
Obfuscation-Resilient Software Plagiarism Detection with JPlag
Timur Sağlam, Sebastian Hahner, Larissa Schmid, Erik Burger

firstname.lastname@kit.edu
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany

ABSTRACT
The rise of automated obfuscation techniques challenges the wide-
spread assumption that evading a software plagiarism detector
requires more effort than completing programming and modeling
assignments in computer science education. This threatens pla-
giarism detectors without comprehensive obfuscation resilience
and, ultimately, academic integrity. This paper summarizes recent
enhancements of JPlag, a widely-used software plagiarism detector,
enabling it to achieve broad resilience against automated obfusca-
tion. The findings demonstrate that JPlag significantly outperforms
the state-of-the-art in terms of obfuscation resilience.

CCS CONCEPTS
• Information systems→ Near-duplicate and plagiarism de-
tection; • Social and professional topics → Computer science

education; Software engineering education.

KEYWORDS
Plagiarism Detection, Obfuscation Attacks, CS Education
ACM Reference Format:
Timur Sağlam, Sebastian Hahner, Larissa Schmid, Erik Burger. 2024. Obfus-
cation-Resilient Software PlagiarismDetectionwith JPlag. In 2024 IEEE/ACM
46th International Conference on Software Engineering: Companion Proceed-

ings (ICSE-Companion ’24), April 14–20, 2024, Lisbon, Portugal. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3639478.3643074

1 INTRODUCTION
Plagiarism is widespread in computer science education, and stu-
dents often try to obfuscate their plagiarism, e.g., by renaming,
reordering, or insertion [12]. Manual inspection, however, is im-
practical due to larger class sizes. Software plagiarism detectors
have been employed to address this issue [2, 8]. JPlag [8], in use
and maintained since 1996, is one of the most used detectors world-
wide. These detectors ensure that it requires more effort and skill to
evade detection than completing the actual assignment [4]. Yet, this
paradigm is challenged by the emergence of automated obfuscation

attacks [9]. Mossad [4], e.g., is a plagiarism generator that repeat-
edly inserts statements into a plagiarized program without chang-
ing its behavior. It is unclear what other automated obfuscation
attacks exist [3], requiring reevaluating existing detection methods.
This paper presents enhancements of JPlag with the recently re-
leased version 5.0, enabling it to achieve broad resilience against

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0502-1/24/04.
https://doi.org/10.1145/3639478.3643074

0%

25%

50%

75%

100%

JPlag Dolos MOSS

Si
m

ila
ri

ty

Original Pairs Plagiarism-to-Source Pairs

Figure 1: Results of JPlag, Dolos, andMOSS for PROGpedia-19
dataset with plagiarism instances automatically obfuscated
through statement reordering and insertion.

automated obfuscation attacks. Thus, JPlag is not only a reliable,
open-source1, and GDPR-compliant software plagiarism detector
with an intuitive result visualization, but it also outperforms the
state-of-the-art regarding obfuscation resilience (see Figure 1). In
the following, we first introduce JPlag and its capabilities. Then,
we discuss the latest research on obfuscation resilience.

2 PLAGIARISM DETECTIONWITH JPLAG
JPlag compares the structure of programs to identify suspicious
candidates [8]. While it ranks these candidates and highlights out-
liers, instructors make the final decision. The result visualization
of JPlag includes features such as histograms, clustering, code com-
parison, and anonymization, enhancing its ease of use and report
visualization. It also provides a side-by-side view to explain how

similarity scores are calculated. Thus, JPlag allows for ethical aca-
demic misconduct investigations by combining automated analysis
with human judgment. While JPlag was first developed in 1996, it
is actively maintained and a subject of active research. It currently
supports 17 languages. Recent additions include the support of
modeling languages [11], thus addressing plagiarism in modeling
assignments [12]. JPlag scales well, facilitating plagiarism detection
even in large courses.

