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ECG Feature Importance Rankings: Cardiologists
vs. Algorithms
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Abstract—Feature importance methods promise to provide a
ranking of features according to importance for a given classi-
fication task. A wide range of methods exist but their rankings
often disagree and they are inherently difficult to evaluate due to
a lack of ground truth beyond synthetic datasets. In this work,
we put feature importance methods to the test on real-world data
in the domain of cardiology, where we try to distinguish three
specific pathologies from healthy subjects based on ECG features
comparing to features used in cardiologists’ decision rules as
ground truth. We found that the SHAP and LIME methods and
Chi-squared test all worked well together with the native Random
forest and Logistic regression feature rankings. Some methods
gave inconsistent results, which included the Maximum Relevance
Minimum Redundancy and Neighbourhood Component Analysis
methods. The permutation-based methods generally performed
quite poorly. A surprising result was found in the case of left
bundle branch block, where T-wave morphology features were
consistently identified as being important for diagnosis, but are
not used by clinicians.

Index Terms—Electrocardiogram, feature importance ranking,
cardiologist, atrioventricular block, right branch bundle block,
left branch bundle block.

I. INTRODUCTION

A trained cardiologist can diagnose over 150 different
conditions from a 12-lead electrocardiogram (ECG) [1]. Such
diagnoses are made on the basis of a multitude of ECG
features which consist mainly of time intervals between certain
fiducial points on the ECG, amplitudes of prominent features
or morphology of ECG segments. For each pathology, the
relevant criteria for specific features are well documented [1],
[2], although there may be minor differences between one
reference source and another.

On the other hand, there are numerous algorithms available
for determining a ranking of features by importance for a
given classification task [3]. However, if several algorithms
are used, then it is often found that they give significantly
different feature importance rankings and it is not apparent
which ranking is best or whether one particular ranking
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is better than another. Therefore, we did a comparison of
feature importance rankings generated by a number of different
algorithms with the corresponding features that a cardiologist
uses for diagnosis. This has the advantage of having a set
of important features which has been gleaned from clinical
experience over many years for the diagnosis of each condition
which can be compared with the feature rankings of the
algorithms.

Another possibility with this study is that the feature impor-
tance algorithms could identify features that are important for
the diagnosis of a condition which are not normally considered
to be important by cardiologists.

We have chosen three pathologies to study, namely first
degree atrioventricular block (1st degree AV block), complete
right bundle branch block (RBBB) and complete left bundle
branch block (LBBB). A diagnosis of these conditions by
cardiologists involves 1, 7 and 14 features respectively and
so are progressively more complex, starting with the simplest
possible case. In addition, all three pathologies are commonly
encountered in the general population and are well-represented
in the PTB-XL dataset underlying our study.

For this study, we restrict attention to the simplest case of a
binary classification that seeks to distinguish healthy subjects
vs. a specific pathology. Of course in practice, a cardiologist
has to identify a condition (or multiple conditions) out of
many possible conditions, which is a much more complicated
task. On the other hand, it is quite conceivable that a simple
binary classification of healthy vs. a specific pathology could
be successfully achieved by using only a reduced subset of the
complete list of diagnostic conditions. However, we consider
it appropriate to study the simplest case first. A study of
multiclass feature importance algorithms with all four of the
above classes has been undertaken as a separate study [4].

We are considering the features used by cardiologists for
diagnosis to be the gold standard against which we compare
various algorithms. However, it should be noted that different
sources for ECG diagnosis often give slightly different con-
ditions for the diagnosis of a specific pathology. This may
be because textbooks give sufficient conditions for diagnosis,
rather than an exhaustive list of all changes associated with
a pathology. We have used EKG-Kurs für Isabel [5] as it
gives simple, itemised conditions for each pathology. More
comprehensive texts are available but we chose this one based
on its simplicity and clarity.

An alternative approach to identifying important parts of the
ECG signal for diagnosis of a particular condition is to use
explainable AI (XAI) methods applied to models operating
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on the raw signal [6], [7]. We present a detailed comparison
between both approaches in the Discussion Section.

We believe that while feature importance methods are well-
established, their application and systematic evaluation in
cardiology has not been covered in the literature. Our work
addresses this gap by:
• using feature importance methods to rank ECG features

based on their ability to discriminate specific cardiac
pathologies from healthy patients. By juxtaposing these
with cardiologists’ clinical decision rules, we shed light
on the alignment (or lack thereof) between computational
methods and real-world clinical practice.

• providing a comprehensive comparison of these methods,
which is rare in the existing literature, especially in the
field of cardiology. Such a comprehensive comparison
provides cardiology practitioners with a guide to help
them determine which methods are most reliable and
applicable in specific clinical settings.

• uncovering new insights from feature importances. No-
tably, our study reveals a surprising finding: Certain
features of T-wave morphology consistently emerge as
critical for the diagnosis of LBBB, in contrast to pre-
vailing clinical practice, which relies predominantly on
QRS-complex-related features for this diagnosis.

It is worth stressing that this work does not line up in the
approaches which try to enhance decision support systems
with XAI side information. Rather than directly advocating
for the integration of XAI into diagnostic tools, this study
serves as a critical evaluation of feature importance methods,
particularly for tabular classifiers and underscores the potential
of XAI to be used in knowledge discovery.

II. MATERIALS AND METHODS

A. ECG Signals

The ECG signals that were used for this study were taken
from the PTB-XL dataset [8], [9], which is publicly avail-
able on PhysioNet [10]. In particular, for each of the three
pathologies considered (1st degree AV block, RBBB, LBBB),
we extracted all the records that were labelled with only the
specific pathology.

B. ECG Features

For extracting features from an ECG, we used the University
of Glasgow 12-lead ECG analysis algorithm which has been
developed over many years by a team at the University of
Glasgow [11]. This software can derive more than 772 global
and lead-dependent ECG features from a 10-second 12-lead
ECG signal. (All the features derived by the Glasgow software
for the PTB-XL dataset are available in the PTB-XL+ feature
dataset [12], [10].) From this large collection of features,
we selected 117 which a cardiologist would typically assess
when considering a diagnosis that are given in Appendix A.
The selection of features may be subject to discussion, and
some might advocate for the inclusion of different features.
However, it is important to note that there is not a universally
agreed upon set of features. These features were derived for all

of the ECG records in each of the pathology classes. The small
number of records that contained missing values due to issues
with feature extraction were deleted to obtain a final dataset
without missing values. Features were also drawn from an
equal number of healthy patients’ records, chosen at random.
If any records had missing values, they were replaced by other
records sampled at random. With this approach, a balanced
dataset containing no missing values was created for each
pathology.

