qualitatively reproduce the
experimental features, there are significant differences in detail.
The CHIK potential predicts the position of the first sharp
diffraction peak (FSDP; highlighted by arrows) with high accuracy
and also the peak height, which is close to experiment. Our GAP
model underestimates the height of the FSDP, however, its results
coincide well with experiment for higher values of g. The S(g) for
structures simulated by the Vashishta and BKS potentials agrees
well with experiment; however, in both cases the first peak is
shifted to slightly higher g values. Our simulation using the
Munetoh potential reproduces the experimental structure factor
less accurately: the first peak is significantly underestimated, and
the second peak is shifted to lower g. (The GAP also under-
estimates the first peak, but reproduces the second one
accurately.)

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

Despite the importance of the structure factor as a primary
means of validating computed amorphous structures, other
quantities need to be considered for a full picture. Figure 5c
documents the ability of the GAP to considerably reduce the
number of defects in structures obtained from melt-quench
simulations. We list the frequency of different coordination
numbers of silicon and oxygen atoms in the amorphous structural
models. For a realistic amorphous structure, one would expect a
low number of wrongly coordinated atoms. This means that nearly
all silicon (oxygen) atoms should be 4-fold (2-fold) coordinated,
respectively, consistent with the structures of the ambient-
pressure crystalline polymorphs. This expectation is not universally
met by all potentials tested: in particular, melt-quenching with the
Munetoh potential leads to a structure with a high proportion of
wrongly coordinated atoms (>10%). The Vashishta, CHIK, BKS, and
GAP potentials all yield significantly fewer wrongly coordinated
atoms in the amorphous phase. The CHIK potential predicts 50%
fewer defects than the Vashishta potential for the quenching
protocol we use, and the GAP yields almost no wrongly
coordinated atoms.

Further insight into the simulated amorphous phases can be
gained by inspecting their relative energetic stability, expressed
through the excess energy (the energy of a given structure relative
to the more stable crystalline phase). This is not a trivial task,
because different interatomic potential models will most likely
predict different local energy minima, and therefore quantities
such as the excess energy will depend on two aspects: (i) the
method, typically a specific force field, used to generate the
structure, and (ii) the method used to evaluate the energy of the
quenched structure. These methods are often the same in
practice, but they need not be. Reference data are available in

npj Computational Materials (2022) 90
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Fig. 5 Amorphous silica. a Simulated X-ray structure factor of amorphous silica at 300 K, for melt-quenched structures generated using
different empirical interatomic potentials (blue lines) and compared to experimental data (“1”; ref. 72, and “2*; ref. 1%8). An arrow indicates the
location of the first sharp diffraction peak (FSDP). b Same for a melt-quenched structure generated by the GAP (red line) and compared to the
same experimental reference data’>'%8, ¢ Proportion of coordination defects in the final amorphous structures (300 K) generated by melt-and-
quench MD with quenching rates of 10'3K/s using several potentials. The number of wrongly-coordinated silicon atoms (defined as those
with fewer or more than four neighbours) were related to the total number of silicon atoms, and the same was done for wrongly-coordinated
oxygen atoms (fewer or more than two neighbours). d As panel b, but now for slower quenching simulations, including a “hybrid protocol”
involving a CHIK quench at 10"" Ks~' and subsequent GAP annealing. e Excess energies for simulations using the hybrid quenching approach
at different quench rates, comparing the structures directly after the CHIK quench as well as additional CHIK relaxation (blue), and after GAP
annealing and relaxation (red). All energies were computed with the GAP for consistency and are referenced to a-quartz.

Table 2. Excess energies of small-scale structural models of amorphous silica®.

AE (meV/SiO,)

Single-point evaluation Re-relaxed

SCAN GAP CHIK GAP CHIK
Munetoh quench 133479 1,314+ 74 1,376 £ 30 657 +25 678 + 30
Vashishta quench 310+97 302 +82 423 +32 248 + 65 315+32
BKS quench 36119 364+ 18 385+ 15 25616 31515
CHIK quench 311+£20 31714 32116 226+ 12 (321 +16)°
GAP quench 235+ 15 234+16 515+15 (234 +16)° 399+ 15

2The structure was obtained by fast quenching using different potentials (as mean and standard deviation for five independent simulations). We report AE =
Eamo — Ea-quarty Where E,no is the energy of a structure quenched and relaxed with the stated potential and then evaluated in a single-point computation
(using either SCAN-DFT, GAP, or CHIK), or after re-relaxation (using either GAP or CHIK). In these cases, the initial relaxation had been done with the same
potential, and therefore the ‘single-point evaluation’ values are repeated.

the experimental literature: the enthalpy difference according to potentials, with variations of more than 1 eV/SiO,. The single-point
literature is between 78 and 131 meV/SiO, for bulk silica glass®?, SCAN DFT energy is lowest for the structures prepared using the
while the standard enthalpy of deposited silica glass films and ~ GAP; this is perhaps not too surprising, because the GAP has been
‘snow’, which are presumably more structurally disordered, can be fitted to data at the same computational level. Still, the
up to 1eV/SiO; higher®®. . . comparison across different methods is instructive—emphasising

