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Kurzfassung

Simultaneous Localization and Mapping (SLAM) ist eines der grundlegenden
Probleme in der mobilen Robotik, bei dem die Pose eines mobilen Roboters
geschätzt und gleichzeitig die unbekannte Umgebung kartiert wird. Für vi-
suelles SLAM bauen viele Methoden eine Punktkarte auf. Dies ist effizient
für die Echtzeitverfolgung und die Kartenaktualisierung, aber nicht ausreichend
für die Navigation oder andere interaktive Aufgaben. Die Objekterkennung und
die semantische Kartierung hingegen liefern reichhaltige Informationen über die
Umgebung, können die Intelligenz des Roboters verbessern und sicheres Verhalten
garantieren.

In dieser Dissertation, semantische Objekte werde in visuelle Lokalisie-rungs-
und Kartierungssysteme eingeführt. Die folgenden Bereiche werden von uns
in den Fokus genommen: Objekterkennung, objektbasierte Lokalisierung und
objektbasierte Kartierung.

Für die Objekterkennung schlagen wir drei verschiedene Methoden vor, um
3D-Objekte aus einem einzigen RGB-D-Bild zu erkennen. Bei der Sample-
Score-Methode werden Hunderte von 3D-Quaderkandidaten generiert und der
beste Kandidat unter physikalischen- und Bildeinschränkungen ausgewählt. Bei
der Geometrie-Methode werden die Tiefeninformationen in 3D-Punkte umge-
wandelt und die Objektpunkte zu 3D-Quadern geclustert. Die Deep-Learning-
Methode verwendet ein tiefes neuronales Netzwerk, um Wissen aus Trainings-
daten zu lernen und Objekte in unbekannten Szenen vorherzusagen. Um die
Leistung der vorgeschlagenen Methoden zu vergleichen, Experimente werden
durchgeführt, um ihre Erkennungsgenauigkeit und Laufzeiteffizienz zu messen.
Die Sample-Score-Methode übertrifft die beiden anderen Methoden in Bezug
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Kurzfassung

auf die Geschwindigkeit, aber die Deep-Learning-Methode erreicht die höch-
ste Genauigkeit. Die Geometriemethode bietet einen Kompromiss zwischen
Geschwindigkeit und Genauigkeit. Die Auswahl der Methode hängt vom Anwen-
dungsfälle ab.

Für die objektbasierte Lokalisierung, ein Punkt-Ebene-Objekt-SLAM-System
wird vorgeschlagen. Basierend auf dem state-of-the-art Punkt-SLAM-System,
strukturelle Ebenen und semantische Objekte werden in jedem Bild erkannt, die
Datenassoziation wird zwischen diesen Landmarken untersucht, und ein Graph
wird formuliert, um Kamerapositionen und andere Komponenten zu optimieren.
Darüber hinaus wird ein objektbasiertes Modul zur Loop-Erkennung entwickelt,
um eine globale Lokalisierung unter großen Blickwinkeln zu erreichen. Das
vorgeschlagene System ermöglicht eine Schätzung der Kameraposition und ist in
der Lage, eine semantische Karte in einer unbekannten Umgebung zu erstellen.
Im Vergleich zu anderen visuellen SLAM-Systemen, die dem Stand der Technik
entsprechen, kann die Einführung von Objekten das Verständnis der Szene und
die Lokalisierung der Kamera verbessern.

Im Zusammenhang mit dem Kartierung auf Objektebene wird eine effiziente se-
mantische Pipeline vorgeschlagen, umdieUmgebung zu rekonstruieren. Nachdem
Nachdem die Objekterkennung und die Schätzung der Kamerapose gelöst wur-
den, werden die Objekte in ein Voxel-basiertes Kartierung-Framework integriert,
um schrittweise eine globale Karte mit einzelnen Objekten zu erstellen. Anstatt
rechenintensive Komponenten wie die pixelweise Segmentierung zu verwenden,
nutzt die Methode 2D Bounding Boxes, um die Karte zu erstellen. Dabei weist
die semantische Karte eine vergleichbare Leistung auf und vermeidet gleichzeitig
hohe Rechenkosten.

Alle vorgeschlagenenMethoden werden von uns anhand von Open-Source Daten-
sätzen für Innenräume sowie von Logistikszenarien evaluiert. Die Ergebnisse
zeigen, dass die Einbeziehung von Objekten das Verständnis der Szene, die
Lokalisierung und die Kartierung verbessern kann. Darüber hinaus werden Feld-
versuche auf einer realen Roboterplattform durchgeführt, um die Effektivität und
Anwendung in der realen Welt zu demonstrieren.
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Abstract

Simultaneous localization and mapping (SLAM) is one of the fundamental prob-
lems in mobile robotics, which estimates the location of a mobile robot and
simultaneously maps the previously unknown environment. For visual SLAM,
many methods build a feature point map, it is efficient for real-time tracking and
map updating but not enough for navigation or other interactive tasks. Object de-
tection and dense semantic mapping, on the other hand, provide rich information
about environmental entities, improving a robot’s intelligence and ensuring safe
operation in the environment.

In this thesis, semantic objects are introduced to visual localization and mapping
systems and the following fields are addressed: object detection, object-based
localization, and object-level mapping.

Regarding object detection, three different methods are implemented to detect
3D objects from a single RGB-D frame. The sample-score method samples
hundreds of 3D cuboid candidates and selects the best candidate based on image
and physical constraints to represent the object. The geometry method involves
converting depth information into 3D points and clustering object points into
3D cuboids. The deep learning method employs a deep neural network to learn
knowledge from training data and is able to predict objects in unknown scenes. To
compare the performances of the proposed methods, Experiments are designed
to measure their detection accuracy and runtime efficiency. The sample-score
method outperforms the other twomethods in speed, but the deep learningmethod
achieves the highest accuracy. The geometry method provides a compromise
between speed and accuracy. Considering different use-case, different methods
can be utilized.
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Abstract

For object-based localization, a point-plane-object SLAM system is proposed.
Based on the state-of-the-art point-SLAM system, structural planes and semantic
objects are detected in every key-frame, data association among these landmarks
is explored, and a graph is formulated to optimize camera poses and other compo-
nents. In addition, an object-based loop detection module is designed to achieve
global localization under large viewpoints. The proposed system achieves camera
pose estimation and is able to build a sparse semantic map in an unknown envi-
ronment. Compared to other state-of-the-art visual SLAM systems, introducing
objects can benefit scene understanding and improve camera localization.

In the context of object-level mapping, an efficient semantic mapping pipeline is
proposed to reconstruct the environment. After solving object detection and cam-
era pose estimation, objects are integrated into a voxel-based mapping framework
to incrementally build a global map with individual objects. Rather than rely-
ing on high computational components like pixel-wise segmentation, the method
capitalizes on 2D bounding boxes to build the map, which has a comparative
performance on semantic mapping while avoiding high computational costs.

To demonstrate the capabilities, all proposed methods are evaluated on open-
source indoor datasets, as well as logistics scenarios. The results show that
the incorporation of objects can benefit scene understanding, localization, and
mapping. Furthermore, field experiments are performed on a real robotic platform
to demonstrate the effectiveness and application in the real world.
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1 Introduction

The Fourth Industrial Revolution (Industry 4.0) is the trend towards automation
and data exchange inmanufacturing technologies and processes. It is characterized
by the integration of new technologies such as cyber-physical systems, artificial
intelligence, autonomous robotics, etc. Fostered by this trend, many advanced
production systems are established. For example, a cyber-physical system can
be found within a modular smart factory, which is able to sense the physical
world, create a digital image, and make decentralized decisions. Within the
context of the Internet of Things (IoT), various components have the ability to
communicate efficiently and collaborate seamlessly, creating a complete supply
chain. In addition, intelligent machines can be introduced to improve production
efficiency without human intervention.

In the field of material handling and logistics, productivity, and reliability have
increased tremendously over the last thirty years, but flexibility, robustness, and
efficiency are still demanding. Furmans et al. (2018) analyzed today’s material
handling systems and described the desired properties of future systems, including
plug-and-play capability, scalability, reconfigurability, reliability, safety, resource
efficiency, etc. They also proposed suitable patterns to achieve these proper-
ties, such as modularity, decentralized control, interaction, standard physical and
information interfaces, etc.

At the Robotics and Interactive Systems department (ROBiS, IFL, KIT), robots
are being developed to increase flexibility in intra-logistics. This thesis focuses
specifically on autonomous mobile robots, where the abilities to perceive sce-
narios are investigated and a semantic visual localization and mapping system is
proposed.

1



1 Introduction

1.1 Problem Description and Research
Questions

(a) AgiProbot simulated environment. (b) AgiProbot real environment.

Figure 1.1: The AgiProbot project. The transfer module (mobile robot) is tasked to transfer items
among different workstations. Specifically, the mobile robot should recognize the transfer
unit (conveyor) on the top of the workstation, build a semantic map consisting of object
information, and design a collision-free path towards the destination.

Advanced industrial robots are essential components inside a manufacturing sys-
tem, they can operate autonomously in the scenario and communicate directly
with other entities. The AgiProbot project (Agile PROduction system using mo-
bile, learning roBOTs with multi-sensors for uncertain product specifications) 1

(Klein et al. 2021), developed at Karlsruhe Institute of Technology (KIT), is a
typical intra-logistics system for agile remanufacturing processing where the mo-
bile robots are tasked to deliver items among different workstations. As shown
in Figure 1.1, the transfer module (mobile robot) should recognize the transfer
unit (conveyor) on the top of the workstation, build a semantic map consisting of
object information, and design a collision-free path towards the destination. To
accomplish this task, the mobile robot needs to know its location and destination,
which is called the pose estimation or localization problem. Besides, to design a
proper path, the mobile robot needs to map the scenario from onboard sensors,

1 http://agiprobot.de/
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1.1 Problem Description and Research Questions

which is called the mapping problem. These two problems are coupled with
each other because a good localization improves mapping quality, meanwhile, a
good 3D map benefits the localization. SLAM is one option that can solve them
together.

Cameras and laser scanners are common sensors that can be used for indoor
SLAM. Compared to other sensors, the RGB-D camera is lightweight, low-cost,
and energy-efficient. Most importantly, it can provide color images and direct
depthmeasurements, making it suitable for object detection and semanticmapping
in indoor environments. Therefore, RGB-D cameras are chosen for research.

Many visual SLAMmethods can build a sparse or semi-dense point cloud map, it
is efficient for map updating and localization. However, this map lacks semantics
and can not be used for navigation or other interactive tasks (Grinvald et al. 2019).
On the other hand, object detection and dense semantic mapping can perceive
the environment, allowing seamless incorporation of semantic understanding into
the SLAM system. Therefore, the overall research question in this thesis can
be summarized as How to detect 3D objects from RGB-D images? Do they
benefit localization and mapping? Supported by AgiProbot project (as shown
in Figure 1.1), many limitations and assumptions should be mentioned before
research. For example, the mobile robot, which is responsible to deliver items
from one workstation to another, is equipped with an RGB-D camera and a 2D
laser scanner. However, this thesis focuses solely on utilizing the RGB-D camera
for localization and mapping. Moreover, the mobile robot is controlled by an
industrial computer without a GPU, thus requiring a precise and efficient system
to avoid failure during real-world application. The research question is tackled
by breaking it down into three parts, and solutions for each one are systematically
found:

The first problem is related to 3D object detection. Objects are high-level elements
in the environment and can provide several advantages, such as creating meaning-
ful maps and benefiting scene understanding. While current research work (Jiao
et al. 2019) has yielded impressive results for segmenting individual objects in
images, lifting 2D detections to 3D space remains challenging. Besides, limited
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1 Introduction

computation resource is another issue when transferring this technology into ap-
plication. How to efficiently detect 3D objects from a single RGB-D frame?
Here, three methods are implemented with different sources: RGB images, depth
measurements, and training data. Their detection accuracy and runtime efficiency
are evaluated on indoor and logistics datasets.

The second problem is the localization of the autonomous mobile robot, namely,
to keep track of a robot’s location using visual information. While common
approaches take feature points as landmarks to track camera poses, can the
introduction of semantic objects in the camera tracking process improve
the localization accuracy. For this purpose, a visual SLAM system is proposed,
where the feature points, geometry planes, and semantic objects are integrated into
a unified framework to optimize camera localization. To analyze the performance
of the proposed system, experiments are designed on publicly indoor and logistics
environments to compare it with other state-of-the-art SLAM systems.

The third problem focuses on semantic mapping with objects. Although SLAM
methods can build a map with objects, it is sparse and can not be used for naviga-
tion. There is a lot of research work developing dense maps with RGB-D cameras,
but these methods suffer from critical real-time issues due to the heavy processing
components. How to efficiently and densely map the environment with se-
mantic object information? Considering the real-world use case, the generated
map should contain occupancy and object information in order to realize scene
understanding and autonomous navigation. To achieve this goal, a CPU-based se-
mantic mapping system is proposed, which integrates the object information into a
voxel-based mapping framework to incrementally build an object-level map. The
proposed system is evaluated in indoor and logistics environments to demonstrate
the capabilities of dense mapping and low-cost computation.

In summary, semantic objects are investigated, and their benefits of localization
and mapping are explored through experiments. Accuracy and efficiency are two
important metrics when evaluated on open-source datasets. Additionally, field
experiments in a real robotic platform are designed to highlight the performance
of the proposed system.

4



1.2 Structure of the Thesis

1.2 Structure of the Thesis

Chapter 2 is the fundamental part of the thesis. It emphasizes the importance
of object detection for scene understanding and addresses the current problems
when leveraging 3D objects from 2D detection. After reviewing many feasible
approaches, three different methods for 3D object detection are implemented,
namely the sample-score method, geometry method, and deep learning method,
which mainly depend on RGB images, depth measurements, and training data
respectively. Experiments are designed to evaluate the performance of the three
methods in terms of detection accuracy and runtime efficiency. Besides, the crit-
ical factors that may influence performance are also analyzed. The first question
is answered.

In Chapter 3, the detected objects are introduced to a visual SLAM framework to
track camera poses. State-of-the-art visual SLAM algorithms achieve impressive
results with feature points, but they are likely to fail in some low-texture environ-
ments due to the lack of reliable features. In this chapter, a point-plane-object
SLAM is proposed, where it can estimate more landmarks, such as geometric
planes and semantic objects, design new measurement functions and data as-
sociation strategies, and integrate these landmarks into a unified optimization
process. The proposed method is evaluated on both indoor and logistics envi-
ronments. Results show that the proposed method can localize the camera and
map the environment with semantic landmarks. Furthermore, compared to other
state-of-the-art visual SLAM approaches, objects can benefit scene understanding
and improve localization accuracy. Therefore, the second question is answered.

Chapter 4 discusses how to build a dense map with semantic object informa-
tion. After object detection and camera pose tracking, a dense semantic map can
be reconstructed, which contains occupancy and object information for naviga-
tion and scene understanding. Considering real-world applications, an efficient
mapping approach is desirable. In this chapter, an efficient object-level mapping
system is proposed, where the object association strategy and voxel-based map-
ping approach are addressed. The object association strategy uses geometric and

5



1 Introduction

semantic descriptors to track and update object information, and the voxel-based
mapping approach is able to incrementally build a dense map of the environment.
Experiments on open-source indoor and logistics environments demonstrate that
the proposed method can densely build an object-level volumetric map while
reducing computational costs. In this case, the third question is answered.

After responding to all questions, the final chapter summarizes the contributions
of this thesis and presents an outlook on future research directions.

Here is a flowchart that shows the structure of the thesis.

Figure 1.2: Structure of the thesis.
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2 Single Frame Object Detection

In this chapter, three methods to detect 3D objects from a single RGB-D frame are
proposed. Section 2.1 introduces the background of object detection, Section 2.2
reviews related work of 2D and 3D object detection, where 3D object detection
methods are divided into deep learning or feature-based methods depending on
whether they use neural networks or not. Section 2.3 presents three proposed
methods: the sample-score method uses only RGB images, the geometry method
depends mainly on depth measurements, and the deep learning method learns
object attributes from the training data. Section 2.4 designs the experiments on
indoor and logistics datasets to evaluate the performance of proposed methods.
Finally, Section 2.5 closes the chapter. It is worth noting that this chapter only
considers single frame detection, data association andmultiple frame optimization
are addressed in Chapter 3 and 4.

2.1 Introduction

Objects are high-level entities of the environment that carry semantic and geomet-
ric information. With the development of deep learning methods, recent research
works have shown an impressive performance on object detection tasks, such as
predicting object-wise bounding boxes (Redmon and Farhadi 2017) or generating
pixel-wise object masks (He et al. 2017) from single RGB images. Although ob-
ject detection on 2D images can be regarded as well studied (Jiao et al. 2019), 3D
object perception remains a difficult challenge due to different object appearances,
poses, and overlaps. Besides, real-time performance is another issue that should
be considered when transferring to real-world applications.

7



2 Single Frame Object Detection

In this chapter, 3D objects are detected from RGB-D images. For this purpose,
current 3D object detection methods are reviewed on RGB-D images and three
feasible approaches are implemented. The sample-score method mainly depends
on the RGB image, it samples object dimension and rotation, generates candidates
by camera perspective projection, and scores all candidates with image and phys-
ical constraints. The geometry method converts depth information into a point
cloud, removes outliers, and clusters objects with 3D points. The deep learning
method learns the attributes of the objects through training data and predicts the
objects with a pre-trained neural network. To evaluate the proposed methods in
terms of accuracy and efficiency, experiments are conducted on indoor and lo-
gistics datasets. Furthermore, experiments are designed to investigate the factors
that affect the detection results. In summary, the contributions are as follows:

• Three different 3D object detection methods, namely the sample-score
method, geometry method, and deep learning method.

• Evaluation of the proposedmethods on open-source indoor datasets in terms
of detection accuracy and run-time performance.

• Creation of the IFL RGB-D dataset for 3D object detection in logistics
environments.

• Evaluation on the IFL RGB-D dataset to analyze the factors that may
influence the detection results.

2.2 Literature Review

Object detection is an important branch of computer vision, which has been
widely used in many fields of modern life, such as autonomous driving, security
monitoring, and so on. The goal is to locate the object instances and assign them
to a certain class within an image or video. Driven by continuous improvements
of research, a series of progresses have been made to improve the object detection
performance (Jiao et al. 2019). In this paper, 2D object detection is distinguished

8



2.2 Literature Review

from 3D object detection, where the 2D objects are represented as masks or
bounding boxes in images, while the 3D objects are formulated as object models
or other artificial geometry in 3D space. Furthermore, for 3D case, the object
detection methods can be classified as deep learning methods and feature-based
methods, depending on whether they use neural networks or not. Deep learning
methods can achieve better detection accuracy while feature-based methods pre-
dict objects with a higher speed, some representative object detection approaches
are reviewed as follows:

2.2.1 2D Object Detection

Through years of development, object detection from images has achieved good
performance and can be considered a mature research field (Jiao et al. 2019). Gen-
erally speaking, current image object detectors can be divided into two categories,
one is the two-stage detector, such as Mask R-CNN (He et al. 2017), and the other
is the one-stage detector, such as YOLO (You Look Only Once) (Redmon and
Farhadi 2017). The comparison between them is shown in Table 2.1.

