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Abstract: Leptoquarks with masses between 2 TeV and 50 TeV are commonly invoked to
explain deviations between data and Standard-Model (SM) predictions of several observ-
ables in the decays b → cτ ν̄ and b → sℓ+ℓ− with ℓ = e, µ. While Leptoquarks appear in
theories unifying quarks and leptons, the corresponding unification scale MQLU is typically
many orders of magnitude above this mass range. We study the case that the mass gap
between the electroweak scale and MQLU is only populated by scalar Leptoquarks and SM
particles, restricting ourselves to scenarios addressing the mentioned flavour anomalies,
and determine the renormalisation-group evolution of Leptoquark couplings to fermions
below MQLU. In the most general case, we consider three SU(2) triplet Leptoquarks Sℓ

3,
ℓ = e, µ, τ , which couple quark doublets to the lepton doublet (νℓ, ℓ

−) to address the
b → sℓ+ℓ− anomalies. In this case, we find a scenario in which the Leptoquark couplings
to electrons and muons are driven to the same infrared fixed point, so that lepton flavour
universality emerges dynamically. However, the corresponding fixed point for the couplings
to taus is necessarily opposite in sign, leading to a unique signature in b → sτ+τ−. For
b → cτ ν̄ we complement these with either an SU(2) singlet Sτ

1 or doublet Rτ
2 and study

further the cases that also these Leptoquarks come in three replicas. The fixed point so-
lutions for the Sℓ

3 couplings explain the b → sℓ+ℓ− data for Se,µ
3 masses between 14 and

15 TeV, according to the scenario. b → cτ ν̄ data can only be fully explained by couplings
exceeding their fixed-point values and evolving into Landau poles at high energies, so that
one can place an upper bound on MQLU between 108 and 1011 GeV.
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1 Introduction

Several measured branching ratios driven by the quark decay b → sµ+µ− show a deficit
of events in the kinematic region with q2 ≤ 8 GeV, where q2 is the invariant mass of the
lepton pair [1–3], if confronted with the Standard-Model (SM) prediction of refs. [4, 5].
Also the observable P ′

5 parametrising an angular distribution in B → K∗µ+µ− follows
this pattern [6–9].1 In a 2022 reanalysis of LHCb data for the lepton flavour universality
violating (LFUV) ratios [10]

RK(∗) ≡ B(B → K(∗)µ+µ−)
B(B → K(∗)e+e−)

(1.1)

has resulted in values compatible with the SM predictions RK(∗) ≃ 1 [11, 12]. Thus,
while the previous results of RK(∗) ∼ 0.8 were hinting at the possibility of LFUV up

1Refs. [4, 5] employ QCD sum rules, a method in which the contribution from excited hadrons to
correlation functions is calculated perturbatively (“quark-hadron duality”). The uncertainty associated
with this step is hard to quantify and critics suggested this as the source of the discrepancy.
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to the 20% level, the current situation has strongly changed and violation of LFU is no
longer preferred by data, although technically still allowed with reduced size. Therefore, if
beyond-SM (BSM) physics is invoked to explain the b→ sµ+µ−, it will couple with similar
strengths to muons and electrons.

Another long-standing flavour anomaly is related to b → cτν decays and observed in
the ratios

RD∗ ≡ B(B → D(∗)τν)
B(B → D(∗)ℓν)

, ℓ = e, µ. (1.2)

While BaBar and Belle have measured both ratios jointly, early LHCb measurements could
only determine RD∗ . While all measurements have always been very consistent concern-
ing RD∗ , there is some tension between the large 2012 BaBar value for RD [13] and the
corresponding 2019 Belle measurement with a smaller, SM-like result to the level expected
by statistical fluctuation [14]. In 2022 LHCb has presented a combined RD − RD∗ mea-
surement which has increased the overall consistency among all experimental results [15].
HFLAV combines six measurements [13–18] to [19]

Rexp
D = 0.358 ± 0.025 ± 0.012 , Rexp

D∗ = 0.285 ± 0.010 ± 0.008 , (1.3)

which have to be compared with the SM predictions of [20–25]

RD = 0.298 ± 0.004 , RD∗ = 0.254 ± 0.005 , (1.4)

entailing a discrepancy with eq. (1.3) of 3.2σ. Better measurements of D∗ and τ polari-
sations can discriminate between different BSM explanations of RD(∗) [26, 27]. The ratio
RΛc ≡ B(Λb → Λcτν)/B(Λb → Λcℓν) contains redundant information to RD∗ in any model
of New Physics (NP) [26, 27] and must move upward in future measurements from its 2022
value RLHCb

Λc
= 0.242 ± 0.026 ± 0.040 ± 0.059 [28] to RΛc = 0.39 ± 0.05 [29] if Rexp

D(∗) in
eq. (1.3) are correct.

Leptoquarks (LQs) are the most popular particle species postulated to remedy the
flavour anomalies. While giving an exhaustive list of references on this topic goes beyond
the scope of this paper, a selection of the most prominent and innovative models involving
LQs and addressing b→ s and b→ c anomalies can be found in refs. [30–43], and references
therein. In this paper we focus on scalar LQs, which can be consistently added to the SM
particle content. That is, their mass MLQ is much below the scale MQLU determining
the masses of the remaining particles of some complete theory of quark-lepton unification
(QLU) and the effects of the latter particles decouple for MQLU → ∞. By contrast, a
vector LQ with mass MLQ ≪ MQLU corresponds to a non-decoupling scenario unless the
Higgs sector responsible for its mass is taken into account as well. Flavour anomalies are
addressed with the scalar LQs S1, R2 and S3, denoting SU(2) singlet, doublet and triplet
respectively, see figure 1 for sample diagrams. The combinations (S1, S3) or (R2, S3) can
simultaneously cure b→ cτ ν̄ and b→ sℓ+ℓ−, with the caveat that one needs more than one
copy of some SU(2) representations as explained below in section 3. The former scenario
also affects the decay b→ sνν̄ which is currently probed at the Belle II experiment. In both
scenarios one can find large effects on the anomalous magnetic moment of the muon [44].
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bL cL,R bL cR bL sL

S1 R2 S3

νL τR µLτL,R νL µL

Figure 1. Contributions of scalar Leptoquarks to anomalous quark decays.

The presence of a sizable mass gap between MLQ and MQLU opens the possibility to
study the renormalisation group (RG) to find generic predictions for the low-energy param-
eters without specifying details of the complete theory valid at MQLU. The prototypical
example for such a study is gauge coupling unification, which can be assessed from the SM
beta functions alone, without knowing the parameters of the grand unified theory valid at
the high scale. Indeed, the “near miss” of these running couplings nurtures the hope to find
new particles in the reach of current particle colliders, because they change the slope of the
beta functions. Another opportunity of RG analyses is the possibility to find infrared (IR)
(quasi-) fixed points (FP) of parameters. Such studies have been pioneered in ref. [45] for
the top Yukawa coupling, aiming at a prediction of the top mass. In this paper we derive
and study the RG equations for LQ Yukawa couplings and SM gauge couplings.

The paper is organised as follows: in section 2 we report the effective Hamiltonians
employed to describe B Meson decays in and beyond the SM, and summarize the current
status of bounds on the NP couplings from the latest global fits. Section 3 reviews some
basics and assesses the implications of low-energy data on the flavour pattern of the LQ
Lagrangian. In section 4 we present the RG equations (RGE) of the LQ couplings first in
a fully general theory and then specifically for the scenarios which can explain the flavour
anomalies. Section 5 discusses the RGE FPs and their implications. Finally we conclude
in section 6.

2 Effective Hamiltonians for B meson decays

It is customary to describe the decays of B mesons in the SM by means of effective field
theories (EFTs), obtained after integrating out the top quark, the heavy gauge bosons
Z and W , and the Higgs field. This approach is particularly helpful in the presence of
BSM physics as well. Indeed, the low-scale footprints of any heavy degree of freedom can
be parametrized at the B meson decay scale as shifts to the Wilson coefficients (WCs),
describing the short-distance effects associated to all the fields integrated out of the theory.
Therefore, after performing fits to all the available experimental data, it is possible to
obtain bounds on the NP effects in a model independent way. These bounds can be then
translated into constraints on any given model once the matching between the EFT and
the desired BSM theory is performed. We will give the results of such matching for the
relevant LQs in section 3.
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The effective Hamiltonian employed to describe b→ sℓ+ℓ− transitions reads

Hℓℓ
eff ⊃ 4GF√

2
VtbV

∗
ts

(
Cℓ

9Oℓ
9 + Cℓ

10Oℓ
10

)
+ h.c. , (2.1)

where we focus on the phenomenologically relevant operators

Oℓ
9 = αem

4π (s̄γµPLb)(ℓ̄γµℓ) , Oℓ
10 = αem

4π (s̄γµPLb)(ℓ̄γµγ5ℓ) . (2.2)

HereGF is the Fermi constant, Vtb and Vts are elements of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix, αem is the fine structure constant and PL,R = (1 ∓ γ5)/2. In the SM, the
WCs are LFU and at the renormalization scale µ ≡ µb = 4.8 GeV equal to Cℓ

9(µb) ≃ 4.1
and Cℓ

10(µb) ≃ −4.3, respectively. It is also useful to define the quantity Cℓ
L ≡ Cℓ

9 = −Cℓ
10.