In Table 2, we present an analysis of the energetics of small- 3¢ the structures generated by the Munetoh potential are highly
scale amorphous structural models (192 atoms), prepared with the unfavourable (more than 1 eV/SiO, above a-quartz), in line with
various potentials by melt—-quench simulations and additional full their large defect count (Fig. 5¢). Additionally, the table

structural optimisation. These results emphasise the range of . . .
disordered configurations that are explored by the different emphasises the high accuracy of the GAP with respect to SCAN,
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Fig. 6 Extrapolation to high pressure. a Density—pressure curve of
amorphous silica simulated using different potentials and compared
to experimental data by Marsh®'. b Proportion of 6-fold coordinated
Si atoms as dependent on the pressure. For the Munetoh, BKS, and
CHIK potentials, this proportion increases nearly linearly; for the
GAP, it increases rapidly at about 30 GPa and then more slowly. The
histograms at the top of the plot show the number of unit cells in
the GAP training set with given DFT pressures. Although there are
some datapoints at high pressure, the amorphous and liquid phase
training data in particular are limited to lower pressures—this effect
is more pronounced upon re-computing the reference data with the
SCAN functional. ¢ Mean of the difference between the lattice
parameters a and b referenced to a stishovite unitcell; the error is
given by the standard deviation. MD simulations were performed at
300 K and at different pressures initially using a stishovite supercell.
A transition from stishovite to a CaCl,-like structure can be seen at
pressures between 65 and 70 GPa.
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even when the higher-energy structures are evaluated in
subsequent single-point computations.

Since the GAP and CHIK potentials have shown good
performance for amorphous silica thus far, we used both to re-
relax the other structures as well; these results are shown on the
right-hand side of Table 2. Due to the additional relaxation, all
structures become significantly more favourable. The mean excess
energies for the CHIK-quenched structures even become slightly
more favourable than those of their GAP-quenched counterparts
(although the results are within one standard deviation of one
another). This suggests that a combination of CHIK quenching and
GAP relaxation might be promising for the modelling of
amorphous silica.

To explore this question, we carried out simulations using a
‘hybrid’ protocol: quenching slowly with CHIK (10" Ks™', two
orders of magnitude slower than in the previous tests), and then
briefly annealing the quenched structure with the GAP. The first
part is made possible by the comparatively low computational
cost of the CHIK potential, and indeed leads to a structure factor in
nearly quantitative agreement with experiment (blue line in Fig.
5d). Subsequent annealing with the GAP slightly lowers the FSDP
again (red line in Fig. 5d), yet the predicted structure factor is
much better than that from a fast GAP quench (Fig. 5b). The
rationale for including the ML potential, now, is in the accurate
description of the energetics: indeed, Fig. 5e shows a substantial
gain in excess energy (the glassy structures becoming more
favourable) once the GAP optimisation step is included.

Extrapolation to high pressure

We now test the ability of the GAP to extrapolate into unknown
regions of structural space, i.e., those for which the potential has
not been explicitly optimised. In the present case, we study the
high-pressure behaviour; such simulations have recently been
shown to be rewarding targets for ML potential-based model-
ling®'~33, High-pressure simulations have also been done for silica
using empirical potentials, e.g., using compression to 25 GPa as
one of the benchmarks®.

In Fig. 6a, we show computed density-pressure diagrams for
amorphous silica, obtained by compressing the same (GAP-
generated) amorphous structure using various interatomic poten-
tial models. For comparison, we include data from Hugoniot shock
experiments®'. In these experiments, the samples are rapidly
compressed. This allows for much better comparison with the
simulation time scales accessible to MD in contrast to static
experimental data. We find that the GAP is the only potential
which captures the features of the density—pressure curve
correctly: up to a density of 4.5 g/cm?, its predictions (red line)
agree well with experimental data (circles). In contrast, none of the
empirical potentials tested in the same way are able to fully
reproduce the qualitative features of the experimental
pressure—-density curve.

More detailed information about the atomic structure can be
obtained from Fig. 6b, which shows the proportion of 6-fold
coordinated atoms as dependent on the external pressure. While
this number grows rapidly in the GAP simulation at about 30 GPa,
the CHIK, BKS, and Munetoh potentials predict an almost linear
growth. The Vashishta potential appears to be unable to describe
6-fold coordinated atoms correctly and instead predicts a
densified, mainly tetrahedral-like structure, with only a small
amount of 5-fold coordinated silicon (=1%), and some oxygen
atoms being 1- and 3-fold coordinated (each = 5%). Experimental
work indicated a phase transition from amorphous silica to
stishovite at a pressure of 36 GPa®2 Therefore, in compression
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Table 3. Structural and energetic data of a-PbO, type silica®.
Expt. SCAN GAP
Ambient® a(A) 4.097(1) 4.064 4.078
b (A) 5.0462(9) 5.024 4.981
c (A) 4.4946(8) 4.488 4.455
Si-0 (A) 1.742 1.760 1.749
1.776 1.763 1.755
1.855 1.816 1.812
AE (meV/SiO,) — 566 534
p =129 GPa“ a (A) 3.7277(2) 3.717 3.802
b (A) 4.6576(2) 4.655 4596
c (A) 4.1609(3) 4.159 4.159
Si-0 (A) 1.624 1.622 1.626
1.655 1.649 1.657
1.677 1.678 1.681
2The computed lattice parameters are determined for OK. AE is the
computed energy difference to a-quartz.
PExperimental data taken from ref. °%; computed data at zero external
pressure.
“Experimental data taken from ref. ©°,

simulations, one might expect a rapid transition to a phase with
mainly sixfold-coordinated silicon atoms at this pressure (and
probably crystallisation on longer time-scales), rather than an
almost linear increase in the count of sixfold-coordinated silicon
atoms over a wide pressure range.