The two-stage object detectors consist of two processes: region proposal and
feature extraction. Take Mask R-CNN (He et al. 2017) as an example, on the first
stage, it uses FPN (Feature Pyramid Network) (Lin et al. 2017) to obtain several
RoI (Region of Interest) features from different levels of the feature pyramid
according to their scale. On the second stage, RoIAlign is used to extract a feature
map, which can be used for following classification and pixel-wise segmentation
tasks. These two-stage detectors can achieve high object recognition accuracy
while consuming many computation sources.

The one-stage object detectors directly predict bounding boxes from input im-
age without region proposal step, which are time efficient and can be used for
real-time devices. For instance, YOLOv2 (Redmon and Farhadi 2017) divides
the input image into different grids and predicts the bounding boxes with cate-
gory confidence. For each grid, many techniques can be utilized to improve the
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Table 2.1: Literature review of 2D object detection.

Name Sensor Application Features
He et al.
(2017)

Mask R-CNN RGB general two-stage, accurate, generate
pixel-wise masks

Redmon
and Farhadi
(2017)

YOLOv2 RGB general one-stage, fast, predict
object-wise bounding boxes

(a) Mask R-CNN (He et al. 2017) (b) YOLOv2 (Redmon and Farhadi 2017)

Figure 2.1: Examples of 2D object detection methods. Mask R-CNN can generate pixel-wise masks
while YOLO can predict object-wise bounding boxes. The figures come from the original
work.

detecting precision and processing speed, including batch normalization, multi-
scale training, fine-gain features, and so on. These one-stage detectors can reach
comparative detection accuracy with a high inference speed.

2.2.2 3D Object Detection with Feature-based Methods

Although 2D object detection tasks can be regarded as well-studied, 3D object
detection from a single frame is still under investigation due to limited observation
and different object poses. Based on the 2D detection result, 3D object detection
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methods can be divided into two different categories, one is feature-basedmethods,
which take geometry features to leverage objects in 3D space, such as edges, colors,
etc. The other is deep learning methods, they predict 3D objects directly from
images by training a neural network. Some related work is summarized in Table
2.2 and 2.3.

The feature-based methods are started with here. A straightforward way is to
use 2D pixel-wise masks, where the 3D object points can be directly segmented
from the depth image (Grinvald et al. 2019). Another simple but practical idea
is to create a database to store 3D object models and match 2D detections to the
database (Parkhiya et al. 2018). When prior knowledge is available in the form
of 3D models (Sivananda et al. 2022), objects can be detected by matching salient
key-points or features to the models. This model-based object detection method
turns out to be an accurate and stable solution, but the requirement for prior 3D
object models limits the application area.

Except for the pre-defined models, other artificial models, such as ellipsoids and
cuboids, are more flexible and compact to represent objects with translation,
rotation, and dimension. Assuming 2D detection is available, Rubino et al.
(2017) proposed to initialize quadrics from multi-view frames, where several 2D
bounding boxes with corresponding fitted ellipses can build a closed-form solution
to initialize a 3D quadric. Nicholson et al. (2018) back-projected the edges of the
2D object bounding box to get 3D enveloping planes, thus determining an optimal
dual quadric tangent to the planes. With depth measurements, Liao et al. (2020a)
proposed an ellipsoid initialization from a single frame based on the relationship
between objects and the supporting planes. Besides, there are a lot of works that
can robustly improve the initialization of ellipsoids, such as (Liao et al. 2022),
(Chen et al. 2021), and (Tian et al. 2021).

The cuboid model is another common representation of objects. Gupta et al.
(2010) proposed to estimate cuboids by recovering three mutually orthogonal
vanishing points. They extracted line segments, generated multiple hypotheses
for rooms and objects, and selected the best configuration considering the volu-
metric constraints of the physical world. On this basis, Yang and Scherer (2019a)
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proposed to sample cuboid corners from the 2D bounding box and generate many
cuboid candidates with vanishing lines. After that, the image and physical con-
straints were introduced to score and select the best representation. In contrast
to previous approaches that rely on detecting vanishing points of the scene and
grouping line segments to form cuboids, Xiao et al. (2012) built a discriminative
parts-based detector that models the appearance of the cuboid corners and inter-
nal edges while enforcing consistency to a 3D cuboid model. Besides, RGB-D
images can provide additional information to initialize 3D objects because the
object point cloud can be obtained. A simple idea is to formulate a cuboid that
covers all corresponding points (Jiang and Xiao 2013). Besides, Mishima et al.
(2019) performed a cuboid reconstruction pipeline by searching three perpen-
dicular planes and computing the intersection of the planes. This incremental
modelling framework is practical but limited to cuboid-shaped objects. For other
general objects with diverse shapes, Lin et al. (2021) proposed to collect object
points, remove discrete outliers, and generate the cuboid parameters in 3D space.

Due to significant variability in object appearance, overlap, and other challenges,
these object detection approaches might over-segment the objects or contain noisy
information, making high-level scene understanding difficult.

(a) Feature-based method using RGB infor-
mation. (Gupta et al. 2010)

(b) Feature-based method using RGB-D
information. (Lin et al. 2021)

Figure 2.2: Examples of 3D object detection with feature-basedmethods. They usually take geometry
features to leverage objects in 3D space, such as edges, corners, etc. The figures come
from the original work.
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Table 2.2: Literature review of 3D object detection with feature-based methods.

Scene Sensor Framework Model Method
Parkhiya et al.
(2018)

indoor RGB feature-based points model matching

Grinvald et al.
(2019)

indoor RGB-D feature-based points mask segmentation

Rubino et al.
(2017)

indoor RGB feature-based quadric 2D ellipse, multi-view opti-
mization

Nicholson
et al. (2018)

indoor RGB feature-based quadric 2D box to 3D enveloping
planes

Liao et al.
(2020b)

indoor RGB-D feature-based quadric symmetric planes

Gupta et al.
(2010)

indoor RGB feature-based cuboid line segmentation

Xiao et al.
(2012)

indoor RGB feature-based cuboid corner detection

Yang and
Scherer
(2019a)

indoor RGB feature-based cuboid vanishing lines

Jiang and
Xiao (2013)

indoor RGB-D feature-based cuboid minimal cuboid

Mishima et al.
(2019)

indoor RGB-D feature-based cuboid three perpendicular planes

Lin et al.
(2021)

indoor RGB-D feature-based cuboid projecting onto ground
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2.2.3 3D Object Detection with Deep Learning Methods

3D object instances can also be predicted directly from images with deep learning
methods, they use artificial neural networks to detect and classify objects in 3D
space. Given annotated training data, object features can be extracted, learned,
and stored inside the network. After training, the network can be used for object
detection in other unseen environments.

Focusing on the indoor environment, RGB images can provide rich features for
objects, such as corners, edges, planes, etc. Dwibedi et al. (2016) proposed an
end-to-end system capable of localizing cuboid vertices within an RGB image.
The key idea is to first produce a 3D interpretation of the box-line object and
refine the key-points by pooling convolutional features iteratively. Considering
2D-3D consistency between image and spatial space, Huang et al. (2019) pro-
posed to predict perspective points, which are defined as the 2D projections of
local Manhattan 3D key-points and satisfy geometric constraints imposed by the
perspective projection. In addition to the object features, RGB images also pro-
vide the position relation between objects and other components, Huang et al.
(2018) formulated a deep learning model to predict local object attributes, as well
as the room layout. The individual attribute loss and physical plausibility loss
penalize the intersection between the reconstructed 3D objects box and the 3D
room layout, cooperatively promoting the networks. Nie et al. (2020) assumed that
each object has multi-lateral relations with its surroundings, these element-wise
relational features, together with object-wise appearance features are summed to
predict the 3D bounding boxes of each object.

3D objects can also be estimated from depth images or 3D point clouds. For
example, PointNet (Qi et al. 2017a) a pioneer work in this direction, the key idea
is to use the network to learn a set of optimization functions/criteria that select
interesting or informative points of the point cloud and aggregate these learned
optimal values into the classification or segmentation. In the following, Point-
Net ++ (Qi et al. 2017b) introduces a hierarchical neural network to recursively
capture geometric structures from small neighbourhoods, extending the ability to
recognize fine-grained patterns and generalizability to complex scenes. VoteNet
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(a) Total 3D understanding. (Nie et al. 2020) (b) VoteNet. (Qi et al. 2019)

Figure 2.3: Examples of 3D object detection with deep learning methods. They usually use artificial
neural networks to detect and classify objects in 3D space. The figures come from the
original work.

(Qi et al. 2019) is proposed to generate high-quality object proposals by learning
to vote object centroid directly from point clouds and aggregate votes through their
features and local geometry. On this basis, ImVoteNet (Qi et al. 2020) designs
a joint 2D-3D voting scheme to leverage both geometric and semantic cues in
2D images, achieving the state-of-art 3D object detection performance on indoor
datasets.

To sum up, object detection methods with deep learning neural networks can
achieve significant detection accuracy. However, they also have two disadvantages.
One is the requirement of large amounts of training data for robust and accurate
detection, and the other is the high computational demand. Currently, these
methods are time-consuming and cannot be applied to mobile robotic platforms.
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Table 2.3: Literature review of 3D object detection with deep learning methods.

Scene Sensor Framework Model Method
Dwibedi et al.
(2016)

indoor RGB network cuboid corner regression

Huang et al.
(2019)

indoor RGB network cuboid perspective points

Huang et al.
(2018)

indoor RGB network cuboid size, rotation, distance re-
gression, cooperative train-
ing

Nie et al.
(2020)

indoor RGB network cuboid relationship with surround-
ing

Qi et al.
(2017a)

indoor RGB-D network points interesting points selection

Qi et al.
(2017b)

indoor RGB-D network points geometric structure with
neighbourhoods

Qi et al.
(2019)

indoor RGB-D network points object center voting and ge-
ometry constraints

Qi et al.
(2020)

indoor RGB-D network points 2D-3D consistency, voting
schedule

2.3 Methods

In the thesis, objects are represented as 3D cuboids with geometric and semantic
descriptors, including class categories, 2D bounding box, associated 3D points,
cuboid parameters, and so on. Themathematic description for 3D cuboids consists
of 9 DoF (degrees of freedom) parameters: 3 DoF translationT = (tx, ty, tz)

⊤, 3
DoF rotation R = (θx, θy, θz)

⊤, and 3 DoF dimension D = (dx, dy, dz)
⊤. The

cuboid coordinate frame is located at the cuboid center, aligned with the main
axes.

Given a single frame, three different methods are implemented to estimate objects
with the cuboid representation in 3D space, namely the sample-score method,
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geometry method, and deep learning method. Since 2D object detection can be
regarded as well-studied (Jiao et al. 2019), it is assumed that the 2D bounding
boxes are available, and the focus is on lifting 2D detections to 3D cuboids. Each
method is described as follows:

2.3.1 Method 1: Sample-Score Method

Section 2.3.1 is based on (Zhou et al. 2022). Parts of the following text are taken
from that publication without changes.

Taking RGB images as input, the sample-score method employs a 2D object
detector to get object classes and 2D bounding boxes. For each bounding box,
it samples the dimension and rotation of the object to generate many cuboid
candidates. These candidates are scored by 3D and 2D constraints, and the best
candidate with the highest score is selected as the representation of the object.
The whole process is shown in Figure 2.4.

Figure 2.4: Overview of the sample-score method on 3D object detection. The method takes a single
frame as input, samples object dimension and rotation to generate cuboid candidates (a),
and scores these candidates (b) with spatial and image constraints (c). The best candidate
is selected to represent the object (d). More details can be found in (Zhou et al. 2022).
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1) Sample Process. It is possible to sample object translation, rotation, and
dimension from 0 to ∞, but not practical. Given object bounding boxes in 2D
images and perspective projection, the method samples the rotation and dimen-
sion and lifts the objects to 3D space. Under the assumption that objects are
parallel to the ground, only one rotation angle related to the ground needs to be
sampled. Besides, object dimensions can be sampled based on the average value
of categories. Therefore, the sampling space is greatly reduced and becomes more
accurate. Each sampled dimension and rotation, together with a 2D bounding box,
can be regarded as a candidate.

2) Lifting 2D to 3D. According to the perspective projection principle: the
projected vertexes of a 3D cuboid should fit tightly into each side of its 2D
detection box. That means, four out of eight vertexes of the 3D bounding box
should be projected right on the four sides of the 2D bounding box (Mousavian
et al. 2017). According to this 2D-3D fitting constraints, once the 2D bounding
box, dimension, and rotation are available, the translation of the candidate can be
computed, and 3D cuboid of the candidate can be leveraged, more details can be
found in Appendix A. To this end, a set of candidates can be obtained, and each
candidate is formulated as 3D cuboids with 9 DoF parameters.

3) Scoring Process. Given a set of cuboid candidates, the scoring process aims to
select the best proposal that not only satisfies the spatial constraints of the physical
world, but also matches the local surface geometry estimated from image cues.

Figure 2.5: Proposed constraints for object scoring. (a) Object-object constraints are calculated by
object 3D overlapping. (b) Object-plane constraints are calculated with angle and distance
errors. (c) Object-image constraints are calculated by the angle and distance error of the
image lines and projected cuboid edges.
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To achieve this goal, spatial and image constraints are proposed for scoring,
as illustrated in Figure 2.5, The spatial constraints (Gupta et al. 2010) can be
defined with three rules: object occupancy, object-object exclusion, and object-
plane constraints. They can be explained as: (1) Every cuboid candidate in
3D space should have a non-zero finite volume; (2) The volumes occupied by
different objects are mutually exclusive; (3) Every object should be close to its
associated planes without intersection. When projecting the 3D cuboid to the
image, the image constraints are defined as the alignment between the projected
cuboid edges and detected lines in the image. In summary, the overall cost can be
calculated as:

E(O,Π, I) = k1 ×ΨO−O + k2 ×ΨO−Π + k3 ×ΨO−I , (2.1)

where ΨO−O, ΨO−Π, ΨO−I represent object-object, object-plane, and object-
image constraints respectively, k1, k2 and k3 are coefficients. Based on equation
(2.1), the cuboid candidate with the smallest cost E(O,Π, I) is selected as the
object proposal.

2.3.2 Method 2: Geometry Method

Section 2.3.2 is based on (Zhou et al. 2023). Parts of the following text are taken
from that publication without changes.

The geometry method mainly focuses on depth information and aims to cluster
the object with 3D points. The whole process can be divided into three steps:
Firstly, given an RGB-D frame with 2D bounding boxes, the 3D points inside
each bounding box can be obtained. Since there might be outliers, the next step
is to remove these outliers and cluster object points. Finally, object parameters
are computed, and a cuboid is drawn to cover all points. Figure 2.6 describes the
whole process.
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2 Single Frame Object Detection

Figure 2.6: Overview of the geometrymethod on 3D object detection. Given an RGB-D frame and 2D
bounding box, the 3D points inside each bounding box can be obtained, then, an outlier
exclusion algorithm is adopted to cluster object points, finally, the cuboid parameters are
computed.

1) Point Cloud Extraction. For each RGB-D frame, the geometry method first
chooses YOLO (Redmon and Farhadi 2017) network to detect the object classes
together with 2D bounding boxes, which is comparatively accurate and requires
less computation cost. Next, the ground should be removed. To do so, each RGB-
D frame is converted into a 3D point cloud and amultiple plane estimationmethod
(Trevor et al. 2013) is applied to detect all planes in the frame. For each plane,
if its normal is parallel to the world coordinate and its relative distance is zero,
it can be assumed as ground and the ground points can be removed. Therefore,
once the object bounding box is available in the image, the corresponding point
cloud without ground points can be retrieved.

2) Outlier Exclusion. Due to the presence of sensor noise and detection errors,
there are many discrete outliers in the preliminary object model. In this case, a
statistical outlier removal step (Rusu and Cousins 2011) is performed to increase
the accuracy of the point cloud. Additionally, a Euclidean cluster extraction
(Rusu and Cousins 2011) is implemented to separate points into several groups
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and cluster object points. To ensure reliability, only one cluster is selected, which
should encompass at least 70% of all points.

3) Cuboid Generation. After obtaining object points, the cuboid model with 9
DoF parameters can be computed. To achieve this goal, the method first trans-
forms all point clouds into the world coordinate. Building on the assumption that
real-world objects are parallel to the ground, object roll θx and pitch θy are 0, The
translation tz and the height dz should be calculated as the mean and difference
of the maximum and minimum value of the z axis among all points. Finally, the
remaining {tx, ty, dx, dy, θz} can be determined by projecting all object points
on the 2D X-Y plane. As illustrated in Figure 2.7, the method performs a discrete
sampling of rectangle rotation from 0◦ to 180◦ and draws oriented rectangles to
cover all projected points. For all sampled oriented rectangles, the smallest rect-
angle matches the object points best, whose parameters (the position, dimension,
and yaw angle {tx, ty, dx, dy, θz}) can be adopted to represent the 3D objects.

(a) Object yaw sampling. (b) Areas under different object yaws.

Figure 2.7: Proposed object yaw computation in Figure 2.6. (a) Object yaw sampling process, (b)
The area of oriented rectangles under different yaw angles.

2.3.3 Method 3: Deep Learning Method

Inspired by the neural network, a deep learning method is also developed to detect
3D objects from RGB images. The framework is illustrated in Figure 2.8, where a
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two-stage network is proposed to learn object attributes, estimate the object class,
object pose, size, etc., and recover cuboid details in 3D space.

Figure 2.8: Overview of the deep learningmethod on 3D object detection. A two-stage neural network
is proposed to learn object attributes, including object class, relative distance, pose, etc.,
which can parameterize a 3D bounding box.

1) Network Architecture. The 2D object detection network aims to estimate
object classes and 2D bounding boxes and provide several crop images for the
3D object detection network. For 3D parameters, under the assumption that all
objects are parallel to the ground, the object rotation, size, and distance from the
camera center to the object center can be easily learned. However, estimating the
3D object center directly from the 2D image may result in a large variance (Huang
et al. 2018), so the network bridges the gap between 2D and 3D object bounding
boxes by an offset between the 2D bounding box center and the projection of the
3D bounding box center. In other words, given the camera intrinsic K. rotation
R, translation T, The projection relationship between the 3D center C3d, 2D
center C2d, and 2D offset δ2d is expressed as:

C2d + δ2d = K[R|T] ∗C3d (2.2)

In this way, the 3D and 2D parameters are united, which helps maintain the 2D-3D
consistency and reduces the variance of the 3D bounding box estimation.

2) Loss Functions. The loss function is used to measure the difference between
the predicted output and the ground truth. In the case, the individual loss is
distinguished from the joint loss functions for the output. The object class loss
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(a) 3D loss. (b) 2D loss.