Each feature was scaled to have a mean of zero and a
variance of one to give a standardized dataset, which was
required for certain algorithms (Logistic regression) or is
known to be beneficial for others (Deep networks).

The final datasets contained a total of 1,592 records for 1st

degree AV block, 1,074 records for RBBB and 1,072 records
for LBBB, with half being for healthy subjects and half for
the specific pathology in each case.

C. Pathologies

The ECG is the difference in electrical potential measurable
between two different electrodes attached to the body surface
and captures the electrical activity due to de- and repolar-
ization of cardiomyocytes in the heart. In the healthy case,
electrical activity is spontaneously initiated in the pacemaker
cells at the sinoatrial node in the right atrium. After spreading
throughout the atrial myocardial tissue and causing the P wave
in the ECG, the excitation is delayed at the atrioventricular
node. The electrical activation is then conducted via the bundle
of His, which branches into a right bundle as well as an
anterior and a posterior left bundle before it reaches the
Purkinje fibers. These activate the ventricular myocardium
from the apex to the base and lead to the QRS complex
in the ECG. Finally, the T wave in the ECG arises due to
repolarization of the ventricular myocytes.

We now consider each of our chosen pathologies in detail.
1) Atrioventricular Block: In patients with atrioventricular

block, the excitation conduction between atria and ventricles
is impaired. In first degree AV block, which is studied in this
work, the conduction is markedly delayed and leads to PR
intervals >200 ms in the ECG. However, all atrial impulses are
still transferred to the ventricles and every P wave is followed
by a QRS complex as opposed to second or third degree AV-
block that is associated with skipped beats or independent
excitation of atria and ventricles respectively [5]. Thus, there
is only one feature which is used for the diagnosis of a 1st

degree AV block:
• PR interval

We checked for other features that correlate (with absolute
Pearson correlation coefficient ≥ 0.7) with the PR interval, as
such features may be expected to occur high up the ranking.
However, there were none and so this is the simplest possible
case.

2) Right Bundle Branch Block: Complete right bundle
branch block is characterized by a marked delay or block
in conduction in the right bundle branch. In this case, the
right ventricles are activated via impulses conducted through
the left bundle branches reaching the right ventricle through
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TABLE I
FEATURES THAT CORRELATE WITH THE IMPORTANT FEATURES FOR

RBBB, BUT NOT INCLUDING OTHER IMPORTANT FEATURES, TOGETHER
WITH THEIR CORRELATION COEFFICIENTS.

Correlating Features
Feature (correlation coefficient)
R amplitude, lead V1 −
R’ amplitude, lead V1 Peak-to-peak amplitude, lead V1 (0.79)
S amplitude, lead I −
S amplitude, lead aVL −
S amplitude, lead V1 −
S amplitude, lead V6 R’ amplitude, lead V5 (-0.71)

S amplitude, lead V5 (0.82)
QRS duration −

the ventricular myocardial tissue. As this takes longer than
the physiological activation through the three fascicles, this
reflects in a widened QRS complex of >120 ms in the ECG.
Furthermore, a terminal R’ peak is visible in lead V1 and a
notched S wave occurs in leads I, aVL and V6 [5]. Thus, the 7
features that are relevant for diagnosis of right bundle branch
block are:
• QRS duration
• R amplitude in lead V1
• R’ amplitude in lead V1
• S amplitude in leads I, aVL, V1 and V6

We call these 7 features the important features for RBBB.
We checked for features that correlate (with absolute Pearson
correlation coefficient ≥ 0.7) with one of these 7 features.
There were 3 such features, not including the important
features above, which are given in Table I.

3) Left Bundle Branch Block: Analogously to right bundle
branch block described above, complete left bundle branch
block describes the condition of a blockage in the electrical
conduction in the left bundle branch. As the left bundle
branches into an anterior and a posterior fascicle, the term
complete left bundle branch block refers to a conduction block
before the bifurcation. In the ECG, the delayed activation
of the left ventricle reflects in a widened QRS complex
of >120 ms, deep Q waves in lead V1 and a notched or
monophasic QRS morphology in the lateral leads I, aVL, V5
and V6 [5]. Thus, there are 14 features that are involved in
the diagnosis of left bundle branch block:
• QRS duration
• Q amplitude in lead V1
• R amplitude in leads I, aVL, V5 and V6
• R’ amplitude in leads I, aVL, V5 and V6
• S amplitude in leads I, aVL, V5 and V6

We call these 14 features the important features for LBBB.
We checked for features that correlate (with absolute Pearson
correlation coefficient ≥ 0.7) with one of these 14 features,
excluding the important features listed above. Table II lists the
28 features identified through this analysis.

D. Feature Importance Algorithms

We can broadly categorize the feature importance algo-
rithms investigated in this work as model-dependent and
model-independent methods.

TABLE II
FEATURES THAT CORRELATE WITH THE IMPORTANT FEATURES FOR

LBBB, BUT NOT INCLUDING OTHER IMPORTANT FEATURES, TOGETHER
WITH THEIR CORRELATION COEFFICIENTS.

Feature Correlating Features (correlation coefficient)
QRS duration Q amplitude, lead V4 (-0.71)

S amplitude, lead V3 (-0.71)
T+ amplitude, lead V1 (0.75)
ST slope, lead I (-0.73)
ST slope, lead V1 (0.77)
ST slope, lead V6 (-0.70)
ST duration (-0.74)
T morphology, lead I (-0.82)
T morphology, lead aVR (0.77)
T morphology, lead V6 (-0.79)

Q amplitude, lead V1 Peak-to-peak amplitude, lead V1 (-0.90)
T+ amplitude, lead V1 (-0.79)

R amplitude, lead I Peak-to-peak amplitude, lead I (0.94)
R amplitude, lead aVL Peak-to-peak amplitude, lead I (0.73)

Peak-to-peak amplitude, lead aVL (0.90)
Q amplitude, lead III (-0.87)
Q amplitude, lead aVF (-0.79)
S amplitude, lead III (-0.81)
QRS frontal axis (-0.72)

R amplitude, lead V5 Peak-to-peak amplitude, lead V5 (0.86)
Peak-to-peak amplitude, lead V6 (0.78)
R amplitude, lead V4 (0.77)