In a way similar to ref. %3, we include histograms at the top of
Fig. 6b that indicate the regions of parameter space that are
covered by the reference database. (In turn, the histograms show
that the high-pressure regions are not well covered—which
suggests that the ML potential is indeed extrapolating.) Interest-
ingly, the influence of the DFT exchange-correlation functional on
the stresses in the database is clearly visible. Although the
databases do not coincide completely, their composition is largely
similar. Presumably due to the change of the minimum-energy
bond length and bond angles when moving from PBEsol to SCAN,
the latter functional causes a shift of the pressures to more
negative values. This leads to a distribution which is no longer
centred at zero pressure. It therefore exacerbates the challenge for
the potential which has not “seen” high-pressure disordered
structures.

Returning to the crystalline phases, we finally test the GAP for
very-high-pressure (‘post-stishovite’) polymorphs of silica. The
sequence of transitions, viz. stishovite (space group P4,/mnm) —
CaCly,type (Pnnm) — a-PbO,-type (Pbcn) — pyrite-type (Pa3), has
been discussed, for example, in ref. 5%,

Regarding the first step, we performed GAP-MD simulations at
300 K which indeed showed a tetragonal-to-orthorhombic transi-
tion (Fig. 6¢), consistent with the change from rutile-type
stishovite to the distorted-rutile-like CaCl,-type. The analysis
showed a transition region between 65 GPa and 70 GPa, some-
what higher than in experimental®*®® and other theoretical
results®*%%, The observation of this transition is encouraging,
since CaCl,-type silica had not been explicitly included in the
training database. However, the training data do include many
instances of randomly distorted stishovite unit cells, and in this
way, good performance for a specific type of distortion is to be
expected.

For the next-higher-pressure polymorph, a-PbO,-type silica, we
list the lattice parameters in Table 3. Both at ambient and high
pressure (129 GPa), the starting structure remained stable during
GAP relaxation, and the computed lattice parameters agree well
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with experimental data®”=®° and the SCAN reference. GAP phonon
calculations confirmed dynamical stability. Moreover, the com-
puted energy of the relaxed structure (relative to a-quartz) agrees
with SCAN to be within 6%.

Every potential will at some point reach its limit, and the
limitation of the current GAP model becomes apparent when
studying the highest-pressure polymorph listed above: the pyrite-
type (Pa3) form which becomes stable at about 200 GPa®*°. In
this structure, the silicon atoms occupy the corners and faces of
the unit cell, and the oxygen atoms are found on the 8c Wyckoff
site, at (x,x,x) and equivalent. Together with the cubic lattice
parameter, g, the coordinate x therefore defines the structure®.
We started with x=0.348 and relaxed the structure with an
external pressure of 268 GPa. The GAP relaxation led to x =0.25,
corresponding to the fluorite type, which is incorrect for silica. In
contrast, a SCAN relaxation at this pressure led to the correct
structure with x =0.349. This behaviour can be intuitively under-
stood because the other previously mentioned high-pressure silica
polymorphs are based on distorted close packing of anions
(including stishovite, which is included in the training), whereas
there is no close-packing of anions in the Pa3 structure®®. The
latter is therefore rather different from the training data and the
current GAP model falls short of describing it, leading to what is
presumably a false minimum. (If one were to study very-high-
pressure phases in detail, one would of course wish to include
more information about those phases in extended training
databases; such studies are planned.)

DISCUSSION

A machine-learned interatomic potential for silica was developed
that accurately describes various crystalline and amorphous
phases. The question of what exactly makes an ‘accurate’ ML
potential, however, is far from trivial, and may have different
answers for different application cases. We assess the quality of
our silica potential and others by a range of numerical measures
that relate to (i) the crystalline phases, including the phase-
diagram prediction; (i) the amorphous phases; and (iii) the
computational speed. Detailed definitions of these quality
measures are given in Supplementary Material. We focus the
following discussion on silica, but we emphasise that defining
accuracy is a much wider-ranging challenge in ML potential
development*,

Figure 7 shows that the machine-learned GAP model over-
comes many of the transferability limitations of established
empirical interatomic potentials. In particular, it shows a high
accuracy in the prediction of phase stability regions, enabled by
the quality of the fit and also by the SCAN DFT functional on
which it is based. The GAP performs well for lattice parameters
and elastic constants, as do the BKS, CHIK, and Broughton
potentials; however, only the GAP achieves a comprehensive
description of the stability of the crystalline phases (including the
a-quartz—coesite and coesite-stishovite coexistence lines in the
phase diagram). We do not include the post-stishovite phases in
this assessment, because they are beyond the scope of any of the
potentials discussed—nonetheless, they have allowed us to test
the extrapolation capability of the GAP, and may be of interest for
further work on ML potential development.

For properties of amorphous silica, assessed by inspecting the
structure factor and the energetics of fast-quenched structural
models (and characterised in the lower part of the radar charts in
Fig. 7), the CHIK, Vashishta, and BKS potentials show good
predictions—partially better ones than the GAP. However, the
GAP yields the highest number of ‘correctly’ (4- and 2-fold,
respectively) coordinated atoms. There is also initial evidence of
the GAP being able to describe the pressure-density relation of
rapidly compressed amorphous silica and thus to extrapolate into
unknown regions of configuration space (Fig. 6)—consistent with
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obtained.

the encouraging performance for the crystalline a-PbO,-type
polymorph (Table 3).

