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Abstract. In this experience report, we present the complete formal
verification of a Java implementation of inplace superscalar sample sort
(ips4o) using the KeY program verification system. As ips4o is one of
the fastest general purpose sorting algorithms, this is an important step
towards a collection of basic toolbox components that are both provably
correct and highly efficient. At the same time, it is an important case
study of how careful, highly efficient implementations of complicated
algorithms can be formally verified directly. We provide an analysis of
which features of the KeY system and its verification calculus are in-
strumental in enabling algorithm verification without any compromise
on algorithm efficiency.

1 Introduction

The core task of computer scientists can be seen as writing correct and efficient
computer programs. However, although both correctness and efficiency have been
intensively studied, there is comparably little work on fully combining both fea-
tures. We would like formally verified code that is efficient on modern machines.
We believe that a library of verified high-performance implementations of the
basic toolbox of most frequently used algorithms and data structures is a cru-
cial step towards this goal: often, these components take a considerable part of
the overall computation time, and they have a simple specification which allows
reusing their verified functionality in a large number of programs. Since the re-
maining code may be simpler from an algorithmic point of view, verifying such
programs could thus be considerably simplified.

To make progress in this direction, we perform a case study on sorting, which
is one of the most frequently used basic toolbox algorithms. For example, a
recent study identified hundreds of performance relevant sorting calls in Google’s
central software depot [39]. Taking correctness of even standard library routines
for granted is also not an option. For example, during a verification attempt of
the built-in sorting routine of the OpenJDK TimSort routine, researchers were
able to detect a bug, using the KeY verifier [12].

Although some sorters have been formally verified [13,4,22], it turns out that
these do not achieve state-of-the-art performance because only rather simple
combinations and variants of quicksort, mergesort, or heapsort have been used
that lack cache efficiency when applied to large data sets and have performance
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bottlenecks that limit instruction parallelism. The best available sorters are con-
siderably more complex (≈ 1000 lines of code) and even more likely to contain
bugs when not formally verified. Moreover, previous verifications do not prove
all required properties or they operate only on an abstraction of the code, which
makes it difficult to relate to highly tuned implementations.

For our verification of a state-of-the-art sorter, we consider ips4o (in-place
super scalar sample sort) [2]. Sample sort [11] generalises quicksort by parti-
tioning the data into many pieces in a single pass over the data, which makes it
more cache efficient (indeed I/O-optimal up to lower order terms). Additionally,
ips4o works in-place (an important requirement for standard libraries and large
inputs), avoids branch mispredictions, and allows high instruction parallelism
by reducing data dependencies in the innermost loops. The algorithm also has
an efficient parallelisation and parts of it can be used for fast integer sorting
[2,39]. Extensive experiments indicate that a C++ implementation of ips4o con-
siderably outperforms quicksort, mergesort and heapsort on large inputs and is
several times faster than adaptive sorters such as TimSort on inputs that are not
already almost sorted [2]. Our experiments in Sec. 5 indicate that the verified
Java implementation is 1.3 to 1.8 times faster than the standard library sorter
of OpenJDK 20 for large inputs on three different architectures.

We use the Java Modeling Language (JML) [24] to directly specify the effi-
cient Java implementation of sequential ips4o. We obtain a largely automated
proof using the KeY theorem prover [1] in part aided by external theory solvers
(in particular Z3 [35]) and KeY’s support for interactively guiding the proof con-
struction process. This yields a full functional correctness proof of the full Java
implementation of ips4o showing, for all possible inputs, sortedness, the permu-
tation property, exception safety, memory safety, termination, and absence of
arithmetic overflows. The complete 8-line specification of the toplevel sorting
method can be seen in Fig. 1.

The verified code is available for download1 and can easily be used in real-
world Java applications (through the maven packaging mechanism). It spans
over 900 lines of Java code with the main properties specified on 8 lines of
JML, annotated with some 2500 lines of JML auxiliary annotations for prover
guidance. The project required a total of 1 million proof steps (of which 4000
were performed manually) on 179 proof obligations (with one or more proof
obligation per Java method). The project required about 4 person months.

The verification revealed a subtle bug in the original version, where the algo-
rithm would not terminate if presented with an array containing the same single
value many times.2 This flaw was subsequently fixed. Moreover, the formal ver-
ification revealed that the code could be simplified at one point.

This case study demonstrates that competitive code hand-optimised for the
application on modern processors can be deductively verified within a reasonable
time frame. It resulted from a fruitful collaboration of experts in program verifi-

1 at the github repository https://github.com/KeYProject/ips4o-verify
2 The bug was latently present in the original C++-code also. However, it cannot
occur when the default parameter values are used in C++.

https://github.com/KeYProject/ips4o-verify
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cation and experts in algorithm engineering. More details on technical topics of
the implementation, specification and verification can be found in the master’s
thesis of one of the authors [40].

2 Background

2.1 Formal Specification with the Java Modeling Language

The Java Modeling Language (JML) [24] is a behavioural interface specifica-
tion language [16] following the paradigm of design-by-contract [31]. JML is
the de-facto standard for the formal specification of Java programs. The main
artefact of JML specifications are method contracts comprised of preconditions
(specified via requires clauses), postconditions (ensures) and a frame condi-
tion (assignable) which describes the set of heap locations to which a method
invocation is allowed to write. A contract specifies that, if a method starts in
a state satisfying its preconditions, then it must terminate and the postcondi-
tion must be satisfied in the post-state of the method invocation. Additionally,
any modified heap location already allocated at invocation time must lie within
the specified assignable clause. Termination witnesses (measured by clauses) are
used to reason about the termination of recursive methods. Java loops can be
annotated with invariants (loop invariant), which must be true whenever the
loop condition is evaluated, termination witnesses (decreases), and frame con-
ditions (assignable) that limit the heap locations the loop body may modify.
Loop specifications and method contracts of internal methods allow one to con-
duct proofs modularly and inductively.