R amplitude, lead V6 Peak-to-peak amplitude, lead V5 (0.72)
Peak-to-peak amplitude, lead V6 (0.95)

R’ amplitude, lead I Peak-to-peak amplitude, lead aVL (0.75)
R’ amplitude, lead aVL Peak-to-peak amplitude, lead aVL (0.72)

S amplitude, lead II (-0.70)
S amplitude, lead III (-0.78)
S amplitude, lead aVF (-0.78)

R’ amplitude, lead V5 −
R’ amplitude, lead V6 −
S amplitude, lead I R’ amplitude, lead aVR (-0.71)

T+ amplitude, lead aVR (-0.77)
S amplitude, lead aVL R amplitude, lead III (-0.74)

R’ amplitude, lead II (-0.74)
R’ amplitude, lead III (-0.72)

S amplitude, lead V5 −
S amplitude, lead V6 R’ amplitude, lead V1 (-0.81)

TABLE III
HYPERPARAMETERS FOR THE MACHINE LEARNING MODELS USED.

Model Hyperparameters
Random Forests number of trees = 100

criterion = ‘Gini impurity’
Boosted Decision Trees loss function = ‘binary logistic’
(XGB) learning rate = 0.01

early stopping rounds = 20
number of boosting iterations = 5000

Logistic Regression loss = ‘l2 norm’
tol = 0.0001
max iter = 100

Deep Neural Networks 2 hidden fully-connected layers with dim = 256
hidden activations =‘relu’
output activation = ‘sigmoid’
optimizer = ‘adam’
loss = ‘binary cross entropy’

1) Model-dependent feature importance methods:
• Random forests, Boosted decision trees, Logistic re-

gression and Deep neural networks with permu-
tation/SHAP/LIME feature importance. In terms of
models, we consider Random forests, Boosted decision
trees, Logistic regression and Deep neural networks.
The hyperparameters used are summarized in Table III.
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They correspond to the default parameters, except for
the deep neural network, where we started with a very
deep network (10 layers) and removed layers as long
as there was no noticeable drop in performance. The
training data consisted of records from the PTB-XL
stratified folds 1–9 and the test data were records drawn
from fold 10 [8]. These models were then combined
with established attribution methods LIME [13], SHAP
[14] and permutation feature importance [15]. LIME
involves training an interpretable, local surrogate model
to approximate the model behaviour near the sample
of interest. SHAP is an efficient implementation of the
game-theoretic Shapley value approach. LIME and SHAP
are local attribution methods which return attribution
scores per sample, and we therefore ranked the features
on the mean of the absolute attribution values across the
test set. As a third class of feature importance algorithms,
we considered permutation feature importance, a global
attribution method which quantifies feature importance
via the decrease in model performance upon replacing a
feature column of interest by a permuted copy of itself.

• Random forests. For a random forest model, the impor-
tance of features can be determined by how much they
decrease Gini impurity when averaged over all the trees in
the forest. It is known that these feature importance values
can be misleading for high cardinality features. However,
permutation feature importance (see below) can mitigate
this to some extent [16].

• Logistic regression. The importance of features in a
logistic regression model can be determined by the ex-
ponential of the weight associated with each feature [3].

• Gaussian processes. In Gaussian Process binary classi-
fication, the probability of class membership conditioned
on an observed feature vector x is modelled as σ(f)
where σ is a sigmoid function, such as the logistic
function, and a Gaussian Process model GP(0, k(x, x′))
is used as a prior distribution for the latent variable f
[17]. Using a squared exponential covariance kernel for
k(x, x′) with diagonal covariance matrix, each feature xi
is associated with its own length-scale parameter li. A
small value for li implies the feature varies over short-
length scales and so is important for the classification.
Consequently, sorting the length-scale parameters pro-
vides a ranking of the features.
In our implementations, we employed Gaussian Process
regression, designating +1 for the positive class and −1
for the negative class, and using the sigmoid function
to infer hard predictions. For inference, specifically for
approximating the integral in the posterior, we adopted
Laplace’s method. We refer to the code repository for
further implementation details. [18]

2) Model-independent feature importance methods: In ad-
dition to model-dependent methods, we also include methods
that solely rely on the data distribution without making use
of a trained predictor on the dataset. In the feature selection
literature [19], [20], [21], these methods are often referred to
as filter methods. More specifically, we consider the following

methods:

• Chi-square test. The Chi-square test is a statistical hy-
pothesis test that is valid to perform when the test statistic
is chi-squared distributed under the null hypothesis. Each
feature is tested individually for independence of the
response. A small p-value is associated with a feature
that has dependence on the response, and so is important.
Thus, features are ranked by − log(pi), where i is the
index of the features [22].

• Maximum Relevance - Minimum Redundancy
(MRMR). The MRMR method reduces redundant fea-
tures while keeping the relevant features for the model,
where redundancy and relevance are quantified in terms
of mutual information. It is known that many essential
features are correlated and redundant and so the MRMR
method selects features taking into account the relevance
for predicting the outcome variable and the redundancy
within the selected features [23], [24].

• Neighbourhood Component Analysis (NCA). The NCA
method selects features by maximizing the prediction
accuracy of classification algorithms. The concept of this
method is similar to the k-nearest neighbours classifica-
tion method, only in the NCA method, the reference point
is selected randomly not to be the nearest neighbour for
the new point [25].

• ReliefF. ReliefF calculates a feature score for each feature
depending on feature value differences for neighbours
which have the same or a different class, which can
then be used to rank the features. The ReliefF method
estimates the attribute qualities based on how well they
can distinguish between instances near them. This method
was initially designed to apply to binary classification
problems with discrete or numerical features [26].

• Modified ROC AUC. The receiver operating character-
istic (ROC) curve consists of a plot of the false positive
rate against the true positive rate as a threshold is moved
across the distributions for the two classes. The area under
the curve (ROC AUC) is a standardised measure of the
degree of separation of the two distributions and varies
from 0.5 (no discrimination) to 1 (perfect discrimination)
[27].
We note that the positive class has to be spec-
ified and that if this is changed from one class
to the other, the ROC AUC values range from
0.5 (no discrimination) to 0 (perfect discrimina-
tion). Thus, we define Modified ROC AUC =
max(ROC AUC, 1- ROC AUC). This ensures that all
values are in the range of 0.5 to 1.
A feature ranking can be generated for a binary classifica-
tion problem by generating a distribution for each of the
two classes for each feature individually and then finding
the Modified ROC AUC for all of these distributions. The
features are then ranked by their Modified ROC AUC
value from highest to lowest, which ranks the features
according to their ability to discriminate the two classes
individually.
We also note that the ROC AUC values aid with inter-
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pretation of the features, as ROC AUC > 0.5 implies
that the feature increases due to the pathology whereas
ROC AUC < 0.5 means that the feature decreases due to
the pathology.
To ensure transparency and reproducibility, the imple-
mentations of all methods and models, that were used
in this study, have been made publicly accessible at [18].