A remaining challenge is related to the detailed structure of
amorphous silica models: specifically, the fact that the structure
factor from purely GAP-based quench simulations deviates
notably from experiment at small g. The reason why our current
machine-learned model underperforms a range of empirical
potentials in this regard—uviz. CHIK, Vashishta, and BKS—remains
unclear at present. A possible origin could be the lack of explicit
long-range Coulomb interactions in the current version of our
potential; such interactions are included, for example, in the CHIK
potential which indeed performs very well for the amorphous
phase. This assumption seems consistent with earlier arguments
for the origin of the FSDP”', e.g., caused by intermediate-range
ordering between [SiO,] tetrahedra’?”3, However, it is not a priori
clear that inclusion of long-range interactions is strictly required:
for titania (neural-network ML potential; ref. 3”) and hafnia (GAP;
ref. 74), an explicit description of such long-range interactions was
not necessary to reproduce the first peak in the structure factor.
The role of long-range electrostatics for GAP models, assessed
through inclusion of a baseline model, was recently discussed in
ref. 7°. An alternative hypothesis, namely, that the GAP-MD cooling
rates are not sufficient, would be supported if the potential
behaved better for the liquid phase. However, despite reasonable
performance for the self-diffusion coefficients (Supplementary Fig.
4), the GAP also underestimates the height of the first peak for
liquid silica (Supplementary Fig. 3); a comparable underestimation
was seen with a different ML potential fitting framework*2.

Even though the machine-learned potential described herein
shows generally wide transferability, we emphasise that it is
orders of magnitude slower than empirically fitted ones. The

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

message arising from the present work, we believe, is therefore
more nuanced: rather than replacing existing silica potentials
with machine-learned alternatives entirely, we envision this
model as a complement to suitable empirically fitted potentials.
To illustrate this point, we generated a large structural model of
the ambient-pressure glass by combining slow quenching with
the CHIK potential and subsequent GAP optimisation. The
resulting structure is lower in energy than its purely CHIK-
quenched counterpart, while retaining much of the excellent
description of the structure factor that is enabled by CHIK. Such
‘hybrid’ protocols may be useful for future computational
studies of silica.

In closing, we emphasise that the current version of the
machine-learned potential is only trained for single-phase models
of bulk SiO,. For systems with surfaces, grain boundaries, or
interfaces, further extensions to the reference database are
expected to be required.

METHODS

Molecular dynamics

Molecular dynamics simulations were performed using the LAMMPS
software’®, a Nosé-Hoover thermostat’’’® for NVT and additionally a
Parrinello-Rahman barostat’® for NPT simulations. We used a time step of
1fs, a temperature damping constant of 100fs, and a pressure damping
constant of 1000 fs.

Amorphous-phase structural models were created from initially ran-
domly placed atoms, which were additionally randomised at 6000 K (NVT,
10 ps) and then held at 4000 K (NPT with zero external pressure, 100 ps) to
generate a melt. The melt was quenched to 300K with a rate of 10"3K/s,
unless noted otherwise. The resulting amorphous structure was then held
for another 10 ps. ‘Hybrid’ quenches with a combination of CHIK and GAP
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(Fig. 5d, e) used the same procedure for the CHIK potential, however, with
quenching rates between 103 K/s and 10" K/s, and subsequent annealing
for 20 ps using the GAP.

Density-functional theory computations

For DFT computations, the GPAWE%®! (in combination with ASE®?) and
VASP®3-8¢ codes employing the projector augmented-wave method®’8
were used. Early versions of the GAP were based on reference data
computed using the PBEsol functional®®; later on, we used the SCAN
functional*?, as detailed in the supplementary material. For GPAW, we used
an energy cut-off of 700eV and a k-spacing of 0.279 A", for VASP, a
higher energy cut-off of 900 eV and a denser k-spacing of 0.23 A"

GAP fitting

The GAP model was fitted using a combination of 2-body descriptors and
the Smooth Overlap of Atomic Positions (SOAP)®, with a radial cut-off of
5 A for each descriptor. The number of representative (‘sparse’) points was
15 (Si-Si 2-body), 15 (Si-O 2-body), 15 (O-O 2-body), and 4,060 (SOAP),
respectively. Details concerning the construction of the reference database
and the choice of fitting parameters are given in the supplementary
material. A comprehensive review of the GAP methodology is found in
ref. 44,

Validation of potential models

Bulk moduli of crystalline phases were obtained from energy-volume data
for hydrostatically deformed structures by fitting to the Birch-Murnaghan
equation of state. Elements of the stiffness tensor were obtained by fitting
the energy variation upon applying finite distortions. 21 strain modes
were applied, using strain components (€11 €3 &3 2&3 2613 2612 ) with
g5 € [-1%, 1%]. The curvature of the energy-strain curves was determined
by a fourth-order fit. From this, we obtain 21 equations for the elastic
constants. The independent elastic constants were determined by a fit of
the overdetermined system of equations.

Phonon dispersions and free energies were computed within the frozen-
phonon approximation as implemented in phonopy®'. For a-quartz,
coesite, and stishovite, the quasi-harmonic approximation (QHA) was used
to determine the phase boundaries in a p-T diagram®2

Structure factors were obtained as weighted sums of Faber-Ziman
partial structure factors determined over the last 5ps (10 ps for hybrid
simulations) of simulations containing 1,728 formula units. Coordination
numbers were determined using OVITO with a bond-length cut-off of
2 A%, Single-point energies were computed using VASP for cells with 192
atoms (after relaxation of the ionic positions and the cell size with the
respective potential).