Expressions in JML are a superset of side-effect-free Java expressions. In
particular, JML allows the use of field references and the invocation of pure
methods in specifications. JML-specific syntax includes first-order quantifiers
(\forall and \exists) and generalised quantifiers. One generalised quantifier
is the construct (\num of T x; φ) which evaluates to the number of elements
of type T that satisfy the condition φ (if that number is finite). (\sum T x;

φ; e) sums the expression e over all values of type T satisfying φ. Quantifiers
in JML support range predicates to constrain the bound variable; the expres-
sion (\forall T x; φ; ψ) is hence equivalent to (\forall T x; φ ==> ψ).
The construct \old(E) can be used to refer to the value of expression E at
the beginning of the invocation of the current method. The JML dialect of KeY
adds a few function symbols which are helpful in this case study: The predi-
cate seqPerm(S1, S2) is true iff the sequences S1 and S2 are permutations of
each other. The function symbol array2seq(A) returns the content of the array
reference A as a sequence of values.

JML specifications are annotated in the Java source code directly and en-
closed in special comments beginning with /*@ or //@ to allow them to be com-
piled by a standard Java compiler. JML supports the definition of verification-
only (model and ghost) entities within JML comments that are only visible at
verification time and do not influence runtime behaviour (see also Sec. 4.1).
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1 /*@ public normal_behaviour
2 @ requires v.length <= MAX_LEN;
3 @ ensures seqPerm(array2seq(v), \old(array2seq(v)));
4 @ ensures (\forall int i; 0 <= i < v.length-1; v[i] <= v[i+1]);
5 @ assignable v[*];
6 @*/
7 public static void sort(int[] v) { ... }

Fig. 1: Specification of the sorting entry method specifying that after the method
call, the array values contains a permutation of the input values (line 3) and
is sorted (quantified expression in line 4). Only entries in the array are modified
in the process (line 5).

Fig. 1 shows the specification of the top-level sort method as an example.
Since that JML contract is labelled normal behaviour, it requires (in addition
to satisfying the pre-post contract) that the method does not terminate abruptly
by throwing an exception. While JML supports the specification of exceptional
cases, this feature has not been used in this case study.

2.2 Deductive Verification with the KeY System

The KeY verification tool [1] is a deductive theorem prover which can be used to
verify Java programs against JML specifications. KeY translates JML specifica-
tions into proof obligations formalised in the dynamic logic [14] variant JavaDL,
in which Java program fragments can occur within formulas. The JavaDL for-
mula φ → ⟨o.m();⟩ψ is similar to the total Hoare triple [φ] o.m(); [ψ], with
both stating that the method invocation o.m() terminates in a state satisfying
ψ if started in a state satisfying φ. JavaDL is a generalisation of Hoare logic al-
lowing the formulation of proof obligations containing more than one (possibly
nested) program operator. Proofs in KeY are conducted by applying inference
rules in a sequent calculus. Using a set of inference rules for Java statements, the
Java code (⟨o.m()⟩ψ in the above statement) is symbolically executed such that
the approach yields the weakest precondition for o.m() and ψ as a formula in
first-order predicate logic. KeY can settle many proof obligations automatically,
but also allows interactive rule application and invocation of external provers
like satisfiability modulo theories (SMT) solvers.

3 Our Java Implementation of ips4o

3.1 The Algorithm

In-place (parallel) super scalar sample sort (ips4o), is a state-of-the-art general
sorting algorithm [2]. Sample sorting can be seen as a generalisation of quick sort,
where instead of choosing a single pivot to partition elements into two parts, we
choose a sorted sequence of k − 1 splitters which define k buckets consisting
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of the elements lying between adjacent splitters. One advantage of this is the
reduced recursion depth and the resulting better cache efficiency. “Super-scalar”
refers to enabling instruction parallelism by avoiding branches and reducing data
dependencies while classifying elements into buckets. “In-place” means that the
algorithm needs only logarithmic3 space in addition to the input. Although ips4o
has a parallel version, this work is concerned with the sequential case.

The algorithm works by recursively partitioning the input into buckets; when
the sub-problems are small enough, they are sorted using insertion sort. The
maximum number of buckets kmax and the base-case size, i.e., the maximum
problem size for insertion sort, are configuration parameters. In our implemen-
tation, we chose kmax = 256 and base-case size 128 experimentally. Partitioning
consists of four steps: Sampling, classification, permutation, and cleanup.

Sampling. This step finds the splitters as equally spaced elements from a
(recursively) sorted random sample of the current subproblem. There are special
cases to handle small or skewed inputs. These are fully handled in our proof,
but to simplify the exposition, we will assume in this summary that k = kmax

distinct4 splitters are found this way. The goal of the sampling step is to build a
classifier that determines into which bucket an element belongs. The first step is
determining into how many buckets the input should be partitioned, depending
on its size. In most cases, this will be the maximum of k = 256; only for small
inputs, a smaller k is chosen. Then, αn · k − 1 random samples are chosen from
the input, where n is the size of the current subproblem and αn = ⌊ log2 n

5 ⌋ is
an oversampling factor. These samples are sorted, and every αn-nth sample is
selected as a splitter candidate and the unique candidates are used as splitters.
These splitters partition the input into buckets of roughly equal size; the over-
sampling factor is used to improve the balance of this partitioning. If many equal
splitters are found, equality buckets are enabled, which will contain all elements
equal to a splitter. Although they are part of the verified implementation, for
the sake of brevity, we will omit handling of equality buckets in this paper and
assume that we always find more than one unique splitter.

Classification. The goal of the classification step is two-fold: (1) to assign
each element to one of the k buckets defined by the splitters, and (2) to pre-
sort elements into fixed-size blocks such that all elements in a block belong to
the same bucket. To find the right bucket for each element, the largest splitter
element smaller than that element must be identified. A number of algorithm en-
gineering optimisations make the classification efficient: it is implemented using
an implicit perfect binary search tree with logarithmic lookup complexity. More-
over, the tree data structure also supports an implementation without branching
statements and unrolled loops that eliminates branch mispredictions and facil-
itates high instruction parallelism and the use of SIMD instruction (the latter
not shown here). We will come back to this classification tree implementation in

3 There are also versions that need only constant space and thus fulfil a more strict
definition of “in-place”.

4 If equal splitters do appear, duplicates are removed and equality buckets are used
that do not require recursive sorting.



6 B.Beckert et al.

Buffers

B

B

(a)

(b)

(c)

(d)

(e)

Fig. 2: Overview of all steps of ips4o: (a) input with elements classifying as the
four classes blue, green, orange and red, (b) After classification (B = 2); bucket
sizes are indicated by brackets and white elements are empty, (c) after permu-
tation, (d) the operations done by the cleanup step, (e) partitioned output.