Figure 2.9: Proposed joint loss functions for the deep learning method. (a)The 3D loss is calculated
by the 3D distance of corners in 3D space. (b)The 2D loss is calculated by the 2D IoU of
the projected bounding box. The red one represents the predicted cuboid, while the blue
one is the ground truth.

uses cross-entropy, which separates all categories as multiple bins and measures
the probability distribution in each bin. A similar idea is used for distance
and rotation prediction, where the range is divided into multiple bins and the
distribution in each bin is estimated. Other outputs, such as 2D bounding box,
2D offset, and size, use squared error to regress the value. Except for individual
loss functions, 3D and 2D joint loss functions are also designed to cooperatively
optimize the network. Ideally, the corners of the prediction and the ground truth
should match, so, the 3D corner loss is defined as the corner position difference as
shown in equation (2.3). On the image plane, the projected bounding box should
also match the 2D bounding boxes, and 2D intersection over union is defined as
the 2D loss, as shown in equation (2.4). To summarise, the total loss can be
written as shown in equation (2.5), where k1 and k2 are coefficients to balance
the different losses.

L3d =
1

8

8∑
i=1

||Xpred_3d −Xgt_3d||2 (2.3)

L2d = ∆x2d ×∆y2d (2.4)
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Ltotal = (Lclass+Lbbox+Ld+Lθ+Lsize+Loffset)+k1∗(L3d+k2∗L2d) (2.5)

2.4 Experiments

To evaluate the performance of the proposed methods, experiments are conducted
on a publicly available object detection dataset, called SUN RGB-D dataset (Song
et al. 2015). This dataset comprises 10, 335 images captured by 4 different RGB-D
cameras, featuring over 800 object categories and 64, 595 annotated 3D bounding
boxes. With such extensive data, this dataset serves as an ideal evaluation platform
for 3D object detection.

Objects from logistics environments are also planned to be detected, but there are
no open-source datasets for this goal. Besides, the images in the SUN RGB-D
dataset are captured randomly, making it difficult to analyze the factors that influ-
ence the detection accuracy. To solve the above problems, there is an interest in
generating a logistics dataset for 3D object detection, named IFL RGB-D dataset.
To this end, typical logistics items are captured, such as delivery boxes, pallets,
and containers, and some potential factors are addressed, including different back-
grounds, categories, relative distances, and rotations. After annotation, the object
detection methods are evaluated on the created IFL RGB-D dataset.

Figure 2.10: SUN RGB-D dataset. This dataset provides diverse objects and bound-
ing box annotation. The figure comes from the official website:
https://3dvision.princeton.edu/projects/2015/SUNrgbd/.
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2.4.1 Experiments on Indoor Datasets

Section 2.4.1 is based on (Zhou et al. 2022). Parts of the following text are taken
from that publication without changes.

SUN RGB-D dataset (Song et al. 2015) is an indoor dataset that focuses on 6

important recognition tasks towards total scene understanding, including object
detection, scene recognition, and room layout estimation. this dataset is selected
because of the diverse objects and bounding box annotations. In the experiments,
8 common objects out of 1670 images are selected for further evaluation, they
are bed, sofa, chair, sofa_chair, garbage_bin, night_stand, lamp, and table
respectively.

To focus on 3D object detection, the 2D bounding box and class name are adopted
from the ground truth. The sample-score method samples the object dimension
around the average value between 80% and 120% with a sample step of 20% to
avoid invalid parameters. For rotation sampling, it is sufficient to only sample the
yaw angle from 0◦ to 180◦ with a sample step of 5◦. That means it can generate
3 × 3 × 3 × 36 = 972 cuboid candidates for each object. The deep learning
method trains the neural network on 2000 images with 100 epochs and uses the
pre-trained weights to predict objects in the unseen background.

Under the assumption that all objects are parallel to the ground, results are mea-
sured with 4 metrics: 3D object Intersection over Union (IoU3D), per-class
Average Precision, 3D translation error (Etrans), and rotation error (Erot), which
are illustrated in Figure 2.11 and defined as follows:

3D Object IoU (IoU3D): the object IoU shows the general similarity of two
objects, which is calculated as the intersection by the union of the 3D bounding
box between the detected object and the ground truth, as shown in equation (2.6)
and Figure 2.11(a).

per-class Average Precision (AP ): the AP measures the ability to correctly
detect objects in the scene. Regarding 3D object detection, cuboids are considered
positive detections (TP) if the 3D IoU is greater than 25%; otherwise, they are
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(a) 3D object IoU (b) 3D translation error (c) 3D rotation error

Figure 2.11: Example of evaluation metrics. (a) 3D object IoU is calculated as the intersection by the
union of the 3D bounding boxes. (b) 3D translation error is measured by the Euclidean
distance of the 3D cuboid centroid. (c) 3D rotation error is computed by the yaw angle
of the 3D bounding boxes in the top view.

classified as false detections (FP). The AP is equal to the number of positive
detections divided by all detections, as shown in equation (2.7).

3D Translation Error (Etrans): the translation error calculates the difference
between the predicted centroid position and its true position of an object in 3D
space, the Euclidean distance of the cuboid centroid is used to represent the error,
as shown in equation (2.8) and Figure 2.11(b).

3D Rotation Error(Erot): under the assumption that all objects are parallel to the
ground, the rotation error is computed by the heading angle or yaw angle error
between the detection objects and the ground truth in the top view, as shown in
equation (2.9) and Figure 2.11(c).

IoU3D =
Voverlap

Vgt + Vpred − Voverlap
(2.6)

AP =
1

n

n∑
i=1

|TPi|
|TPi|+ |FPi|

(2.7)

Etrans =

√
|tx_pred − tx_gt|2 + |ty_pred − ty_gt|2 + |tz_pred − tz_gt|2 (2.8)

Erot = |θz_pred − θz_gt| (2.9)
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1) Qualitative Results. A subset of the object detection results of each method
are visualized in Figure 2.12, Figure 2.13, and Figure 2.14. The RGB images with
2D bounding boxes are shown in the first column, which acts as the input of the
proposed system, while the last two columns show the object detection results in
image and 3D space.

The sample-score method depends on edge features and planes to score the pro-
posals, thus works best for "boxy with clear edge" objects near the wall. The
geometry method relies on the quality of points and may cluster only part of the
points due to different viewpoints and sensor noise. The deep learning method
can predict a good cuboid by maintaining 2D-3D consistency.

Figure 2.12: Example of detection results using the sample-score method on SUN RGB-D dataset.
The RGB images with 2D bounding boxes are shown in the first column, while the last
two columns show the object detection results in image and 3D space.
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Figure 2.13: Example of detection results using the geometry method on SUN RGB-D dataset. The
RGB images with 2D bounding boxes are shown in the first column, while the last two
columns show the object detection results in image and 3D space.

Table 2.4: Evaluation of 3D Object IoU (IoU3D) on SUN RGB-D dataset.

Method bed sofa sofa_
chair

chair garbage_
bin

night_
stand

table lamp average

count 189 40 86 180 112 160 86 186
Sample-score
method

0.4979 0.3189 0.3740 0.3988 0.3786 0.3559 0.2578 0.2576 0.3549

Geometry
method

0.4105 0.4258 0.4580 0.3523 0.3805 0.2971 0.2344 0.1653 0.3404

Deep learning
method

0.4271 0.4193 0.3775 0.4559 0.4453 0.4029 0.4559 0.3821 0.4207
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Figure 2.14: Example of detection results using the deep learning method on SUN RGB-D dataset.
The RGB images with 2D bounding boxes are shown in the first column, while the last
two columns show the object detection results in image and 3D space.

Table 2.5: Evaluation of per-class AP on SUN RGB-D dataset.

Method bed sofa sofa_
chair

chair garbage_
bin

night_
stand

table lamp average

count 189 40 86 180 112 160 86 186
Sample-score
method

0.7371 0.5319 0.6162 0.6613 0.5714 0.4687 0.3181 0.2435 0.5189

Geometry
method

0.5215 0.6808 0.6744 0.6508 0.6837 0.2937 0.3181 0.1474 0.4963

Deep learning
method

0.6546 0.5758 0.5882 0.7107 0.6275 0.6000 0.6552 0.5714 0.6229
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Table 2.6: Evaluation of 3D translation error Etrans on SUN RGB-D dataset.

Method bed sofa sofa_
chair

chair garbage_
bin

night_
stand

table lamp average

count 189 40 86 180 112 160 86 186
Sample-score
method

0.3971 0.4352 0.3244 0.1804 0.1633 0.2420 0.5165 0.2376 0.3120

Geometry
method

0.6176 0.2479 0.2542 0.1913 0.1331 0.2542 0.3476 0.2225 0.2835

Deep learning
method

0.6426 0.4961 0.3435 0.1597 0.2379 0.1993 0.2926 0.1739 0.3182

Table 2.7: Evaluation of 3D rotation error Erot on SUN RGB-D dataset.

Method bed sofa sofa_
chair

chair garbage_
bin

night_
stand

table lamp average

count 189 40 86 180 112 160 86 186
Sample-score
method

9.1 9.0 9.1 9.4 6.2 9.4 7.8 10.3 8.78

Geometry
method

5.8 7.3 7.0 11.0 9.3 8.1 10.1 10.4 8.62

Deep learning
method

8.4 8.8 7.7 9.5 7.0 13.5 12.4 10.6 9.73
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2) Quantitative Results. A quantitative analysis of the proposed methods re-
garding the 3D IoU, per-class AP, translation error, and rotation error for different
object categories can be found in Table 2.4, Table 2.5, Table 2.6, and Table 2.7.
When considering 3D IoU and per-class AP, the deep learning method outper-
forms the other two in five categories, showing a better and more robust result.
Besides, it can predict small objects such as lamps, where the detection accuracy
is twice as high as that of the other methods. However, the deep learning method
does not perform well in translation and rotation estimation. In terms of transla-
tion, the geometry method is stable because it calculates the centroid of the point
cloud. For rotation, both the sample-score method and geometry method perform
better because they employ discrete object rotation samples and use geometric
constraints to select the best one.

Take the geometry method as an example to analyze the performance of differ-
ent object categories: bed performs best with the highest 3D IoU, This can be
explained by the ease with which its large 2D bounding box and corresponding
surface planes can be detected. lamp is quite small, making it hard to distinguish
from the background, and thus having the worst detection accuracy. Besides,
table and chair do not have the expected result, because sometimes the feet are
missing when the cluster method is used.

3) Runtime Performance. Except for the detection metrics, the runtime perfor-
mances of allmethods are also evaluated on a ThinkPadmachine.1 (i7-8565U1.80
GHz CPU, 16 GB RAM, no GPU, Ubuntu 18.04). The sample-score method and
geometrymethod are programmedwith C++, while the deep learningmethod uses
Python. The results are listed in Table 2.8. The sample-score method, which in-
volves line segmentation, plane estimation, sampling, and scoring, utilizes mainly
RGB information, thus requiring less time. The geometry method, consisting of
point cloud processing, outlier exclusion, and clustering, shows a relatively slower
speed. Additionally, the deep learning method operates the slowest on the CPU.

1 The deep learning method is trained on another GPU but predicts objects using a CPU-only
platform.
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Table 2.8: Evaluation of runtime performance on SUN RGB-D dataset.

Method Main tasks Average time (mSec) ∗

Sample-score method line segmentation, plane es-
timation, sampling, and scor-
ing

53.07

Geometry method point cloud converting, out-
lier exclusion, clustering

57.04

Deep learning method network loading, predicting 157

∗ The 2D object detection on RGB images is ignored, which requires 725ms in the test machine.

Table 2.9: Comparison of three proposed methods on SUN RGB-D dataset.

Method 3D IoU AP Translation
error (m)

Rotation
error (◦)

Runtime
(mSec)

Sample-score method 0.3549 0.5189 0.3120 8.78 53.07
Geometry method 0.3404 0.4963 0.2835 8.62 57.04

Deep learning method 0.4207 0.6229 0.3182 9.73 157

4) Summary. The performances of the evaluated methods are summarized as
shown in Table 2.9, and they have their own pro and cons. For example, the
deep learning method achieves the best performance on 3D IoU and per-class AP,
whereas the geometry method shows the best results on translation and rotation
error. Of the three methods, the sample-score method is the fastest, while the
deep learning method achieves the highest accuracy. The geometry method offers
intermediate performance in both speed and accuracy.
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2.4.2 Experiments on Logistics Datasets

The experiments on the SUN RGB-D dataset have verified that the evaluated
methods can detect 3D objects in indoor environments, but how about logistics
objects, do they have the same accuracy and efficiency? To answer this question,
the implemented methods are evaluated in logistics environments.

LOCO (Logistics Objects in Context) dataset (Mayershofer et al. 2020) is a lo-
gistics dataset for scene understanding, it contains 5,593 annotated images and
in total 151,428 instances of pallets, small load carriers, stillages, forklifts, and
pallet trucks are annotated. However, this dataset focuses on image detection and
does not provide 3D information, which is not suitable for the goal. Since there is
no open-source dataset available for 3D object detection in logistics environments,
an IFL RGB-D dataset can be created.

Creation of the IFL RGB-D Dataset. Considering further application, two
RGB-D cameras are chosen in the institute, a Microsoft Azure Kinect camera 2,
and a Realsense D435 camera 3. Calibration is done with a ROS system 4. Figure
2.15(a) illustrates the capture system, where the camera is mounted on a flexible
tripod that allows for convenient camera adjustment.

After gatheringRGB-D images, an annotation tool is developed to label the ground
truth, as shown in Figure 2.15(b). The origin of the world coordinates is located
in the center of the camera, while the main axis is parallel to the ground. To
align the world coordinates to the ground, this tool can identify the ground plane
and rotate the coordinate system in the control panel. Then, it can search all
points that belong to the object and draw a fake 3D cuboid to cover them. The
3D cuboid is also projected onto the image plane to obtain the 2D bounding box.
Finally, it can save the camera setting and the object representation in the world
coordinates, including the class category, 2D bounding box, translation, rotation,
and dimension.

2 https://azure.microsoft.com/en-us/products/kinect-dk
3 https://www.intelrealsense.com/depth-camera-d435/
4 http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration

33



2 Single Frame Object Detection

(a) Capture system (b) Annotation tool

Figure 2.15: Creation of the IFL RGB-D dataset. (a) A capture system is designed to collect RGB-D
images. (b) An annotation tool is developed to label the ground truth.

(a) The ground truth is plotted on the image plane. (b) The ground truth is plotted in 3D space.

Figure 2.16: IFL RGB-D dataset. This dataset aims to detect 3D logistics objects and analyze the
factors that may influence the detection result.

While other datasets randomly capture objects, the IFL RGB-D dataset is de-
signed specifically to analyze the factors that may influence detection accuracy,
including background, categories, relative distance, and relative object rotation.
To investigate these factors, a subset of objects are recorded under these different
conditions during the capturing process. In total, the dataset is recorded in 6

different logistics scenes, where 3 different objects (parcel, pallet, load carrier)
are emphasized, and in total 800 labels are manually annotated. One example of
the dataset is shown in Figure 2.16.
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Evaluation on IFL RGB-D Dataset. Among different methods, the perfor-
mances of the geometry method are evaluated (see Section 2.3.2) on the IFL
RGB-D dataset. Similar to Section 2.4.1, 3D object IoU, per-class AP, 3D trans-
lation error, and 3D rotation error are adopted as the evaluation metrics.

Regarding qualitative results, a subset of detection results with different back-
grounds and object categories are visualized in Figure 2.17, where the back-
grounds are named from lab1 to lab4, and the detected cuboids are projected onto
the image plane. The results show that the proposed geometry method can also
estimate 3D cuboids under different backgrounds.

Figure 2.17: Example of detection results on IFL RGB-D dataset, where the backgrounds are named
from ”lab1” to lab4.

In the context of different impact factors, different experiments are designed.
Firstly the experiments evaluate different class categories in background lab1, the
results are reported in Table 2.10. The parcel performs the best due to its cuboid
shape, while the pallet and the load carrier are more difficult because of the
small height and the absence of a top surface. Then, parcel is chosen to evaluate
the influence of background. As shown in Table 2.11, the geometry method is

35



2 Single Frame Object Detection

stable under different backgrounds. Finally, parcel is placed in lab1with different
object rotations and distances, the results are shown in Table 2.12, and Table 2.13.
The detection accuracy varies. For relative object rotation, the best performance
can be found on 6 ∗ π/8 because three object surfaces can be observed from this
point of view. For different distances, the geometry method works best within
a range of 0 − 3m, because of the measurement limitation. These two factors
are valuable because bad detection can be figured out and removed in real world
applications.

Table 2.10: Evaluation of the geometry method’s performance under different categories on IFL
RGB-D dataset.

parcel pallet loadcarrier

count 40 40 40
IoU3D 0.6725 0.5782 0.6023
AP 0.8375 0.7455 0.6210

Etrans(m) 0.0958 0.2322 0.1156
Erot(

◦) 3.2 4.7 3.5

Table 2.11: Evaluation of the geometry method’s performance under different backgrounds on IFL
RGB-D dataset.

lab1 lab2 lab3 lab4

count 40 50 45 40
IoU3D 0.4459 0.4038 0.4295 0.4208
AP 0.8646 0.7925 0.8314 0.8708

Etrans(m) 0.1167 0.1379 0.0817 0.1020
Erot(

◦) 4.2 3.7 2.9 2.5
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Table 2.12: Evaluation of the geometry method’s performance under different yaws on IFL RGB-D
dataset.

0 1π/8 2π/8 3π/8 4π/8 5π/8 6π/8 7π/8

count 96 76 52 40 48 64 88 87
IoU3D 0.4469 0.4303 0.4444 0.3818 0.4088 0.4537 0.4782 0.4171
AP 0.8646 0.8684 0.8462 0.7752 0.7292 0.8750 0.8864 0.7442
Etrans(m)0.1161 0.1379 0.1587 0.1485 0.1470 0.1539 0.1135 0.1770
Erot(

◦) 4.2 6.3 7.9 4.6 4.4 4.8 3.8 3.5

Table 2.13: Evaluation of the geometry method’s performance under different distances on IFL RGB-
D dataset.

0.5m 1m 1.5m 2m 2.5m 3m 3.5m 4m 4.5m
count 9 147 252 32 1 9 41 23 14
IoU3D 0.4890 0.5144 0.4083 0.6276 0.4854 0.3353 0.4207 0.3724 0.3268
AP 1 0.8163 0.7494 0.8625 1 1 0.9756 0.9565 0.7857
Etrans(m)0.0388 0.0583 0.0430 0.0954 0.0969 0.0800 0.0863 0.0863 0.1415
Erot(

◦) 8.6 5.1 6.1 6.3 2.7 2.5 12.2 13.7 14.9
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2.5 Chapter Conclusion

In this chapter, three different methods for 3D object detection are implemented
from a single RGB-D frame, namely the sample-score method, geometry method,
and deep learning method.

The sample-score method can generate hundreds of 3D cuboid candidates by
sampling object dimension and rotation, the candidates are then scored by image
feature and physical constraints, and the best candidate is selected to represent the
object. The geometry method converts the RGB-D image into 3D points, removes
outliers, and cluster object points. On this basis, 3D cuboid can be generated
to cover all corresponding points. The deep learning method learns a number
of objects’ properties from training data and predicts 3D cuboids of objects in
different scenes. Regarding the framework, the individual loss function and joint
loss functions are designed to encourage an accurate 3D estimation.