For studying compression behaviour, the GAP-quenched amorphous
structure containing 1,728 formula units was used as starting point. These
structures were held for 20 ps using the different potentials and then
compressed up to 70 GPa in 20 ps. Again, the coordination was determined
using OVITO and a bond-length cut-off of 2 A.

DATA AVAILABILITY

The potential parameter files and associated DFT reference data, as well as relevant
structural data, are openly available in the Zenodo repository at https://doi.org/
10.5281/zenodo.6353684. The identifier for the potential (given in the XML file) is
GAP_2021_4_19_120_7_32_55_336.

Received: 7 October 2021; Accepted: 26 March 2022;
Published online: 28 April 2022

REFERENCES

1. Heaney, P. J., Prewitt, C. T. & Gibbs, G. V. (eds.) Silica: Physical Behavior, Geo-
chemistry, and Materials Applications (Berlin, Boston, 1994).

2. Danel, J. S. & Delapierre, G. Quartz: a material for microdevices. J. Micromech.
Microeng. 1, 187-198 (1991).

3. Parmenter, K. E. & Milstein, F. Mechanical properties of silica aerogels. J. Non-
Cryst. Solids 223, 179-189 (1998).

4. Weitkamp, J. Zeolites and catalysis. Solid State lon. 131, 175-188 (2000).

npj Computational Materials (2022) 90

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32

35.

. Cady, W. G. Piezoelectricity: an introduction to the theory and applications of

electromechanical phenomena in crystals. International series in pure and
applied physics (New York, London, 1946), 1st ed.

. Yeganeh-Haeri, A, Weidner, D. J. & Parise, J. B. Elasticity of a-cristobalite: a silicon

dioxide with a negative Poisson’s ratio. Science 257, 650-652 (1992).

. Kingma, K. J,, Cohen, R. E., Hemley, R. J. & Mao, H.-k Transformation of stishovite

to a denser phase at lower-mantle pressures. Nature 374, 243-245 (1995).

. Yilmaz, B. & Miiller, U. Catalytic applications of zeolites in chemical industry. Top.

Catal. 52, 888-895 (2009).

. Blanc, W. & Dussardier, B. Formation and applications of nanoparticles in silica

optical fibers. J. Opt. 45, 247-254 (2016).

. van Beest, B. W. H., Kramer, G. J. & van Santen, R. A. Force fields for silicas and

aluminophosphates based on ab initio calculations. Phys. Rev. Lett. 64,
1955-1958 (1990).

. Vollmayr, K., Kob, W. & Binder, K. Cooling-rate effects in amorphous silica: a

computer-simulation study. Phys. Rev. B 54, 15808-15827 (1996).

. Koziatek, P., Barrat, J. L. & Rodney, D. Short- and medium-range orders in as-

quenched and deformed SiO, glasses: an atomistic study. J. Non-Cryst. Solids
414, 7-15 (2015).

. Cowen, B. J. & EI-Genk, M. S. On force fields for molecular dynamics simulations

of crystalline silica. Comput. Mater. Sci. 107, 88-101 (2015).

. Saika-Voivod, I., Sciortino, F., Grande, T. & Poole, P. H. Phase diagram of silica

from computer simulation. Phys. Rev. E 70, 061507 (2004).

. Flikkema, E. & Bromley, S. A new interatomic potential for nanoscale silica. Chem.

Phys. Lett. 378, 622-629 (2003).

. Carré, A, Horbach, J,, Ispas, S. & Kob, W. New fitting scheme to obtain effective

potential from Car-Parrinello molecular-dynamics simulations: application to
silica. EPL 82, 17001 (2008).

. Tangney, P. & Scandolo, S. An ab initio parametrized interatomic force field for

silica. J. Chem. Phys. 117, 8898-8904 (2002).

. Yasukawa, A. Using an extended tersoff interatomic potential to analyze the

static-fatigue strength of SiO, under atmospheric influence. JSSME Int. J. Ser. A
Mech. Mater. Eng. 39, 313-320 (1996).

. Yu, J, Sinnott, S. B. & Phillpot, S. R. Charge optimized many-body potential for

the Si-SiO, system. Phys. Rev. B 75, 085311 (2007).

Shan, T-R. et al. Second-generation charge-optimized many-body potential for
Si-Si0, and amorphous silica. Phys. Rev. B 82, 235302 (2010).

Vashishta, P., Kalia, R. K., Rino, J. P. & Ebbsjo, I. Interaction potential for SiOy: a
molecular-dynamics study of structural correlations. Phys. Rev. B 41,
12197-12209 (1990).

Nakano, A. Kalia, R. K. & Vashishta, P. First sharp diffraction peak and
intermediate-range order in amorphous silica: finite-size effects in molecular
dynamics simulations. J. Non-Cryst. Solids 171, 157-163 (1994).

Broughton, J. Q., Meli, C. A, Vashishta, P. & Kalia, R. K. Direct atomistic simulation
of quartz crystal oscillators: bulk properties and nanoscale devices. Phys. Rev. B
56, 611-618 (1997).