Sect. 4.2 where we discuss how this efficiency choice was dealt with in the formal
proof.

After classification is done, the input array consists of blocks in which all
elements belong to the same bucket, followed by some empty space, with the
remaining elements still remaining in the (partially filled) buffers. The block size
B is chosen experimentally to be 1KiB. Fig. 2.b shows the output of this step.

Permutation. By now, it is known how many elements are in each bucket,
and therefore where in the array each bucket begins and ends after partitioning
is done. The objective of the permutation step is to rearrange the blocks so that
each block starts in the correct bucket. Then, if the block is not already correctly
placed, it is moved to its bucket, possibly displacing another (incorrectly placed)
block, which is then similarly moved. Refer to Fig. 2.c for the state of the input
array after this step.

Cleanup. In general, bucket boundaries will not coincide with block bound-
aries. Since the permutation step works on block granularity, there may be over-
lap where elements spill into an adjacent bucket. These elements are corrected
in the cleanup step. In addition, the remaining elements in the buffers from
the classification step are written back into the input array. Fig. 2.d shows an
example of the steps performed during cleanup.

3.2 Algorithm Engineering for Java

While the original implementation of ips4o was written in C++, the verification
target of this case study is a translation by one of the authors of the original
code to Java. No performance-relevant compromises where made, e.g., to achieve
easier verification. We started with a Java implementation as close as possible to
the C++ implementation. We then performed profiling-driven tuning. Adjusting
configuration parameters improved performance by 12%. The only algorithmi-
cally significant change resulting from tuning is when small sub-problems are
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sorted. In the C++ implementation this is done during cleanup in order to im-
prove cache locality. In Java it turned out to be better to remove this special case,
i.e., to sort all sub-problems in the recursion step. This improved performance
by a further 4%, for a total of 16%.

4 Specification and Verification

In this case study, the following properties of the Java ips4o implementation
have been specified and successfully verified:

Sorting Property: The array is sorted after the method invocation.
Permutation Property: The content of the input array after sorting is a per-

mutation of the initial content.
Exception Safety: No uncaught exceptions are thrown.
Memory Safety: The implementation does not modify any previously allo-

cated memory location except the entries of the input array.
Termination: Every method invocation terminates.
Absence of Overflows: During the execution of the method, no integer oper-

ation will overflow or underflow.

We assume that no out-of-memory or stack-overflow errors can ever occur at
runtime. Since the algorithm is in-place, and the recursion depth is in O(log n),
this is a reasonable assumption to make.

Fig. 1 shows the JML specification of the entry method sort of the ips4o
implementation, i.e., the top-level requirements specification of the sorting algo-
rithm. The annotation normal behaviour in line 1 specifies exception safety (i.e.
the absence of both explicitly and implicitly thrown uncaught exceptions). Mem-
ory safety is required by the framing condition in line 5. The permutation and
sorting property are formulated as postconditions in lines 3 resp. 4. Termination
is a default specification case with JML (unless explicitly specified otherwise).
The absence of overflows is not specified in JML, but is an option that can be
switched on in KeY. The precondition in line 2 of the method contract ensures
that there are no overflows and is of little practical restriction since it is very
close to the maximum integer value (MAX LEN = 231 − 256).

The implementation of Java ips4o comprises 900 lines of code, annotated
with 2500 lines in JML. Besides the requirement specification, this comprises
auxiliary specifications such as method contracts for (sub-)methods, class and
loop invariants, function or predicate definitions and lemmata. We will focus
on selected specification items and emphasise the algorithm’s classification step
since it has sophisticated, interesting loop invariants that are at the same time
comprehensible, exemplifying the techniques we were using. More details of some
parts can be found in the associated Master’s thesis [40].

4.1 Enabling KeY Features

A few advanced features of KeY were essential for completing the proof. They
are needed to abstract from sophisticated algorithmic concepts and to decompose
larger proofs into more manageable units.
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1 /*@ public model_behaviour
2 @ accessible values[begin..end - 1];
3 @ static model int countElement(int[] values, int begin, int end, int e) {
4 @ return (\num_of int i; begin <= i < end; values[i] == e); } */

Fig. 3: Model method that counts the occurrences of the integer element in the
index range begin, . . . , end− 1. The accessible clause specifies that the model
method may only read the values between begin and end-1 (inclusively).

We followed a mostly autoactive program verification approach [27] with as
much automation as possible while supporting interactive prover guidance in
form of source code annotations (e.g. assertions). This concept has been widely
adapted throughout the program verification community [38,33,26,10]. Most pro-
gram verification tools only allow guidance by source code annotations. However,
the KeY theorem prover also supports an interactive proof mode in which infer-
ence rules can be applied manually – and we resorted also to this way of proof
construction where needed.

Model methods. Due to the scale of the project, it was useful to encapsu-
late important properties of the data structures into named abstract predicates
or functions. The vehicle to formulate such abstraction in JML are model meth-
ods [34], which are side-effect free (pure) methods defined within JML annota-
tions that exist only for verification purposes. Since they are invisible to the Java
compiler, the full range of JML expressions (including, e.g., quantifiers) can be
used for the definition of model methods. For ips4o, around 100 different model
methods were used.

The benefits of using model methods are two-fold: (1) They structure and de-
compose specifications making them more comprehensible and (2) they simplify
resp. enable automated verification by abstraction of the proof state. There are
two ways of reasoning with model methods: by expanding definitions and using
lemmas on them, or by using footprints and dependency reasoning to establish
that the value of an expression is unchanged after some unrelated heap modifi-
cation: If it is known for a model method on which heap locations its result value
depends (its (read) memory footprint), the verification can rely on the fact that
changing locations outside the footprint will not change the result of the model
method. An example for a widely used (50 occurrences) model method is shown
in Fig. 3.

Like ordinary Java methods, JML model methods can also be annotated
with method contracts. This allowed us to abstract from formal definition details,
both regarding the result value and the memory footprint, hence obtaining useful
lemmas over the abstraction symbols.

