KIT | KIT-Bibliothek | Impressum | Datenschutz

Flow‐Induced Microfluidic Assembly for Advanced Biocatalysis Materials

Lemke, Phillip 1; Schneider, Leonie 1; Kunz, Willfried ORCID iD icon 2; Rieck, Anna L. 1; Jäger, Paula S. 1; Bruckmann, Alexander 1; Nestler, Britta 2; Rabe, Kersten S. ORCID iD icon 1; Niemeyer, Christof M. ORCID iD icon 1
1 Institut für Biologische Grenzflächen (IBG), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS), Karlsruher Institut für Technologie (KIT)

Abstract:

RESEARCH ARTICLE
www.afm-journal.de
Flow-Induced Microfluidic Assembly for Advanced
Biocatalysis Materials
Phillip Lemke, Leonie Schneider, Willfried Kunz, Anna L. Rieck, Paula S. Jäger,
Alexander Bruckmann, Britta Nestler, Kersten S. Rabe, and Christof M. Niemeyer*
Exploring the potential of microfluidic systems, this study presents a
groundbreaking approach harnessing energy in microfluidic flows within a
purpose-built microreactor, enabling precise deposition of functional
biomaterials. Upon optimizing reactor dimensions and integrating it into a
microfluidic system, sequentially flow-induced deposition of DNA hydrogels
and transformation into DNA-protein hybrid materials with
SpyTag/SpyCatcher technology is investigated. However, limited
functionalization rates restrict its viability for targeted biocatalytic processes.
Therefore, the direct deposition of a phenolic acid decarboxylase is
investigated, which is efficiently deposited but shows limited biocatalytic
performance due to shear-induced denaturation. This challenge is overcome
by a two-step immobilization process, resulting in microfluidic bioreactors
demonstrating initial high space-time yields of up to 7000 g L$^{−1}$ d$^{−1}$ , but
... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000167877
Veröffentlicht am 02.02.2024
Originalveröffentlichung
DOI: 10.1002/adfm.202313944
Scopus
Zitationen: 3
Web of Science
Zitationen: 1
Dimensions
Zitationen: 4
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biologische Grenzflächen (IBG)
Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 05.2024
Sprache Englisch
Identifikator ISSN: 1616-301X, 1057-9257, 1099-0712, 1616-3028
KITopen-ID: 1000167877
HGF-Programm 43.33.11 (POF IV, LK 01) Adaptive and Bioinstructive Materials Systems
Weitere HGF-Programme 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Advanced Functional Materials
Verlag Wiley-VCH Verlag
Band 34
Heft 18
Seiten Art.-Nr.: 2313944
Vorab online veröffentlicht am 24.01.2024
Nachgewiesen in Dimensions
Web of Science
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 15 – Leben an Land
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page