These three methods are evaluated on the indoor SUN RGB-D dataset as well
as logistics IFL RGB-D dataset. In terms of speed, the sample-score method
outperforms the other two methods, but the deep learning method achieves the
highest accuracy. The geometry method provides a compromise between speed
and accuracy. Besides, the relative object rotation and distance are two important
factors that influence the object detection performance, which is useful for further
application in a robotic platform.
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3 Visual SLAM with Points, Planes,
and Objects

This chapter presents a visual SLAM system at the level of objects, where feature
points, structural planes, and semantic objects are jointly optimized in a unified
graph. Section 3.1 introduces the background of visual localization and mapping.
Section 3.2 reviews the related work of visual SLAM systems with different
landmarks. Section 3.3 presents the framework of the proposed point-plane-
objects SLAM system. Based on the state-of-the-art point-SLAM system, the
system can detect planes and objects are detected in every key-frame, find the
data association, and formulate an optimization problem with points, planes, and
objects. In addition, an object-based loop detection module is added to make
the system more robust. Section 3.4 evaluates the proposed method on indoor
and logistics environments, the results show that the proposed SLAM system can
improve camera localization and benefit scene understanding. Section 3.5 draws
a conclusion for the chapter. This chapter’s work is an extension to single image
detection in Chapter 2.

3.1 Introduction

Visual SLAM refers to the problem of using image sequences to track the move-
ment of a robot or a moving camera in an unknown environment and reconstruct
the scene at the same time. Compared to other sensors like laser scanners, inertial
units, or GPS, the camera has the advantages of a cheap price and low power con-
sumption. Besides, it can provide robust and accurate environmental information
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for scene understanding. Through years of development, visual SLAM has been
applied in many fields, including virtual reality (Garon et al. 2016), autonomous
driving (Lategahn et al. 2011), smart factory (Himstedt and Maehle 2017), etc.

Many visual SLAM systems take feature points as landmarks to track the move-
ment of the camera, and the reconstructed maps are sparse and easy to update.
However, these maps do not contain semantic or object information and are not
convenient for high-level tasks such as robot manipulation. In man-made envi-
ronments, many structures and objects carry semantics, and can potentially help
reconstruct the map. For example, planes are good geometric elements to model
the dominant structural layout of the environment (Li et al. 2021b). Objects
can also provide semantic information to help understand the environment (Xia
et al. 2020). Incorporating planes and objects will not only add landmarks to the
map, but also provide additional constraints for SLAM optimization. Therefore,
the proposed system integrates points, planes, and objects into the visual SLAM
framework, explores the spatial relationship, designs the constraints, and jointly
optimizes the whole system. Besides, in the localization and mapping process,
there will be inevitable accumulated errors due to sensor noise (Wang et al. 2018).
The loop detection module is designed to recognize if the place has been visited,
which can effectively eliminate drift errors. Appearance-based loop detection
methods rely on matching image intensities with local appearance-based features
to recognize the same scene (Wang et al. 2020). These methods achieve impres-
sive results under similar perceptual conditions, but have difficulties under large
viewpoint changes. Semantic objects are robust to viewpoint variation, lighting
conditions, and occlusion. So, an object-based loop detection is added alongside
point-based loop detection to achieve global localization.

In this chapter, a point-plane-object SLAM system is proposed and fourmain chal-
lenges are addressed: landmark detection, data association, graph optimization,
and loop detection. Building on the top of point-SLAM framework (Mur-Artal
and Tardós 2017), structural planes and semantic objects can be detected from a
single frame. Then, the spatial relationships among points, planes, and objects are
exploited to establish the data association. These landmarks and associations can
formulate a graph to optimize camera poses and other components. In addition, an
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object-based loop detection module is designed to reduce estimation errors. The
performance of the proposed method is evaluated on indoor and logistics environ-
ments. The results demonstrate that the proposed approach can estimate camera
poses and simultaneously build a semantic map. In summary, the contributions
can be described as follows:

• A visual SLAM system, where feature points, structural planes, and seman-
tic objects are optimized within a unified bundle adjustment framework.

• A tracking and optimizationmethod, which explores the spatial relationship
among different landmarks and provides various constraints for optimiza-
tion.

• A loop detection method, where an object-based graph matching strategy
is used to detect loops under large viewpoints.

• Experiments on indoor and logistics environments, demonstrating the ef-
fectiveness of the point-plane-object SLAM system.

41



3 Visual SLAM with Points, Planes, and Objects

Table
3.1:Literature

review
ofvisualSLA

M
system

s.

Sensor
Point

Plane
O
bject

Loop
D
etection

O
ptim

ization
D
avison

etal.(2007)
RG

B
im

age
patch

point-point
K
lein

and
M
urray

(2007)
RG

B
FA

ST
point-point

M
ur-A

rtaletal.(2015)
RG

B
O
R
B

point
point-point

H
siao

etal.(2017)
RG

B-D
plane

point
point-point,plane-plane

Zhang
etal.(2019)

RG
B-D

plane
point

point-point,plane-plane
Yang

etal.(2016)
RG

B
O
R
B

plane
point

point-point,plane-plane
Lietal.(2021b)

RG
B-D

O
R
B

plane
point

point-point,plane-plane
H
osseinzadeh

etal.(2017)
RG

B-D
O
R
B

plane
point

point-point,plane-plane
Salas-M

oreno
etal.(2013)

RG
B-D

3D
m
odel

point
point-point,object-object

N
icholson

etal.(2018)
RG

B
quadric

point
point-point,object-object

Liao
etal.(2022)

RG
B-D

quadric
point

point-point,object-object
Lietal.(2020a)

RG
B

cuboid
point

point-point,object-object
Lin

etal.(2021)
RG

B
cuboid

point
point-point,object-object

Yang
and

Scherer(2019a)
RG

B
O
R
B

cuboid
point

point-point,
object-object,

point-object
H
osseinzadeh

etal.(2019)
RG

B-D
O
R
B

plane
quadric

point
point-point,

plane-plane,
object-object,plane-object

Yang
and

Scherer(2019b)
RG

B
O
R
B

plane
cuboid

point
point-point,

plane-plane,
object-object,plane-object

42



3.2 Literature Review

3.2 Literature Review

Figure 3.1: Overview of a typical visual SLAM system. A visual SLAM mainly includes four
modules: front-end, back-end, mapping, and loop closure.

A visual SLAM system mainly includes four modules: front-end, back-end, map-
ping, and loop closure (Li et al. 2019a), as shown in Figure 3.1. The front-end
module is also called visual odometry, which takes images as input, extracts fea-
tures from the images, and estimates camera motion between adjacent images.
The back-end accepts the camera poses measured by the front-end at different
moments, as well as the information from loop detection, optimizes them, and
obtains globally consistent trajectories and maps. The loop closure determines
whether the camera has ever visited a previous position. If a loop is detected,
it provides the information to the back-end for processing. Finally, the mapping
module can reconstruct maps for different task requirements based on optimized
trajectories.

Visual SLAM is an essential task for the autonomy of a robot, where the camera is
the main source of external information. Depending on different cameras, visual
SLAM can be divided into three categories: monocular, stereo, and RGB-D.
Monocular SLAM uses a single RGB camera, stereo SLAM uses two, and RGB-
DSLAMuses anRGB-D camera. Except for the sensors, visual SLAMcan also be
divided into feature-based and direct methods, where the direct methods use pixel
intensities to establish correspondences, while the feature-based methods extract
robust features to set up the association and create a map. Regarding different
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features, visual SLAM can also be divided into point-based SLAM, plane-based
SLAM, object-based SLAM, and point-plane-object SLAM. Here the focus is on
feature-based SLAM and some representative approaches are reviewed.

3.2.1 Feature Extraction and Point-based SLAM

A salient feature is a region of the image represented by its pixel position and
appearance descriptor. One good-quality feature must be notable (easy to extract),
precise (it may be measured with precision), and invariant to rotation, translation,
scale, and illumination changes (Lemaire et al. 2007). To extract salient features,
two phases are included: position detection and description extraction. The
position detection process consists in generating a number of salient elements,
such as corners. The description extraction consists in building a feature vector
based on visual appearance near the pixel position.

With continuous developments in computer vision and robotics, some stable
features are proposed, such as SIFT (Scale-Invariant Feature Transform) (Lowe
2004), SURF (Speeded Up Robust Features) (Bay et al. 2006), ORB (Oriented
FAST and Rotated BRIEF) (Rublee et al. 2011), etc. Compared to other points,
these features have the following properties: repeatability, distinctiveness, effi-
ciency, and locality. SIFT is a robust feature that has rotation and scale invariance,
and can solve the influence of noise and illumination changes. Lowe (2004) pro-
posed to use a Gaussian convolution kernel to construct the multi-scale filtered
image, then used an image pyramid to obtain refined feature points, and finally set
the feature point direction according to the gradient direction histogram. How-
ever, due to its high dimension, SIFT requires a large number of calculations and
cannot be realized in real time. On this basis, Bay et al. (2006) proposed SURF
to improve efficiency. This descriptor has only 64 dimensions and can achieve 3
times the speed of SIFT. Rublee et al. (2011) proposed ORB feature, which con-
sists of FAST (Features from Accelerated Segment Test) (Rosten and Drummond
2006) and BRIEF (Binary Robust Independent Elementary Features) (Calonder
et al. 2010) descriptors. It accelerates the extraction process, reaching a speed of

44



3.2 Literature Review

30-50 times faster than SIFT and allowing real-time performance without GPU.
Besides, it has comparative accuracy and provides good invariance to changes in
viewpoint and illumination.

(a) ORB features (b) Point-based map

Figure 3.2: Example of point-based SLAM systems. They usually detect and track salient features
(a) from images to estimate camera poses and simultaneously build a point-based map
(b). The figures come from (Mur-Artal et al. 2015).

These feature points can be introduced into SLAM frameworks to realize localiza-
tion. For example, Davison et al. (2007) proposedMonoSLAM, the first real-time
monocular SLAM system that uses relatively large (11×11 pixels) image patches
as long-term landmarks to make up the map. The detected features and estimated
camera states are probabilistic and will be updated during camera motion and fea-
ture observation by the Extended Kalman Filter (EKF). Klein and Murray (2007)
proposed to split tracking and mapping into two separate tasks and processed
them in parallel threads on a dual-core computer: the tracking thread deals with
the task of robustly tracking feature points, while the mapping produces a 3Dmap
of point features from previously observed video frames. Although the above
two systems are not robust and can only be applied in small scenarios, they are
innovative and provide many pioneering ideas for modern SLAM systems. On
this basis, Mur-Artal et al. (2015) proposed ORB SLAM, which is a complete
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and reliable solution to visual SLAM: the front-end detects and tracks ORB fea-
tures, the back-end uses non-linear optimization for camera pose estimation, the
mapping thread takes ORB features to build the maps, and the same features can
also be used for relocalization and loop closing, making the system more efficient,
simple and reliable.

3.2.2 Plane Estimation and Plane-based SLAM

Planes are important geometric features in a structural environment, such as lay-
out planes (wall, ground, etc.) and object surfaces (table surface, cabinet surface,
etc.). To represent the planes, the point cloud model is widely used, which defines
a plane as a group of points (Le and Košecka 2017). However, since one plane
may contain hundreds of points, the optimization and data association operations
require high computational costs regarding speed and memory. Another common
approach to represent a plane is calculating the normal and distance to the ori-
gin. This representation provides clear geometric information, but it suffers from
singularities and over-parametrized problems when involved in the optimization
process (Taguchi et al. 2013). Besides, A homogeneous parametrization represen-
tation is proposed in (Kaess 2015), which is suitable for least-squares estimation
with Gauss-Newton methods and incremental solvers. Therefore, the representa-
tion may be switched to another form according to different purposes. The point
cloud model is used for reconstruction, the geometry model for description, and
the homogeneous model for optimization.

Given a single frame, there are many approaches to estimate planes. An efficient
way is to convert the depth image together with the camera’s intrinsic parameters
into a point cloud and segment it by applying plane estimation methods, such as
RANSAC (Holz et al. 2011), region growing (Holz andBehnke 2013) or organized
point cloud approaches (Trevor et al. 2013). On the other hand, it is also possible
to estimate planes from a single RGB image. Hedau et al. (2009) treated the room
layout as a bounding box and detected vanishing lines to model the planes. Yang
et al. (2016) proposed to fit line segments along wall-ground boundaries and “pop
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(a) Plane estimation (b) Plane-based map

Figure 3.3: Example of plane-based SLAM systems. They usually detect and track geometric planes
(a) from images to estimate camera poses and simultaneously build a plane-based map
(b). The figures come from (Hosseinzadeh et al. 2017).

up” a 3Dmodel using geometric constraints. Both methods rely on theManhattan
world assumption (Coughlan and Yuille 1999), which states that all planes in the
world are aligned with three dominant directions, typically corresponding to the
X, Y, and Z axes. Furthermore, deep learning methods also offer some feasible
solutions: PlaneNet (Liu et al. 2018) is a deep neural architecture for piece-wise
planar estimation from a single RGB image and can directly infer a set of plane
parameters. In addition, PlaneRCNN (Liu et al. 2019a), PlaneRecover (Yang and
Zhou 2018), and PlaneSegNet (Xie et al. 2021) are some examples in this field.

When involved in a SLAM system, planes can act as landmarks to build a plane-
based map and provide geometric constraints to improve camera localization.
Hsiao et al. (2017) modelled planes as point clouds and proposed a key-frame
based planar SLAM method to reconstruct dense indoor environments. Zhang
et al. (2019) exploited the boundaries of planes and generated more virtual per-
pendicular planes, this method offers more constraints between planes to improve
SLAM performance, but it also meets the problem of high computational cost.
Combining with other geometric features, Li et al. (2021b) proposed to use points,
lines, and planes to build an RGB-D SLAM for indoor environments, the result
showed that this method can achieve a high localization and mapping accuracy
under structured environments.
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3.2.3 3D Object Detection and Object-based SLAM

3D object detection from a single frame remains a challenging problem because
only 2D information is available. A complete review of single-frame object
detection can be found in Section 2.2, here the focus is on object-based SLAM
methods.

The introduction of objects in a SLAM system has a two-fold benefit. One is
that objects can serve as geometric landmarks to improve localization accuracy.
The other is that objects can benefit scene understanding because these semantic
elements can enrich the reconstruction of the map.

SLAM++ (Salas-Moreno et al. 2013) is the first object-oriented SLAM, which
used an RGB-D camera to reconstruct a cluttered scene with object models. It
can recognize and track 3D objects in real-time, providing camera-object con-
straints to jointly refine the camera and object by efficient pose-graph optimiza-
tion. QuadricSLAM (Nicholson et al. 2018) used dual quadrics as 3D landmark
representations and incorporated quadrics into the SLAM framework. Their ex-
periments showed that quadric landmarks not only provide valuable information
for correcting odometry errors, but also significantly benefit the estimation of
maps that contain objects as distinct elements. On this basis, quadrics can also be
extended for symmetrical objects (Liao et al. 2022) and outdoor elements, such
as (Meng and Zhou 2022), (Ok et al. 2019) and (Tian et al. 2021).

By representing objects as cuboids, Yang and Scherer (2019b) proposed amonocu-
lar object-based SLAM and demonstrated that object detection and SLAM benefit
each other. On the one hand, SLAM improves the accuracy and robustness of 3D
understanding, on the other hand, the object also benefits SLAM pose estimation
and mapping. With a similar idea, Li et al. (2020a) presented to use objects for
view-invariant loop detection and drift correction, resulting in an improvement in
localization accuracy and robustness. Lin et al. (2021) modelled the environment
as a topological graph with semantic objects and implemented object alignment
between semantic maps. Experimental results demonstrated that the proposed
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method can realize omnidirectional loop closure without viewpoint constraints,
and is robust to environmental appearance changes.

Previous plane-based SLAM (Hosseinzadeh et al. 2017) and object-oriented
SLAM (Salas-Moreno et al. 2013) systems focused either on planes or objects,
but hardly considered both. The reason is that these high-level landmarks have
different representations, making it challenging to explore the spatial relationship
between them. To solve this problem, the proposed point-plane-object SLAM
system represents all landmarks in the parametric form: feature points as pixels,
planes as homogeneous vectors, and objects as cuboids. On this basis, the system
exploits the data association problem among different landmarks and involves all
landmarks in a unified bundle adjustment framework for localization andmapping.

(a) Object detection (b) Object-based map

Figure 3.4: Example of object-based SLAM systems. They usually detect and track semantic objects
(a) from images to estimate camera poses and simultaneously build an object-based map
(b). The figures come from (Yang and Scherer 2019b).

3.2.4 Data Association and Loop Detection

Data association is an important part of the SLAM system. Bowman et al. (2017)
formulated a probabilistic data association for semantic SLAM, which estimated
the data association distribution and maximized the expected measurement log-
likelihood over the previously computed distribution. Thismethod tightly coupled
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inertial, geometric, and semantic observation into a single optimization frame-
work.

Specifically, data association often happens in the tracking and optimization
process. The point-based association is measured by appearance similarity. For
example, SIFT and SURF calculate the Euclidean distance of the description
vectors, and ORB points compute the hamming distance. Two points are matched
if the feature distance is smaller than a threshold. In terms of geometric planes,
the normal and relative distances are taken into consideration. Zhang et al. (2019)
proposed that two associated infinite planes should have the same normal and are
close to each other. Besides, for planes with boundaries, it is valuable to compare
their intersection over the union. For object-object association, Li et al. (2020a)
proposed to use a set of geometric and semantic information for the association,
such as object translation, dimension, inliers, etc.

Then, data association among different features can also be found in some multi-
landmark SLAM systems. For example, Hosseinzadeh et al. (2017) proposed a
structure-aware SLAM system using quadrics and planes, where the quadrics and
planes are estimated from RGB-D frames and provide a supporting affordance
relationship between them. Yang and Scherer (2019b) presented a monocular
object and plane SLAM in structured environments and exploited the spatial
relationship between different landmarks.

Additionally, data association is also addressed in the loop detection module,
because it needs to recognize if the landmarks have been previously viewed. The
appearance-based methods extracted local or global visual features to find the as-
sociation of images (Oliva and Torralba 2006), which convert global localization
to an image retrieval problem. These methods showed good performance when
the appearance difference between images is small. In some conditions, when the
viewpoint is different, the appearance-based loop detections become less reliable.
Instead, objects are robust to viewpoint variation, lighting conditions, and occlu-
sion. This has inspired SLAM methods to use high-level object landmarks under
large viewpoint differences. The graph-based methods formulated the object as-
sociation as a graph registration problem, aiming to extract the correspondences
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between nodes across the graphs. Gawel et al. (2018) introduced a random walks
descriptor for every node that encodes the local connectivity of neighboring nodes.
Based on the descriptor, the object match problem can be solved by computing
the descriptor similarity between nodes. Liu et al. (2019c) combined random
walk descriptor with graph matching and 3D alignment, the proposed object-level
global localization algorithm is robust to illumination changes, view-point varia-
tion, etc. Lin et al. (2021) proposed an efficient graph matching method based on
edit distance for robust place recognition, which demonstrated high accuracy and
robustness against drastic scene and viewpoint variation.

3.3 Method

Section 3.3 is based on (Zhou et al. 2022). Parts of the following text are taken
from that publication without changes.