The case study also formulated relevant explicit lemmas on data structures
as model methods. Thus, these relevant properties could be proved in isolation,
outside their application context such that the (human or automatic) prover is
not distracted by an abundance of logical statements present in intermediate
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1 /*@ public model_behaviour
2 @ requires begin <= mid <= end;
3 @ ensures \result;
4 @
5 @ static model boolean countElementSplit(
6 @ int[] values, int begin,
7 @ int mid, int end
8 @ ) {
9 @ return (\forall int e; true;

10 @ countElement(values, begin, end, e) ==
11 @ countElement(values, begin, mid, e) +
12 @ countElement(values, mid, end, e));
13 @ } */

Fig. 4: Lemma method used for splitting the permutation property at an index
mid. This uses the model method introduced in Fig. 3.

proof contexts. See Fig. 4 for an example. A proof of the postcondition in line 3
establishes the lemma and allows it to be used in other proofs later.

Ghost fields and variables provide further abstractions from the mem-
ory state by defining verification-only memory locations. Ghost fields and ghost
variables are also invisible to the Java compiler. However, they are valuable for
deductive verification since they allow one to keep track of the evolution of proof-
relevant expressions explicitly rather than recomputing them from the memory
state. In the present case study, all Java classes except simple pure data con-
tainers required at least one ghost field. Sec. 4.2 reports a challenge were ghost
variables and ghost code (i.e. assignments to ghost variables) made verification
possible in the first place.

Assertions are the main proof-guidance tool in autoactive verification as
they provide means to formulate intermediate proof targets that the automa-
tion can discharge more easily and that thus may provide a deductive chain
completing the proof. This corresponds to making case distinctions or to intro-
ducing intermediate goals in a manual proof. In the present case study, assertions
avoided many tedious interactive proof steps as the annotations in the source
code guide the proof search such that it now runs automatically.

Furthermore, assertions allowed us to deduplicate interactive proofs, espe-
cially in combination with model methods used as carriers of lemmas. Stating
conditions in an assertion explicitly, that were later required on many occasions
on different branches, drastically reduced the number of necessary rule applica-
tions.

Block contracts.Much like method contracts, block contracts abstract from
details in control flow and implementation details of a Java code block they an-
notate (similar to a method contract). Block contracts can decompose large and
complex method implementation and allow one to focus on the relevant effects
of individual components (i.e., code blocks) formalised in the postconditions of
the block contracts. Irrelevant aspects of the code blocks that clutter the proof
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1 /*@ normal_behaviour
2 @ ensures value == (a && b && c);
3 @ assignable \strictly_nothing; */
4 { value = a && b && c; }
5 if (value) { ... } else { ... }

Fig. 5: Transformation to prevent generating many cases due to short circuiting.

Written slice Empty Elements to read

1. Flush

2. Push

Buffers

Fig. 6: Intermediate state of the classification step after processing some ele-
ments. The first element to be read is being pushed to the orange buffer which
gets flushed beforehand.

state can be dropped. This simplifies the verification both for the user and the
machine. A similar abstraction can be applied to footprint specifications.

Since KeY employs symbolic execution, every path through the program
opens a first-order proof goal. With block contracts, it is possible to reduce
the otherwise potentially exponential number of branches drastically (to a linear
number). Fig. 5 shows an example where a block contract is used to wrap a
logical evaluation that would otherwise produce three goals due to Java’s short
circuiting semantics of the conjunctive operator &&. If short circuiting is encap-
sulated inside a block contract, then the three cases are kept inside the block,
and the branching on the result will only lead to two cases (for the then and the
else part of the code).

4.2 Central Ideas Used in the Proofs of the Steps of ips4o

In this section we zoom in on a few central concepts from the proofs of the algo-
rithm. We mainly focus on the classification step which (1) establishes the most
relevant invariants of the recursion step, and (2) showcases a particular proof
technique related to the verification of the efficient algorithm implementation
used in this case study.

Relevant Invariants. During classification, the algorithm rearranges the
input elements into blocks (of a given size B) such that all elements in a block
are classified into the same bucket. Furthermore, it counts the elements in each
bucket. Fig. 6 shows an intermediate state of the classification step. It is checked
to which bucket the next element belongs, that bucket’s buffer is flushed if
needed, and then the element is pushed to the buffer according to its classifica-
tion. This is done in batches of m elements at once such that the classification
can take advantage of batched queries (that allow the CPU to apply instruction
parallelism).
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1 /*@ loop_invariant begin <= i <= end && begin <= write <= i;

2 loop_invariant (\forall int b; 0 <= b < num_buckets; (\forall int i; // (1)

3 b * BUFFER_SIZE <= i < b * BUFFER_SIZE + buffers.lengths[b];

4 classOf(buffers.buffer[i]) == b));

5 loop_invariant (\forall int block; 0 <= block < (end-begin)/BUFFER_SIZE; // (2)

6 (\exists int b; 0 <= b < num_buckets; (\forall int i;

7 begin + block * BUFFER_SIZE <= i < begin + (block+1)*BUFFER_SIZE;

8 classOf(values[i]) == b)));

9 loop_invariant (\forall int element; // (3)

10 \old(countElement(values, begin, begin, begin, end, buffers, element)) ==

11 countElement(values, begin, write, i, end, buffers, element)

12 loop_invariant (\forall int b; 0 <= b < num_buckets; bucket_counts[b] == // (4)

13 (\num_of int i; begin <= i < write; classOf(values[i]) == b));

14 loop_invariant write - begin == (\sum int b; // (5)

15 0 <= b < num_buckets; bucket_counts[b]);

16 loop_invariant (\forall int b; 0 <= b < num_buckets; // (6)

17 isValidBufferLen(buffers.lengths[b], bucket_counts[b]));

18 loop_invariant buffers.count() == i - write; // (7a)

19 loop_invariant (i - begin) loop_invariant (write - begin)

Fig. 7: Specification of the classification loop. begin and end are the boundaries
of the slice that is being processed, i is the offset of the next element that will be
classified, write is the end offset of the written slice. The array bucket counts

contains the element count for each bucket.

After classifying all elements, the count of all elements in each bucket’s buffer
is added to get the full element count for each bucket. We define the written slice
to be the elements that were already flushed to the input array.

To exemplify the nature of the specification used in this case study, we discuss
the inductive loop invariants of the classification loop which allowed us to close
the proof for this step. Fig. 7 shows the corresponding JML annotations5.