As anticipated in the Introduction, the latest experimental results concerning
RK(∗) [11, 12] require NP effects to be LFU, if one wants to address the discrepancies
in b → sµ+µ− transitions by means of BSM physics. Defining therefore these additional
contributions as CU

9 ≡ Ce
9 = Cµ

9 and CU
L ≡ Ce

L = Cµ
L, the most likely results found by the

latest global fits [46–48] are
I) CU

9 (µb) ∼ −1 ,
II) CU

L (µb) ∼ −0.4 .
(2.3)

As we will see in the next section, the WCs configuration found in scenario II) arises in
the presence of S3 LQs coupling equally to electron and muons.

It is interesting to notice that b → sνν̄ transitions can be described by an effective
Hamiltonian closely related to the one given at eq. (2.1), namely

Hνν̄
eff ⊃ −4GF√

2
VtbV

∗
tsC

ℓ
νν̄Oℓ

νν̄ + h.c. , (2.4)

where we have introduced the neutrino operator

Oℓ
νν̄ = αem

4π (s̄γµPLb)(ν̄ℓγ
µ(1 − γ5)νℓ) . (2.5)

Since experiment cannot distinguish neutrino flavours, the sum over all flavours appears in
the ratio of the branching fraction and its SM prediction [49]:

Rνν̄
K(∗) = Bexp(B → K(∗)νν̄)

BSM(B → K(∗)νν̄)
= (CSM

νν̄ + Ce
νν̄)2 + (CSM

νν̄ + Cµ
νν̄)2 + (CSM

νν̄ + Cτ
νν̄)2

3(CSM
νν̄ )2 , (2.6)

where CSM
νν̄ (µb) ≃ −6.35. On the one hand the current experimental limits in the K∗

channel are set by the Belle collaboration [50], and read at 90% C.L. Rνν̄
K∗ < 2.7. On the

other hand, concerning the K channel, the Belle II collaboration recently reported the first
observation of this decay, which was found to be 2.8σ above its SM prediction [51], and
corresponding to Rνν̄

K = 2.8± 0.8 when combined with previous measurements. In the case
where NP couples to only one lepton flavour, these bounds imply at the 2σ level

−9 ≲ CNP
νν̄ ≲ −1.7 ∪ 14 ≲ CNP

νν̄ ≲ 22 , (2.7)
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where CNP
νν̄ represents any of Ce,µ,τ

νν̄ . An upcoming measurement by the Belle II collabora-
tion in the B → K∗νν̄ channel is expected as well, which will provide further constraints
on CNP

νν̄ [52].
The b→ cℓν transitions are described by the following effective Hamiltonian:

Hℓν
eff ⊃ 4GF√

2
Vcb

[
(1 + Cℓ

VL
)Oℓ

VL
+ Cℓ

SL
Oℓ

SL
+ Cℓ

SR
Oℓ

SR
+ Cℓ

TOℓ
T

]
+ h.c. , (2.8)

where we have introduced the operators

Oℓ
VL

= (c̄γµPLb)
(
ℓ̄γµPLνℓ

)
, Oℓ

SL
= (c̄PLb)

(
ℓ̄PLνℓ

)
,

Oℓ
SR

= (c̄PRb)
(
ℓ̄PLνℓ

)
, Oℓ

T = (c̄σµνPLb)
(
ℓ̄σµνPLνℓ

)
,

(2.9)

with σµν = i
2 [γµ, γν ]. Given the normalization employed in eq. (2.8), all the WCs there

appearing are describing genuine NP effects. It is worth to mention that in our study we
will not consider effects coming from the operator OVR

, which is obtained by replacing PL

with PR in the quark bilinear of OVL
, as it is LFU at dimension-six in the SMEFT [53–56].

Moreover, we do not allow for effects coming from right-handed neutrinos.
The latest bounds on the NP WCs involved in b → cℓν transitions, both in a model-

independent way and for specific UV models, can be found, e.g., in ref. [57]. As detailed
in the following section, out of the several possible scenarios identified by the fit we focus
here on the following scenarios, given at the renormalization scale µb:

A) Cτ
VL

(µb) ∼ 0.08 ,
B) Cτ

SL
(µb) = −8.9Cτ

T (µb) ∼ 0.19 ,
C) Cτ

SL
(µb) = 8.4Cτ

T (µb) ∼ ±i0.58 .
(2.10)

Scenarios A) and/or B) can arise in the presence of a S1 LQ coupled to taus, while C)
is instead a combination of WCs induced at the low scale by the presence of a R2 LQ,
coupling to taus.

3 Theory of leptoquarks

The updated LHCb values for RK(∗) [11, 12] imply that the NP interpretation of b→ sℓ+ℓ−

data requires that both b→ sµ+µ− and b→ se+e− receive NP contributions with similar
size [46–48]. As an immediate consequence, the S3 LQ potentially mediating these decays
must come in two copies, Se

3 and Sµ
3 , each coupling only to the indicated lepton species.

The reason why a single LQ cannot couple to both electrons and muons is the strong
experimental bound on µ → e conversion, which such a LQ would otherwise mediate. In
the SM we observe an approximate SU(2)2 flavour symmetry, corresponding to rotations of
the charged right-handed fields (l1R, l2R) and the left-handed doublets (L1, L2) of the first
two fermion generation. A priori the S3 fields will couple to the weak eigenstates and the
rotations of the latter into the flavour eigenstates eL,R, µL,R (upon diagonalisation of the
SM lepton Yukawa matrix) will lead to Leptoquarks coupling to both e and µ, which we
must avoid. This rotation, however, is unphysical, if the LQ mass matrix is proportional

– 5 –
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to the unit matrix, in which case one finds Se
3 and Sµ

3 as desired. Mass-degenerate Se
3 and

Sµ
3 mean that the LQ mass term in the Lagrangian also obeys an SU(2) flavour symmetry

related to rotations of leptons in flavour space.2 Thus we conclude from the experimental
evidence for RK(∗) ∼ 1 that Leptoquarks are part of the flavour puzzle and part (or even
actors) of its explanation in term of approximate SU(2) symmetries.

For the b → cτν anomalies one may employ S1 or R2 exchange, see figure 1. For the
former solution the S1 coupling to c̄Lτ

c
L comes with a coupling to s̄Lν

c
τL by SU(2) symmetry.

This gives a large contribution to b→ sνν̄, which could be mitigated by an Sτ
3 contribution

of opposite sign in an appropriate model [38]. Therefore the (S1, S3) scenario could permit
a significant enhancement of the branching ratio of B → K(∗)νν̄ currently studied at
Belle II [51, 52]. The R2 scenario can only successfully explain both R(D) and R(D∗) if
the real part of the product of the τ̄ bL and c̄τR Yukawa couplings of R2 is much smaller
than the imaginary part (in the usual quark basis in which Vcb is real) [26, 27, 43, 58].

3.1 Lagrangians

Let us here review the formalism employed to describe scalar LQs. In order to do so,
we adopt for fermion fields ψ the following formalism: ψL,R = PL,Rψ, ψ̄ = ψ†γ0 and
ψC = Cψ̄T , where we have introduced C = iγ2γ0.

In the following we report the Lagrangians describing the interaction of scalar LQs
with SM fields. We do not permit here diquark coupling of LQ, which would lead to
dangerous and undesired proton decays [32], and do not consider LQs coupling to right-
handed neutrinos. Hence, we will focus only on five families of scalar LQs, each denoted
by different quantum numbers relatively to the SM gauge group (SU(3), SU(2),U(1)) [59].
In particular, we employ a fully general formalism, allowing in principle multiple copies for
each LQ.