Munetoh, S., Motooka, T., Moriguchi, K. & Shintani, A. Interatomic potential for Si-O
systems using Tersoff parameterization. Comput. Mater. Sci. 39, 334-339 (2007).
Herzbach, D., Binder, K. & Muser, M. H. Comparison of model potentials for
molecular-dynamics simulations of silica. J. Chem. Phys. 123, 124711 (2005).
Behler, J. & Parrinello, M. Generalized neural-network representation of high-
dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).
Bartdk, A. P, Payne, M. C, Kondor, R. & Csanyi, G. Gaussian approximation
potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev.
Lett. 104, 136403 (2010).

Thompson, A., Swiler, L., Trott, C., Foiles, S. & Tucker, G. Spectral neighbor
analysis method for automated generation of quantum-accurate interatomic
potentials. J. Comput. Phys. 285, 316-330 (2015).

Shapeev, A. V. Moment tensor potentials: a class of systematically improvable
interatomic potentials. Multiscale Model. Simul. 14, 1153-1173 (2016).

Zhang, L., Han, J.,, Wang, H., Car, R. & E, W. Deep potential molecular dynamics: a
scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120,
143001 (2018).

Cheng, B., Mazzola, G., Pickard, C. J. & Ceriotti, M. Evidence for supercritical
behaviour of high-pressure liquid hydrogen. Nature 585, 217-220 (2020).
Deringer, V. L. et al. Origins of structural and electronic transitions in disordered
silicon. Nature 589, 59-64 (2021).

. Zong, H. et al. Free electron to electride transition in dense liquid potassium.

Nat. Phys. 17, 955-960 (2021).

. Wang, C,, Aoyadgi, K., Wisesa, P. & Mueller, T. Lithium ion conduction in cathode

coating materials from on-the-fly machine learning. Chem. Mater. 32, 3741-3752
(2020).

Wengert, S., Csanyi, G., Reuter, K. & Margraf, J. T. Data-efficient machine learning
for molecular crystal structure prediction. Chem. Sci. 12, 4536-4546 (2021).

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences


https://doi.org/10.5281/zenodo.6353684
https://doi.org/10.5281/zenodo.6353684

36.

37.
38.
39.

40.

41.

42.

43,
44,

45.

46.
47.

48.

49.

50.

51.
52.
53.

54.

55.

56.

57.

58.

59.

60.
61.
62.
63.
64.

65.

66.

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

Artrith, N., Morawietz, T. & Behler, J. High-dimensional neural-network potentials
for multicomponent systems: applications to zinc oxide. Phys. Rev. B 83, 153101
(2011).

Calegari Andrade, M. F. & Selloni, A. Structure of disordered TiO, phases from ab
initio based deep neural network simulations. Phys. Rev. Mater. 4, 113803 (2020).
Sivaraman, G. et al. Machine-learned interatomic potentials by active learning:
amorphous and liquid hafnium dioxide. npj Comput. Mater. 6, 104 (2020).
Timmermann, J. et al. IrO, surface complexions identified through machine
learning and surface investigations. Phys. Rev. Lett. 125, 206101 (2020).
Novikov, I. S. & Shapeev, A. V. Improving accuracy of interatomic potentials:
more physics or more data? A case study of silica. Mater. Today Commun. 18,
74-80 (2019).

Balyakin, I. A,, Rempel, S. V., Ryltsev, R. E. & Rempel, A. A. Deep machine learning
interatomic potential for liquid silica. Phys. Rev. E 102, 052125 (2020).
Kobayashi, K., Nagai, Y., Itakura, M. & Shiga, M. Self-learning hybrid Monte Carlo
method for isothermal-isobaric ensemble: application to liquid silica. J. Chem.
Phys. 155, 034106 (2021).

Sun, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately
normed semilocal density functional. Phys. Rev. Lett. 115, 036402 (2015).
Deringer, V. L. et al. Gaussian process regression for materials and molecules.
Chem. Rev. 121, 10073-10141 (2021).

Rowe, P., Deringer, V. L., Gasparotto, P., Csanyi, G. & Michaelides, A. An accurate
and transferable machine learning potential for carbon. J. Chem. Phys. 153,
034702 (2020).

Deringer, V. L., Caro, M. A. & Csanyi, G. Machine learning interatomic potentials
as emerging tools for materials science. Adv. Mater. 31, 1902765 (2019).
Deringer, V. L. & Cséanyi, G. Machine learning based interatomic potential for
amorphous carbon. Phys. Rev. B 95, 094203 (2017).

Sosso, G. C,, Miceli, G., Caravati, S., Behler, J. & Bernasconi, M. Neural network
interatomic potential for the phase change material GeTe. Phys. Rev. B 85,
174103 (2012).

Shen, Y., Jester, S. B., Qi, T. & Reed, E. J. Nanosecond homogeneous nucleation
and crystal growth in shock-compressed SiO,. Nat. Mater. 15, 60-65 (2016).
George, J,, Hautier, G, Bartok, A. P, Csanyi, G. & Deringer, V. L. Combining
phonon accuracy with high transferability in Gaussian approximation potential
models. J. Chem. Phys. 153, 044104 (2020).

Dorner, B., Grimm, H. & Rzany, H. Phonon dispersion branches in a-quartz. J.
Phys. C: Solid State Phys. 13, 6607-6613 (1980).

Wehinger, B. et al. Lattice dynamics of a-cristobalite and the boson peak in silica
glass. J. Phys.: Condens. Matter 27, 305401 (2015).