1. The buffers contain only bucket elements of their respective bucket.
2. The written slice is made up of blocks of size B where each block contains

only elements of exactly one bucket.
3. The permutation property is maintained.
4. The per bucket element counts are exactly the number of elements of the

corresponding bucket in the written slice.
5. The sum of all per bucket element counts equals the size of the written slice.
6. The buffer size of each bucket is valid (see Def. 1).
7. The spacings are well formed:

(a) The total element count in all buffers equals the length of the free slice.
(b) The start offset of the current batch is a multiple of m.
(c) The length of the written slice is a multiple of B.

Invariants 1 and 2 straightforwardly encode the block structure during clas-
sification from the abstract algorithm. They are also needed as preconditions

5 In the actual implementation, the invariants are grouped in several model methods.
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for the following partitioning step. The permutation invariant 3 ensures that no
elements are lost during classification by stating that the original array content
is a permutation of the union of all elements not yet handled, the written slice
and the union of all buffers. Invariants 4 and 5 are needed to show that the
bucket element counts are correct and to show that all elements of the input will
have been taken into account eventually. These invariants were engineered by
translating the ideas from the abstract algorithm into the Java situation. The
remaining two invariants were discovered later in the verification process: The
somewhat unexpected invariant 6 was only discovered during the proof of the
cleanup step and will be explained further below. Invariant 7 was discovered last
by inspecting the open proof goals of failed attempts, and is mostly needed to
show that write operations to the heap remain in bounds.

Invariant 5, while in principle derivable from the other invariants, simplifies
the proof that the sum of all bucket element counts is the size of the input after
termination. Adding it as a redundant loop invariant avoids having to prove the
same statement repeatedly using the other invariants.

The branching statement checking whether the buffer is full was specified
using a block contract.Thus, the interaction-heavy proof of the preservation of
the loop invariants after the call to push only had to be conducted once.

When flushing a buffer, the algorithm must not overwrite the batch that it is
currently processing nor the elements that were not processed yet. This property
is captured in invariant 7. First and foremost, 7a ensures that there is enough
space to write a whole buffer if a buffer is full. When pushing the elements of
the current batch to their buckets, the algorithm makes sure that the start of
the batch will never be overwritten. However, this was not provable from the
scope of this loop: For example, let there be B total elements in all buffers, all of
which are in the buffer of some bucket b when we are trying to push the second
element of a batch to b’s buffer. A flush may then happen before the push which
would illegally overwrite the first element of the batch. This case is shown to be
impossible by adding invariants 7b and 7c. In general, this holds for any values
where B is a multiple of the batch size m.

To prove correctness in the steps following classification, properties on the
number of elements in a bucket’s buffer must be known. However, the algorithm
itself only provides information about the total number of elements that have to
end up in a bucket eventually. To have guarantees on the number of elements in
the buffers during verification, additional invariants had to be added: We know
that the classification always writes full blocks when flushing and that a flush
is always followed by a push. This leads to the following definition which is also
behind invariant 6.

Definition 1. The buffer length ℓb of a bucket and the number of bucket ele-
ments ℓw that were written back by the classification are called valid if

1. ℓw mod B = 0 (written count is a multiple of the block size B) and
2. 0 < ℓw ⇒ ℓb ̸= 0 (empty buffer is only allowed when nothing has been

written).
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1 public int classify(int value) {
2 int b = 1;
3 for (int i = 0; i < log_2(k); ++i)
4 b = 2 * b + (tree[b] < value ? 1 : 0);
5 return b - k;
6 }

Fig. 8: Classifying a single element without branches. The loop at line 3 can be
unrolled, because log2 k is at most 8. The conditional in line 4 can be compiled
into predicated instructions, such as CMOV, or, more commonly, into a CMP/SETcc

sequence, rending the code effectively branch-free. Interleaving the classification
of multiple elements (not shown here) allows the use of SIMD instructions, fur-
ther improving performance.

The classification step also produces bucket boundaries in the input slice
which are needed throughout the remaining steps of the algorithm. The bucket
boundaries are stored as entries in a sorted array bs of integers with bs[0] = 0
and bs[k + 1] = n. A lemma derived for this boundaries array states that the
ranges of the buckets are disjoint from one another. This lemma was used after
modifications of elements constrained to a single bucket, e.g. the cleanup step,
to show that all other buckets remained unmodified.

Classification Search Tree. As mentioned in Sec. 3, classification employs
an implicit binary search-tree data structure to find the bucket to which an
element belongs. This is a complete binary tree where the root of a subtree
stores the median of the splitters belonging to the subtree. The splitters are
stored in an array with the root at index one. The children of the node stored
at index i are stored at indices 2i and 2i + 1. This is the same implicit tree
representation as for binary heaps but with a search tree ordering. Fig. 8 shows
the branch-free loop to compute the bucket c(e) for an element e.

It was difficult to verify this routine with hard to find loop invariants. On the
other hand, an implementation using binary search on a linearly sorted array
would have been easier to verify; but without the benefits of branch-freedom.
Hence, this optimisation is an example where algorithm engineering decisions
make verification more complicated. Our solution to the problem was to imple-
ment the binary search algorithm on the array of indices in parallel next to the
efficient tree search by means of ghost variables and ghost code. A set of coupling
invariants set the variables of heap and array into relation. Fig. 9 illustrates the
relationship between the search in the binary heap and the search in the ghost
code sorted index array.

Besides Classification. The algorithm’s initial step of drawing samples
and determining the splitters to be used in the recursion step operates on a
fixed, input-independent number of elements such that most of the properties of
this step can be shown by an exhaustive bounded analysis (see Sec. 4.4). The
permutation and cleanup steps build upon the same general principles already
established during classification, but require more and additional book keeping
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Fig. 9: Visualisation of finding the classification for an element; in the binary
heap search tree (left) and in a linearly sorted array (right) for k = 8 buckets.
The red path indicates the same classification as a path on the heap tree and
a nesting of intervals for the binary search. The circled numbers indicate the
index in the array representing the search tree; the italic numbers show the
bucket number and the upright numbers the index of the splitters against which
is compared.

to relate different indices into the array. The implementation consists of four
quadruply nested loops and the innermost loop has three different exit paths.
Hence, verifying the permutation and cleanup part needed the most proof rule
applications to close.