E. Scoring algorithm

When comparing a feature ranking generated by one of
the algorithms with the important feature set for diagnosis
of a specific pathology, we define a score that enables a
simple comparison between different methods, assuming that
all features in the set of important features for diagnosis have
equal importance. As a first step, we choose a value of n,
which is the number of top features in each ranking that will
be considered. We then take a weighted average based on the
ranking of each of the top n features that is contained in the
important set, where the first feature has a weighting of n,
the second a weighting of n − 1 and so on, so that the nth

feature has a weighting of 1. This weighted average is then
normalised to give a score between 0 and 100 (by dividing by
n(n+ 1)/2/100), which we round to the nearest integer.

With this scoring system, an important feature in position 1
of the ranking contributes 200/(n+1) to the score, whereas an
important feature in position n only contributes 200/(n(n +
1)) to the score. For example, taking n = 5 and assuming
that a ranking has the first, second and fourth features in the
important set gives a score of (5 + 4 + 2)/15 × 100 ≈ 73.

We also consider the ranking of features that are least able
to discriminate between the two classes, which can be defined
by the features with the lowest modified ROC AUC values.
In particular, we consider the two features with the lowest
modified ROC AUC values which, for the three pathologies,
are as follows:

• 1st degree AV block: S amplitude, lead I (modified ROC
AUC=0.5006); S amplitude, lead V2 (modified ROC
AUC=0.5006)

• RBBB: R’ amplitude, lead V6 (modified ROC
AUC=0.5028); R’ amplitude, lead I (modified ROC
AUC=0.5037)

• LBBB: R amplitude, lead I (modified ROC
AUC=0.5002); R’ amplitude, lead V6 (modified
ROC AUC=0.5009)

We refer to these as the non-discriminating features.

III. RESULTS

We consider results of the feature importance ranking al-
gorithms applied to the feature table for each pathology in
turn. The model-dependent methods first require training of a
machine learning model for the binary classification problem.
The accuracy of the five machine learning models for each
pathology on the test data are shown in Table IV. Clearly,
these are all very high. For this reason, we refrain from further
hyperparameter tuning.

TABLE IV
THE ACCURACY OF THE MACHINE LEARNING MODELS ON THE TEST DATA
FOR EACH DISTINGUISHING EACH PATHOLOGY FROM AN EQUALLY SIZED

SET OF NORMAL SAMPLES.

1st degree
Model AV block RBBB LBBB
Random forest 95.6% 99.1% 100%
XGB 96.8% 98.1% 100%
Logistic regression 95.6% 100% 100%
Deep networks 94.3% 100% 100%
Gaussian processes 97.8% 100% 100%

Fig. 1. Histogram of the PR interval for the records labelled as healthy and
1st degree AV block. The red line is at 200 ms, which is the threshold for
diagnosis of 1st degree AV block.

A. Atrioventricular Block

First degree AV block is defined by the PR interval being
greater than 200 ms [1]. Thus, there is a single important
parameter for diagnosis in this case, namely the PR interval.
We therefore expect this feature to occur high up in the
rankings.

For the data we are using, the distributions for the PR
interval for the records labelled as Normal and 1st degree
AV block are shown in Fig. 1. Clearly, not all of the 1st

degree AV block records satisfy the diagnostic criterion of
exceeding 200 ms. In fact, the PR interval for 236 out of
796 records labelled as 1st degree AV block does not exceed
200 ms, with the smallest value being 26 ms (which is non-
physiological). Conversely, there are 23 out of 796 records
labelled as Normal that have PR interval exceeding 200 ms,
with the largest value being 242 ms. Presumably in both cases
this is because the Glasgow algorithm identifies the PR interval
as shorter/longer than that identified by the cardiologists who
labelled the signals.

As an aside, if we tried to classify 1st degree AV block
using the Glasgow computed PR intervals, then the Modified
ROC AUC for this classification is 0.9384 and the optimal
threshold for diagnosis is 184 ms, which is considerably lower
than the conventional 200 ms threshold. With this threshold,
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TABLE V
RANKING OF THE PR INTERVAL AND THE NON-DISCRIMINATING

FEATURES WHEN CONSIDERING NORMAL AND 1st DEGREE AV BLOCK
SIGNALS. RESULTS FOR MODEL-DEPENDENT METHODS ARE GIVEN IN THE

UPPER PART OF THE TABLE AND RESULTS FOR MODEL-INDEPENDENT
METHODS ARE GIVEN IN THE LOWER PART. WE PRESENT THE MEAN AND

STANDARD DEVIATIONS AS INTEGERS, CALCULATED OVER 5 RUNS, TO
ACCOUNT FOR THE INHERENT RANDOMNESS OF THE METHODS.

Ranking Ranking of the
of the non-discriminating

Method PR interval features
Random Forest (permutation) 1(0) 36(37), 13(2)
Random Forest (SHAP) 1(0) 73(6), 19(5)
Random Forest (LIME) 1(0) 54(23), 51(22)
Random Forest 1(0) 68(9), 23(10)
XGB (permutation) 1(0) 18(2), 24(1)
XGB (SHAP) 1(0) 67(0), 32(0)
XGB (LIME) 1(0) 56(18), 70(17)
Logistic Regression (permutation) 1(0) 80(19), 78(16)
Logistic Regression (SHAP) 1(0) 65(1), 82(1)
Logistic Regression (LIME) 1(0) 54(20), 60(10)
Logistic Regression 1(0) 76(0), 98(0)
Deep networks (permutation) 1(0) 63(24), 87(21)
Deep networks (SHAP) 1(0) 84(16), 75(15)
Deep networks (LIME) 1(0) 46(20), 68(13)
Gaussian processes 1(0) 84(0), 93(0)
Chi square test 1(0) 99(0), 103(0)
MRMR 1(0) 60(1), 87(1)
NCA 1(0) 15(2), 61(4)
Relieff 1(0) 48(0), 58((0))
Modified ROC AUC 1(0) 116(0), 117(0)

the accuracy of the classification is 88.13%. Presumably this
reduced threshold is a result of the difference between the
PR interval lengths determined by the cardiologists and the
Glasgow software.