In this chapter, a point-plane-object SLAM system is proposed on the top of
ORB-SLAM2 (Mur-Artal and Tardós 2017). As shown in Figure 3.5, in every
key-frame, points, planes, and objects are detected (see Section 3.3.1). Next, these
landmarks should be tracked among multiple key-frames with a data association
strategy (see Section 3.3.2). Then, the associated landmarks will form a graph
to jointly optimize all components (see Section 3.3.3). An object-based loop
detection module is added alongside point-based loop detection to achieve global
localization (see Section 3.3.3). Finally, camera poses can be updated and a
point-plane-plane map can be reconstructed.

3.3.1 Features Detection

Point Extraction. The system rely on ORB-SLAM 2 (Mur-Artal and Tardós
2017) implementation to extract ORB feature points, which are represented as
3D points with descriptors. The positions of feature points are represented as
P = (x, y, z, 1)⊤.
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Figure 3.5: Overview of the proposed point-plane-object SLAM system. It builds the point-plane-
object SLAM on top of ORB-SLAM2. In each key-frame, it detects planes and objects,
tracks them across frames, adds them to a unified graph, and jointly optimizes all the
components. An object-based loop detection module is added to make the whole system
more robust. As a result, camera poses can be updated and a point-plane-plane map can
be reconstructed.

Plane Estimation. Given a key-frame, it can be converted into a 3D point cloud
and a multiple plane estimation method (Trevor et al. 2013) is applied to estimate
all planes in the scene. Under the Manhattan world assumption (Coughlan and
Yuille 1999), under the assumption that planes are parallel or perpendicular to
each other and filter planes with regard to three main directions. The planes are
detected as π = (nx, ny, nz, d)

⊤, and will convert into homogeneous vectors
q(π) = (ϕ, ψ, d)⊤ for optimization.

Object Detection. As discussed in Section 2.3, the sample-score method is
adopted to detect 3D objects from RGB images. In this chapter, objects are
represented with the parametric form for a unified optimization process, where
objects are defined asO = (To,D), whereTo andD are the pose and dimension.

3.3.2 Data Association

Data association means to find the relationship among different features, it is an
important part of the SLAM system that happens in single-frame detection, across
frame tracking, and frame-map matching.
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(a) Point-plane association. (b) Point-object association. (c) Plane-object association.

Figure 3.6: Proposed data association strategy of the SLAM system in key-frame. (a) Points are
associated with planes by distance threshold. (b) Points are associated with objects
by distance threshold. (c) Planes are associated with objects by normal and distance
thresholds.

For every key-frame, feature points, planes, and objects are detected and associ-
ated. As illustrated in Figure 3.6, the point-plane association is computed by the
orthogonal distance between them. Points are selected as in-plane points Pplane

when they are observed in at least 3 key-frames and their orthogonal distance
satisfies a threshold dπp. For point-object association, the method checks if the
pixel position of points lies inside the object’s 3D bounding box. If a feature point
is observed in more than 3 key-frames and lies inside an object bounding box, it
will become in-object points Pobject. Finally, the method associates the plane
and object by checking if their orientation and orthogonal distance meet the angle
threshold θπo and distance threshold dπo.

The system also consider landmark tracking across frames. As shown in Figure
3.7, the feature points are matched by the descriptor (Mur-Artal and Tardós
2017). For plane-plane association, three conditions are required: the orientation
threshold θππ , the orthogonal distance threshold dππ , and the minimum number
of in-plane points Nππ . For object-object association, two objects that satisfy a
3D IoU threshold IoU3D and share a minimum number of in-object points Noo

are regarded as associated.

To reduce visual odometry drift, a point-plane-object map is initialized and main-
tained. For every key-frame, mapped landmarks are transferred to the current
frame and matched to the frame-detected landmarks. The thresholds are the same

53



3 Visual SLAM with Points, Planes, and Objects

(a) Point-point association. (b) Plane-plane association. (c) Object-object association.

Figure 3.7: Proposed data association strategy of the SLAM system across frames. (a) Points are
associated by description matching. (b) Planes are associated by the normal, distance,
and in-plane points. (c) Objects are associated by overlapping and in-objects points.

as across frame tracking. If the detected landmarks satisfy these conditions, they
will be associated and optimized by unified bundle adjustment. Otherwise, they
will be initialized as new landmarks and added to the map.

3.3.3 Graph Optimization

Figure 3.8: Proposed optimization graph of the SLAM system, where the red nodes with T denote
the camera key-frames, while the green nodes with O, blue nodes with π and yellow
nodes with P denote the objects, planes, feature points landmarks respectively. The edges
represent the constraints between them.
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After association, a unified graph can be constructed to represent the SLAM
problem. As shown in Figure 3.8, every node in the graph corresponds to a pose
of the robot or a location of landmarks, while every edge between two nodes
corresponds to a constraint between them. With the help of the graph, the SLAM
problem turns to find a node configuration that minimizes the error introduced by
the constraints. Mathematically, the graph optimization process can be formulated
to find the minimal value of the following nonlinear least squares problem:

C∗, O∗,Π∗, P ∗ = argmin
{C,O,Π,P}

∑
i∈C,j∈O,k∈Π,m∈P

eTΣe, (3.1)

where C = {Tci}, O = {oj}, Π = {πk} and P = {pm} represent camera
poses, cuboids, planes, feature points respectively. Σ is a covariance matrix of
different constraints. The problem can be solved by the Gauss–Newton or Leven-
berg–Marquardt algorithms available in many libraries, such as g2o (Kümmerle
et al. 2011). More details about the optimization problem can be found in Ap-
pendix B. The constraint errors between different landmarks are represented by e
and will be explained as follows:

1) Camera-Point Constraint: The proposed method follows ORB-SLAM2 (Mur-
Artal and Tardós 2017) to minimize the geometric re-projection error as:

e(P,Tc) = uc − ρ(T−1
cw ,Pw), (3.2)

whereuc is the image pixel location of the 3D pointPw in the global world frame,
ρ(.) is a function that projects a world 3D point into the image plane.

2) Camera-PlaneConstraint: Since the homogeneous representation of the plane
π = (nx, ny, nz, d)

⊤ will cause an over-parameterization in the optimization
problem (Zhang et al. 2019), it is converted into a minimal representation q(π) =
(ϕ, ψ, d)⊤ as:

q(π) =

(
ϕ = arctan

ny
nx
, ψ = arcsinnz, d

)⊤

, (3.3)
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whereϕ andψ are the azimuth and elevation angle of the plane normal respectively
and restricted to (−π, π] to avoid singularities. Then, the camera-plane constraint
can be formulated as:

e(π,Tc) = q (πc)− q
(
T−⊤

cw πw

)
, (3.4)

where πc is the observed plane in the current frame,T−⊤
cw πw means to transform

3D planes πw from world coordinates to current frame.

3) Camera-Object Constraint: Since objects can be regarded as 8 vertices, the
camera-object constraint can be converted to the camera-point constraint. In other
words, the cuboid landmarkOw is projected onto the image plane to get 8 vertices,
then the camera-object constraint can be calculated by the sum of the geometric
projection of 8 corners zm as:

e(O,Tc) =

8∑
m=1

zm − ρ(T−1
cw ,Ow). (3.5)

4) Point-Plane Constraint: If a feature point P lies on a specific plane π, the
point-plane constraint is defined as the orthogonal distance from that point P to
its associated plane π:

e(P,Π) = |nπP| − dπ. (3.6)

5) Point-Object Constraint: If a pointP belongs to an object, it should lie inside
the 3D bounding box. The method transforms the point into the associated cuboid
frame and compares its location with the cuboid’s dimensions, defined in (Yang
and Scherer 2019a):

e(P,O) = max
(∣∣T−1

o P
∣∣−D,0

)
, (3.7)

themax operator is used because the points are only encouraged to lie inside the
cuboid instead of the surface.
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6) Plane-Object Constraint: Two different types of planes are associated with
objects. One is the structural plane, such as the ground or the wall. They are
parallel to the world structure and provide supporting constraints for objects. The
other plane type is the object surface plane, which belongs to the object and
should be close to the cuboid proposal. These different planes can be assigned
with individual weights. In this chapter, they are the same.

Since an object is represented by a cuboid, the six surface planes πoi, i ∈ {1, 6}
can be defined by the center position, orientation, and dimension of the object. If
a plane π is associated with the object, as shown in Figure 3.6, it should have a
similar angle and minimum distance to one of the cuboid surface planes. Then,
the plane-object constraint can be replaced by the plane-plane constraint and
calculated as:

e(Π,O) = min
i∈[1,6]

(q(π)− q(πoi)). (3.8)

3.3.4 Loop Detection

Section 3.3.4 is based on (Zhou et al. 2022). Parts of the following text are taken
from that publication without changes.

After tracking and optimization, the camera poses can be updated, and a point-
plane-object map can be reconstructed. However, due to sensor noise, there might
be some accumulated errors, they should be reduced by loop detection modules.
A typical example is shown in Figure 3.9, in this case, point-based loop detection
doesn’t work under large viewpoint changes, but it can be solved by object-based
loop closure to achieve global localization. The key idea is to use topological
information.

The whole process is illustrated in Figure 3.10 and described as follows: To detect
object-based loops, all objects are manually divided into two groups according to
their index in the map, as the most recently mapped landmarks are matched to
earlier landmarks. Let La and Lb be two landmark groups; an attempt is made to
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Figure 3.9: Proposed object-based loop detection of the SLAM system, An example of the SLAM
system with object-based loop closure. Top: The Same objects are observed from two
different viewpoints. Left: An object-based loop is detected by graph matching. Right:
The drift error is corrected by object alignment.

identify a subgroup of La that matches the nodes of Lb. To avoid false matches,
each candidate pair is checked to meet the following verifications.

General verification: Landmarks that have the same label and great closeness
are the only ones considered. To measure the closeness of nodes a and b, the
index separation is defined as:

η(a, b) = |IDa − IDb| (a ∈ La, b ∈ Lb), (3.9)

A closeness threshold is define c_thre = 3, if η(a, b) > c_thre, a and b are con-
sidered as loop candidates, otherwise, they should be merged by data association.

Topological verification: By representing the object-oriented map as a topologi-
cal graph, each object can be described with its surrounding information, such as
neighbor vector descriptor (Stumm et al. 2016) and semantic histogram descriptor
(Guo et al. 2021). Inspired by these, a directional histogram descriptor is proposed
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(a) The ground truth of
object-based map.

(b) The object-based
map with topologi-
cal verification.

(c) The object-based
map with geometry
verification.

Figure 3.10: Example of object-based loop detection (a) The ground truth. (b) Objects are connected
if they satisfy the topological verification. (c) Objects are connected if they satisfy the
geometry verification.

to find object association. To be specific, for each node, it defines the direction
angle range by splitting 2π into div(div = 8) parts and counts all neighboring
objects regarding the relative angle and the label. An illustration of the descriptor
is shown in Figure 3.11.

(a) The topological graph. (b) The directional histogram descriptor.

Figure 3.11: Proposed directional histogram descriptor for loop detection. (a) Take a3 as an example
to draw the topological graph. (b) Take a3 as an example to generate the directional
histogram descriptor.
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To verify two objects have similar graph structures, their directional histogram
descriptors H are compared, and the similarity score Tscore(a, b) is computed.
The score is calculated by the normalized dot-product between two descriptors as
follows:

Tscore(a, b) =

∑nd

d=1Ha ×Hb√∑nd

d=1 (Ha)
2 ×

√∑nd

d=1 (Hb)
2
, (3.10)

where nd denotes the descriptor size and is equal to angle range parts div multiple
semantic label size (div×n = 8×6 = 48). coarse matches can be obtained if the
similarity score is greater than the descriptor similarity threshold. (des_thre =
0.8).

Geometry verification: The coarse matching candidates still contain many in-
correct matches. For example, in Figure 3.10(b), a3 is connected to b4. In
graph-based localization, the transformation between two graphs is rigid, and
it has been shown that given at least 3 matched objects can recover the rela-
tive transform (Li et al. 2019b). Sub-graphs are established as (a1, a2, a3) and
(b1, b2, b3) from coarse matches, and it is checked if the connected edges have
scale consistency. The scale ratio (Gscore) is measured as:

Gscore(A,B) =
|a1, a2|
|b1, b2|

≈ |a2, a3|
|b2, b3|

≈ · · · ≈ |an−1, an|
|bn−1, bn|

(3.11)

where |a1, a2| represents the distance between a1 and a2. False object correspon-
dences often lead to an unreasonable scale ratio and have a large scale error. So,
only if the scale error is smaller than a scale threshold (s_thre = 0.01), these
two sub-graphs are marked as inlier matches.

Duplication verification: All possible sub-graph combinations of coarsematches
are traversed, which may cause duplications in different inlier matches. So, the
last process is to check all inlier matches, add them to final matches, and remove
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the duplication if they exist. Having at least 3 final matches can be recognized as a
loop, and the corresponding landmark information is extracted for loop correction.

Loop correction: Once a candidate is accepted as a valid loop, it can be used
for drift correction by the object alignment. Here, a similarity transformation
consisting (rotation R, translation t, and scaling s) is computed where objects
from group La can be mapped to corresponding objects from group Lb as: Oa =

sR ∗ Ob + t. In fact, only using the object centroid may cause large errors,
instead, the method takes the associated map points and applies a scaled ICP
(Zinßer et al. 2005) to calculate the similarity transform. Given two looped sub-
graphs (a1, a2, · · · , an) and (b1, b2, · · · , bn), the scaling is first computed using
all matched object centroid:

Scale(A,B) =
1

n

∑ |a1, a2|
|b1, b2|

+
|a2, a3|
|b2, b3|

+ · · ·+ |an−1, an|
|bn−1, bn|

. (3.12)

Then, the method scales all map points from sub-group (b1, b2, · · · , bn), obtains
inlier map point correspondences, and computes the rigid transform. The rotation
and translation are calculated by minimizing the sum of the squared error:

(R∗, t∗) = argmin
R,t

Np∑
k=1

∥Pa,k − sR ∗ Pb,k − t∥2 , (3.13)

where Pa,k and Pb,k are the correspondence map points of two sub-graphs after
RANSAC rejection, and Np is the matched points number. After obtaining the
similarity transform, the proposed method performs the transform to the recently
mapped landmarks, merges the duplicated objects, and corrects the camera poses
that can observe these objects. Finally, the whole semantic map is updated with
non-linear least square optimization (see Section 3.3.3). More details and related
results can be found in (Zhou et al. 2022).
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3.4 Experiments

Section 3.4 is based on (Zhou et al. 2022). Parts of the following text are taken
from that publication without changes.

The performance of point-plane-object SLAM is evaluated on the ICL-NUIM
dataset (Handa et al. 2014) because it provides rich plane and object informa-
tion. As shown in Figure 3.12, two different scenarios, namely home and office
scenarios with 8 sequences are included in the dataset, where the home scenario
contains sofas, chairs, and vases, while the office scenario containsmonitors,
tables, cabinets, etc.

Figure 3.12: ICL-NUIM dataset. This dataset provides several RGB-D sequences of different
indoor scenes with object instances. The figure comes from the official website:
https://www.doc.ic.ac.uk/ ahanda/VaFRIC/iclnuim.html.

In the point-plane-object SLAM, object detection and plane estimation only hap-
pen at key-frame and do not cost much computation resources. To ensure a robust
SLAM system, a strict outlier rejection is added to data association, where the
distance threshold is defined as d = dπp = dπo = dππ < 0.1m, angle threshold
θ = θπo = θππ < 8◦, IoU threshold IoU3D > 0.5, the minimum number of
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in-plane points and in-object points N = Nππ = Noo > 15. These values guar-
antee a stable performance for the ICL-NUIM dataset. When applied to other
environments, these parameters may be different.

The root mean squared error (RMSE) of absolute pose error (APE) 1 are adopted
as metrics to evaluate the localization performance. For comparison, baseline
experiments are performed against ORB-SLAM2 (Mur-Artal and Tardós 2017)
and benchmark the proposed point-plane-object SLAM system against state-of-
the-art ORB-SLAM3 (Campos et al. 2021).

Except for open-source datasets, experiments are also designed on a real robotic
platform to estimate the SLAM performance. The mobile robot is manually
steered along a trajectory in a logistics environment to realize self-localization
and semantic mapping.

3.4.1 Experiments on Indoor Environments

1) Qualitative Results: An example of the point-plane-object SLAM in living
room sequences kt-2 is shown in Figure 3.13. On the left side, the first column
shows the single-frame object detection result on RGB images, and the camera
trajectory and the reconstructed map are shown on the right. Taking points,
planes, and objects into a unified local mapping framework, the system can
build a point-plane-object map. It can be seen that 5 objects and 9 planes are
visualized, where the associated points, planes, and objects share the same color,
while other unassociated planes such as ceilings are not displayed. Note that in the
SLAMoptimization, planes are represented as infinite planes, but for visualization
purposes, the point cloud model is used.

For office sequences, similar experiments are done as for the living room se-
quences. Figure 3.15 shows the detection and mapping result on sequence kt-0 as
an example, where 6 objects and 5 associated planes are visualized. Compared

1 https://github.com/MichaelGrupp/evo
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Figure 3.13: SLAM results on living room kt-2 sequence of ICL NUIM dataset, where the left part
shows the object detection results in image and 3D space, while the right part shows
the camera trajectory (green line) and the reconstructed point-plane-object map. The
associated points, planes, and objects share the same color, and other unassociated
planes such as ceilings are not displayed. The point cloud model is utilized as the plane
representation only for visualization.

Figure 3.14: Evaluation on living room sequences of ICL NUIM dataset, these figures show the
comparison of the estimated trajectories and corresponding ground truth.
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Figure 3.15: SLAM results on office kt-0 sequence of ICL NUIM dataset, where the left part shows
the object detection results on image and 3D space, while the right part shows the camera
trajectory (green line) and the reconstructed point-plane-object map.

Figure 3.16: Evaluation on various office sequences of ICL NUIM dataset, these figures show the
comparison of the estimated trajectories and corresponding ground truth.
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to the living room dataset, office sequences include objects that are not located
on the ground. For example, the monitors are on the top of the desk, and the
object detection method also works. It should be pointed out that in the third row
of Figure 3.15, there are sometimes detection errors from the single image due
to the clustered background or occlusion. These imperfect object constraints are
optimized in the SLAM framework by sacrificing localization accuracies. Since
there are only less than 10 objects but hundreds of feature points, even if objects
do not improve the results, they won’t seriously damage the system.

2) Quantitative Results: Experiments are conducted on other sequences of
the dataset, the localization performances with RMSE-APE between estimated
camera pose and ground truth are shown in Figure 3.14 and Figure 3.16, it can
be seen that the proposed method reaches a localization accuracy between 0.01m
and 0.05m, the mapping results with landmark information, including the key-
frame number, object number, and plane number, are reported in Table 3.2 and
visualized in Figure 3.17 and Figure 3.19. Again, the propsoed SLAM system can
achieve good localization (RMSE-APE < 0.170 m) and mapping results (sparse
semantic maps).

Table 3.2: Landmark information of the point-plane-object map on ICL NUIM Dataset.