4.3 Selected Cross-cutting Concerns of the Proofs

While constructing the correctness proofs for ips4o, we made the following note-
worthy observations.

Non-trivial termination proofs. For many algorithms, termination is an
easy to show property. However, even though ips4o follows essentially an array-
based divide-and-conquer strategy, its termination proofs are non-trivial. We
exemplify this on the termination of the partitioning step.

The textbook version of quicksort removes the splitter element (pivot) from
the partitions. Hence, the partition size is a variant (termination witness) as
each recursive call receives a strictly smaller slice to work on. For our ips4o
implementation, however, this is not the case as the splitter elements remain
within the partitions. It is the following observation that ensures termination:
If there are two elements e1, e2 in the input slice that are classified into two
different buckets (c(e1) ̸= c(e2)), then the number of elements in each bucket
is strictly below the size of the input slice. While this observation may look
trivial to a human reader, it requires a non-trivial interactive proof in KeY. One
has to reason that for every bucket b1, there is a different non-empty bucket b2
implying that b1 is smaller than the input slice. This variant allows proving the
termination of the recursion.

To show this, two elements e1, e2 from the input slice need to be identified
that satisfy the premise c(e1) ̸= c(e2). One obvious choice are the first two
splitter elements chosen to be pairwise different values from the input array.
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Both the fact that the premise holds for the splitter elements and the lemma
that this implies that each bucket is smaller than the original slice are imple-
mented as model methods that allowed us to close the termination proof of the
recursion step.

Multiple variants of property formalisations. One important insight
from the case study is that for some properties it pays off to have not one but two
(or multiple) syntactically different, yet semantically equivalent formalisations
at hand and to be able to use them at different places in the proofs. We give
examples on sortedness and permutation properties.

Sortedness of an array can be expressed in first-order logic by either of the
following equivalent formulae:

∀i : 0 ≤ i < n− 1 ⇒ v[i] ≤ v[i+ 1] (1)
∀i, j : 0 ≤ i < n ∧ i ≤ j < n⇒ v[i] ≤ v[j] (2)

While (1) compares every array element with its successor, (2) allows compar-
ison between arbitrary indices in the array. In the case study, when proving
sortedness, (1) is used. However, when assuming sortedness in a proof (e.g., in
preconditions), the transitive representation (2) is more useful. Technically, both
representations are formulated as model methods and their equivalence has been
shown using a simple inductive argument, which allowed us to switch between
representations as needed. It is the number of universal variables that makes
the difference. Since (1) has a single bound variable i, in a sortedness proof,
the (Skolemised) constraint v[i] ≤ v[i + 1] needs to be discharged which (taken
on its own) is a less general statement than the constraint i ≤ j ⇒ v[i] ≤ v[j]
which one has to prove for (2). On the other hand, when assuming sortedness,
(2) provides one with more degrees of freedom to instantiate the property.

A similar effect with two formalisation variations can be observed for the
permutation property: For two sequences s1, s2, the expression seqPerm(s1, s2)
formulates that there exists a bijection π between the indices of s1 and s2 such
that s1[π(i)] = s2[i] for all indices i. This straightforward formulation of the
property using an explicit permutation witness π proved helpful to show state-
ments like

∑n
i=0 s1[i] =

∑n
i=0 s2[i] under the assumption that s1 and s2 are

permutations of one another. However, proving the permutation property using
this definition can be difficult since one has to provide the explicit witness for π.
Therefore, an alternative formulation has been used based on the fact that two
sequences are permutations of one another iff they are equal when considered
as multisets, i.e., iff every element occurs equally often in both sequences6. The
equivalence of the two notions is made available to KeY as an (proved) axiom.
A proof for this equality formulated as a theorem in the Isabelle/HOL theorem
prover can be found in Appendix A.

Proving frame conditions. To reason that the memory footprints of dif-
ferent data structures do not overlap, KeY supports the concept of dynamic
frames [19]. Alternative techniques to deal with the framing problem would be
separation logic [36], or ownership types [9]. To be cache-efficient, the ips4o im-
plementation uses a number of auxiliary buffers, realised as Java arrays. In the

6 which is a standard formalisation often used in proofs of sorting algorithms
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Java language, array variables may alias. In the case study, methods have up
to 11 array parameters which all must not alias with each other. JML possesses
an operator \disjoint which can be used to specify that the sets of mem-
ory locations provided as arguments must be disjoint. KeY then generates the
(quadratically many) inequalities capturing the non-aliasing. KeY is not slowed
down since all generated formulas are inequalities between identifiers. We used
an auxiliary class to group all arrays for reuse during the recursion which reduced
the required specification overhead. This shows that dynamic frames are an ad-
equate formalism to deal with the framing problem for this type of algorithmic
verification challenge.

Integer overflow. As mentioned above, KeY uses mathematical integers to
model machine int values. For this to be sound, arithmetic expressions must not
over- or underflow the ranges of their respective primitive type. We hence verified
the absence of integer overflows in all methods proved in KeY. Corresponding
assertions are automatically generated by KeY during symbolic execution: every
arithmetic operation generates a new goal where the absence of overflow for
this operation is checked. There were only a few lines of additional specification
required. The overwhelming majority of those proofs closed without interactions
since they could be derived from already proven invariants.

Performance and Verifiability. Optimisations to the code in the case
study sometimes had an impact on the required effort to verify and sometimes
did not: verifying the binary search tree optimisation explained in Sec. 4.2 was
pretty costly whereas the reverification of the project after the optimisations
mentioned in Sec. 3.2 went through pretty automatically. Both optimisations
bought a noteworthy bit of performance. A key factor for the complexity of the
verification is how much the optimisation modifies data representation.

4.4 Prover Infrastructure

While the vast majority of proof goals were closed (fully automatically or with
some interactions) within the theorem prover built into KeY, we also used ex-
ternal tools for a few cases to show that this can reduce the workload. The
infrastructure around the proof engine of KeY allows us to exploit particular
properties of program parts that then can be verified using other (automatic)
methods and tools.

Firstly, the use of SMT solvers was essential (only) for two subgoals where
KeY’s built-in strategy could not close the proof automatically (within reason-
able time). However, we relied on SMT solvers also in other proofs – even though
KeY was able to close these proofs without invoking an SMT solver – since that
greatly sped up proof search and construction.