The ranking of the PR interval by each algorithm is shown
in Table V. These results show that all the algorithms we
considered ranked the PR interval as the most important
feature.

We also considered the ranking for each method of the
non-discriminating features, which both have Modified ROC
AUC values very close to 0.5. These are shown in the final
column of Table V. We note that they are by definition the
last two features in the Modified ROC AUC ranking. We
observe that some methods exhibit relatively high rankings
for non-discriminating features. For instance, the second non-
discriminating feature is ranked 13th for Random Forest
(Permutation), 19th for Random Forest (SHAP), and 23th for
Random Forest. In contrast, the Logistic Regression, Gaussian
Processes and Chi square test all rank the same feature above
90.

We then found the top 5 features for each of the methods to
see if there is any commonality between them. The frequency
of features in the top 5 is shown in Table VI which, as
expected, includes the PR interval as the most common.
When averaging the rankings across all runs, two methods had
their top 5 features matching those in Table VI, which were
Random forest and Random forest (SHAP), while Random
forest (LIME), XGB (SHAP) and Chi-square test all had 4 out
of these 5 in their top 5. On the other hand, Random forest
(permutation), Logistic regression (LIME), Deep networks
(Permutation), Gaussian processes and NCA only had the PR

TABLE VI
THE MOST COMMON FEATURES IN THE TOP 5 FOR 1st DEGREE AV BLOCK
FOR ALL 20 METHODS AND THEIR MODIFIED ROC AUC AND ROC AUC

VALUES. FOR THE FREQUENCIES, WE PRESENT THE MEAN AND STANDARD
DEVIATIONS AS INTEGERS. THESE VALUES ARE CALCULATED OVER 5

RUNS TO ACCOUNT FOR THE INHERENT RANDOMNESS OF THE METHODS.

Frequency in the Modified
Feature top 5 features ROC AUC ROC AUC
PR interval 20(0) 0.9384 0.9384
QRS duration 9(1) 0.7450 0.7450
T+ amplitude, lead I 8(1) 0.8247 0.1753
T morphology, lead I 6(1) 0.7289 0.2711
T+ amplitude, lead V6 6(1) 0.8175 0.1825

interval of those listed in Table VI in their top 5 features.
The ROC AUC values in Table VI indicate the direction of

change of a feature with the pathology as described in Section
II-D. Clearly, in this case, the PR interval increases with 1st

degree AV block, which is consistent with the cardiologists’
diagnosis.

The QRS duration generally increases with 1st degree AV
block. The mean QRS duration for normal subjects is 92 ms
which increases to 113 ms for 1st degree AV block subjects.
This is consistent with evidence of conduction slowing distal
to the AV node in patients with known 1st degree AV block.

The T+ amplitude in leads I and V6 decreases on average in
patients with 1st degree AV block according to these results.
The physiological cause for these decreases is not clear.

Finally, the T morphology measure in lead I decreases with
1st degree AV block, but this is an integer value representing
different cases. Analysis of this feature shows that 99% of
the values for the Normal category are +1, indicating a single
upright T wave. However, for the 1st degree AV block records,
only 52% have a value of +1, with almost all the others having
a value of either −1 or −2 in equal proportions. Thus, it
seems that in approximately half the cases of 1st degree AV
block, the T wave is inverted or biphasic with negative leading
component. A possible explanation for this is that for 1st

degree AV block subjects, the PR interval is longer resulting
in a longer diastolic interval. If the action potential duration
increases more in some regions than others for longer diastolic
intervals (restitution), this could cause morphology changes in
the T wave.

B. Right Bundle Branch Block

For RBBB, there are 7 important features and a further 3
features that correlate with at least one of these, as listed in
Table I. Using the scoring algorithm described in Section II-E,
we found the score for each method using the top 5 features
of each ranking only. In Table VII, scores for each method
comparing the top 5 features with both the important features
and the important and correlating features are given. The
best performing method is Logistic regression, while Random
forest (SHAP and LIME), Random forest, Logistic regression
(SHAP and LIME), Deep networks (SHAP), Chi-square test
and Modified ROC AUC all have scores over 70. It is striking
that only XGB (Permutation), Deep networks (LIME) and
Gaussian Processes have an increased score when including
the correlating features. The worst performing methods are
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TABLE VII
RIGHT BUNDLE BRANCH BLOCK TOP 5 SCORES FOR THE DIFFERENT
FEATURE IMPORTANCE RANKINGS USING THE IMPORTANT FEATURES

ONLY OR THE IMPORTANT FEATURES TOGETHER WITH FEATURES THAT
CORRELATE WITH THEM. THE RANKING OF THE NON-DISCRIMINATING

FEATURES IS ALSO GIVEN. RESULTS FOR MODEL-DEPENDENT METHODS
ARE GIVEN IN THE UPPER PART OF THE TABLE AND RESULTS FOR

MODEL-INDEPENDENT METHODS ARE GIVEN IN THE LOWER PART. WE
PRESENT THE MEAN AND STANDARD DEVIATIONS AS INTEGERS,

CALCULATED OVER 5 RUNS, TO ACCOUNT FOR THE INHERENT
RANDOMNESS OF THE METHODS.

Top 5 score Ranking of the
important/ non-discriminating

Method imp. + corr. features
Random Forest (permutation) 33(0)/33(0) 20(0)/61(0)
Random Forest (SHAP) 72(4)/72(4) 112(2)/115(0)
Random Forest (LIME) 82(14)/82(14) 110(0)/113(0)
Random Forest 79(7)/79(7) 113(1)/115(1)
XGB (permutation) 43(18)/47(19) 19(1)/56(1)
XGB (SHAP) 67(0)/67(0) 99(0)/106(0)
XGB (LIME) 38(5)/38(5) 110(0)/113(0)
Logistic Regression (permutation) 52(18)/52(18) 21(0)/69(6)
Logistic Regression (SHAP) 80(4)/80(4) 106(0)/78(0)
Logistic Regression (LIME) 82(6)/82(6) 109(0)/113(0)
Logistic Regression 93(0)/93(0) 76(2)/110(1)
Deep networks (permutation) 10(13)/10(13) 21(0)/1(0)
Deep networks (SHAP) 81(11)/81(11) 78(22)/34(13)
Deep networks (LIME) 28(18)/37(10) 109(0)/114(0)
Gaussian processes 60(0)/67(0) 4(0)/3(0)
Chi square test 87(0)/87(0) 116(0)/117(0)
MRMR 33(0)/33(0) 18(2)/2(0)
NCA 33(0)/33(0) 116(0)/117(0)
Relieff 60(0)/60(0) 106(0)/105(0)
Modified ROC AUC 73(0)/73(0) 116(0)/117(0)

Random forest (permutation), XGB (LIME), Deep networks
(permutation and LIME), MRMR and NCA.