Sequence Frame
Number

Key-Frame
Number

Object
Number

Plane
Number

livingroom kt-0 1508 43 1 10
livingroom kt-2 880 57 6 16
livingroom kt-3 1240 120 0 14

office kt-0 1508 57 6 7
office kt-2 880 58 7 10
office kt-3 1240 62 1 8

For comparison, ORB-SLAM3 (Campos et al. 2021) is implemented in these se-
quences. To evaluate the benefit of introducing planes and objects, two variations
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of the system are also studied, namely point-plane SLAM and the point-object
SLAM system. For camera trajectory comparison, the results are plot in Fig-
ure 3.18 and Figure 3.20. Since the ORB feature-based initialization (Mur-Artal
and Tardós 2017) relies on RANSAC, each system runs 5 times in each sequence,
and the mean value of RMSE-APE is reported in Table 3.3. It can be observed
that the added object and plane landmark constraints in the proposed method im-
prove the camera pose estimation. The improvement comes from two aspects: 1)
the plane detection with dominant direction contributes to better pose estimation,
because there are significant improvements between point SLAM and point-plane
SLAM. 2) the strict outlier rejection method ensures a robust data association,
and the constraints between different landmarks encourage a reliable and precise
result. However, in sequence kt-1, both ORB-SLAM3 and the proposed system
do not work and are therefore not shown in the table. In sequence kt-3, when
no objects are detected, the point-plane-object SLAM is reduced to point-plane
SLAM, the results are different because of RANSAC initialization.

Table 3.3: Evaluation of camera absolute pose error root mean squared error (RMSE-APE) on ICL
NUIM dataset (cm).

Sequence Point-
based
SLAM
(ORB-
SLAM2)

Point-
based
SLAM
(ORB-
SLAM3)

Point-
Plane
SLAM

Point-
Object
SLAM

Point-
Plane-
Object
SLAM

livingroom kt-0 0.39712 0.75052 0.49278 0.40216 0.99162
livingroom kt-2 2.57732 2.17204 2.3053 2.0543 1.77044
livingroom kt-3 2.64344 3.16458 2.0557 2.55202 1.75516

office kt-0 12.83628 6.31114 5.85264 6.32358 6.83028
office kt-2 2.61264 1.86694 1.42606 5.3889 1.7747
office kt-3 3.92022 4.18088 2.90242 3.11014 3.66788
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Figure 3.17: Comparison of themapping results using different SLAMsystems on various living room
sequences of ICL NUIM dataset. Note that in point-plane-object map, only associated
planes are visualized.

Figure 3.18: Comparison of the camera trajectories using different SLAM systems on various living
room sequences of ICL NUIM dataset.
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Figure 3.19: Comparison of the mapping results using different SLAM systems on various office
sequences of ICL NUIM dataset. Note that in point-plane-object map, only associated
planes are visualized.

Figure 3.20: Comparison of the camera trajectories using different SLAM systems on various office
sequences of ICL NUIM dataset.
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3) Runtime Analysis: Mapping and localization are usually conducted locally on
a mobile robot, therefore runtime is a critical factor for real-world systems with
limited computing resources, and the SLAM runtime experiments are conducted
on the ICL NUIM living room kt-2 sequence. All methods are implemented
in C++ and evaluated on a laptop computer (i7-8565U 1.80 GHz CPU, 16 GB
RAM, no GPU, Ubuntu 18.04). As shown in Table 3.4, the object detection on
RGB image requires 725 ms in the test machine. The tracking thread, including
feature detection and data associations in every key-frame, needs an average of
207 ms. Then, it takes 197 ms for local bundle adjustment with points, planes,
and objects. Compared to point-only bundle adjustment, the proposed system has
higher optimizing costs because point-plane and point-object association have to
be applied to many points, increasing the optimization time. A demo video 2 is
provided to illustrate the whole process of SLAM.

Table 3.4: Evaluation of runtime performance on ICL NUIM dataset.

Tasks Runtime (mSec)
Object Detection 725.05
Tracking Thread∗ 207.376
Point Only BA 63.240

Point Plane Object BA 197.48

∗ The tracking thread includes feature extraction, plane estimation, and data association.

3.4.2 Experiments on Logistics Environments

Different from indoor environments, logistics scenes are designed to facilitate the
efficient movement of goods and materials, they always have a large space and
different features. AgiProbot project (Klein et al. 2021) is a typical intra-logistics

2 https://github.com/benchun123/point-plane-object-SLAM
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system in an agile remanufacturing production system, the mobile robot is tasked
to deliver items among different workstations, thus needs a localization system
and a semantic map for navigation. As discussed in this chapter, the proposed
point-plane-object SLAM provides a suitable solution for this challenge.

To achieve this goal, a Microsoft Azure Kinect camera and a 2D SICK laser
scanner are mounted, as shown in Figure 3.21. The camera is installed at a
height of 1.5m, facing downwards at 45◦ to capture RGB and depth images. In
the experiment, the laser scanner is used for ground truth generation and safety.
Calibration between the camera and base link is solved by (Zhang and Pless 2004).
All codes are implemented with C++ on an industry computer (i5-8565U 1.80
GHz CPU, 16 GB RAM, no GPU, Ubuntu 16.04).

(a) The robotic platform. (b) The AgiProbot environment.

Figure 3.21: The robotic platform and environment in AgiProbot project.

The vehicle wasmanually steered along a trajectory tomap the whole environment
(6 ∗ 12m). Since the camera poses are not available, the laser scan is used to
generate the ground truth. To do so, ICP registration (Censi 2008) is adopted to
estimate the movements of the laser scanner and convert them to the ground truth
of camera poses. For object detection, conveyors on the top of the workstation
are selected as object landmarks because they can act as the goal for navigation. To
detect the object, 100 images with conveyors are captured, label them manually
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3 Visual SLAM with Points, Planes, and Objects

Figure 3.22: The object ground truth in the logistics environment. It uses laser scan data to build a
2D occupancy map, based on the map, camera trajectory can be generated as the ground
truth. conveyor positions are also labelled on the map.

as training data, and feed them to YOLOv2 (Redmon and Farhadi 2017) network
to obtain pre-trained weight for the object detection task. The object positions are
annotated in the map and shown in Figure 3.22.

Similar to the experiments on indoor datasets, the rootmean squared error (RMSE)
of absolute pose error (APE) is adopted as a metric to evaluate the SLAM perfor-
mance. For comparison, the proposed point-plane-object SLAM system is com-
pared against point-based SLAM, point-plane SLAM, and point-object SLAM.

Figure 3.23 shows the detection and mapping results of the whole environment,
where 4 objects and 11 planes are involved. It can be observed that the pro-
posed point-plane-object SLAM method can map the logistics environment with
geometric and semantic landmarks, which can benefit scene understanding.

The localization performances with RMSE-APE are shown in Figure 3.24, which
reaches an accuracy of 0.2m when compared with laser-based ground truth,
showing aworse performance than indoor datasets. It can be explained by the large
environment and camera movement. On one hand, the camera has a detection
range of 0 ∼ 3m, while the test environment is much larger than this range,
points over this will introduce errors to the localization system. On the other
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Figure 3.23: SLAM result on the logistics environment. where the left part shows the object detection
results in image and 3D space, while the right part shows the camera trajectory and the
reconstructed point-plane-object map. It utilize the point cloud model as the plane
representation only for visualization.

Table 3.5: Evaluation of camera absolute pose error root mean squared error (RMSE-APE) on a
logistics environment (m).

Methods RMSE-APE (m)
Point-based SLAM 0.2559
Point-plane SLAM 0.2174
Point-object SLAM 0.2635

Point-plane-object SLAM 0.2055

hand, the scenario is monotonous, fewer feature points are detected than indoor
environments. Furthermore, the movements of the camera (estimated) and laser
scan (ground truth) are different, especially when the robot rotating, which brings
errors when estimating the localization accuracy.

For comparison, a quantitative result on camera localization is compared in Table
3.5, and the corresponding mapping results are shown in Figure 3.25. When
compared to other visual SLAMmethods, the proposed point-plane-object SLAM
is better than others, proving that the introduction of more landmarks can improve
localization accuracy.
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(a) Evaluation of SLAM with RMSE-APE. (b) Comparison of camera trajectories.

Figure 3.24: Evaluation and comparison of the point-plane-object SLAM system on the logistics
environment. (a) This figure shows the comparison of the estimated trajectories and
corresponding ground truth. (b) This figure shows the comparison of the estimated
trajectories using different SLAM systems.

Figure 3.25: Comparison of the mapping results using different SLAM systems on the logistics
environment.

74



3.5 Chapter Conclusion

3.5 Chapter Conclusion

In this chapter, the introduction of 3D objects is explored to benefit scene un-
derstanding and localization. To answer this question, a visual SLAM system
called point-plane-object SLAM is proposed. The whole system is built on ORB-
SLAM2, in front-end, it detects and tracks more features in every key-frame,
such as geometric planes and semantic objects. In terms of data association, new
strategies are designed to ensure a robust system. For back-end optimization,
these landmarks are integrated into a unified bundle adjustment framework to
jointly optimize camera poses. Besides, the object-based loop detection module
is considered under different viewpoints. Finally, a sparse semantic map with
different landmarks can be built, including feature points, planes, and objects.

The proposed method is evaluated on indoor and logistics environments. Results
show that the proposed point-plane-object SLAM system achieves camera pose
estimation and is able to build a sparse semantic map with semantic landmarks.
Compared to other visual SLAM systems, the camera localization accuracy is
improved.

Since ORB feature-based initialization may fail in some cases, future work should
focus on a better initialization system with planes or other landmarks. Besides,
the current method requires objects to be fully visible and ignores objects that
are only partially observed in the image. It is worth exploring if these partially
observed objects could also provide additional information for the SLAM system.
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4 Efficient Object-Level Mapping
with RGB-D Cameras

In this chapter, a semantic map is incrementally built with RGB-D cameras.
Different from the sparse map for localization in Chapter 3, the reconstructed map
here is dense and aims to benefit navigation and grasping. Section 4.1 introduces
the background of the mapping system. Section 4.2 reviews related work on
different maps, including grid maps, feature-based maps, point cloud maps, and
voxel-based maps. Specially, objects are introduced to these maps. Section
4.3 presents the proposed object-level mapping system, where new strategies are
employed to track and update objects across multiple frames and incorporate
them into a voxel-based map. Section 4.4 designs the experiments on indoor
and logistics environments to evaluate the performance of the proposed method,
the results show that the method can efficiently build an object-level volumetric
map while reducing computational costs. Finally. Section 4.5 closes the chapter.
This chapter’s work is an extension to object detection and robot localization in
Chapter 2 and Chapter 3.

4.1 Introduction

Semantic mapping aims to estimate the geometry of an environment and simulta-
neously attach a semantic label to the elements that are reconstructed in the map.
With the aid of RGB-D cameras, the mobile robot can perceive object informa-
tion from the surrounding space, generate an up-to-date map with semantics, and
design a collision-free path to achieve navigation.
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Considering real-world applications, three fundamental challenges are addressed
in semantic mapping: object detection, geometric reconstruction, and computa-
tion efficiency. Chapter 2 provides a comprehensive discussion on various object
detection methods. In terms of 3D reconstruction, a dense map with occupancy
and object information is required for autonomous navigation and other intelligent
tasks. For efficiency, although there is a lot of research work developing semantic
mapping systems with RGB-D cameras, they suffer from critical real-time issues
due to the heavy processing components, such as pixel-wise object segmentation
and point cloud processing. Current GPU technology can accelerate the com-
putation process, but it is not always available and practical for some industrial
projects due to cost, compatibility, and space constraints.

In this chapter, a CPU-based semantic mapping system is presented to incremen-
tally build an object-level map with a localized RGB-D camera. For each frame,
the detected objects are represented with the point cloud model. Then, an object
association strategy considering geometric and semantic descriptors is proposed
to match the detected objects in the current frame to existing mapped objects,
where the detected objects will be either merged or introduced in the map. Fi-
nally, the object instances will be integrated into a voxel-based mapping system to
incrementally reconstruct a global object-level volumetric map. Experiments on
publicly available indoor datasets show that the proposed system achieves a com-
parable semantic mapping performance while reducing the computational cost.
Furthermore, the system is evaluated within a logistics robotic platform to demon-
strate the use case in real-world applications. In a nutshell, the contributions can
be summarized as follows:

• An object association strategy based on geometric and semantic descriptors
to track and update object information.

• An CPU-based object-level mapping algorithm, where the objects are in-
troduced into a 3D volumetric map.

• Experiments on a public open-source dataset and a real-world robotic plat-
form to evaluate the performance of the proposed system.
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4 Efficient Object-Level Mapping with RGB-D Cameras

4.2 Literature Review

In 3D reconstruction, mapping refers to the process of converting sensor infor-
mation into a representation of the environment. Here four maps with different
functions are discussed. An occupancy map is a typical indoor map that is used
for planar navigation. It decomposes the space into fixed-size grids, and each grid
cell indicates whether this area is occupied or not. A feature-based map repre-
sents the environment as different landmarks, including feature points, geometry
planes, semantic objects, etc. This map is flexible to update, thus mainly used
for scene understanding and localization. A point cloud map is a dense map that
reconstructs the world with hundreds of points, which shows the detail of the
environment and is intuitive for visualization. Finally, a voxel-based map models
the environment with cubic volumes of equal size and discretizes the mapped
area with explicitly free space. Since it contains occupancy information, this
map provides a solution for 3D navigation. In the following, these maps will be
reviewed, and the focus will be on introducing semantics to them.

4.2.1 2D Grid Map with Objects

A 2D occupancy grid map is a common solution for indoor planar navigation,
where the environment is represented as a fixed, regular grid, and each cell
indicates the probability that this area can be traversed or not. The 2D map can be
generated automatically with laser scan data using laser-based SLAM algorithms,
such as Gmapping (Grisetti et al. 2007), Hector SLAM (Kohlbrecher et al. 2011),
and Cartographer (Hess et al. 2016). Although occupancymaps are convenient for
navigation, the lack of semantic information limits their suitability for high-level
tasks. To address this limitation, additional information can be incorporated into
the map to improve environmental understanding and navigation flexibility.

Introducing high-level elements to the map is under investigation. Some re-
searchers explore segmenting objects directly from the laser scan data. Leigh
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(a) Grid map (Grisetti et al. 2007) (b) Grid map with objects (Dengler et al. 2021)

Figure 4.1: Example of 2D grid maps with objects. They usually represent the environment as a
fixed, regular grid and label the objects with different colors. The figures come from the
original work.

et al. (2015) separated a scan into several connected groups and extracted hand-
crafted features to label these points. By assigning different labels to the laser
points, a meaningful map can be created. However, the 2D laser scanner limits
the detection on a 2D plane, and can not detect objects at different heights, such as
a book on the table. In contrast, Himstedt and Maehle (2017) presented to utilize
only one RGB-D camera for semantic mapping. They detected objects from im-
ages, converted the labelled point cloud into annotated scan data with top-to-down
projection, and integrated them into a probabilistic SLAM framework to generate
a semantic map.

While cameras provide an efficient way to detect objects, laser scanners show a
better performance in distance measurement and accurate map creation. A multi-
sensor system can be implemented to build a hyper-map. For example, based on
a pre-built 2D occupancy grid map with laser scan data, Sivananda et al. (2022)
detected objects from an RGB image, searched for a corresponding model in the
library, and added the model to the existing map. Pang et al. (2019) attempted
to segment semantic laser points by incorporating image data. They achieved
this by back-projecting laser scan data onto an RGB image. By obtaining the
object bounding box in the image, they were able to extract corresponding laser
points and utilize them for mapping purposes. Zaenker et al. (2020) introduced
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the hyper-map framework, which involves the construction of multiple map layers
individually, including the occupancy layer and semantic polygon layer. This
framework effectively manages the different layers and enables their utilization
for various purposes.

4.2.2 Feature-based Map with Objects

The environment can be reconstructed by a list of landmarks, such as feature
points, geometric planes, semantic objects, or other essential components. Geo-
metric landmarks provide a concise representation of the scene, while semantic
features offer long-term stability and resilience against perspective changes. A
complete review of the feature-based map can be found in Section 3.2.

A feature-based map is sparse and easy to update, making it a good option for
localization and scene understanding. However, due to the absence of distance
information, it cannot be directly employed for path planning purposes.

4.2.3 Point Cloud Map with Objects

By collecting 3D points, the environment can be represented as a point cloud map,
where each point can store color, position, and other information. This map can
be generated by various sensors, including LiDAR and RGB-D cameras. Point
cloud maps are widely used in computer vision and robotics because they provide
a high level of detail, precision, and intuitive visualization.

Newcombe et al. (2011) presented a detailed method to permit real-time, dense
reconstruction of complex room-sized scenes using a handheld RGB-D camera.
The high-quality map can enable a full physical predictive interaction between
virtual and real scenes. Adding objects to a point cloud map can be regarded as
assigning object labels to each point, indicating whether it belongs to a specific
category or not. Pham et al. (2015) addressed the problem by introducing a
novel higher-order model for semantic 3D indoor scene labelling, which allows
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(a) Point cloud map (McCormac et al. 2017) (b) Point cloud map with objects (McCormac et al.
2017)

Figure 4.2: Example of point cloud maps with objects. They usually represent the environment as
hundreds of points and label the object with different colors. The figures come from the
original work.

the incorporation of features and contextual information for better performance.
Sünderhauf et al. (2017) proposed to create a meaningful map by maintaining
individual objects as the key entities in the map, McCormac et al. (2017) utilized
a pre-trained convolutional neural network to process RGB-D pair with a per-pixel
class probability distribution and fused the instance information into a coherent
3D semantic map with a Bayesian update strategy.

Although a point cloud map can model the environment with high precision, it can
not represent either free space or unknown areas. Therefore, it is not efficient for
path planning. Furthermore, the computational complexity becomes problematic
due to the extensive number of points in the map, leading to significant demand
for memory and computation resources.

4.2.4 Voxel-based Map with Objects

A voxel-based map is a 3D map representation that uses voxels, or cubic volumes,
to store environmental information. Each voxel can be either occupied or free,
corresponding to its occupancy probability. Octomap (Hornung et al. 2013) is
a typical 3D voxel-based map that uses a tree-based representation to efficiently
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(a) Octomap. (Hornung et al. 2013)

(b) TSDF(voxel) map with objects. (Grinvald et al. 2019)

Figure 4.3: Example of voxel maps with objects. They usually represent the environment as voxels
or cubic volumes, and label the objects with different colors. The figures come from the
original work.

process and update large-scale 3D information. It performs a probabilistic occu-
pancy estimation, allowing for uncertainty and sensor noise. On the basis, Liu
et al. (2019b) extended the octree to include object information and create an
object-aware semantic map for the indoor scene. The main drawback of octomap
is that the maximum size of the map must be known a priori and cannot be
dynamically changed.