Bosak, A. et al. Lattice dynamics of stishovite from powder inelastic x-ray scat-
tering. Geophys. Res. Lett. 36, L19309 (2009).

Tsuchiya, T., Caracas, R. & Tsuchiya, J. First principles determination of the phase
boundaries of high-pressure polymorphs of silica. Geophys. Res. Lett. 31, L11610
(2004).

Bohlen, S. R. & Boettcher, A. L. The quartz-coesite transformation: a precise
determination and the effects of other components. J. Geophys. Res. Solid Earth
87, 7073-7078 (1982).

Akaogi, M., Yusa, H., Shiraishi, K. & Suzuki, T. Thermodynamic properties of a-
quartz, coesite, and stishovite and equilibrium phase relations at high pressures
and high temperatures. J. Geophys. Res. Solid Earth 100, 22337-22347 (1995).
Lane, J. M. D. Cooling rate and stress relaxation in silica melts and glasses via
microsecond molecular dynamics. Phys. Rev. E 92, 012320 (2015).

Richet, P, Bottinga, Y., Denielou, L., Petitet, J. P. & Tequi, C. Thermodynamic
properties of quartz, cristobalite and amorphous SiO,: drop calorimetry mea-
surements between 1000 and 1800 K and a review from 0 to 2000 K. Geochim.
Cosmochim. Acta 46, 2639-2658 (1982).

Huffman, M., Navrotsky, A. & Pintchovski, F. S. Thermochemical and spectro-
scopic studies of chemically vapor-deposited amorphous silica. J. Electrochem.
Soc. 133, 164 (1986).

Sundararaman, S., Huang, L, Ispas, S. & Kob, W. New optimization scheme to
obtain interaction potentials for oxide glasses. J. Chem. Phys. 148, 194504 (2018).
Marsh, S. P. LASL Shock Hugoniot Data. University of California Press, Los
Angeles (1980).

Tracy, S. J, Turneaure, S. J. & Duffy, T. S. In situ X-ray diffraction of shock-
compressed fused silica. Phys. Rev. Lett. 120, 135702 (2018).

Bartok, A. P. & Csanyi, G. Gaussian approximation potentials: a brief tutorial
introduction. Int. J. Quantum Chem. 115, 1051-1057 (2015).

Oganov, A. R, Gillan, M. J. & Price, G. D. Structural stability of silica at high
pressures and temperatures. Phys. Rev. B 71, 064104 (2005).

Ono, S., Hirose, K., Murakami, M. & Isshiki, M. Post-stishovite phase boundary in
SiO, determined by in situ x-ray observations. Earth Planet. Sci. Lett. 197,
187-192 (2002).

Fischer, R. A. et al. Equations of state and phase boundary for stishovite and
CaCly-type SiO,. Am. Mineral. 103, 792-802 (2018).

LC.

Erhard et al.

npj

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84,

85.

86.

87.

88.

89.

90.

9

92.

93.

94,

95.

96.

97.

98.

99.

Dera, P., Prewitt, C. T, Boctor, N. Z. & Hemley, R. J. Characterization of a high-
pressure phase of silica from the Martian meteorite Shergotty. Am. Mineral. 87,
1018-1023 (2002).

El Goresy, A. et al. Seifertite, a dense orthorhombic polymorph of silica from the
Martian meteorites Shergotty and Zagami. Eur. J. Mineral. 20, 523-528 (2008).
Zhang, L. et al. In-situ crystal structure determination of seifertite SiO, at 129
GPa: Studying a minor phase near Earth’s core-mantle boundary. Am. Mineral.
101, 231-234 (2016).

Taeck Park, K., Terakura, K. & Matsui, Y. Theoretical evidence for a new ultra-
high-pressure phase of SiO,. Nature 336, 670-672 (1988).

Elliott, S. R. Medium-range structural order in covalent amorphous solids. Nature
354, 445-452 (1991).

Mei, Q., Benmore, C. J,, Sen, S., Sharma, R. & Yarger, J. L. Intermediate range order
in vitreous silica from a partial structure factor analysis. Phys. Rev. B 78, 144204
(2008).

Wright, A. C. Crystalline-like ordering in melt-quenched network glasses? J. Non-
Cryst. Solids 401, 4-26 (2014).

Sivaraman, G. et al. Experimentally driven automated machine-learned intera-
tomic potential for a refractory oxide. Phys. Rev. Lett. 126, 156002 (2021).
Staacke, C. G. et al. On the role of long-range electrostatics in machine-learned
interatomic potentials for complex battery materials. ACS Appl. Energy Mater. 4,
12562-12569 (2021).

Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J.
Comput. Phys. 117, 1-19 (1995).

Nosé, S. A molecular dynamics method for simulations in the canonical
ensemble. Mol. Phys. 52, 255-268 (1984).

Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys.
Rev. A 31, 1695-1697 (1985).

Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new
molecular dynamics method. J. Appl. Phys. 52, 7182-7190 (1981).

Enkovaara, J. et al. Electronic structure calculations with GPAW: a real-space
implementation of the projector augmented-wave method. J. Phys.: Condens.
Matter 22, 253202 (2010).

Mortensen, J. J,, Hansen, L. B. & Jacobsen, K. W. Real-space grid implementation
of the projector augmented wave method. Phys. Rev. B 71, 035109 (2005).
Larsen, A. H. et al. The atomic simulation environment—a Python library for
working with atoms. J. Phys.: Condens. Matter 29, 273002 (2017).