We then considered the ranking for each method of the
non-discriminating features which are again shown in the final
column of Table VII. We note that these feature rankings are
rather low for Random Forest (SHAP and LIME), Random
forest, XGB (SHAP and LIME), Logistic regression (SHAP
and LIME), Deep networks (LIME), Chi-square test, NCA and
ReliefF so all the SHAP and LIME methods do very well.
However, these feature rankings are high for Random forest
(Permutation), XGB (Permutation), Deep networks (Permuta-
tion), Gaussian processes and MRMR so all the Permutation
methods perform poorly for these features. Deep networks
(Permutation) even ranks one of the non-discriminant features
as the most important one.

We again considered the top 5 features for each method,
with the 5 most frequent shown in Table VIII. We note that
4 of these are important features. However, the S amplitude
in lead V2 is not, but has a very high Modified ROC AUC
value, ranking sixth in the ROC AUC ranking. Given that leads
V1 and V2 are proximate on the body, it is not unexpected
that the S amplitude in lead V2 is significant, mirroring the
importance of the S amplitude in lead V1. The correlation
coefficient between the two is reasonably high at 0.6707. The
ROC AUC value suggests that the S amplitude in lead V1
increases with RBBB, resulting in a less pronounced S wave
(as the S wave amplitudes are negative). All these features have
a very high Modified ROC AUC value, which indicates good
separation of the two distributions for these features, except

for R’ amplitude in lead V1.
Again, when averaging the rankings across all runs, three

methods had all of their top 5 features in Table VIII, namely
Logistic Regression, Logisitic Regression (LIME) and Deep
networks (SHAP) while Random forest (LIME and SHAP),
Random Forest, Logistic regression (SHAP), XGB (SHAP),
Chi-square test and Modified ROC AUC all had 4 of their top
5 features in Table VIII. The worst performing methods were
Logistic Regression (Permutation), Deep networks (permuta-
tion), and MRMR which had only one feature in Table VIII
in their top 5.

The ROC AUC values in Table VIII show that QRS duration
increases with RBBB, which is consistent with one of the
diagnosis conditions that the width of the QRS complex
should be >120 ms. The S amplitude in leads V1 and V2
increases with RBBB, resulting in shallower S waves since
the S amplitude is negative, while the S amplitude in lead I
decreases with RBBB, resulting in a deeper S wave. The R’
amplitude in lead V1 increases with RBBB.

C. Left Bundle Branch Block

For LBBB, there are 14 important features and an additional
28 correlating features, as listed in Table II. The scoring
algorithm described in Section II-E gives the scores as shown
in Table IX, again using only the top 5 features. The scores for
the important features only are generally quite low. However,
when the correlating features are included, most methods show
a significant improvement, which is not surprising as there
are 28 additional correlating features, although much of the
improvement in scores is due to the three T morphology
features (see Table X).

Using only the important features, the best performing
method is Gaussian processes, while Logistic regression (per-
mutation) and Deep networks (permutation) both have a score
of 0. When the correlating features are included, the Chi-
square test has a perfect score of 100. Random Forest (SHAP
and LIME), Random Forest, XGB (SHAP) and Relieff all
have high scores above 90. In contrast, Logistic regression
(permutation) still has a zero score while Deep networks
(permutation) has an increased, but still poor, score of 5.

The rankings of the non-discriminating features were gen-
erally low, with Chi-square test and NCA performing particu-
larly well. Gaussian Processes emerges as the only method that
gives, with a ranking of 2, a particular high ranking to one of
the non-discriminating features. In contrast, all the SHAP and
LIME methods ranked this feature greater than 100, except
for XGB (SHAP) which ranked it as 99, so these methods all
performed well.

The frequency of features in the top 5 for all methods is
shown in Table X. We note that three of these are correlating
features, which may explain the big increase in scores when
the correlating features are included. Again, all of these 5 fea-
tures have a very high Modified ROC AUC value, indicating
good separation of the two distributions for these features. We
note that the three methods that did not have QRS duration
in their top 5 features were Logistic regression (permutation)
and Deep networks (permutation and LIME).
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TABLE VIII
THE MOST COMMON FEATURES IN THE TOP 5 FOR RBBB FOR ALL 20 METHODS AND THEIR MODIFIED ROC AUC AND ROC AUC VALUES. FOR THE
FREQUENCIES, WE PRESENT THE MEAN AND STANDARD DEVIATIONS AS INTEGERS. THESE VALUES ARE CALCULATED OVER 5 RUNS TO ACCOUNT FOR

THE INHERENT RANDOMNESS OF THE METHODS.

Frequency in the Type of Modified
Feature top 5 features feature ROC AUC ROC AUC
QRS duration 18(1) Important 0.9933 0.9933
S amplitude, lead V1 11(1) Important 0.9283 0.9283
R’ amplitude, lead V1 8(1) Important 0.7860 0.7860
S amplitude, lead I 8(1) Important 0.9234 0.0766
S amplitude, lead V2 7(1) Unimportant 0.9199 0.9199

TABLE IX
LEFT BUNDLE BRANCH BLOCK TOP 5 SCORES FOR THE DIFFERENT

FEATURE IMPORTANCE RANKINGS USING THE IMPORTANT FEATURES
ONLY OR THE IMPORTANT FEATURES TOGETHER WITH FEATURES THAT
CORRELATE WITH THEM. THE RANKING OF THE NON-DISCRIMINATING

FEATURES IS ALSO GIVEN. RESULTS FOR MODEL-DEPENDENT METHODS
ARE GIVEN IN THE UPPER PART OF THE TABLE AND RESULTS FOR

MODEL-INDEPENDENT METHODS ARE GIVEN IN THE LOWER PART. WE
PRESENT THE MEAN AND STANDARD DEVIATIONS AS INTEGERS,

CALCULATED OVER 5 RUNS, TO ACCOUNT FOR THE INHERENT
RANDOMNESS OF THE METHODS.

