

Modelling the impact of flexible AC transmission systems on the operation of electrical transmission grids

Thorben Sandmeier, Armin Ardone, Wolf Fichtner Helmholtz Energy Conference, 13.06.2023

www.kit.edu

Agenda

- Motivation
- FACTS overview
- Modelling approach
- Exemplary results
- Conclusion

Motivation

- Increasing electricity demand, fluctuating generation from renewables and the missing, easily controllable generation from conventional power plants represent a great challenge for the German and European transmission grid
- Balance between generation and demand must be maintained at all times without violating voltage, frequency or transmission lines' thermal limits
- Grid expansion: building new transmission lines is necessary and in planning, but the process is expensive and time consuming
- Grid reinforcement: measures that help in utilizing the existing transmission lines to their full potential
- Flexible AC Transmission Systems (FACTS)
 - \rightarrow Provide reactive power and thus secure voltage stability and help to control power flows
 - → Prevent and resolve congestions in the transmission grid and thus reduce redispatch volumes and costs, renewables curtailment and load shedding.
- Technical possibilities?
- Economic benefits?

Flexible AC Transmission Systems Classification

Parallel FACTS

\rightarrow Voltage control

- Static Var Compensator (SVC)
 - Adjustable capacitance and/or inductance connected to a busbar
- Static Synchronous Compensator (STATCOM)
 - Adjustable voltage source connected to a busbar

Serial FACTS

- \rightarrow Power flow control
- Thyristor Controlled Series Compensator (TCSC)
 - Adjustable capacitance in series with the transmission line
- Static Synchronous Series Compensator (SSSC)
 - Adjustable voltage source in series with the transmission line
- Universal Power Flow Controller (UPFC)
 - Combination of STATCOM and SSSC
 - Parallel and serial voltage impregnation
 - Reactive power feed-in and line power flow control

Optimal powerplant operation

Optimal power flow: "Find the optimal operating state for an electrical energy network!"

Objective State variables $\min_{P_g}\sum_{i}c_i(P_{gi})$ Minimize generation/redispatch costs Complex voltages ٠ ٠ Minimize CO₂ emissions Real and reactive power flows ٠ s.t. $P_{i,g} - P_{i,d} - \sum_{k \in I} P_{ik} = 0$, ٠ Minimize losses or renewables Pump-storage and battery state . ٠ curtailment of charge $Q_{i,g}-Q_{i,d}-\sum_{i=1}Q_{ik}=0,$ Decision variables Constraints $V \leq V \leq \overline{V}$, Generator dispatch/redispatch **Power-flow equations** ٠ Renewables curtailment $F_{i\nu} < \overline{F}$. Thermal branch flow limits Operating state of flexible network Generator limits . $\underline{P}_{g} \leq P_{g} \leq \overline{P}_{g}, Q_{g} \leq Q_{g} \leq \overline{Q}_{g}$ elements (FACTS, HVDC-converters, Voltage limits ٠ PST) Components' technical limits ٠ G: Generators. D: Loads. ESS and pump-storage operation Time dependencies I.K: Buses

Chair of Energy Economics Institute for Industrial Production (IIP)

Thorben Sandmeier - Modelling the impact of flexible AC transmission systems on the operation of electrical transmission grids

Chair of Energy Economics Institute for Industrial Production (IIP)

FACTS modelling

Power injection model

- The impact of the network element is modelled by a power injection (active and reactive) at corresponding bus(es) i (and k)
- The injected power depends on the elements' operating state and the surrounding network status (e.g. bus voltage magnitude and phase angle)

Parallel FACTS

Reactive power injection at bus i

Karlsruhe Institute of Technology

Active and reactive power injection at bus *i* and *k*

SSSC model

- Static Synchronous Series Compensator
- Adjustable voltage source in series to the transmission line
- Power flow control
- Injection model → power injection at the start and end bus of the line

Steady state condition:
$$P_{i,SSSC}^t + P_{k,SSSC}^t = 0$$

$$\begin{split} P_{i,SSSC}^{t} &= V_{i}^{t} V_{SSSC}^{t} \left[G_{ik} \cos\left(\theta_{i}^{t} - \delta_{SSSC}^{t}\right) + B_{ik} \sin\left(\theta_{i}^{t} - \delta_{SSSC}^{t}\right) \right] \\ Q_{i,SSSC}^{t} &= V_{i}^{t} V_{SSSC}^{t} \left[G_{ik} \sin\left(\theta_{i}^{t} - \delta_{SSSC}^{t}\right) - B_{ik} \cos\left(\theta_{i}^{t} - \delta_{SSSC}^{t}\right) \right] \\ P_{k,SSSC}^{t} &= -V_{k}^{t} V_{SSSC}^{t} \left[G_{ik} \cos\left(\theta_{k}^{t} - \delta_{SSSC}^{t}\right) + B_{ik} \sin\left(\theta_{k}^{t} - \delta_{SSSC}^{t}\right) \right] \\ Q_{k,SSSC}^{t} &= -V_{k}^{t} V_{SSSC}^{t} \left[G_{ik} \sin\left(\theta_{k}^{t} - \delta_{SSSC}^{t}\right) - B_{ik} \cos\left(\theta_{k}^{t} - \delta_{SSSC}^{t}\right) \right] \\ P_{i,SSSC}^{t} &= -V_{k}^{t} V_{SSSC}^{s} \left[G_{ik} \sin\left(\theta_{k}^{t} - \delta_{SSSC}^{t}\right) - B_{ik} \cos\left(\theta_{k}^{t} - \delta_{SSSC}^{t}\right) \right] \\ P_{i,SSSC}^{t} &= P_{k,SSSC}^{t} \left[G_{ik} \cos\left(\theta_{k}^{t} - \delta_{SSSC}^{t}\right) + B_{ik} \sin\left(\theta_{i}^{t} - \delta_{SSSC}^{t}\right) \right] \\ - V_{k}^{t} V_{SSSC}^{s} \left[G_{ik} \cos\left(\theta_{k}^{t} - \delta_{SSSC}^{t}\right) + B_{ik} \sin\left(\theta_{k}^{t} - \delta_{SSSC}^{t}\right) \right] = 0 \\ V_{SSSC} &\leq V_{SSSC}^{t} \leq \bar{V}_{SSSC} \\ \tilde{\delta}_{SSSC} &\leq \delta_{SSSC}^{t} \leq \bar{\delta}_{SSSC} \end{split}$$

Chair of Energy Economics Institute for Industrial Production (IIP)

Thorben Sandmeier - Modelling the impact of flexible AC transmission systems on the operation of electrical transmission grids

13.05.2024

Overall OPF model overview

Chair of Energy Economics Institute for Industrial Production (IIP)

Exemplary results

Line parameters:

r = 0.01x = 0.04b = 0.007

Voltage limits: $0.9 \le V \le 1.1$

Exemplary results

Thorben Sandmeier - Modelling the impact of flexible AC transmission systems on the operation of electrical transmission grids Chair of Energy Economics Institute for Industrial Production (IIP)

Conclusion

Summary

- Models for different types of FACTS with a high level of technical detail have been developed and tested
- Models have been successfully implemented into a large-scale OPF model
- Applied on IEEE test cases and transmission grid of Germany + neighbors

Outlook

- Case studies on a German/European scale
- Placement of new FACTS and other flexible network elements