Before going into details for each LQ scenario we report here the generalization of the
SM Yukawa Lagrangian to the case of nH scalar Higgs doublets Φa, where a = 1, . . . , nH ,
with generic flavour structure. These theories are usually defined as generic nH Higgs
doublet models (GNHDM), and can be described by the following Lagrangian:

LΦ = −Y a
u, ijQ̄

l
L, iϵ

lmΦa, muR, j − Y a
d, ijQ̄L, iΦadR, j − Y a

e, ijL̄L, iΦaeR, j + h.c. , (3.1)

where ϵlm = (iτ2)lm, with τ2 being the second Pauli matrix. Moreover, l,m = 1, 2 are
SU(2) indices and i, j = 1, 2, 3 are flavour indices. As stated above, we do not assume any
particular flavour structure in the couplings among the several scalar Higgs doublets and
the SM fields, namely each Higgs doublet Φa can couple with all SM fermions through the
fully general coupling matrices Y a

u,d,e.
Finally, we adopt the convention g1 ≡

√
3/5g′, g2 ≡ g and g3 ≡ gs, with g′, g and gs

being the U(1), SU(2) and SU(3) gauge couplings, respectively.
2We remark that such flavor symmetry forbids the presence of Higgs-mediated LQ self-interaction terms

such as (Se,†
3 Sµ

3 )(Φ†Φ), which we therefore do not allow in our Lagrangians. Besides, contributions to the
Yukawa RGE from self-interaction terms arises only at the two-loop level, hence beyond the scope of this
paper.

– 6 –
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3.1.1 Singlet leptoquarks

A scalar LQ S1 ≡ (3̄,1, 1/3) interacts with the SM fields via the following Lagrangian:

LYS1
= ya

1 ijQ̄
C, l
L, iS

a
1 ϵ

lmLm
L, j + xa

1 ij ū
C
R, iS

a
1eR, j + h.c. . (3.2)

This Lagrangian describes all the coupling that are allowed for a weak singlet S1, which
can couple either to two left-handed SM fermions, or to two right-handed ones. Similarly
to the convention adopted for the Higgs doublets, here and below the index a is a family
index employed to denote an arbitrary number of copies of a scalar LQ. This index can also
be interpreted as a flavour index, analogously to the flavour indices i, j of the SM fermion
fields. The interaction between an Sa

1 LQ and the SM fields is mediated by arbitrary
complex 3 × 3 Yukawa coupling matrices ya

1 and xa
1, connected to left-handed and right-

handed fermions respectively.
On the other hand, the interaction among a scalar LQ S̃1 ≡ (3̄,1, 4/3) and SM fields

is described by
LYS̃1

= x̃a
1 ij d̄

C
R, iS̃

a
1eR, j + h.c. . (3.3)

Contrarily to S1 in eq. (3.2), a weak singlet S̃1 can only couple to two right-handed fields
due to hypercharge conservation. This interaction is mediated by the arbitrary complex
3 × 3 Yukawa coupling matrix x̃a

1.
The only scalar LQ which is going to be relevant for the phenomenological studies

carried out in section 5 is Sτ
1 , once non-vanishing values for the couplings yτ

1 23, yτ
1 33 and

xτ
1 23 are allowed. Indeed, it can contribute to b→ cτν decays via [60]

Cτ
SL

(µLQ) = −4Cτ
T (µLQ) = − v2

4Vcb

yτ
1 33x

τ ∗
1 23

M2
Sτ

1

, Cτ
VL

(µLQ) = v2

4Vcb

yτ
1 33(Vcsy

τ ∗
1 23 + Vcby

τ ∗
1 33)

M2
Sτ

1

,

(3.4)
at the matching scale µLQ = MSτ

1
∼ 2 TeV, with v = 246 GeV. Notice that the relations

among Cτ
SL

and Cτ
T is modified due to RGE effects once the coefficients are run down

to the low scale, becoming Cτ
SL

(µb) = −8.9Cτ
T (µb) [61, 62]. It is worth mentioning that,

due to SU(2) invariance, the presence of yτ
1 33 and yτ

1 23 implies a contribution to b → sνν̄

transitions as well, equal to [49]

Cτ
νν̄ = πv2

VtbV
∗

tsαem

yτ
1 33y

τ ∗
1 23

m2
Sτ

1

. (3.5)

Employing the results for scenarios B) or A) given in eq. (2.10) at the decay scale (which
therefore take into account the running effects from µLQ = MSτ

1
to µ = µb) implies the

following expected size for the NP parameters ratios, respectively:

B) yτ
1 33x

τ ∗
1 23

M2
Sτ

1

∼ −0.5 TeV−2 ,

A) yτ
1 33(Vcsy

τ ∗
1 23 + Vcby

τ ∗
1 33)

M2
Sτ

1

∼ 0.2 TeV−2 .

(3.6)
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A few considerations are now in order. Starting from the Cτ
SL

= −4Cτ
T scenario in eq. (3.4)

one can infer that, for couplings of order unity, the LQ mass is of order MSτ
1
∼ 1.5 TeV.

Even if yτ
1 23 is now assumed to be vanishing, we nevertheless obtain a vectorial contribution

Cτ
VL

∝ Vcby
τ
1 33y

τ ∗
1 33, which is, however, negligible due to the CKM suppression: we are

therefore consistent with scenario B) of eq. (2.10), where Cτ
VL

is assumed to be 0.
If, on the other hand, one would like to pursue the vectorial solution identified by sce-

nario A) in eq. (2.10), a non-vanishing value for yτ
1 23 is required together with a vanishing

xτ
1 23, in order to remove the scalar/tensor WCs while evading CKM suppression in the vec-

torial one. In this scenario, coupling of order unity would imply for the LQ a mass of order
mSτ

1
∼ 3 TeV. However, with this new choice of non-vanishing parameters a contribution

for Cτ
νν̄ is implied as well, equal to ∼ −130 and well above the current experimental bounds

given at eq. (2.7). Such a scenario would therefore require some additional mechanism in
order to avoid the B → K(∗)νν̄ bounds, like e.g. the one proposed in ref. [38].

3.1.2 Doublet leptoquarks

Moving on to weak doublets, the R2 ≡ (3,2, 7/6) scalar LQ Lagrangian is given by

LYR2
= −ya

2 ij ūR, iR
a, l
2 ϵlmLm

L, j + xa
2 ij ēR, iR

a∗
2 QL, j + h.c. , (3.7)

Due to R2 being a doublet, it can either couple to a left-handed lepton doublet and a
right-handed quark singlet, or vice-versa. These interactions are mediated by the arbitrary
complex 3 × 3 matrices ya

2 and xa
2, respectively.

Similarly, the Lagrangian for R̃2 ≡ (3,2, 1/6) reads

LYR̃2
= −ỹa

2 ij d̄R, iR̃
a, l
2 ϵlmLm

L, j + h.c. . (3.8)

Analogously to eq. (3.3), due to the different hypercharges of R2 and R̃2 only an interaction
with a left-handed lepton doublet and a right-handed quark singlet is allowed for the latter,
parameterized by the arbitrary complex 3 × 3 matrix ỹa

2 .
The doublet scalar Rτ

2 LQ becomes phenomenologically relevant for us once the cou-
plings yτ

2 23 and xτ
2 33 are allowed to be non-vanishing. Indeed, it contributes to b → cτν

transitions via [60]

Cτ
SL

(µLQ) = 4Cτ
T (µLQ) = v2

4Vcb

yτ
2 23x

τ ∗
2 33

M2
Rτ

2

, (3.9)

at the matching scale µLQ = MRτ
2
∼ 2 TeV. Once again, due to RGE effects the relation

among the coefficients reads Cτ
SL

(µb) = 8.4Cτ
T (µb) at the low scale [61, 62]. The bound

reported for scenario C) in eq. (2.10) can therefore be recast into a constraint on the
parameter ratio

yτ
2 23x

τ ∗
2 33

M2
Rτ

2

∼ 1.5 TeV−2 , (3.10)

where we assumed one of the two coupling to be purely real and the other purely imaginary.
Assuming for each coupling a size ∼ 1 would imply a mass for the LQ below 1 TeV, already
excluded by current constraints; it is however enough to require their size to be ∼

√
2,

which is still below the current bounds obtained from searches for pair-produced LQs at
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the LHC, to obtain a mass of the order MRτ
2
∼ 1.7 TeV, heavy enough to evade present

limits. See ref. [63] and references therein for a detailed discussion on the matter.

3.1.3 Triplet leptoquarks

We conclude this section describing the interactions among the weak triplet S3 ≡ (3̄,3, 1/3)
and the SM fields, ruled by the following Lagrangian:

LYS3
= ya

3 ijQ̄
C, l
L, iϵ

lm(τkSa, k
3 )mnLn

L, j + h.c. , (3.11)

where τk are the Pauli matrices, with k = 1, 2, 3. The contraction (τkSa, k
3 ) can also be

written as (τ⃗ · S⃗a
3 ), as originally done in ref. [59]. Due to its triplet nature, S3 LQs can

couple only with two left-handed SM fermions through the arbitrary complex 3× 3 matrix
ya

3 , analogously to the first term of eq. (3.2).
The triplet LQ has relevant phenomenological implications on b → sℓ+ℓ− transitions.