Secondly, KeY is not the ideal verification tool for Java code with shifts or bit-
wise logical operations since primitive integral values are treated as mathematical
integers (within the bounds of the type). While verification of such operations is
generally achievable within KeY, they require more interactive steps and more
runtime than one would hope. To reduce the workload in the case study, to
increase the degree of automation, and to demonstrate that a Java verification
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project can benefit from a combination of verification tools without compromis-
ing soundness, we proved contracts for three Java methods with such bit-level
operations using different verification techniques (these contracts where then im-
ported following KeY’s modularity principles). Since the participating tools are
based on the same semantics for JML and Java, this is a sound procedure. The
bounded model checker JJBMC [3] is part of the verification framework around
KeY [20] and follows a different approach by reducing the JML annotation to a
propositional satisfiability problem. While this can clearly not be done for every
specification, it works well and is quite efficient for operations using bit-level
operations. For some methods with only a single 32-bit integer parameter, we
also used exhaustive testing where all possible inputs are explicitly enumerated
and the contract is checked using run-time-assertion checking.

4.5 Proof Statistics

Table 1 gives an overview of the size of the proofs in this case study. A rule
application in the KeY system may be part of the symbolic execution of Java
code, part of first-order or theory reasoning.

The overall ratio between specification and source code lines is about 3:1,
which since many model methods were declared, is still quite low. The class
BucketPointers consists almost entirely of model methods and other specifi-
cation elements. Using models methods to formulate lemmas deduplicating the
proofs allowed us to obtain an overall proof with only 106 steps. Consider in com-
parison a recent case study [5] performed with KeY: The numbers of branches
and rule applications are in the same order of magnitude; but our case study has
6× as many the lines of code, and 7× as many lines of specification. However it
also required twice the number of manual interactions.

The specification consists of 179 JML contracts of which 114 could be ver-
ified with fewer than ten manual interactions. However, some methods require
extensive interaction. Most interactions were needed to prove the contract of a
method wrapping an inner loop from the permutation stepwith 836 interactions
and the cleanup method with 475. Those were also the biggest proofs for method
contracts with about 125 000 and 110 000 rule applications, respectively. With-
out heavy usage of lemma methods, those proofs would have been multiple times
larger. Notably, most of the (small percentage of) interactions for constructing
these proofs were unpacking model methods, using their contracts, simplifying
the sequent and using observer dependencies, see Table 2.

5 Performance of the ips4o Java Version

As our stated goal is an implementation that is both verified and has state-of-
the-art efficiency, we performed experiments to measure the performance of our
Java implementation of ips4o. Our experimental setup is similar to that of the
original ips4o paper [2] – in particular, we use all of the same input distributions
in our evaluation:
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Table 1: Proof statistics: total number of rule applications, number of interactive
rule applications, proof branches, branches closed by calls to an SMT solver, lines
of Java code (LOC), lines of JML specification (LOS), ratio LOS/LOC.

Class Rule apps Interactions Branches SMT LOC LOS LOS
LOC

BucketPtrs 206 348 683 585 24 48 441 9.19
Buffers 47 258 120 291 0 44 175 3.98
Classifier 265 743 747 1 540 348 123 481 3.91
Permute 160 431 1 139 1 104 272 130 413 3.18
Cleanup 113 903 485 648 207 102 181 1.77
Sorter 120 079 519 705 7 93 382 4.11

Other 215 629 724 742 44 249 430 1.73

Total 1 015 488 3 932 5 615 789 902 2 503 3.17

Table 2: Most common manual proof interactions in the largest proof (contract
of Permute::swap block).

Proof Step Count

Expanding model method
definitions

95

Proof state simplification 71
Memory footprint reasoning 69
Applying model method contracts 65

Proof Step Count

Expanding conditionals 64
First order equality reasoning 83
Quantifier instantiation 53
Splitting if-then-else expressions 36
Case distinctions on equalities 35

– Uniform: Values are pseudo-random numbers in [0, 232].
– Ones: All values are 1.
– Sorted: Values are increasing.
– Reversed: Values are decreasing.
– Unsorted-Tail: Like Sorted, except the last ⌊

√
n⌋ elements are shuffled.

– Almost-Sorted: Like Sorted, except ⌊
√
n⌋ random adjacent pairs are

swapped.
– Exponential: Values are distributed exponentially.
– RootDup: Sets A[i] = i mod ⌊

√
n⌋.

– TwoDup: Sets A[i] = i2 + m
2 mod m, where m = ⌊log2 n⌋.

– EightDup: Sets A[i] = i8 + m
2 mod m, where m = ⌊log2 n⌋.

We performed experiments using OpenJDK 20 on three different machi-
nes/CPUs: An Intel i7 11700 at 4.8GHz, an AMD Ryzen 3950X at 3.5Ghz,
and an Ampere Altra Q80-30 ARM processor at 3GHz. We repeated each mea-
surement multiple times and report the mean execution times of all iterations.
For input sizes n ≤ 213, we took 1000 measurements, for 214 ≤ n ≤ 220 we took
25 measurements, and for 221 ≤ n ≤ 230 we took 5 measurements. In addition,
we repeated the entire benchmark 5 times to get results across different invoca-
tions of the JVM. This means that there are between 25 and 5000 data points
for each input size, distribution, and architecture.
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Fig. 10: Speedup of ips4o over Arrays.sort() for the Uniform distribution.

On all three machines, ips4o outperforms OpenJDK’s Arrays.sort() for int

by a factor of 1.33 to 1.83 for large inputs on the Uniform distribution. These
results can be found in Fig. 10. For comparison, Fig. 11 shows the runtimes,
including the C++ implementation of ips4o, on the Intel machine.
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Fig. 11: Runtime for the Uniform distribution on Intel.

Most other distributions show similar results (with a speedup factor of up
to 2.27), with the exception of pre-sorted or almost sorted inputs. These dis-
tributions – which include Ones, Sorted, Reversed, and Almost-Sorted,
but not Unsorted-Tail – are detected by the adaptive implementation of
Arrays.sort() and are not actually sorted by the default dual-pivot quicksort,
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but by a specialised merging algorithm, which ends up doing almost no work on
these distributions.