Internally, JPlag works as depicted in Figure 2. First, it parses the
program, extracting a subset of the parse tree nodes as tokens, thus
linearizing the tree [9]. Second, it uses newly introduced normaliza-
tion techniques [9, 10] to achieve obfuscation resilience. Third, it
conducts pairwise comparisons (using GST with KR matching [13])
to identify matching sections. After that, it applies post-processing
for both obfuscation resilience and clustering calculation. Fifth,
JPlag calculates a similarity score for each pair based on thematches.
Finally, the results are visualized in a human-readable way.
1JPlag Github Repository: https://github.com/jplag/JPlag

https://orcid.org/0000-0001-5983-4032
https://doi.org/10.1145/3639478.3643074
https://doi.org/10.1145/3639478.3643074
https://github.com/jplag/JPlag


ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Timur Sağlam, Sebastian Hahner, Larissa Schmid, Erik Burger

Code 

Models 

Manual 
inspection 

1. Tokenization 
Extracting tokens from

the parse tree nodes 

2. Normalization 
Resilience via token

normalization  

3. Pairwise Matching 
Finding matching token
subsequences in a pair 

4. Post Processing 
Further resilience and

cluster calculation 

5. Similarity Calc. 
Using similarity metrics

based on the matches 

6. Visualization 
Displaying results in a
human-readable way 

Figure 2: Token-based plagiarism detection process of JPlag.

3 ACHIEVING OBFUSCATION RESILIENCE
As JPlag is token-based, it abstracts from the underlying program
and thus inherits resilience against some obfuscation attacks, in-
cluding renaming, retyping, and obscuring values [8]. Furthermore,
this includes all lexical [8] attacks. However, for broad obfusca-
tion resilience, we introduce three defense mechanisms. Token
sequence normalization via token normalization graphs (TNGs) [9]
is specifically tailored to counter insertion- and reordering-based
obfuscation attacks on programming assignments. After the to-
kenization, the mechanism constructs a TNG for each program,
a language-independent version of a PDG for token sequences.
The TNG enables the removal of dead tokens and establishes a
deterministic token order. Thus, it generates a normalized token
sequence invariant to insertion-based and reordering-based obfus-
cation. Model subtree reordering [10] is tailored for assignments
involving tree-based modeling artifacts, such as EMF models. This
mechanism counters reordering attacks, common for modeling as-
signments [12]. Reordering attacks are more straightforward for
them since, for code, the statement sequence strongly impacts the
behavior. To counteract this, we normalize the order of the nodes in
the model tree. This is done through a multi-step algorithm, includ-
ing a token distribution of a given subtree, its interpretation as a
coordinate space, and a nearest neighbor path calculation. For any
obfuscation attack to be effective against token-based plagiarism
detectors, it must alter the token sequence to interfere with the
subsequence matching. Subsequence merging [6] heuristically com-
bines pairs of neighboring matches, thus reverting the effects of
obfuscation attacks. Subsequence merging is language-independent
and attack-type-independent and thus achieves broad resilience. As
this defense mechanism solely operates on the match subsequences,
it is independent of the language of the programs and can be applied
for both modeling and programming assignments.

4 EVALUATION
To demonstrate the obfuscation resilience of JPlag, we evaluate it
with a Java dataset from PROGpedia [7] and generate plagiarism
based on reordering and insertion [9]. We compare the results with
MOSS [1] and Dolos [5]. For all three detectors, we use default
parameters. Dolos only supports single file submissions, thus limit-
ing the choice of datasets. MOSS does not return all comparisons,
only the ones with the highest scores. JPlag has neither of these
limitations. Figure 1 shows the evaluation results. For each tool, we
show the similarity distribution of the plagiarism instances (higher
is better) and the unrelated originals (lower is better). For JPlag,
note that the plagiarism instances have a median similarity of 100%.
Thus, JPlag significantly outperforms Dolos with a median of 26.7%
and MOSS with a median of 7.5%. Moreover, JPlag achieves low
similarity scores for unrelated originals with a median similarity
of 5.8%. Dolos achieves 14.3%, while MOSS achieves 4.5%. A high
separation between the plagiarism instances and the unrelated orig-
inals allows straightforward detection and is thus preferable. For

JPlag, we observe no overlap, with a median delta of 94.2 percent-
age points (pp). We observe an overlap and a median delta of only
12.4pp for Dolos. We observe the most substantial overlap and the
lowest median delta with 3.0pp for MOSS. Thus, reliably differ-
entiating plagiarism from the original is impaired for Dolos and
impossible for MOSS. These results can be explained by Dolos and
MOSS not providing any defense against automated obfuscation
attacks. In practice, reordering and inserting statements is a viable
attack for Dolos and MOSS but no longer for JPlag.

5 CONCLUSION
In summary, we introduced enhancements to JPlag, raising its re-
silience against automated obfuscation attacks. Our evaluation re-
sults demonstrate their effectiveness, positioning JPlag as a robust
and reliable tool compared to other detectors. With these advances,
JPlag addresses the evolving challenges of academic plagiarism,
thus enabling educators to uphold academic integrity.