Indeed, allowing non-vanishing values for the couplings yℓ
3 3ℓ and yℓ

3 2ℓ, with ℓ = e, µ ≡ 1, 2,
it is possible to obtain contributions of the form [60]

Cℓ
L(µLQ) = πv2

VtbV
∗

tsαem

yℓ
3 3ℓy

ℓ ∗
3 2ℓ

M2
Sℓ

3

, (3.12)

at the matching scale µLQ = MSℓ
3
. Remembering that C9 and C10 do not run in QCD, the

result for scenario II) in eq. (2.3) can be directly applied, and implies for the NP parameter
ratio the value

yℓ
3 3ℓy

ℓ ∗
3 2ℓ

m2
Sℓ

3

∼ 0.001 TeV−2 . (3.13)

Assuming the couplings to be of order unity, we can therefore infer the scale of the LQ
mass to be MSℓ

3
∼ 30 TeV.

It is worth mentioning that, due to SU(2) invariance, allowing additional couplings to
τ would induce contributions to b → cτν transitions as well, similar to the ones obtained
for S1 LQs. However, the sign of such contributions would be strictly negative due to
additional constraints coming, e.g., from ∆mBs

[60] and hence not phenomenologically
interesting, unless additional symmetries are imposed to the Lagrangian [38]. On the other
hand, and again in a similar fashion to what is observed for the singlet LQ, contributions
to b→ sνν̄ transitions are unavoidable in this channel as well, and take the form

Cℓ
νν̄ = πv2

VtbV
∗

tsαem

yℓ
3 3ℓy

ℓ ∗
3 2ℓ

M2
Sℓ

3

. (3.14)

In this scenario, however, the induced size on Cℓ
νν̄ from b→ sℓ+ℓ− data would correspond

to Cℓ
νν̄ ∼ −0.6. This value is well within the current bounds, even when allowing for NP

coupled to two lepton families which imply a more stringent bound than the one given in
eq. (2.7).
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4 Renormalisation group equations

In this section we report the RGE of theories in which the SM sector is amended by an
arbitrary number of Higgs doublets and scalar LQs. We start by giving in section 4.1
the RGEs for a fully generic theory with multiple copies of all the five scalar LQs. We
then move to phenomenologically relevant cases, reporting the results obtained when the
SM extended either with (S1, S3) LQs or with (R2, S3) LQs, in section 4.2 and section 4.3
respectively. All our results listed below correspond to the convention of our Lagrangians
in eqs. (3.1)–(3.11). We give our results at the one-loop level of precision working in
the MS-scheme, which we obtained adopting the findings of refs. [64, 65] to our specific
scenarios.

RGE effects of couplings in theories with LQs have been studied before: recently, the
two-loop RGEs for couplings have been derived including the necessary one-loop threshold
corrections for the gauge and SM Yukawa couplings [66] and used to study coupling unifica-
tion at high scales. Similarly, in ref. [67] two-loop RGEs were studied to assess perturbative
unitarity and vacuum stability up to the Planck scale. Conversely, the authors of ref. [68]
have studied the implications of an ultraviolet (UV) fixed point at the Planck scale, moti-
vated by asymptotically safe gravity, on low-energy Leptoquark couplings. The couplings
have been evolved to low energies and confronted with the flavour anomalies. While these
papers employ RGEs to analyze UV properties of LQ theories, our study addresses the IR
behaviour of LQ couplings. The RGE of gauge couplings was studied in refs. [47, 67] to
check for Landau poles at high energies.

4.1 General results

Let us report here the RGE for the most general case, where arbitrary copies of the Higgs
doublet and the five scalar LQs are allowed.

We start by giving the RGE for the gauge couplings g1, g2 and g3, which we remember
are connected to the U(1), SU(2) and SU(3) gauge couplings by the convention g1 ≡√

3/5g′, g2 ≡ g and g3 ≡ gs. The RGE read

16π2µ
d

dµ
g1 = g3

1

(4
3nf + 1

10nH + 1
15nS1 + 16

15nS̃1
+ 49

30nR2 + 1
30nR̃2

+ 1
5nS3

)
, (4.1)

16π2µ
d

dµ
g2 = g3

2

(
−22

3 + 4
3nf + 1

6nH + 1
2nR2 + 1

2nR̃2
+ 2nS3

)
, (4.2)

16π2µ
d

dµ
g3 = g3

3

(
−11 + 4

3nf + 1
6nS1 + 1

6nS̃1
+ 1

3nR2 + 1
3nR̃2

+ 1
2nS3

)
, (4.3)

where nf represents the number of SM flavours, nH is the number of scalar Higgs doublets,
and nS1 , nS̃1

, nR2 , nR̃2
, nS3 are the numbers of S1, S̃1, R2, R̃2, S3 scalar LQs, respectively.

Before moving on to the RGE for the Yukawa couplings it is useful to define several
quantities which will later allow us to state these RGE in a more compact and intuitive
way. In particular, we give below the field renormalisation constants for all the relevant
fields, namely the scalar Higgs doublets, the scalar LQs and the SM fermions.
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Φa Φb Ψi Ψj

Ψl

Ψk Ψk

Φa

Φa

ΦbΨi Ψj

Ψk Ψl

Figure 2. Diagrammatic representations of the contributions to the beta functions of the Yukawa
couplings. Φ represents any scalar field, namely a Higgs doublet or a LQ, while Ψ represents any
SM fermion field.

Starting from the six kind of scalars allowed in our theory, the contributions of the
field renormalisation constants to the beta functions of the Yukawa couplings involve the
following combinations of Yukawa matrices:

Tab = Tr
[
NcY

a
u
†Y b

u +NcY
a

d
†Y b

d + Y a
e
†Y b

e

]
,

Tab
1 = Tr

[
2ya

1y
b
1
† + xa

1x
b
1
†]
, Tab

2 = Tr
[
ya

2y
b
2
† + xa

2x
b
2
†]
,

T̃ab
1 = Tr

[
x̃a

1x̃
b†
1

]
, T̃ab

2 = Tr
[
ỹa

2 ỹ
b†
2

]
, Tab

3 = Tr
[
2ya

3y
b
3
†]
,

(4.4)

where Nc = 3 is the colour number, and a, b = 1, . . . , nα with α ∈ {H,S1, S̃1, R2, R̃2, S3} is
an index denoting possible multiple copies of each scalar. All terms in eq. (4.4) stem from
diagrams involving fermion loops, like the left one in figure 2.

Concerning the field renormalisation constants of the SM fermion fields, we start with
the contributions from loops with Higgs fields, which are

[YQ]ij = 1
2

[
Y a

u Y
a

u
† + Y a

d Y
a

d
†
]

ij
, [YL]ij = 1

2
[
Y a

e Y
a

e
†
]

ij
,

[Yu]ij =
[
Y a

u
†Y a

u

]
ij
, [Yd]ij =

[
Y a

d
†Y a

d

]
ij
, [Ye]ij =

[
Y a

e
†Y a

e

]
ij
,
(4.5)

where we denote the (i, j) element of the matrix M by [M ]ij . Here and below, we adopt
the convention that repeated indices are implicitly summed over.

The contribution for the fermion field renormalisations due to the insertion of LQ in
a loop read

[Y1]ij = 1
2

[
ya

1y
a
1
†
]

ij
, [Ŷ1]ij = Nc

2
[
ya

1
†ya

1

]
ij
, [X1]ij = 1

2
[
xa

1x
a
1
†
]

ij
,

[X1̃]ij = 1
2

[
x̃a

1x̃
a†
1

]
ij
, [X̂1̃]ij = Nc

2
[
x̃a†

1 x̃
a
1

]
ij
, [X̂1]ij = Nc

2
[
xa

1
†xa

1

]
ij
,

[Y2]ij =
[
ya

2y
a
2
†
]

ij
, [Ŷ2]ij = Nc

2
[
ya

2
†ya

2

]
ij
, [X2]ij = Nc

[
xa

2x
a
2
†
]

ij
,

[Y2̃]ij =
[
ỹa

2 ỹ
a†
2

]
ij
, [Ŷ2̃]ij = Nc

2
[
ỹa†

2 ỹ
a
2

]
ij
, [X̂2]ij = 1

2
[
xa

2
†xa

2

]
ij
,

[Y3]ij = 3
2

[
ya

3y
a
3
†
]

ij
, [Ŷ3]ij = 3Nc

2
[
ya

3
†ya

3

]
ij
.