Top 5 score Ranking of the
important/ non-discriminating

Method imp. + corr. features
Random Forest (permutation) 33(0)/40(0) 56(0)/61(0)
Random Forest (SHAP) 33(0)/94(7) 77(12)/107(6)
Random Forest (LIME) 33(0)/92(7) 61(15)/112(0)
Random Forest 31(2)/97(3) 77(12)/98(11)
XGB (permutation) 33(0)/60(0) 56(0)/61(0)
XGB (SHAP) 33(0)/93(0) 59(0)/99(0)
XGB (LIME) 45(10)/61(19) 43(17)/112(0)
Logistic Regression (permutation) 0(0)/0(0) 56(0)/75(0)
Logistic Regression (SHAP) 33(0)/75(3) 40(1)/110(11)
Logistic Regression (LIME) 22(6)/66(10) 40(11)/111(1)
Logistic Regression 33(0)/60(0) 40(0)/53(0)
Deep networks (permutation) 0(0)/5(10) 56(0)/78(6)
Deep networks (SHAP) 15(10)/71(2) 62(11)/102(28)
Deep networks (LIME) 2(3)/66(18) 73(28)/110(1)
Gaussian processes 60(0)/67(0) 78(0)/2(0)
Chi square test 33(0)/100(0) 113(0)/117(0)
MRMR 33(0)/73(0) 116(0)/22(2)
NCA 40(0)/40(0) 100(0)/117(0)
Relieff 13(0)/93(0) 71(0)/101(0)
Modified ROC AUC 33(0)/80(0) 117(0), 116(0)

No method had all the top 5 features matching those in
Table X but Random Forest (SHAP) had 4 out of its top 5
that matched with Table X. On the other hand, XGB (LIME)
and NCA had only one of the features in Table X in their top
5, which was the QRS duration.

The ROC AUC values show that the QRS duration increases
with LBBB, which is consistent with the condition that the
width of the QRS complex should be >120 ms. The diagnosis
of LBBB involves only changes in the QRS complex but the
two T morphology features in Table X are not associated
with the QRS complex. However, we have already noted they
correlate strongly with the QRS duration.

The T morphology features for leads I and V6 decrease with
LBBB. Analysis of these features shows that 99% of the values
for the Normal class are +1 for both morphology features. For
the LBBB records, 72% are −1 and 24% are −2 for the T
morphology in lead I, and 69% are −1 and 24% are −2 for the
T morphology in lead V6, both of which represent a significant

shift from a single upright wave to either a single inverted
wave or a biphasic wave with leading negative component.

The R amplitude in leads V3 and V4 are not important
features for the diagnosis of LBBB, but this amplitude in
leads V5 and V6 are important features. As leads V3 and V4
are very close to lead V5, it is not too surprising that these
feature are common in the top 5 features for some methods.
Interestingly, the R amplitude in leads V5 and V6 are not in
the top 5 features for any method, so leads V3 and V4 seem
to be more important than leads V5 and V6.

IV. COMPARISON WITH THE MULTICLASS CASE

We have considered feature importance ranking in the
context of a binary classification of normal vs. a single
pathology for three different pathologies, namely 1st degree
AV block, RBBB and LBBB. This is the simplest possible
case, but is not very realistic since cardiologists have to
positively diagnose one (or more) conditions from a long list
of possible conditions. It is also conceivable that a simple
binary classification of normal vs. a specific pathology could
be achieved with high accuracy using only a subset of the
complete list of diagnostic conditions. Thus, as a next step,
we considered feature importance ranking for a multiclass
classification involving normal, 1st degree AV block, RBBB
and LBBB records in [4]. The feature importance rankings
were found for the one vs. all binary classifications as the aim
is to positively diagnose one condition (since the data were
single label) which implies a negative classification for the
other classes.

The accuracies of the models were not reported in [4]
but all four methods had an accuracy exceeding 95% for
the multiclass classification. Also, the results for the model
dependent methods are not directly comparable since the data
were not normalised in [4] as they were in this study. In
particular, the poor performance of Deep networks for the
ranking of the PR interval for the 1st degree AV block case
is almost certainly due to this lack of normalisation.

We now compare the feature rankings of the binary and
multiclass cases.

A. First Degree AV Block

The ranking of the PR interval was very similar in the binary
and multiclass cases. In the binary case, all methods ranked the
PR interval as most important. In the multiclass case, the PR
interval was not the top feature for Logistic regression (SHAP
and LIME), Deep networks (SHAP and LIME) and Gaussian
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TABLE X
THE MOST COMMON FEATURES IN THE TOP 5 FOR LBBB FOR ALL 20 METHODS AND THEIR MODIFIED ROC AUC AND ROC AUC VALUES. FOR THE

FREQUENCIES, WE PRESENT THE MEAN AND STANDARD DEVIATIONS AS INTEGERS. THESE VALUES ARE CALCULATED OVER 5 RUNS TO ACCOUNT FOR
THE INHERENT RANDOMNESS OF THE METHODS.

Frequency in the Type of Modified
Feature top 5 features feature ROC AUC ROC AUC
QRS duration 17(0) Important 0.9960 0.9960
T morphology, lead I 12(1) Correlating 0.9689 0.0311
T morphology, lead V6 10(1) Correlating 0.9510 0.0490
R amplitude, lead V4 5(1) Correlating 0.9401 0.0599
R amplitude, lead V3 4(0) Unimportant 0.9218 0.0782

processes. The poor results for Logistic regression and Deep
networks are probably due to the fact that the data were not
normalised.

The most common features in the top 5 had three features
in common, namely the PR interval, QRS duration and T+
amplitude in lead I. The other features listed in Table VI are
the T+ amplitude in lead V6 and T morphology in lead I
whereas the other features for the multiclass case were the ST
slope in leads I and V1 which are quite different features for
the two cases.

B. RBBB

We first note that the correlating features for RBBB were
different for the binary and multiclass cases, with 3 correlating
features in the binary case (which are listed in Table I) and
5 correlating features for the multiclass case. The scores for
the important and correlating features for the multiclass case
are greater than the corresponding scores for the binary case
for many methods, although a notable exception is Logistic
regression (SHAP and LIME) which both had a score of zero
in the multiclass case and were among the best scores in the
binary case! We also note that in the multiclass case, the scores
for the important and correlating features were 100 for four
methods, namely Random forest, Random forest (permutation)
and XGB (SHAP and LIME). The scores for MRMR and NCA
were very low for the binary case, but improved significantly
for the multiclass case, for which they had the second best
score (important features only).