ACKNOWLEDGMENTS
We thank our student developers, Alexander Milster and Alexander Vogt,
for their assistance. This work is based on the project SofDCar (19S21002)
funded by the German Federal Ministry for Economic Affairs and Cli-
mate Action, by the Ministry of Science, Research and the Arts Baden-
Württemberg (Az: 7712.14-0821-2), the pilot program Core Informatics of
the Helmholtz Association (HGF), and by the topic Engineering Secure
Systems of the HGF and by KASTEL Security Research Labs.

REFERENCES
[1] Alex Aiken. 2022. MOSS Software Plagiarism DetectorWebsite. Stanford University.

http://theory.stanford.edu/~aiken/moss/
[2] Rodrigo C Aniceto, Maristela Holanda, Carla Castanho, and Dilma Da Silva.

2021. Source Code Plagiarism Detection in an Educational Context: A Literature
Mapping. In FIE’21. IEEE. https://doi.org/10.1109/FIE49875.2021.9637155

[3] Stella Biderman and Edward Raff. 2022. Fooling MOSS Detection with Pretrained
Language Models. In CIKM’22. ACM. https://doi.org/10.1145/3511808.3557079

[4] Breanna Devore-McDonald and Emery D. Berger. 2020. Mossad: Defeating
Software Plagiarism Detection. OOPSLA (2020). https://doi.org/10.1145/3428206

[5] Rien Maertens, Charlotte Van Petegem, Niko Strijbol, Toon Baeyens, Arne Carla
Jacobs, et al. 2022. Dolos: Language-agnostic plagiarism detection in source code.
JCAL 38, 4 (2022), 1046–1061. https://doi.org/10.1111/jcal.12662

[6] Nils Niehues. 2023. Intelligent Match Merging to Prevent Obfuscation Attacks on

Software Plagiarism Detectors. master’s thesis. Karlsruher Institut für Technologie
(KIT). https://doi.org/10.5445/IR/1000167446

[7] José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. 2023. PROGpedia. Data
in Brief 46 (2023), 108887. https://doi.org/10.1016/j.dib.2023.108887

[8] Lutz Prechelt, Guido Malpohl, Michael Philippsen, et al. 2002. Finding plagiarisms
among a set of programs with JPlag. J.UCS 8, 11 (2002), 1016.

[9] Timur Sağlam, Moritz Brödel, Larissa Schmid, and Sebastian Hahner. 2024. De-
tecting Automatic Software Plagiarism via Token Sequence Normalization. In
ICSE’24 (Lisbon, Portugal). IEEE. https://doi.org/10.1145/3597503.3639192

[10] Timur Sağlam, Sebastian Hahner, Larissa Schmid, and Erik Burger. 2024. Au-
tomated Detection of AI-Obfuscated Plagiarism in Modeling Assignments. In
ICSE-SEET’24 (Lisbon, Portugal). IEEE. https://doi.org/10.1145/3639474.3640084

[11] Timur Sağlam, Sebastian Hahner, Jan Willem Wittler, and Thomas Kühn. 2022.
Token-Based Plagiarism Detection for Metamodels. In MODELS-C (Montreal,
Quebec, Canada) (MODELS ’22). https://doi.org/10.1145/3550356.3556508

[12] Timur Sağlam, Larissa Schmid, Sebastian Hahner, and Erik Burger. 2023. How
Students Plagiarize Modeling Assignments. In MODELS-C (Västerås, Sweden).
IEEE, 98–101. https://doi.org/10.1109/MODELS-C59198.2023.00032

[13] Michael J. Wise. 1995. Neweyes: a system for comparing biological sequences
using the running Karp-Rabin Greedy String-Tiling algorithm. ISMB 3 (1995).

http://theory.stanford.edu/~aiken/moss/
https://doi.org/10.1109/FIE49875.2021.9637155
https://doi.org/10.1145/3511808.3557079
https://doi.org/10.1145/3428206
https://doi.org/10.1111/jcal.12662
https://doi.org/10.5445/IR/1000167446
https://doi.org/10.1016/j.dib.2023.108887
https://doi.org/10.1145/3597503.3639192
https://doi.org/10.1145/3639474.3640084
https://doi.org/10.1145/3550356.3556508
https://doi.org/10.1109/MODELS-C59198.2023.00032

	Abstract
	1 Introduction
	2 Plagiarism Detection with JPlag
	3 Achieving Obfuscation Resilience
	4 Evaluation
	5 Conclusion
	Acknowledgments
	References