(4.6)
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Combining eq. (4.5) and eq. (4.6), both stemming from diagrams involving a fermion
and a scalar in a loop as depicted in the center of figure 2, allows us to finally define the
total contribution to the field renormalisations of the SM fermions, which read

[YQQ]ij = [YQ + Y∗
1 + X̂2 + Y∗

3 ]ij , [YLL]ij = [YL + Ŷ1 + Ŷ2 + Ŷ2̃ + Ŷ3]ij ,

[Yuu]ij = [Yu + X ∗
1 + Y2]ij , [Ydd]ij = [Yd + X ∗

1̃ + Y2̃]ij ,

[Yee]ij = [Ye + X̂1 + X̂1̃ + X2]ij ,

(4.7)

where the labels refer to the external fields.
Employing eq. (4.4) and eq. (4.7), complemented by additional contributions from

vertex corrections as the one shown in the right side of figure 2, we are now ready to give
the RGE for the Yukawa couplings introduced in section 3.1. The RGE of the SM Yukawa
couplings defined in eq. (3.1) read

16π2µ
d

dµ
[Y a

u ]ij = [Y a
u ]ij

(
−8g2

3 − 9
4g

2
2 − 17

20g
2
1

)
+ Tab∗ [Y b

u ]ij + [YQQ]ik[Y a
u ]kj + [Y a

u ]ik[Yuu]kj

− 2
(
[Y b

d Y
a

d
†Y b

u ]ij − [yb
1Y

a
e x

b
1
†]∗ij + [yb

2Y
a

e x
b
2]†ij

)
, (4.8)

16π2µ
d

dµ
[Y a

d ]ij = [Y a
d ]ij

(
−8g2

3 − 9
4g

2
2 − 1

4g
2
1

)
+ Tab [Y b

d ]ij + [YQQ]ik[Y a
d ]kj + [Y a

d ]ik[Ydd]kj

− 2[Y b
uY

a
u
†Y b

d ]ij , (4.9)

16π2µ
d

dµ
[Y a

e ]ij = [Y a
e ]ij

(
−9

4g
2
2 − 9

4g
2
1

)
+ Tab [Y b

e ]ij + [YLL]ik[Y a
e ]kj + [Y a

e ]ik[Yee]kj

+ 2Nc

(
[yb

1
†
Y a

u
∗xb

1]ij − [xb
2Y

a
u y

b
2]†ij

)
. (4.10)

The RGE of the singlet LQs Yukawa couplings defined in eqs. (3.2)–(3.3) read

16π2µ
d

dµ
[ya

1 ]ij = [ya
1 ]ij

(
−4g2

3 − 9
2g

2
2 − 1

2g
2
1

)
+ Tab

1 [yb
1]ij + [YQQ]∗ik[ya

1 ]kj + [ya
1 ]ik[YLL]kj

+ 2
(
[Y b

u
∗
xa

1Y
b

e
†]ij − [xb

2
T
xa

1
T yb

2]ij
)
, (4.11)

16π2µ
d

dµ
[xa

1]ij = [xa
1]ij

(
−4g2

3 − 13
5 g

2
1

)
+ Tab

1 [xb
1]ij + [Yuu]∗ik[xa

1]kj + [xa
1]ik[Yee]kj

+ 4
(
[Y b

u
T
ya

1Y
b

e ]ij − [yb
2
∗
ya

1
Txb

2
†]ij

)
, (4.12)

16π2µ
d

dµ
[x̃a

1]ij = [x̃a
1]ij

(
−4g2

3 − 2g2
1

)
+ T̃ab

1 [x̃b
1]ij + [Ydd]∗ik[x̃a

1]kj + [x̃a
1]ik[Yee]kj . (4.13)

– 12 –



J
H
E
P
1
1
(
2
0
2
3
)
1
3
1

The RGE of the doublet LQs Yukawa couplings defined in eqs. (3.7)–(3.8) read

16π2µ
d

dµ
[ya

2 ]ij = [ya
2 ]ij

(
−4g2

3 − 9
4g

2
2 − 5

4g
2
1

)
+ Tab

2 [yb
2]ij + [Yuu]ik[ya

2 ]kj + [ya
2 ]ik[YLL]kj

− 2
(
[Y b

e x
a
2Y

b
u ]†ij + [xb

1
∗
xa

2
∗yb

1]ij
)
, (4.14)

16π2µ
d

dµ
[xa

2]ij = [xa
2]ij

(
−4g2

3 − 9
4g

2
2 − 37

20g
2
1

)
+ Tab

2 [xb
2]ij + [Yee]ik[xa

2]kj + [xa
2]ik[YQQ]kj

− 2
(
[Y b

u y
a
2Y

b
e ]†ij + [yb

1
∗
ya

2
Txb

1]†ij
)
, (4.15)

16π2µ
d

dµ
[ỹa

2 ]ij = [ỹa
2 ]ij

(
−4g2

3 − 9
4g

2
2 − 13

20g
2
1

)
+ T̃ab

2 [ỹb
2]ij + [Ydd]ik[ỹa

2 ]kj + [ỹa
2 ]ik[YLL]kj .

(4.16)

Finally, the RGE of the triplet LQ Yukawa coupling defined in eq. (3.11) reads

16π2µ
d

dµ
[ya

3 ]ij = [ya
3 ]ij

(
−4g2

3 − 9
2g

2
2 − 1

2g
2
1

)
+ Tab

3 [yb
3]ij + [YQQ]∗ik[ya

3 ]kj + [ya
3 ]ik[YLL]kj .

(4.17)

4.2 The SM extended by S1 and S3 LQs

Let us now move our focus to the first of the two phenomenologically relevant models,
whose RGE implications will be studied in section 5, namely the one consisting in the
extension of the SM with S1 and S3 scalar LQs, and no additional Higgs doublets. This
kind of models has been originally proposed in ref. [38] and subsequently embedded in a
composite Higgs model in ref. [69]. They originally proposed a singlet LQ S1 to account for
the anomalies in b → cτν transitions, and a triplet LQ S3 for addressing data in b → sµµ

decays, as shown in figure 1. As detailed in section 3, the requirement of lepton flavour
universality in b → sℓ+ℓ− transitions implies now the presence of multiple copies of S3
LQs. While a similar behaviour is not required for the S1 LQ, we will however maintain a
degree of generality here and allow for multiple copies of this scalar LQ as well.

For this kind of theory eqs. (4.1)–(4.3) condense to

16π2µ
d

dµ
g1 = g3

1

(4
3nf + 1

10 + 1
15nS1 + 1

5nS3

)
, (4.18)

16π2µ
d

dµ
g2 = g3

2

(
−22

3 + 4
3nf + 1

6 + 2nS3

)
, (4.19)

16π2µ
d

dµ
g3 = g3

3

(
−11 + 4

3nf + 1
6nS1 + 1

2nS3

)
. (4.20)

The contribution from scalar field renormalisations are found from eq. (4.4), by speci-
fying to only one Higgs doublet and SM Yukawas Y a

u,d,e ≡ Yu,d,e, and hence Tab ≡ T. The
fermion field renormalisations of eq. (4.7) are altered by the reduced scalar sector of the
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theory, and now read

[Y ′
QQ]ij = [YQ + Y∗

1 + Y∗
3 ]ij , [Y ′

LL]ij = [YL + Ŷ1 + Ŷ3]ij ,

[Y ′
uu]ij = [Yu + X ∗

1 ]ij , [Y ′
dd]ij = [Yd]ij ,

[Y ′
ee]ij = [Ye + X̂1]ij .

(4.21)

We have now all the ingredients necessary to give the RGE for the Yukawa couplings of
an extension of the SM by multiple copies of S1 and S3 LQs. The RGE of the SM Yukawa
couplings defined in eq. (3.1) read

16π2µ
d

dµ
[Yu]ij = [Yu]ij

(
−8g2

3 − 9
4g

2
2 − 17

20g
2
1

)
+ T∗ [Yu]ij + [Y ′

QQ]ik[Yu]kj + [Yu]ik[Y ′
uu]kj

− 2
(
[YdY

†
d Yu]ij − [yb

1Yex
b
1
†]∗ij

)
, (4.22)

16π2µ
d

dµ
[Yd]ij = [Yd]ij

(
−8g2

3 − 9
4g

2
2 − 1

4g
2
1

)
+ T [Yd]ij + [Y ′

QQ]ik[Yd]kj + [Yd]ik[Y ′
dd]kj

− 2[YuYu
†Yd]ij , (4.23)

16π2µ
d

dµ
[Ye]ij = [Ye]ij

(
−9

4g
2
2 − 9

4g
2
1

)
+ T [Ye]ij + [Y ′

LL]ik[Ye]kj + [Ye]ik[Y ′
ee]kj

+ 2Nc[yb
1
†
Y ∗

u x
b
1]ij . (4.24)

The RGE of the singlet LQs Yukawa couplings defined in eq. (3.2) read

16π2µ
d

dµ
[ya

1 ]ij = [ya
1 ]ij

(
−4g2

3 − 9
2g

2
2 − 1

2g
2
1

)
+ Tab

1 [yb
1]ij + [Y ′

QQ]∗ik[ya
1 ]kj + [ya

1 ]ik[Y ′
LL]kj

+ 2[Y ∗
u x

a
1Y

†
e ]ij , (4.25)

16π2µ
d

dµ
[xa

1]ij = [xa
1]ij

(
−4g2

3 − 13
5 g

2
1

)
+ Tab

1 [xb
1]ij + [Y ′

uu]∗ik[xa
1]kj + [xa

1]ik[Y ′
ee]kj

+ 4[Y T
u y

a
1Ye]ij . (4.26)

Finally, the RGE of the triplet LQ Yukawa coupling defined in eq. (3.11) reads

16π2µ
d

dµ
[ya

3 ]ij = [ya
3 ]ij

(
−4g2

3 − 9
2g

2
2 − 1

2g
2
1

)
+ Tab

3 [yb
3]ij + [Y ′

QQ]∗ik[ya
3 ]kj + [ya

3 ]ik[Y ′
LL]kj .