In this case, the most common features in the top 5 in the
binary and multiclass cases have 4 features in common and
so there is good agreement here.

C. LBBB

In this case, there are 28 correlating features in the binary
case (which are given in Table II) but only 17 correlating
features for the multiclass case. The scores for the important
features only and for the important plus correlating features for
the multiclass case were almost all less than the corresponding
scores for the binary case.

The most common features in the top 5 only had no features
in common in this case. The multiclass case includes the ST
slope in three leads whereas the binary case includes the T
morphology in two leads.

V. DISCUSSION

The results of the different feature ranking algorithms for
the three pathologies that we have considered have some
inconsistencies, although some general trends can be observed.
For 1st degree AV block, all methods ranked the one important
feature first. For RBBB, Logistic regression had the highest
scores but scored quite poorly for LBBB. For LBBB, a score of
100 when including correlating features was obtained by Chi-
square test, while Random forest (SHAP and LIME), Random
forest, XGB (SHAP) and Relieff achieved high scores, almost
reaching the perfect score. ReliefF performed poorly for LBBB
(important features only) but had reasonable performance for
RBBB.

If the scores for RBBB and LBBB are added together, then
for the important features only, Logistic regression has the
highest score, closely followed by Gaussian processes and Chi-
square test. At the other end, Deep networks (permutation) has
the lowest combined score. Adding the scores for RBBB and
LBBB for the important and correlating features, then the top
score is obtained by Chi-square test. It is closely followed by
Random Forest, Random forest (SHAP and LIME) and Deep
networks (SHAP). Meanwhile, the lowest combined score was
obtained for Logistic regression (permutation) together with
Deep networks (permutation).

When comparing the various methods combined with
SHAP, LIME and permutation options, the permutation varia-
tions were consistently the worst. SHAP and LIME both pro-
duce comparably favorable outcomes, with SHAP exhibiting a
slight overall advantage. However, the Random forest result for
LBBB including correlating features was better than Random
forest (SHAP and LIME) and Logistic regression results were
significantly better than Logistic regression (SHAP and LIME)
for RBBB. So the native feature importance rankings for
Random forest and Logistic regression sometimes do well
without the addition of other methods on top.

All of the SHAP (except in combination with Deep Nets)
and LIME methods together with the Chi-square test and
Random forest all ranked the non-discriminating features quite
far down the rankings for RBBB and LBBB.

As mentioned in the introduction attribution methods ap-
plied to models operating on raw ECG data provide a comple-
mentary approach for knowledge discovery. However, a direct
comparison of feature importance methods with the XAI attri-
bution methods from [6] and [7] is not straightforward due to
fundamental differences between both approaches. Feature im-
portance methods typically focus on abstracted or constructed
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features, such as the ECG features in our research. While
attribution methods can work with such derived features, as
seen with SHAP in our work, their most compelling use case
is with deep learning models that work on raw data. Attribution
methods highlight the critical parts of the ECG that are relevant
for predicting specific pathologies. However, even when results
are aggregated across large groups of patients, as in [7], linking
these relevant regions to the diagnostic concepts recognised by
human cardiologists remains a challenge. While identifying
aspects such as peak amplitudes from an attribution map
might be straightforward, identifying intervals can be elusive.
In contrast, feature importance methods provide a unified
perspective by scoring individual ECG features. Given the
strong differences in methodology, it can be difficult to draw
parallels between the two. This complexity is compounded
by the fact that the underlying models for each method are
inherently different and may not agree on which features are
considered important.

Therefore, it seems more appropriate to contrast the feature
importance methods used for ECG features in this work with
the concept-based explainability methods in [7], namely Test-
ing with Concept Activation vectors (TCAV) [28]. As TCAV
concepts are derived from ECG features or their aggregated
combinations, they are more closely aligned with the con-
ceptual domain of feature importance methods. Explainable
AI methods were used in [7] to investigate concepts that are
most relevant for the diagnosis of a number of conditions,
including (complete) LBBB. In particular, TCAV was used to
evaluate the importance of the concept “QRS complex exceeds
120ms” in the diagnosis of LBBB. Their results showed a
statistically significant and strong correlation with this concept.
This is consistent with our observations, where the QRS length
feature was ranked highly. Despite the differences in the
models and methods used - with [7] using convolutional neural
networks on raw data - both studies consistently underlined the
importance of QRS duration in LBBB prediction, in line with
standard cardiologist guidelines. The synergy between differ-
ent XAI/feature importance methods and model architectures
deserves further investigation and represents an interesting
avenue for future research.

VI. CONCLUSION

In this comparison of feature ranking algorithms with the
expert knowledge of cardiologists for three different patholo-
gies, we have shown that generally speaking, the SHAP and
LIME methods all give good agreement with the impor-
tant features used by cardiologists, together with the native
Random forest and Logistic regression feature rankings. For
the model independent methods, Chi-square test generally
performed well. Some methods gave inconsistent results, in-
cluding MRMR and NCA. The permutation methods generally
performed quite poorly.

It is interesting that the top ranked features for many
methods include some unimportant or correlating features
rather than important features only. Notably, the T wave
morphology features, which are conventionally not considered
by clinicians, were consistently marked significant for the
diagnosis of left bundle branch block.

The code for obtaining the feature importance rankings
described in this work was made publicly available [18].
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APPENDIX A
ECG FEATURES

The 117 features from the Glasgow 12-lead ECG analysis
algorithm [11] that we identified as ones that cardiologists
would typically consider when making a diagnosis mainly
consist of features derived for all 12 leads, which are as
follows:
• Peak-to-peak amplitude
• Q amplitude
• R amplitude
• S amplitude
• R’ amplitude (amplitude of a second R peak)
• T+ amplitude (maximum height of the T wave)
• P morphology
• T morphology
• ST slope

The morphology parameters are integers representing four
cases, namely:
• A biphasic wave with leading positive component (+2)
• A single upright wave (+1)
• A single inverted wave (−1)
• A biphasic wave with leading negative component (−2)

In addition, a number of measurements derived from all 12
leads were used as follows:
• QRS frontal axis
• Average RR interval
• Heart rate variability
• Overall ST duration
• Overall PR interval
• QTc (Framingham)
• Overall P duration
• Overall QRS duration
• Overall T duration
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