A Truncated Signed Distance Field (TSDF) map is another type of voxel map,
it represents the environment using only signed distance information rather than
occupancy probability. Each voxel saves the signed distance to the closest surface
points, indicating the points are outside or inside the surface. This information is
valuable for surface reconstruction and collision detection. Voxblox (Oleynikova
et al. 2017) is one of the CPU-based mapping systems that can densely reconstruct
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volumetric TSDF maps in unexplored environments, providing valuable free and
occupancy space information to guarantee navigation safety. Adding semantics to
thesemaps, Rosinol et al. (2020) presentedKimera-Semantics to create a semantic
map, where they annotated semantics with 2D pixel-wise segmentation and built
a global 3D mesh using voxel-based (TSDF) approach.

Previous work has addressed semantic mapping of the whole environment, while
other object-oriented approaches focus on identifying and reconstructing individ-
ual objects. Pham et al. (2019) designed a higher-order Conditional Random Field
(CRF) to infer optimal segmentation labels and employed an efficient super-voxel
clustering method for object segmentation in 3D indoor scenes. Grinvald et al.
(2019) presented a combined geometric-semantic scheme to incrementally build
a volumetric object-centric map, which retrieves both recognized scene objects as
well as previously unobserved elements. Inspired by this work, Li et al. (2020b)
represented object-instance as a Gaussian mixture model considering the projec-
tion relationship between voxel and pixel. Mascaro et al. (2022) emphasized the
data association module and employed a label diffusion scheme to regularize the
final instance segmentation. The above methods can achieve high performance
in 3D object segmentation accuracy while building a semantic map. One of the
common issues of the above approaches is that they rely on 2D semantic masks,
thus require high computational costs, and can not run on CPU-based robotic
platforms.
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4.3 Method

The proposed object-level semantic mapping system is illustrated in Figure 4.4,
which takes RGB-D sequences as input and incrementally builds a volumetricmap
enriched with object instances. To achieve these functions, the RGB-D sequences
are initially processed by a camera pose tracking framework (see Section 4.3.1).
Then, an object detection method is employed to segment 3D semantic objects
fromeach frame (see Section 4.3.2). After that, these frame-based detected objects
are matched to globally mapped objects via an object association strategy, which
uses geometric and semantic descriptors to track and update object information
(see Section 4.3.3). Finally, the associated objects are incorporated into a TSDF
volumetric mapping framework to generate an object-level dense map (see Section
4.3.4).

Figure 4.4: Overview of the proposed semantic mapping system. It takes RGB-D sequences as
input to build a volumetric object-oriented map. The input is processed by camera
pose tracking and object instance segmentation processes to get camera localization and
object information, then, an object association strategy is adopted to update objects across
multiple frames, and finally, all objects are integrated into a 3D volumetric map.

4.3.1 Camera Pose Tracking

The proposed mapping system requires camera poses when robots move in an
unknown scene. The movements can be estimated by wheel encoder, feature
tracking (Mur-Artal and Tardós 2017), and laser scan matching (Grisetti et al.
2007), depending on which sensor is available. As in Chapter 3, many SLAM
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systems emphasize how to accurately estimate camera poses with RGB-D se-
quences. In this chapter, the camera pose tracking is assumed as solved and the
focus is on the mapping process.

4.3.2 Object Detection

For each RGB-D frame, the geometry method (see Section 2.3.2) is chosen to
detect 3D objects, where the semantic and geometric information are included,
such as class, 2D bounding box, 3D cuboid, associated feature points, etc. It is
worth noting that other methods can also be implemented, more details can be
found in Chapter 2.

4.3.3 Object Association

Since the frame-wise segmentation processes each image independently, an object
association module is proposed to determine correspondences among multiple
frames and incrementally update the object in the global map. It should be noted
that the object association strategy employed in this chapter differs from that
in Chapter 3, especially with respect to the update strategy. Chapter 3 uses a
parametric form to accelerate the updating process, whereas in this chapter, the
point cloud model is used to incrementally maintain a dense reconstruction.

Figure 4.5: Proposed data association strategy for semantic mapping. From left to right are: class
category; 2D IoU; HSV(which stands for Hue Saturation Value); 3D IoU.
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For each frame detected object A and global mapped object B, geometric and
semantic descriptors are extracted to achieve an accurate matching. Firstly, their
class and frame ID are checked, where a frame closeness is defined η(A,B) as:

η(A,B) = |Frame_ID(A)− Frame_ID(B)| (4.1)

where Frame_ID are represented as numbers and |.| measure the difference.

Secondly, the similarity in image space is checked. Since 2D bounding box and
color information can be obtained. The 2D bounding box can be used to calculate
2D IoU (Intersection over Union), while the color information inside the 2D
bounding box can be extracted to match objects. In this work, the images of
the objects are converted to the HSV (Hue Saturation Value) color space, then,
the color histograms of the two images are calculated to generate the normalized
feature vectors, finally, the appearance similarity Sim(A,B) between the two
objects can be computed using these vectors. The IoU2D and Sim(A,B) are
calculated as:

IoU2D =
BBOX2D(A) ∩BBOX2D(B)

BBOX2D(A) ∪BBOX2D(B)
(4.2)

Sim(A,B) =
HSV (A)×HSV (B)√
HSV (A)2 +HSV (B)2

(4.3)

Thirdly, after obtaining the cuboid representation of each object, their spatial
relationship is checked by calculating the 3D IoU as follows:

IoU3D =
BBOX3D(A) ∩BBOX3D(B)

BBOX3D(A) ∪BBOX3D(B)
(4.4)

To sum up, two objects are considered as an associated pair if they satisfy the fol-
lowing constraints: their class should be the same, η(A,B) < 10, IoU2D > 0.5,
Sim(A,B) > 0.3, IoU3D > 0.5. These values guarantee a stable performance
in the experiments. When applied to other environments, they may be different.
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For every frame-detected object, If there are no existingmapped objects associated,
it will be assigned with aMapped_ID and added to the global map. A mapped
object should contain the following parameters: < Frame_ID, Mapped_ID,
Class, bbox, T, R, D, HSV , 3D points, ... >. In contrast, when one frame-
detected object is matched to a mapped object, it should be merged into this
mapped object and updated the information. In this case, the semantic information
(Frame_ID,Class, bbox, andHSV )will be replaced by new information, while
the 3D points are accumulated and the cuboid parameters (T, R, D) of the 3D
cuboid will be computed again as described in Section 2.3.2.

4.3.4 Object Mapping

Figure 4.6: Proposed voxel-based mapping process. It converts the labelled 3D point cloud (blue,
red, and yellow) into a voxel-based map, where each voxel is extended to store the object
label, and this information will be incrementally updated by counting object labels inside
the voxel (blue).

The object-level map is expected to not only contain object information to better
understand the scenario, but also provide valuable information for navigation. In
this case, Voxblox (Oleynikova et al. 2017) is opted as the foundational framework
to map the environment using TSDF information. This decision stems from the
fact that each voxel incorporates signed distance data, which directly enhances
navigation safety. Additionally, Voxblox is a real-time solution designed for CPU
usage, making it particularly well-suited for integration with robotic platforms in
real-world scenarios.
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Raycasting (Curless and Levoy 1996) technology is widely used in many voxel
mapping systems to project an RGB-D image onto the voxel grid, which casts
a ray from the camera optical center to the center of each observed point, and
updates all voxels from the center to the truncation distance behind the points.
On this basis, Voxblox uses a grouped raycasting approach to significantly speed
up the mapping process without losing much accuracy. They projected each point
to the voxel grid, grouped it with other points mapping to the same voxel and
the mean distance of all grouped points, by this way the raycasting only needs
to perform once. This leads to a similar reconstruction result while enabling a
real-time solution on the CPU platform.

The mapping method is augmented with object information, where every voxel is
extended to store object labels. As illustrated in Fig. 4.6, in every frame, the 3D
points are segmented as object points and "background" points, where the object
points are assigned object labels after the 3D segmentation, while other points are
labelled with “0”. During the voxelization process, in each voxel v, the number
of points with label li can be accumulated as:

ψ(v, li)← ψ(v, li) + 1. (4.5)

After all points are converted into voxel, the voxel label L(v) will be updated by
the object label that has the maximum count as:

L(v) = argmax
i

ψ(v, li), (4.6)

In the process of converting the labelled 3D points into voxels, the object detection
and association modules ensure consistency across different frames to provide
stable object labels.

90



4.4 Experiments

4.4 Experiments

The performance of the proposed system is evaluated on indoor environments
from SceneNN dataset (Hua et al. 2016), which features RGB-D scans of different
indoor scenes, including offices, bedrooms, and kitchens. This dataset provides
the ground truth with object instances, which makes it suitable for comparing the
reconstruction results with object-level mapping approaches.

Figure 4.7: SceneNN dataset. This dataset provides several RGB-D sequences of different indoor
scenes with object instance. The figure comes from the official website: https://hkust-
vgd.github.io/scenenn/.

To run the experiments, a ThinkPad laptop (i7-8565U 1.80 GHz CPU, 16 GB
RAM, no GPU, Ubuntu 18.04) is used. Due to hardware constraints, YOLOv2
(Redmon and Farhadi 2017) is chosen as the object detector with general pre-
trained weights downloaded from the official website. The mapping framework,
as well as mesh visualization tools, comes from (Grinvald et al. 2019). All com-
ponents, including object detection, association, and mapping are implemented in
C++. To show the efficiency, the proposed system is also transferred to a GPU
platform and the runtime performance is reported. Furthermore, the applicability
of the method are demonstrated on a real robotic platform with RGB-D sensors,
where the mobile robot is driven to map an unknown intra-logistics environment.
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4.4.1 Experiments on Indoor Environments

1) Qualitative Results. one example of the object-level mapping results is first
visualized on sequence 011 of the SceneNN dataset. As shown in Figure 4.8(a),
the left side shows the point model of a table and a chair from a single frame, while
the right side shows the whole point cloud map with objects. The corresponding
voxel models of objects and TSDF map are also displayed in Figure 4.8(b).

More mapping results can be found in Figure 4.9, where the second column is the
input RGB imagewith the 2D bounding box, and the third column shows the object
points with cuboid representation. Although the objects are partially observed,
they will be associated and incrementally updated with multi-view optimization.
Finally, the point cloud maps and volumetric maps augmented with individual
objects are shown in the last two columns. It can be seen that a dense map with
object information can be obtained.

2) Quantitative Results. During the mapping process, the TSDFmap has a voxel
size of 2cm. It is difficult to quantify the difference between the reconstructed
map and the ground truth. Instead, a possible way to evaluate the accuracy of
the map is by comparing the object positions within it. Following the evaluation
procedure introduced by (Grinvald et al. 2019), the object mapping algorithm
is assessed on 10 indoor sequences from SceneNN dataset (Hua et al. 2016), 9
object categories (i.e., bed, chair, sofa, table, books, refrigerator, television,
toilet, and bag) are considered for comparison with other research work. For each
sequence, the per-class Average Precision (AP) score is computed using the 3D
Intersection over Union (IoU) threshold of 0.5 over segmented objects and ground
truth. The mean Average Precision (mAP) of each sequence is directly calculated
by averaging the per-class AP scores.

Table 4.2 and Table 4.3 show the 3D IoU and mAP results of 10 sequences.
Besides, Table 4.4 illustrates the comparison of mAP with other object-level
mapping systems (Oleynikova et al. 2017, Grinvald et al. 2019, Mascaro et al.
2022), where the data is cited from the original paper. While other methods use
pixel-wise masks for object segmentation, the object-wise detection and cluster
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(a) Point cloud map with objects.

(b)Mesh map with objects.

Figure 4.8: Mapping results on sequence 011 of SceneNN dataset. The left shows the objects model,
while the wholemap is on the right. It is worth noting that voxel-basedmaps are visualized
as mesh maps.
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Figure 4.9: Example of detection and mapping results on SceneNN dataset. The second column is
the input RGB image with the 2D bounding box, the third row shows the object points
with cuboid representation, and the last two columns present the point cloud maps and
volumetric maps augmented with individual objects

method can also achieve good segmentation accuracy. These tables demonstrate
that the proposed approach outperforms other baselines on 6 of the 10 evaluated
sequences, and triggers a significant increase in the achieved 3D segmentation
accuracy. However, it is worth pointing out that the reported mAP values are
computed over a smaller set of classes.

Focusing on specific categories, the segmentation performance varies in different
objects: sofas and chairs achieve a better segmentation performance due to their
size and multiple observations. As shown in the last row of Figure 4.9, although
the chair is partially observed, the object association strategy, which utilizes
geometric and semantic descriptors, provides robust object tracking and benefits
object refinement. Besides, it is observed that object segmentation with bounding
boxes might lead to over-segmentation or overlap problems, in the third row of
Figure 4.9, the detected bounding boxes of table and sofa are overlapped, in this
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Table 4.2: Evaluation of 3D object detection accuracy (IoU3D) of 10 sequences from SceneNN
dataset. “-” means this object type doesn’t exist in this sequence.

Sequence ID Be
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011 - 70.2 70.2 86.3 - - - - - 78
016 51.3 - 71.9 - - - - - - 41.4
030 - 57.6 80.4 85.7 0 - - - - 57.4
061 - 74.5 62.7 95.1 - - - - - 77.4
078 - 45.9 - 0 0 67.8 - - - 13.9
086 - 58.2 - 0 0 - - - 53.8 56.0
096 63.1 60.9 - 0 0 - 32.3 - 0 31.3
206 - 56.5 23.3 65.5 - - - - 29.6 43.7
223 - 63.7 - 69.2 - - - - - 66.5
255 - - - - - 55.8 - - - 55.8

case, the method first segments the table as it has a convex shape with surface
planes and is easy to estimate from the environment. Then, inside the sofa
bounding box, it can remove the points that belong to table to prevent incorrect
detection. However, there are some disadvantages of the proposed system, as
shown in Table 4.2, it is hard to distinguish small objects like books from the
cluttered background because there are not enough points remaining after the
exclusion of outliers.
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Table 4.3: Evaluation of 3D object detection accuracy (mAP ) on 10 sequences from the SceneNN
dataset.

Sequence ID Be
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011 - 100 100 100 - - - - - 100
016 100 - 100 - - - - - - 66.7
030 - 72 100 66.7 0 - - - - 59.7
061 - 62.5 100 33.3 - - - - - 65.3
078 - 50 - 0 0 100 - - - 37.5
086 - 75 - 0 0 - - - 50 31.3
096 100 100 - 0 0 - 0 - 0 33.3
206 - 41 0 40 - - - - 0 20.3
223 - 100 - 50 - - - - - 75
255 - - - - - 100 - - - 100

Table 4.4: Comparison of the 3D object segmentation accuracy (mAP ) among these methods, (Pham
et al. 2019), (Grinvald et al. 2019), and (Li et al. 2020b). The results come from the original
research work, Best results on each sequence are highlighted in bold.

Method 011 016 030 061 078 086 096 206 223 225 Average

Pham et al. (2019) 52.1 34.2 56.8 59.1 34.9 35.0 16.5 41.7 40.9 48.6 43.0
Grinvald et al. (2019) 75.0 33.3 56.1 66.7 45.2 20.0 29.2 79.6 43.6 75.0 54.4

Li et al. (2020b) 78.6 25.0 58.6 46.6 69.8 47.2 26.6 78.0 45.8 75.0 55.1
Ours 100 66.7 59.7 65.3 37.5 31.3 33.3 20.3 75 100 58.9
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3) Runtime Performance. Another advantage of the proposed system is the
runtime performance, which is analyzed and compared with other state-of-the-art
systems. Table 4.5 shows the evaluation of the execution times of the indi-
vidual model of the proposed pipeline averaged over 10 evaluated sequences in
SceneNN (Hua et al. 2016) dataset. The object detection module running by
YOLOv2(Redmon and Farhadi 2017) takes 725ms to detect 2D bounding boxes
in each frame, which is the most time-consuming process, it can be accelerated
when transferred to a GPU platform (NVIDIA RTX 3050TI GPU). When com-
pared to other systems, as shown in Table 4.6, the system achieves a speed of 1
Hz in CPU and 10 Hz in GPU. Li et al. (2020b) also uses YOLOv2 as the 2D
object detector and reaches a comparative speed, while other methods employ
Mask R-CNN (He et al. 2017) to generate pixel-wise segmentation and show
slower performance. The computational time can be substantially reduced in two
fields, one is to use a fast and stable object detector, followed by a robust outlier
exclusion method to segment 3D objects from RGB-D images. The other is to
exploit a voxel-based mapping and update scheme that can run in real time on
the CPU. Most importantly, the system can be extended to a real robotic platform
without GPU requirements, which provides a convenient and cheap solution for
real-world applications.

Table 4.5: Average execution time of each processing module in the proposed system. Note that a
separate thread is created for the object mapping module, which does not affect the frame
rate of the whole system.

Module Runtime-CPU (mSec) Runtime-GPU(mSec)

Object Detection 725 32
Object Segmentation 17.75 15
Object Association 5.22 5
Object Mapping 299 50

Total 1046.97 102
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Table 4.6: Comparison of runtime performance on SceneNN dataset.

Method CPU/GPU Frequency map FPS

Pham et al. (2019) GPU every frame object-oriented 1 Hz
Grinvald et al. (2019) GPU every frame object-oriented 1 Hz

Li et al. (2020b) GPU every frame object-oriented 10.8 Hz
Ours-CPU CPU every frame object-oriented 1 Hz
Ours-GPU GPU every frame object-oriented 10 Hz

4.4.2 Experiments on Logistics Environments

The system is also evaluated within the AgiProbot project (Klein et al. 2021),
which is an intra-logistics system for an agile remanufacturing product system
built at Karlsruhe Institute of Technology (KIT). In this project, the mobile
robots are assigned to transport and transfer items among different workstations.
Specifically, as shown in Fig. 4.10, the reconstructed map needs to not only
contain occupancy information for global navigation, but also integrate object
information for precise docking. In this case, the object-level semantic mapping
system provides a suitable solution to build a dense map with semantic objects.

To better accomplish these tasks, a 2D SICK laser scanner and a Microsoft Azure
Kinect camera are mounted. The SICK laser scanner is horizontally installed at
a height of 0.3 m and in the northwest corner of the vehicle. It can measure a
maximum distance as 30m with 270◦ scanning angle and publish the scan data
up to 30 Hz. The Microsoft Azure Kinect camera is mounted at a height of 1.4 m
on the top of the vehicle center, facing downwards at 45◦. It captures RGB and
depth images in 720P resolution (1280x720) with 90◦ × 60◦ field of view (FOV)
and publishes images up to 15 Hz. Calibration1 between the laser scanner and the
camera is solved by (Zhang and Pless 2004).

1 https://github.com/MegviiRobot/CamLaserCalibraTool
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(a) The robotic platform. (b) The AgiProbot environment.

Figure 4.10: The robotic platform in AgiProbot project.

To generate an object-level map, the mobile robot drives around the whole envi-
ronment (6 ∗ 12m) to record laser scan data and RGB-D images. The laser scan
data are used for the camera (robot) pose tracking, while the RGB-D sequences
are fed to the object-level mapping framework to build a semantic map. Since no
GPU is available on board, the frame rate is set as 1 Hz, any frames that exceed
the processing abilities of the system are discarded and not used to reconstruct the
object-level map of the scene.

