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ABSTRACT
The rise of automated obfuscation techniques challenges the wide-
spread assumption that evading a software plagiarism detector
requires more effort than completing programming and modeling
assignments in computer science education. This threatens pla-
giarism detectors without comprehensive obfuscation resilience
and, ultimately, academic integrity. This paper summarizes recent
enhancements of JPlag, a widely-used software plagiarism detector,
enabling it to achieve broad resilience against automated obfusca-
tion. The findings demonstrate that JPlag significantly outperforms
the state-of-the-art in terms of obfuscation resilience.

CCS CONCEPTS
• Information systems→ Near-duplicate and plagiarism de-
tection; • Social and professional topics → Computer science

education; Software engineering education.
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1 INTRODUCTION
Plagiarism is widespread in computer science education, and stu-
dents often try to obfuscate their plagiarism, e.g., by renaming,
reordering, or insertion [12]. Manual inspection, however, is im-
practical due to larger class sizes. Software plagiarism detectors
have been employed to address this issue [2, 8]. JPlag [8], in use
and maintained since 1996, is one of the most used detectors world-
wide. These detectors ensure that it requires more effort and skill to
evade detection than completing the actual assignment [4]. Yet, this
paradigm is challenged by the emergence of automated obfuscation

attacks [9]. Mossad [4], e.g., is a plagiarism generator that repeat-
edly inserts statements into a plagiarized program without chang-
ing its behavior. It is unclear what other automated obfuscation
attacks exist [3], requiring reevaluating existing detection methods.
This paper presents enhancements of JPlag with the recently re-
leased version 5.0, enabling it to achieve broad resilience against
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Figure 1: Results of JPlag, Dolos, andMOSS for PROGpedia-19
dataset with plagiarism instances automatically obfuscated
through statement reordering and insertion.

automated obfuscation attacks. Thus, JPlag is not only a reliable,
open-source1, and GDPR-compliant software plagiarism detector
with an intuitive result visualization, but it also outperforms the
state-of-the-art regarding obfuscation resilience (see Figure 1). In
the following, we first introduce JPlag and its capabilities. Then,
we discuss the latest research on obfuscation resilience.

2 PLAGIARISM DETECTIONWITH JPLAG
JPlag compares the structure of programs to identify suspicious
candidates [8]. While it ranks these candidates and highlights out-
liers, instructors make the final decision. The result visualization
of JPlag includes features such as histograms, clustering, code com-
parison, and anonymization, enhancing its ease of use and report
visualization. It also provides a side-by-side view to explain how

similarity scores are calculated. Thus, JPlag allows for ethical aca-
demic misconduct investigations by combining automated analysis
with human judgment. While JPlag was first developed in 1996, it
is actively maintained and a subject of active research. It currently
supports 17 languages. Recent additions include the support of
modeling languages [11], thus addressing plagiarism in modeling
assignments [12]. JPlag scales well, facilitating plagiarism detection
even in large courses.

Internally, JPlag works as depicted in Figure 2. First, it parses the
program, extracting a subset of the parse tree nodes as tokens, thus
linearizing the tree [9]. Second, it uses newly introduced normaliza-
tion techniques [9, 10] to achieve obfuscation resilience. Third, it
conducts pairwise comparisons (using GST with KR matching [13])
to identify matching sections. After that, it applies post-processing
for both obfuscation resilience and clustering calculation. Fifth,
JPlag calculates a similarity score for each pair based on thematches.
Finally, the results are visualized in a human-readable way.
1JPlag Github Repository: https://github.com/jplag/JPlag
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Figure 2: Token-based plagiarism detection process of JPlag.

3 ACHIEVING OBFUSCATION RESILIENCE
As JPlag is token-based, it abstracts from the underlying program
and thus inherits resilience against some obfuscation attacks, in-
cluding renaming, retyping, and obscuring values [8]. Furthermore,
this includes all lexical [8] attacks. However, for broad obfusca-
tion resilience, we introduce three defense mechanisms. Token
sequence normalization via token normalization graphs (TNGs) [9]
is specifically tailored to counter insertion- and reordering-based
obfuscation attacks on programming assignments. After the to-
kenization, the mechanism constructs a TNG for each program,
a language-independent version of a PDG for token sequences.
The TNG enables the removal of dead tokens and establishes a
deterministic token order. Thus, it generates a normalized token
sequence invariant to insertion-based and reordering-based obfus-
cation. Model subtree reordering [10] is tailored for assignments
involving tree-based modeling artifacts, such as EMF models. This
mechanism counters reordering attacks, common for modeling as-
signments [12]. Reordering attacks are more straightforward for
them since, for code, the statement sequence strongly impacts the
behavior. To counteract this, we normalize the order of the nodes in
the model tree. This is done through a multi-step algorithm, includ-
ing a token distribution of a given subtree, its interpretation as a
coordinate space, and a nearest neighbor path calculation. For any
obfuscation attack to be effective against token-based plagiarism
detectors, it must alter the token sequence to interfere with the
subsequence matching. Subsequence merging [6] heuristically com-
bines pairs of neighboring matches, thus reverting the effects of
obfuscation attacks. Subsequence merging is language-independent
and attack-type-independent and thus achieves broad resilience. As
this defense mechanism solely operates on the match subsequences,
it is independent of the language of the programs and can be applied
for both modeling and programming assignments.

4 EVALUATION
To demonstrate the obfuscation resilience of JPlag, we evaluate it
with a Java dataset from PROGpedia [7] and generate plagiarism
based on reordering and insertion [9]. We compare the results with
MOSS [1] and Dolos [5]. For all three detectors, we use default
parameters. Dolos only supports single file submissions, thus limit-
ing the choice of datasets. MOSS does not return all comparisons,
only the ones with the highest scores. JPlag has neither of these
limitations. Figure 1 shows the evaluation results. For each tool, we
show the similarity distribution of the plagiarism instances (higher
is better) and the unrelated originals (lower is better). For JPlag,
note that the plagiarism instances have a median similarity of 100%.
Thus, JPlag significantly outperforms Dolos with a median of 26.7%
and MOSS with a median of 7.5%. Moreover, JPlag achieves low
similarity scores for unrelated originals with a median similarity
of 5.8%. Dolos achieves 14.3%, while MOSS achieves 4.5%. A high
separation between the plagiarism instances and the unrelated orig-
inals allows straightforward detection and is thus preferable. For

JPlag, we observe no overlap, with a median delta of 94.2 percent-
age points (pp). We observe an overlap and a median delta of only
12.4pp for Dolos. We observe the most substantial overlap and the
lowest median delta with 3.0pp for MOSS. Thus, reliably differ-
entiating plagiarism from the original is impaired for Dolos and
impossible for MOSS. These results can be explained by Dolos and
MOSS not providing any defense against automated obfuscation
attacks. In practice, reordering and inserting statements is a viable
attack for Dolos and MOSS but no longer for JPlag.

5 CONCLUSION
In summary, we introduced enhancements to JPlag, raising its re-
silience against automated obfuscation attacks. Our evaluation re-
sults demonstrate their effectiveness, positioning JPlag as a robust
and reliable tool compared to other detectors. With these advances,
JPlag addresses the evolving challenges of academic plagiarism,
thus enabling educators to uphold academic integrity.
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