In summary, our experiments show that the verified Java implementation of
ips4o outperforms the standard dual-pivot quicksort algorithm across a variety
of input distributions and hardware. The same opportunistic merging algorithm
currently implemented by Arrays.sort() could be used in conjunction with ips4o,
which would shortcut the work in case the input is already (almost) sorted.

6 Related Work

JML and KeY have been used previously to verify sorting algorithms. Besides the
verifications of nontrivial proof-of-concept implementations like Counting Sort
and Radixsort [13], KeY has been used to verify the sorting algorithms deployed
with OpenJDK: The formal analysis with KeY revealed a relevant bug in the
TimSort implementation shipped with the JDK as the standard algorithm for
generic data types [12]. A bugfix was proposed and it was shown that the fixed
code does not throw exceptions (but sortedness or permutation were not shown).
For the Dual Pivot Quicksort implementation of the JDK (used to sort arrays
of primitive values), the sorting and permutation property were successfully
specified and verified using KeY [4]. However, the complexity and size of those
verification proofs are considerably smaller than our ips4o case study. Other
pivotal classes of the JDK were also successfully verified using KeY [5,17].

Lammich et al. [22,15] verified efficient sorting routines by proving functional
propertieson abstract high-level algorithmic descriptions in the Isabelle/HOL
theorem prover and then refining them down to LLVM code. In that framework,
even parallelised implementations can be analysed to some degree if no shared
memory is used [23]. While the verified algorithms are on par with the perfor-
mance of the standard library, they do not reach the efficiency of ips4o, and the
authors explicitly list sample sorting as future work. Mohsen and Huisman [37]
provide a general framework for the formal verification of swap-based sequential
and parallel sorting routines, but restrict it to the analysis of the permutation
property. Since ips4o is not entirely swap-based (due to the external buffers in
the classification step), it is not covered by their approach.

There exists a large number of prominent algorithm verification case studies
that focus on the challenges provided by the verification and do not consider the
performance of the implementation [8,7,30,18,29,6,28,32].

Finally, there are several large-scale verification projects like the verified mi-
crokernel L4.verified [21], the CertiOS framework [41] for the verification of pre-
emptive OS kernels, or the verified Hypervisor Hyper-V [25] that easily top this
case study w.r.t. both verified lines of code and invested person years. However,
they target a completely different type of system to be verified and have their
focus on operating-system-related challenges, like handling concurrent low-level
data structures or concurrent accesses to resources. While they also address sim-
ilar performance questions, the algorithmic aspects are considerably different



Formally Verifying an Efficient Sorter 21

7 Conclusions and Future Work

We have demonstrated that a state-of-the-art sorting algorithm like ips4o can be
formally verified starting directly with an efficient implementation that has not
been modified to ease verification. The involved effort of several person months
was considerable but seems worthwhile for a widely used basic toolbox function
with potential to become part of the standard library of important programming
languages. Parts of this verification or at least the basic approach can be reused
for related algorithms like radix sort, semisorting, aggregation, hash-join, random
permutations, index construction etc.

Future work could look at parallel versions of ips4o or implementations that
use advanced features such as vector-instructions (e.g., as in [39]). Of course,
further basic toolbox components like collection classes (hash tables, search trees
etc.) should also be considered.

On the methodology side it would be interesting to compare our approach of
direct verification with approaches that start from a verified abstraction of the
actual code that is later refined to an implementation. Besides the required effort
for verification and the efficiency of the resulting code, a comparison should also
consider the ease of communicating with algorithm engineers, which on the one
hand may benefit from an abstraction but on the other hand is easier when
based on their original implementation. Our case study involved both experts in
program verification and experts in algorithm engineering, which proved essential
to its success.

For much of the desirable future work, verification tools and methods need
further development, in particular for efficient parallel programs and high-per-
formance languages like C++ or Rust. It is also important to better support
evolution of the implementation, since it is quite rare that one wants to keep
an implementation over decades – algorithm libraries have to evolve with added
functionality and changes in hardware, compilers or operating systems.
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A Formulating the Permutation Property

The fact that two sequences are permutations of each other can be formalised
in more than one way:

1. Either by stating there exists a permutation (an element of the symmetric
group) such that applying the permutation to the sequence results in the
target sequence

2. or by counting all possible elements in both sequences ensuring the counts
are always the same (which is equivalent to checking equality of the the two
sequences when they are considered as multisets).

We prove that both formalisations are equivalent.
To this end, sequences (of type ’a seq) are represented as functions from

naturals to values which are considered equal when having the same length and
equal on all valid indices. This definition mirrors the definition of sequences in
KeY.

definition seqRel :: "(nat * (nat ⇒ ’a)) ⇒ (nat * (nat ⇒ ’a)) ⇒ bool"

where
"seqRel = (λ(la, a) (lb, b). (la = lb) ∧

(∀ i::nat. 0 ≤ i ∧ i < la −→ a i = b i))"

quotient type ’a seq = "nat * (nat ⇒ ’a)" / "seqRel"

fun len :: "’a seq ⇒ nat" where "len s = fst (Rep_seq s)"

fun get :: "’a seq ⇒ nat ⇒ ’a" where
"get s n = (if n < len s then snd (Rep_seq s) n else SOME x::’a. True)"

In the following, the function application | s | is written as |s| and get s i

as s[i].

The counting function count counts the number of appearances of a value a

in a sequence s. In JML, this is realised using the num of construct.

fun count :: "’a seq ⇒ ’a ⇒ nat" where
"count s a = (

∑
j=0 ..< |s|. (if s[j] = a then 1 else 0))"

A permutation s in the symmetric group is a sequence that contains all values
between 0 and |s|.

fun perm :: "nat seq ⇒ bool" where "perm s = (∀ n < |s|. ∃ m < |s|. s[m] =

n)"

This is the explicit formalisation of two sequences being permuted: They
must have the same length and there must be a a permutation on the indices
that goes with the values.

fun permuted where
"permuted s t ←→ |s| = |t| ∧ (∃ p. perm p ∧ |p| = |s| ∧ (∀ i < |s|. t[i]

= s[p[i]]))"
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The main theorem states that requiring the existence of a permutation that
reorders the elements in a sequence s into the sequence t is the same as requiring
every value occurs equally often in s and t. We omit the proofs here, but they
are available in the source Isabelle/HOL files.

theorem permuted_equiv_counts:

"permuted s t ←→ (∀ a. count s a = count t a)"
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