(4.27)

4.3 The SM extended by R2 and S3 LQs

The second phenomenologically relevant model consists of the extension of the SM with
R2 and S3 scalar LQs, and again no additional Higgs doublets. This model was originally
proposed in ref. [58] where the two LQs were embedded in an SU(5) Grand Unification
Theory (GUT) and, as shown in figure 1, employs the R2 LQ to address data in b → cτ ν̄

decays, again in combination with the S3 LQ to explain anomalies in b→ sℓ+ℓ− transitions.
Similarly to the previous case, we will permit multiple copies for both scalar LQs.

– 14 –



J
H
E
P
1
1
(
2
0
2
3
)
1
3
1

For this kind of model the gauge coupling RGE from eqs. (4.1)–(4.3) condense to

16π2µ
d

dµ
g1 = g3

1

(4
3nf + 1

10 + 49
30nR2 + 1

5nS3

)
, (4.28)

16π2µ
d

dµ
g2 = g3

2

(
−22

3 + 4
3nf + 1

6 + 1
2nR2 + 2nS3

)
, (4.29)

16π2µ
d

dµ
g3 = g3

3

(
−11 + 4

3nf + 1
3nR2 + 1

2nS3

)
, (4.30)

In a similar fashion to the previous scenario, the scalar field renormalisations are
analogous to the ones given at eq. (4.4) specified to a single Higgs doublet, while for the
fermion ones we now have

[Y ′′
QQ]ij = [YQ + X̂2 + Y∗

3 ]ij , [Y ′′
LL]ij = [YL + Ŷ2 + Ŷ3]ij ,

[Y ′′
uu]ij = [Yu + Y2]ij , [Y ′′

dd]ij = [Yd]ij ,

[Y ′′
ee]ij = [Ye + X2]ij .

(4.31)

We can now move on to the RGE equations for the Yukawa couplings in this kind of
theory. The RGE of the SM Yukawa couplings defined in eq. (3.1) read

16π2µ
d

dµ
[Yu]ij = [Yu]ij

(
−8g2

3 − 9
4g

2
2 − 17

20g
2
1

)
+ T∗ [Yu]ij + [Y ′′

QQ]ik[Yu]kj + [Yu]ik[Y ′′
uu]kj

− 2
(
[YdY

†
d Yu]ij + [yb

2Yex
b
2]†ij

)
, (4.32)

16π2µ
d

dµ
[Yd]ij = [Yd]ij

(
−8g2

3 − 9
4g

2
2 − 1

4g
2
1

)
+ T [Yd]ij + [Y ′′

QQ]ik[Yd]kj + [Yd]ik[Y ′′
dd]kj

− 2[YuY
†

uYd]ij , (4.33)

16π2µ
d

dµ
[Ye]ij = [Ye]ij

(
−9

4g
2
2 − 9

4g
2
1

)
+ T [Ye]ij + [Y ′′

LL]ik[Ye]kj + [Ye]ik[Y ′′
ee]kj

− 2Nc[xb
2Yuy

b
2]†ij . (4.34)

The RGE of the doublet LQ Yukawa couplings defined in eq. (3.7) read

16π2µ
d

dµ
[ya

2 ]ij = [ya
2 ]ij

(
−4g2

3 − 9
4g

2
2 − 5

4g
2
1

)
+ Tab

2 [yb
2]ij + [Y ′′

uu]ik[ya
2 ]kj + [ya

2 ]ik[Y ′′
LL]kj

− 2[Yex
a
2Yu]†ij , (4.35)

16π2µ
d

dµ
[xa

2]ij = [xa
2]ij

(
−4g2

3 − 9
4g

2
2 − 37

20g
2
1

)
+ Tab

2 [xb
2]ij + [Y ′′

ee]ik[xa
2]kj + [xa

2]ik[Y ′′
QQ]kj

− 2[Yuy
a
2Ye]†ij . (4.36)

Finally, the RGE of the triplet LQ Yukawa coupling defined in eq. (3.11) reads

16π2µ
d

dµ
[ya

3 ]ij = [ya
3 ]ij

(
−4g2

3 − 9
2g

2
2 − 1

2g
2
1

)
+ Tab

3 [yb
3]ij + [Y ′′

QQ]∗ik[ya
3 ]kj + [ya

3 ]ik[Y ′′
LL]kj .

(4.37)

– 15 –



J
H
E
P
1
1
(
2
0
2
3
)
1
3
1

5 Phenomenology of fixed point solutions

We have now collected all the necessary ingredients to perform the study of the RGE IR
FPs, and to discuss their potential phenomenological implications for the BSM scenarios
selected in section 4.2 and 4.3. Our aim is the investigation of solutions to the anomalies
in b→ s and b→ c transitions with the IR FP values for such couplings.

As anticipated above, we will perform our studies in two distinct scenarios, differenti-
ated by whether the SM sector is extended by (potentially multiple copies of) S1 and S3
LQs, or R2 and S3 LQs, respectively. In both scenarios we will first study the minimal
case, where only one new field involved in b→ c transitions is considered, namely either Sτ

1
or Rτ

2 , while two new fields are allowed in the b→ s sector due to the requirement of a LFU
phenomenology, namely Se

3 and Sµ
3 . Subsequently, we will also consider the case where 6

NP fields are included in the theory, i.e. three new fields connected to b → c transitions,
namely either Se

1, Sµ
1 and Sτ

1 , or Re
2, Rµ

2 and Rτ
2 , and three new fields connected to the

b→ s sector, namely Se
3, Sµ

3 and Sτ
3 .

To obtain the FP values for the couplings investigated below, we will employ the
following procedure. As a starting point, for each specific SM extension we identify the
minimal set of n LQ couplings required to address anomalies in b→ s and b→ c transitions;
therefore, we take their corresponding n beta functions, which are given for the (S1, S3)
extension in eqs. (4.25)–(4.27) and for the (R2, S3) one in eqs. (4.35)–(4.37), and we consider
them in the limit where all the other NP couplings vanish. Finally, we set all the SM
couplings entering these beta functions to their experimental values evolved to the scale of
10 TeV, which we choose as the low-energy scale of the RG evolution. We obtain in this
way a set of n equations (the beta functions of the LQ couplings of interest are equal to
zero) in n variables (the LQ couplings themselves), and the FP values for these couplings
are therefore obtained requiring that all equations are fulfilled simultaneously.

Given the non linearity of the system and its high dimensionality, listing all the found
solutions goes beyond the scope of our analysis. We will therefore restrict ourselves to
reporting phenomenologically interesting FP solutions, namely those that comply with at
least one of the following requirements:

i) all FP values for the couplings have to be non-vanishing;

ii) the Se
3 and Sµ

3 couplings have to obey the relation ye
3 21y

e
3 31 = yµ

3 22y
µ
3 32, required by

the LFU scenario II) in eq. (2.3);

iii) if present, the product of the Rτ
2 couplings yτ

2 23x
τ ∗
2 33 has to be purely imaginary, in

accordance with scenario C) in eq. (2.10).