Kresse, G. & Furthmiiller, J. Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Phys. Rev. B 54, 11169-11186 (1996).
Kresse, G. & Furthmiiller, J. Efficiency of ab-initio total energy calculations for
metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6,
15-50 (1996).

Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B
47, 558-561 (1993).

Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-
metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49,
14251-14269 (1994).

Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953-17979
(1994).

Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector
augmented-wave method. Phys. Rev. B 59, 1758-1775 (1999).

Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in
solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

Bartdk, A. P., Kondor, R. & Csanyi, G. On representing chemical environments.
Phys. Rev. B 87, 184115 (2013).

. Togo, A. & Tanaka, I. First principles phonon calculations in materials science.

Scr. Mater. 108, 1-5 (2015).

Togo, A., Chaput, L., Tanaka, I. & Hug, G. First-principles phonon calculations of
thermal expansion in Ti3SiC,, TisAlC,, and TisGeC,. Phys. Rev. B 81, 174301
(2010).

Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-
the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).
Heyliger, P., Ledbetter, H. & Kim, S. Elastic constants of natural quartz. J. Acoust.
Soc. Am. 114, 644-650 (2003).

Levien, L., Prewitt, C. T. & Weidner, D. J. Structure and elastic properties of quartz
at pressure. Am. Mineral. 65, 920-930 (1980).

Liu, L.-g Bulk moduli of SiO, polymorphs: Quartz, coesite and stishovite. Mech.
Mater. 14, 283-290 (1993).

Kirfel, A. & Will, G. Ending the “P2,/a coesite” discussion. Z. Kristallogr. 167,
287-292 (1984).

Keskar, N. R. & Chelikowsky, J. R. Structural properties of nine silica polymorphs.
Phys. Rev. B 46, 1-13 (1992).

Diaz-Cabanas, M.-J. & Barrett, P. A. Synthesis and structure of pure SiO, cha-
bazite: the SiO, polymorph with the lowest framework density. Chem. Commun.
13, 1881-1882 (1998).

npj Computational Materials (2022) 90

11



npj

L.C. Erhard et al.

12

100. Downs, R. T. & Palmer, D. C. The pressure behavior of a cristobalite. Am. Mineral.
79, 9-14 (1994).

101. Léger, J-M., Haines, J. & Chateau, C. The high-pressure behaviour of the
“moganite” polymorph of SiO,. Eur. J. Mineral. 13, 351-359 (2001).

102. Miehe, G. & Graetsch, H. Crystal structure of moganite: a new structure type for
silica. Eur. J. Mineral. 4, 693-706 (1992).

103. Kato, K. & Nukui, A. Die Kristallstruktur des monoklinen Tief-Tridymits. Acta
Crystallogr. Sect. B 32, 2486-2491 (1976).

104. Bernstein, N., Csanyi, G. & Deringer, V. L. De novo exploration and self-guided
learning of potential-energy surfaces. npj Comput. Mater. 5, 99 (2019).

105. Bechmann, R. Elastic and piezoelectric constants of alpha-quartz. Phys. Rev. 110,
1060-1061 (1958).

106. Weidner, D. J. & Carleton, H. R. Elasticity of coesite. J. Geophys. Res. 82,
1334-1346 (1977).

107. Weidner, D. J., Bass, J. D., Ringwood, A. E. & Sinclair, W. The single-crystal elastic
moduli of stishovite. J. Geophys. Res. Solid Earth 87, 4740-4746 (1982).

108. Mei, Q., Benmore, C. J. & Weber, J. K. R. Structure of liquid SiO,: a measurement
by high-energy X-ray diffraction. Phys. Rev. Lett. 98, 057802 (2007).

ACKNOWLEDGEMENTS

The research was supported by the Bundesministerium fir Bildung und Forschung
(BMBF) within the project FESTBATT under Grant No. 03XP0174A. Calculations for this
research were conducted on the Lichtenberg high performance computer of the TU
Darmstadt. L.C.E. acknowledges support from the Erasmus+ programme for a
research visit to Oxford University. J.R. and L.CE. acknowledge support from the
Deutsche Forschungsgemeinschaft (DFG, Grant no. RO 4542/4-1 and STU 611/5-1).
V.LD. acknowledges a Leverhulme Early Career Fellowship.

AUTHOR CONTRIBUTIONS

L.C.E. performed all calculations, the construction of the database and the fitting and
validation of the potential. J.R. and KA. supervised the density-functional theory
calculations and the study of elastic and thermodynamic properties. V.L.D. supervised
the construction of the database, the fitting of the potential, and the study of the
amorphous structures. All authors contributed to the design of the research and to
data analysis and interpretation. All authors wrote the paper.

npj Computational Materials (2022) 90

FUNDING
Open Access funding enabled and organized by Projekt DEAL.

COMPETING INTERESTS

The authors declare that there are no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/541524-022-00768-w.

Correspondence and requests for materials should be addressed to Jochen Rohrer,
Karsten Albe or Volker L. Deringer.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences


https://doi.org/10.1038/s41524-022-00768-w
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A machine-learned interatomic potential for silica and its relation to empirical models
	Introduction
	Results
	A machine-learned interatomic potential for silica
	Phonons and phase diagrams
	Structure and energetics of disordered silica
	Extrapolation to high pressure

	Discussion
	Methods
	Molecular dynamics
	Density-functional theory computations
	GAP fitting
	Validation of potential models

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	ADDITIONAL INFORMATION