Camera Pose Tracking. The dependency of robot localization is solved by
ICP registration (Censi 2008) on laser scan data, which achieves a good result
in robot pose tracking. On this basis, a point cloud map is generated in Figure
4.11. Compared to the real environment, the point cloud map provides a detailed
description, which identifies that the camera pose tracking module functions well.
The object from the point cloud map can also be manually annotated as ground
truth to evaluate object detection results.

Object Detection. For object detection, 100 images containing conveyors are
captured and manually annotated to train the YOLO neural network (Redmon and
Farhadi 2017), after that, the pre-trained weights are used to detect conveyor with
bounding boxes in every frame. During the mapping process, object detections
are removed when the robot is rotating because they may introduce inaccurate
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Figure 4.11: The point cloud map of the logistics environment. It tracks robot poses with laser scan
data and generates a point cloud map with the RGB-D camera, where the ground truth
of objects is labelled.

Table 4.7: Evaluation of object detection on the logistics environment

Object ID IoU3D Etrans(m) Erot(
◦)

1 0.7446 0.058 3.4
2 0.7140 0.060 0.9
3 0.8061 0.029 1.6
4 0.9056 0.035 1.0

Average 0.7925 0.045 1.7

measurements to the map. Additionally, to improve accuracy, detections that are
far away from the camera due to the detection range are removed.

After tracking and updating object information, 3D objects can be segmented and
the results are shown in Table 4.7. To evaluate the precision of the methodology,
3D IoU (IOU3D), translation error (Etrans), and rotation error (Erot) are em-
ployed as metrics. The translation error is determined by the centroid distance in
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Figure 4.12: Mapping results on the logistics environment. The figures on the top show the frame-
detected objects in the 2D image and 3D space, while the reconstructed map is visualized
below, where the conveyors are assigned with different colors while the background
points are green.

3D space, while the rotation error is calculated by the yaw of the object in the top
viewpoint. As shown in the table, the object IoU is an average of 0.79, and the
translation error and rotation error are 0.045m and 1.7◦ respectively. Two impor-
tant factors may influence the results. One is sensor noise. It can be observed that
when the robot is rotating, the 2D object detections and point cloud measurements
are inaccurate and will deteriorate the segmentation result. Therefore, these bad
detections are removed. The other is the object updating strategy. Object points
are simply accumulated, and object geometry is computed; it is challenging to
remove outliers. A better idea is to calculate and update the probabilities of all
corresponding 3D points.

Object Mapping. The results for the reconstructed map with a voxel resolution
of 2cm are shown in Figure 4.12, where conveyors are marked with different
colors while the background is green. It is observed that the proposed method
can integrate incoming RGB-D images into the map volume, providing a com-
prehensive representation of the surface geometry for individual objects. This

101



4 Efficient Object-Level Mapping with RGB-D Cameras

volumetric map contains object information to better understand the scene, and
the additional free space information is relevant to safe planning for autonomous
navigation. Although the system operates at only 1 Hz with CPU, it validates the
online framework and shows its benefit for real-world applications. A demo video
2 is uploaded to illustrate the whole process of incrementally reconstructing the
semantic object-level map of the scene.

4.5 Chapter Conclusion

In this chapter, a CPU-based object-level semantic mapping system is presented,
which takes RGB-D sequences as input to build a volumetric object-oriented map.
Firstly, the RGB-D sequences are processed with an object detection module to
segment object points from a single frame. Then, a data association strategy
with geometric and semantic descriptors is designed to track and update object
information. Finally, the partial segmentation information is incrementally fused
into a global map and results in an object-level volumetric map, which can be
further used for scene understanding and autonomous navigation.

Experiments on publicly available indoor datasets and logistics environments
show that the system has a comparative performance on 3D object segmentation
while avoiding high computational costs. By employing an efficient object detector
and an efficient voxel mapping framework, the system can be extended to a CPU-
only robotic platform for real-world application.

A future research direction involves investigating the object-based navigation func-
tion, where the mobile robot can receive object information for global navigation
and precise docking. Besides, it is valuable to explore camera pose tracking
algorithms, which can be integrated into the mapping system to build a semantic
map online.

2 https://github.com/benchun123/object-level-mapping
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In this chapter, themost important results of this research are summarized. Section
5.1 provides a summary of the thesis, including research questions, methods,
results, and lessons learned from the experiments. In Section 5.2, an outlook is
presented, and further research areas are identified.

5.1 Summary

The objective of this thesis is to develop a visual localization and mapping system
with objects in an intra-logistic environment. The AgiProbot project represents
a typical environment specifically designed for the storage, transportation, and
management of material handling flows. Within this project, mobile robots are
assigned the responsibility of delivering items across differentworkstations. When
equipped with a 2D laser scanner, mobile robots can perceive the surrounding,
build a 2D occupancy map, and navigate to designed positions. However, due
to the sensor limitation, the reconstructed map contains only 2D information
but lacks semantics, which cannot be used for high-level tasks. On the other
hand, image-based object detection methods provide rich information about enti-
ties present in the scenario, significantly improving capabilities of perception and
benefiting intelligent navigation. Therefore, an RGB-D camera is used to detect
semantic objects in the environment, estimate camera poses, and reconstruct a
dense map with individual objects. The overall research question can be sum-
marized as: How to detect 3D objects from RGB-D images? Do they benefit
localization and mapping? This research question was divided into three parts:
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• 1. How to detect 3D objects from RGB-D images?

• 2. Does the introduction of semantic objects in the camera tracking
process improve localization accuracy?

• 3. How to efficiently and densely map the environment with semantic
objects?

To answer the first question, three different methods are implemented to detect 3D
object detection from a single RGB-D frame, namely the sample-score method,
geometry method, and deep learning method. The sample-score method samples
object dimension and orientation, generates hundreds of 3D cuboid candidates,
and scores them with image features and physical constraints. The best candidate
with the highest score can be selected to represent the object. The geometry
method converts the RGB-D images into 3D points, removes outliers, and clus-
ters the object points as cuboids. The deep learning method learns the object’s
attributes from training data and predicts objects with the pre-trained neural net-
work. By designing experiments on the indoor SUN RGB-D dataset and logistics
IFL RGB-D dataset, the detection accuracy and runtime efficiency of the three
methods are measured: The sample-score method is the fastest, but the deep
learning method offers the best accuracy. The geometry method falls in between
the other two methods in terms of speed and accuracy.

The second research question was answered by developing a visual SLAM system
at the level of objects based on single frame detection results. a point-plane-object
SLAM is proposed on top of ORB-SLAM2, where it detects planes and objects
in every key-frame, designs a new data association strategy to track them, and
integrates them into a unified bundle adjustment framework to jointly optimize
camera poses. The proposed method is evaluated on the indoor ICL NUIM
dataset and logistics AgiProbot environment. Results show that the point-plane-
object SLAM can simultaneously estimate camera poses and build a sparse map
with different landmarks. Compared with other state-of-the-art visual SLAM
algorithms, the introduction of 3D objects can benefit scene understanding and
improve localization accuracy.
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For the third research question, an efficient object-level mapping system is pro-
posed, which takes RGB-D sequences as input to build a volumetric object-level
map. After solving camera pose tracking and object detection, the detected 3D
objects are integrated into a voxel-based mapping framework to incrementally
build a global object-level volumetric map. Experiments on the indoor SceneNN
dataset and logistics AgiProbot environment show that the proposed system can
build a semantic voxel-based map within a robotic platform. When compared to
other object-level mapping approaches, the proposed method has a comparative
performance on semantic mapping while avoiding high computational costs.

Through experiments, many lessons can be learned:

Lesson 1: Design of Experiments. The design of experiments is a statistical
method used to design, plan, and analyze the experiments. It involves controlling
the inputs or factors in a process or system, and then measuring the effects of these
changes on the output or response variables. A good example is the evaluation of
the 3D object detection method on logistics environments (see Section 2.4). In
the initial situation. the goal is defined to detect objects as 3D cuboids from a
single RGB-D frame. Background, class categories, relative distance, and relative
object rotation are four potential factors that may influence the detection results.
Then, these parameters are controlled when capturing input for the system, and
the response output is measured. By analysing the results, the relative distance and
rotation are two majority factors that affect the system. The best object detection
results lay within a suitable relative distance range (0 ∼ 3m) and object rotation
(6 ∗ π/8).

Lesson 2: Sensor Comparison. Different sensors could be used for localization
and mapping, such as cameras or laser scanners, each sensor has its own benefits
and drawbacks. Cameras are lightweight, low cost, and low power consumption,
they can provide rich and robust environmental information and show a good
performance on object detection and segmentation. On the other hand, laser
scanners offer a precise distance measurement of the surroundings and promise
safe navigation for mobile robots. They can be used for both indoor and outdoor
environments because of their insensitivity to changes in lighting conditions.
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Regarding object-based localization in indoor environments, object-based visual
SLAM systems show a good performance on camera localization (see Chapter
3), but they are not as accurate as laser-based systems. However, cameras can
significantly improve the perception capabilities to understand the environment.
Therefore, in Chapter 4, the laser scanner is chosen to track camera poses but the
camera is used to incrementally build a semantic map.

Lesson 3: Real Robotic Platform. Application is valuable for scientific research.
When compared to open-source datasets, field experiments are much more chal-
lenging because many factors need to be considered, such as hardware setting,
sensor configuration, detection limitation, computation resources, etc.

For instance, in Chapter 4, three requirements should be satisfied when seeking
the semantic mappingmethod: themap should contain occupancy information for
navigation, the map should provide object information for scene understanding,
and the method be efficient for a CPU platform. When considering these con-
straints, solutions become limited. Ultimately, Voxblox is chosen to efficiently
map the environment with occupancy information and extend it to include object
information. Furthermore, Other problems are also encountered alongside the
mapping algorithm, such as sensor installation, camera calibration, vehicle con-
trol, etc. After resolving all the issues, the system can be verified in real-world
applications. A comprehensive understanding of the research is obtained, which
will lead to a better engineering outcome.
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5.2 Outlook

After the research questions are answered and the results are summarized, the
boundaries of this thesis are encountered. While exploring visual SLAM with
objects, it is recommended that future research focus on the following aspects:

Task-Level Navigation. Since the object-level voxel-based 3D map with RGB-D
cameras has been built, it is worth implementing task-level navigation based on
the map. On the one hand, the reconstructed TSDF (voxel) map is capable of
building Euclidean Signed Distance Fields (ESDF) that can be directly used for
path planning in complex environments, such as (Oleynikova et al. 2018) and
(Gao et al. 2018). On the other hand, the mapped objects in the map can provide
goal information and drive the mobile robot to reach the destination, contributing
to a more flexible and intelligent navigation system, such as (Dengler et al. 2021)
and (Sivananda et al. 2022).

Deep Learning and Artificial Intelligence With the development of the deep
learning method, the neural network tends to be more accurate than geometry
methods in object detection, mapping, and other tasks. Limited by the real robotic
platform, deep research in this field is not conducted, but it remains an attractive
topic for further investigation. For example, Xia et al. (2020) argue that high-
level environmental perception can be reached by neural network and benefit
semantic localization and mapping. Li et al. (2021a) proposed to solve 3D object
detection, association, and mapping tasks in posed RGB videos within a graph
neural network, providing a promising direction to combine neural networks and
robotics. More related research work can be found in (Chen et al. 2020).

Multi-Sensor System. The current system is implemented on a single RGB-D
camera. However, there are still many challenges when applied to real-world
applications, such as safety. A multi-sensor system is a good option for industrial
products, which can integrate the advantages of different modules. For example,
IMU (Inertial Measurement Unit) is also widely used on robots to provide scale
and pose constraints for station estimation. More related camera-laser fusion
systems can be found in (Bowman et al. 2017).
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A Lifting 2D Detection to 3D
Cuboid

There are several methods to lift 2D object detection to 3D cuboid, this appendix
describes one that is used in the thesis. The fundamental principle is the 2D-3D
constraints: the projected vertexes of a 3D cuboid should fit tightly into each side
of its 2D detection box.

Given a 2D bounding box, object dimension, and object rotation, the translation
of the cuboid can be computed, and a 3D cuboid can be determined. To do that,
the perspective camera projection function is formulated as:

λ


u

v

1

 = Proj

(
X3D

1

)
, (A.1)

where (u, v) is the pixel position in image, Proj is camera projection matrix, and
X3D is 3D cuboid vertexes in camera coordinates. Given the cuboid translation
T, dimensionD and rotation R, Equation (A.1) can be rewritten as:
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(A.2)
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where M = Proj × (I∥R ×D). If MT
i = [mi0,mi1,mi2], where mij is the

(i, j) elements of the matrix M, the equation can be rewritten as:

λ
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1

 =


MT

0 ×T3×1 +m03

MT
1 ×T3×1 +m13

MT
2 ×T3×1 +m23

 . (A.3)

Introducing the 2D bounding box as constraints, for example, the right border of
the bounding box xmax, the following equation can be obtained:

xmax =
MT

0 ×T3×1 +m03

MT
2 ×T3×1 +m23

, (A.4)

(
MT

0 −MT
2 × xmax

)
×T3×1 = m23 × xmax −m03. (A.5)

It can be seen that one border of the bounding box can formulate one equation
to solve for T. Taking four borders, left xmin, right xmax, top ymin and bottom
ymax into account, then:
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2 × ymin
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2 × xmax

MT
1 −MT

2 × ymax

×T3×1 =


m23 × xmin −m03

m13 × ymin −m13

m23 × xmax −m03

m13 × ymax −m13

 , (A.6)

A×T3×1 = b(b ̸= 0), (A.7)

T3×1 =
(
ATA

)−1
ATb, (A.8)

It is an over-constrained system, and the translation T can be solved by the least-
squares method. Each constraint of the 2D bounding box can correspond to any
of the 8 corners of the 3D box, which results in 84 = 4096 configurations. As
discussed in (Mousavian et al. 2017), when the object is assumed to be parallel to
the ground plane, one can narrow the configuration to 64, and choose the minimal
error of the least square equation.
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B Optimization Problem for SLAM

The meaning of SLAM is to estimate the robot’s pose and map the environment at
the same time. Theoretically, SLAM can be modelled as a probabilistic problem.
Given controls u1:T = u1, u2, ..., uT , the robot will move to a new pose, in every
pose, the robot can observe landmarks z1:T = z1, z2, ..., zT . Since there are
some estimation and observation uncertainties, the SLAM system needs to seek
the distribution of robot poses x0:T = x0, x1, x2, ..., xT and map m given the
observations and controls, which can be formulated as :

p(x0:T ,m | z1:T , u1:T ). (B.1)

With the help of Bayes’ Theory and Kalman Filter, the SLAM problem can be
solved. More details can be found Grisetti et al. (2007).

Since it needs to save all distributions of camera poses and landmarks, it is
not efficient for a large scene. So, some researchers proposed another graph-
based SLAM, which uses a graph to represent the problem. Here, every node
corresponds to a pose of the robot x or a location of landmarksm, and every edge
between two nodes corresponds to a constraint. Then, the SLAM problem turns
to building the graph and finding a node configuration that minimizes the error
introduced by the constraints eTij , as this term:

x∗,m∗ = argmin
x

∑
i,j

eTijΩije
T
ij , (B.2)

where the Ωij represents the observation uncertainty.
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B.1 Nonlinear Least-Squares Optimization

Mathematically, the SLAMsystem needs to find theminimal value of the Equation
(B.2), it can be represented as a non-linear least squares problem as follows:

x∗ = argmin
x

1

2
∥f(x)∥2, (B.3)

1/2 is just a coefficient to clarify the following derivation.

Gradient Descent Algorithm Gradient Descent algorithm takes every step
along the current gradient direction. The Taylor expansion around x for the
approximation of ∥f(x)∥2 can be expressed as:

∥f(x) + ∆x∥2 = ∥f(x)∥2 + J(x)∆x+
1

2
∆x⊤H∆x, (B.4)

where J andH represent the first- and second-order derivatives of ∥f(x)∥2, they
are called Jacobian Matrix and Hessian Matrix, respectively.

Gradient Descent Algorithm chooses to remain with the first-order iteration, it
is easy to implement, and the convergence speed is fast, but the gradient might be
quite small when it is close to minimum. The update rules can be expressed as:

∆x∗ = −J⊤(x), (B.5)

Newton’s AlgorithmAnother approach isNewton′sAlgorithm, which chooses
to stay with the second order iteration of Equation (B.4). At each iteration, it
takes a step towards the minimum of the quadratic function, which is much faster
thanGradient Descent Algorithm. However, for general high-dimensional cost
functions, it is hard to compute the H . The update rule is

H∆x∗ = −J⊤(x), (B.6)
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Gauss-NewtonAlgorithmGauss−NewtonAlgorithm is the third approach that
can solve the nonlinear optimization problem efficiently. Instead of approximating
∥f(x)∥2, f(x) can be approximated by a first-order Taylor expansion around x:

f(x+∆x) ≈ f(x) + J(x)∆x, (B.7)

here, where J(x) represents the first-order derivatives of f(x) not ∥f(x)∥2.

So, the original non-linear least squares problem can be approximated as:

∆x∗ = argmin
∆x

1

2
∥f(x) + J(x)∆x∥2, (B.8)

which seeks a deviation ∆x that minimizes an approximation to the cost in a
neighbourhood of x. Then, Equation (B.9) can be expanded as:

1

2
∥f(x) + J(x)∆x∥2 =

1

2
(f(x) + J(x)∆x)T (f(x) + J(x)∆x)

=
1

2

(
∥f(x)∥2 + 2f(x)TJ(x)∆x+∆xTJ(x)TJ(x)∆x

)
(B.9)

The optimal update step ∆x can be computed by finding the minimum of the
above function:

2J(x)T f(x) + 2J(x)TJ(x)∆x = 0

J(x)TJ(x)∆x = −J(x)T f(x)
(B.10)

To summarize, the process and update rule for Gauss−Newton Algorithm is:

∆x = −
(
J(x)TJ(x)

)−1
J(x)T f(x)

x← x+∆x
(B.11)
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Levenberg-Marquardt (L-M) Algorithm Gauss − Newton Algorithm per-
forms well when it is close to the minimum, but the cost may not decrease at
each iteration, instead,Gradient Descent has the advantages of convergence. A
smart idea is to combine them together, which is called L−MAlgorithm. This
algorithm introduces a trust region to switch these two algorithms. With this idea,
Equation (B.10) can be modified as:

(J(x)TJ(x) + λI)∆x = −J(x)⊤f(x) (B.12)

where λ is a damping ratio and I is an identity matrix. When λ → ∞, ∆x ≈
−J(x)⊤f(x), it changes to Gradient Descent Algorithm. When λ → 0,
indicating to follow the standard Gauss−Newton Algorithm.

B.2 Non-Euclidean Optimization

As shown in Equation (B.11), the last step for iterative optimization is the variable
update. However, x← x+∆x only applies to Euclidean space and is not suitable
for non-Euclidean space, such as 3D rotation. In SLAM optimization, the 3D
rotation is represented as Euler angles or rotation vectors, it doesn’t follow the
update rules, instead, the update is performed as R(x) · R(∆x). In this case,
Lie Algebra can be introduced to compute non-Euclidean optimization. For more
details, please refer to Blanco-Claraco (2021).
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