Once the couplings are determined by their FP values, the experimental constraints
from the anomalies fix the values of the (squared) LQ masses. We will face two possible
outcomes: a) the FP values for the couplings are large enough to reproduce the desired phe-
nomenology with sufficiently heavy LQ masses, not currently excluded by direct searches
at collider. This will also allow us to give a prediction for MLQ, in the case where the
low-energy physics is described by the FP values of the LQ couplings; or b) the FP values
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are not large enough to explain the desired phenomenology, because the LQ are too light to
comply with direct searches results.3 Nevertheless, also in this scenario useful conclusions
can be drawn: indeed, it will imply that in order to explain b → s and b → c data, the
values for (some of) the LQ couplings is required to be above the FP value. It is therefore
interesting to estimate the scale where the Landau pole is induced by such a choice, since
this scale can be interpreted as the upper bound for MQLU. We finally remark that for all
scenarios discussed below we verified the absence of low-scale Landau poles in the gauge
couplings, in agreement with the findings of refs. [47, 67].

5.1 The (S1, S3) extension

We start our analysis from the scenario where the SM is extended by one copy of the singlet
LQ, Sτ

1 , and two copies of the triplet one, Se
3 and Sµ

3 . Indeed, as detailed in section 3.1.1
and 3.1.3 respectively, Sτ

1 is capable to reproduce the desired low-scale phenomenology for
b → cτ ν̄ decays once the couplings yτ

1 33 and xτ
1 23 are non-vanishing, while Se

3 and Sµ
3 can

produce the correct low-energy effect in b → sℓ+ℓ− transitions when the couplings ye
3 31,

ye
3 21, yµ

3 32 and yµ
3 22 are allowed. For simplicity, we will assume all couplings to be real.

Aiming at a minimal working example, we set all the other couplings to zero and
consider the following structure for the coupling matrices in our analysis:

yτ
1 =

 0 0 0
0 0 0
0 0 yτ

1 33

 , xτ
1 =

 0 0 0
0 0 xτ

1 23
0 0 0

 ,

ye
3 =

 0 0 0
ye

3 21 0 0
ye

3 31 0 0

 , yµ
3 =

 0 0 0
0 yµ

3 22 0
0 yµ

3 32 0

 .

(5.1)

The IR FP values for these six non-vanishing couplings are therefore obtained by
searching for the simultaneous zeros of their relative beta functions, as given in section 4.2.
Only one family of solutions is found to be complying with requirement i) listed above,
which we report in table 1. The solution is characterized by sign ambiguities, meaning
that we can simultaneously flip signs of several couplings to find new solutions: for each
of the two Sτ

1 couplings both signs are allowed, while for the four Se
3 and Sµ

3 couplings an
odd number of them, namely either one or three, has to be negative, with the remaining
ones being positive. This means that this family of solution is composed by 32 different
scenarios, distinguished by sign permutations.

Unfortunately, this family of solutions is phenomenologically non-viable. On the one
hand, the Sτ

1 sector looks promising, with both couplings being ∼ 1 and hence complying
with the size implied by b → c anomalies and given at eq. (3.6). On the other hand,
the Sℓ

3 sector has an unacceptable, albeit intriguing, behaviour: indeed, the couplings are
3A third possibility would consist to ascribe to LQs only a part of the NP contributions required to

address the current experimental picture. This scenario would however require to further extend the NP
sector to fully explain data, with a consequent modification of the RGE due to the presence of additional
degrees of freedom. Such a scenario goes beyond the scope of this paper.
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yτ
1 33 xτ

1 23 ye
3 21 ye

3 31 yµ
3 22 yµ

3 32

0.986 0.871 0.672 0.433 0.672 −0.433

Table 1. Values for the IR FP of the six non-vanishing LQ couplings defined in eq. (5.1). Additional
solutions obtained via sign permutation are allowed as well, see text for further details.

ye
1 31 xe

1 21 yµ
1 32 xµ

1 22 yτ
1 33 xτ

1 23 ye
3 21 ye

3 31 yµ
3 22 yµ

3 32 yτ
3,23 yτ

3 33

0.291 1.006 0.291 1.006 0.291 1.006 0.749 0.172 0.172 0.749 0.664 −0.388
0.291 1.006 0.291 1.006 0.291 1.006 0.172 0.749 0.749 0.171 0.663 −0.388

Table 2. Values for the IR FP of the twelve non-vanishing LQ couplings defined in eq. (5.2).
Additional solutions obtained via sign permutation are allowed as well, see text for further details.

connected by the relation ye
3 21y

e
3 31 = −yµ

3 22y
µ
3 32, which is in maximal disagreement with

requirement ii). For this reason, it is not possible to connect the low-energy behaviour of
this kind of LQ extension of the SM to the IR FP values of the NP couplings, if trying to
address coherently the pattern of deviations in B meson decays.

We therefore move to inspect a more generalized scenario, where six NP fields are
allowed in the extension of the SM. In analogy of the three particle scenario, we allow only
the following couplings to be non-vanishing:

ye
1 =

 0 0 0
0 0 0

ye
1 31 0 0

 , yµ
1 =

 0 0 0
0 0 0
0 yµ

1 32 0

 , yτ
1 =

 0 0 0
0 0 0
0 0 yτ

1 33

 ,

xe
1 =

 0 0 0
xe

1 21 0 0
0 0 0

 , xµ
1 =

 0 0 0
0 xµ

1 22 0
0 0 0

 , xτ
1 =

 0 0 0
0 0 xτ

1 23
0 0 0

 ,

ye
3 =

 0 0 0
ye

3 21 0 0
ye

3 31 0 0

 , yµ
3 =

 0 0 0
0 yµ

3 22 0
0 yµ

3 32 0

 , yτ
3 =

 0 0 0
0 0 yτ

3 23
0 0 yτ

3 33

 .

(5.2)

In this new scenario, it is possible to find the following two families of solutions, both
complying with requirements i) and ii). The results are listed in table 2. Similarly to the
previous case, also these solutions are characterized by sign ambiguities: concerning the
six couplings in the S1 sector, both signs are allowed for each of them, yielding 64 different
configurations; on the other hand, concerning the six couplings in the S3 sector, the product
of the electron couplings and the one of the muon coupling have to share the same sign,
while the product of the tau ones have to be opposite, yielding 16 different configurations.
Hence, in total, each family of solutions is composed by 1024 distinct solutions due to sign
permutations.

It is interesting to highlight that requirement ii) is not accidentally fulfilled, but it
is met due to the pairs of couplings (ye

3 21, y
µ
3 32) and (ye

3 31, y
µ
3 22) sharing the same IR FP,

respectively. Hence, the low-energy LFU observed in b → sℓℓ transitions can be elegantly
explained due to a dynamical behaviour, with the couplings not having to share the same
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Figure 3. Scenario of eq. (5.2): Left panel: running of the couplings (ye
3 21 and yµ

3 32) from the high-
scale to the low-scale; the FP solution is given in dashed red. Right panel: running of the couplings
(ye

3 31 and yµ
3 22) from the high-scale to the low-scale; the FP solution is given in dashed red.

pattern at the high-scale. An example of this behaviour can be seen in the two panels
of figure 3, where the four couplings are taken to be different at the high-scale but are
attracted to the same two low-scale values, which corresponds to the FP solution of their
beta functions. In particular, the four couplings are evolved from µh = 1017 GeV down to
µl = 104 GeV, and their values are reported below:

ye
3 21(µh) = 2.95 , yµ

3 32(µh) = 1.00 , ye
3 31(µh) = 0.426 , yµ

3 22(µh) = 0.284 ,
ye

3 21(µl) = 0.765 , yµ
3 32(µl) = 0.722 , ye

3 31(µl) = 0.192 , yµ
3 22(µl) = 0.149 .

(5.3)

Note that the beta functions also depend on SM couplings which depend on the renormal-
ization scale µ. Therefore the FP solution of the LQ couplings is not a constant line.

Employing now the FP values for the LQ couplings and inverting eq. (3.12), one infers
the scale for the LQ masses to be

MSe
3

= MSµ
3

= 14.5
√

0.04
|VtbV

∗
ts|

√
−0.4
CU

L

TeV . (5.4)

It is worthwhile to compare this with the prediction from the UV FP analysis in ref. [68].
As a first remark, no choice of UV boundary conditions can lead to IR values of the LQ
couplings with a positive beta function, so that at least one of the two couplings entering
the b → sℓ+ℓ− amplitude must be (in magnitude) below its IR fixed point. Indeed, the
product of the low-energy values of these couplings found in ref. [68] is smaller than ours,
with the larger coupling similar in size to ours. Thus also the corresponding value for
MSe,µ

3
inferred from eq. (5.4) is smaller. Eq. (5.4) sets an upper bound on MSe,µ

3
for any

choice of UV boundary condition at the GUT or Planck scale. At the same time, any Se,µ
3

discovery with a mass close to the value in eq. (5.4) will imply LQ couplings close to their
IR fixed point, so that their high-energy values are unpredictable. The lower bound on the
products of the couplings and thereby on MSe,µ

3
found in ref. [68] is much more sensitive

to the UV boundary condition, as it results from UV values of couplings too small to ever
reach the IR fixed point. In other words: the smaller MSe,µ

3
, the more information can be

inferred on the UV values of the couplings from low-energy measurements.
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Figure 4. Emergence of a Landau pole in the running of the coupling yτ
1 23, when a value compatible

with b→ cτ ν̄ data is assumed at the low-scale. The FP solution is given in dashed red.

It is also interesting to notice that, with these values for the LQ couplings and mass,
the expected impact to the b → sνν̄ transitions ratio Rνν̄

K(∗) defined at eq. (2.6) reads
Rνν̄

K(∗) ≃ 1.1, hence not large enough to meaningfully also reduce the recent Belle II excess
for Rνν̄

K [51].
Finally, the emergence of an electron-muon universality implies also a strong and pre-

cise prediction for the tau couplings, whose product is characterized by an opposite sign
w.r.t. the light leptons. In particular, both FP solutions predict an enhancement in the
tau sector (opposite to the suppression implied by present b → s data in light leptons)
corresponding to Cτ

L(µb) ∼ 0.8, if one assumes MSe
3

= MSµ
3

= MSτ
3
.

The situation is different in the b → c sector: indeed, the FP solution for the Sτ
1

coupling yield yτ
1 33x

τ
1 23 ≃ −0.3, where the freedom on the coupling signs allows us to choose

xτ
1 23 ≃ −1; however, when confronting this value with eq. (3.6), in order to address the

anomalies in b→ c transitions Sτ
1 would be required to have a mass equal to MSτ

1
∼ 0.8 TeV,

value which has already been excluded by direct searches at LHC.4 This implies that, if
one would like to address the current experimental situation in this sector as well, the value
for yτ

1 23 at the low scale µl = 104 GeV has to be taken well above the FP solution, namely
equal to yτ

1 23 ∼ 1. In turn, this implies the emergence of a Landau pole at a scale around
µ ∼ 1011 GeV, which is the scale where yτ

1 23 diverges as can be observed in figure 4.
To conclude we have obtained that, when extending the SM sector with the 6 scalar

LQs Se
1, Sµ

1 , Sτ
1 , Se

3, Sµ
3 and Sτ

3 , thanks to the IR FP behaviours of their couplings it is
possible to explain the observed pattern of anomalies in b→ sℓℓ transitions by introducing
Se

3 and Sµ
3 LQs with masses at the ∼ 10 TeV scale and arbitrary high-scale couplings; on

the other hand, in order to address the experimental picture in b → cτ ν̄ transitions as
well, a value above the FP solution is required for one of the couplings, inducing an upper
limit to the LQU scale equal to MLQU ≲ 1011 GeV, which is far below the GUT scale and
corroborates ideas of multi-step unification [70].

4The NP contribution to Ce,µ
VL

coming from non-vanishing couplings of Se
1 and Sµ

1 are strongly con-
strained, see e.g. ref. [29] and references therein. In order to suppress such undesirable effects, the masses
of these two LQs are considered to be sensitively heavier than the scale of MSτ

1
.
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yτ
2 23 xτ

2 33 ye
3 21 ye

3 31 yµ
3 22 yµ

3 32

1.094 i 0.783 0.654 0.472 0.654 −0.472
1.094 0.783 i 0.654 0.472 0.654 −0.472

Table 3. Values for the IR FP of the six non-vanishing LQ couplings defined in eq. (5.5). Additional
solutions obtained via sign permutation are allowed as well, see text for further details.

5.2 The (R2, S3) extension

We move on to the study of the SM extended by one doublet LQ, Rτ
2 , and two copies

of the triplet one, Se
3 and Sµ

3 . Once again, the triplet LQs are employed to obtain the
desired low-energy effect in b → sℓ+ℓ− transitions by means of non-vanishing values for
the couplings ye

3 31, ye
3 21, yµ

3 32 and yµ
3 22. On the other hand, following now section 3.1.2,

we adopt the doublet LQ in order to explain the b → cτ ν̄ decays phenomenology, which
require the presence of the yτ

2 23 and xτ
2 33, with their product being imaginary as detailed

in requirement iii). We therefore allow the two Rτ
2 couplings to be complex.

The minimal set of non-vanishing couplings required by our analysis is therefore:

yτ
2 =

 0 0 0
0 0 yτ

2 23
0 0 0

 , xτ
2 =

 0 0 0
0 0 0
0 0 xτ

2 33

 ,

ye
3 =

 0 0 0
ye

3 21 0 0
ye

3 31 0 0

 , yµ
3 =

 0 0 0
0 yµ

3 22 0
0 yµ

3 32 0

 .

(5.5)

In a similar fashion to the previous scenario, we look now for the simultaneous zeros of
the couplings beta functions, as given in section 4.3. In this case, two families of solutions
are found to be complying with requirements i) and iii) listed above, identified by which
of the two Rτ

2 couplings is purely imaginary, and listed in table 3. These solutions are both
characterized by the same sign ambiguities: for each of the two Rτ

2 couplings both signs
are allowed, while for the four Se

3 and Sµ
3 couplings an odd number of them, namely either

one or three, has to be negative, with the remaining ones being positive. This means that
both families of solution are composed by 32 different scenarios each, distinguished by sign
permutations.

The minimal scenario is not found to be phenomenologically viable in this configuration
as well. A maximal disagreement with requirement ii) is again present, with ye

3 21y
e
3 31 =

−yµ
3 22y

µ
3 32, invalidating an explanation to b→ sℓ+ℓ− data. Moreover, even if requirement

iii) is fulfilled, the FP values for the Rτ
2 couplings are not acceptable if one wants to address

anomalies in b → cτ ν̄ transitions: indeed, the product of the two couplings is well below
∼ 2 (in modulus), which is the value required to have a mass for the LQ not excluded by
direct searches, see section 3.1.2.

We therefore move to inspect a more generalized scenario, where six NP fields are
allowed in the extension of the SM. In analogy of the three particle scenario, we allow only
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ye
2 21 xe

2 13 yµ
2 22 xµ

2 23 yτ
2 23 xτ

2 33 ye
3 21 ye

3 31 yµ
3 22 yµ

3 32 yτ
3,23 yτ

3 33

0.584 0.837 0.584 0.837 0.584 i 0.837 0.679 0.181 0.679 0.181 0.521 −0.472
0.584 0.837 0.584 0.837 0.584 0.837 i 0.679 0.181 0.679 0.181 0.521 −0.472

Table 4. Values for the IR FP of the twelve non-vanishing LQ couplings defined in eq. (5.6).
Additional solutions obtained via sign permutation are allowed as well, see text for further details.

the following couplings to be non-vanishing:

ye
2 =

 0 0 0
ye

2 21 0 0
0 0 0

 , yµ
2 =

 0 0 0
0 yµ

2 22 0
0 0 0

 , yτ
2 =

 0 0 0
0 0 yτ

2 23
0 0 0

 ,

xe
2 =

 0 0 xe
2 13

0 0 0
0 0 0

 , xµ
2 =

 0 0 0
0 0 xµ

2 23
0 0 0

 , xτ
2 =

 0 0 0
0 0 0
0 0 xτ

2 33

 ,

ye
3 =

 0 0 0
ye

3 21 0 0
ye

3 31 0 0

 , yµ
3 =

 0 0 0
0 yµ

3 22 0
0 yµ

3 32 0

 , yτ
3 =

 0 0 0
0 0 yτ

3 23
0 0 yτ

3 33

 .

(5.6)

We find also in this generalized scenario two families of solution complying with re-
quirements i) and iii), according to which is the Rτ

2 coupling to assume imaginary values.
The results are reported in table 4. In a similar fashion to what observed in the previous
section, these solutions are characterized by the same sign ambiguities: both signs are al-
lowed for each of the R2 couplings, yielding 64 different configurations, while the sign has
to be the same for the product of both Se

3 and Sµ
3 couplings, respectively, and opposite for

the product of Sτ
3 ones, yielding 16 different configurations. Summarizing, each family of

solutions is composed by 1024 distinct solutions due to sign permutations.
These found solutions share a similar phenomenology to the ones found in the general

case studied in section 5.1. Indeed, requirement ii) is fulfilled since the pairs of couplings
(ye

3 21, y
µ
3 32) and (ye

3 31, y
µ
3 22) share the same IR FP, respectively: we therefore obtain that,

also in this scenario, the low-energy LFU behaviour required to address b → sℓ+ℓ− data
can be ascribed to a FP origin. Moreover, the inferred value from eq. (3.12) for the LQ
masses now reads

MSe
3

= MSµ
3

= 14.1
√

0.04
|VtbV

∗
ts|

√
−0.4
CU

L

TeV , (5.7)

Finally, the prediction for Rνν̄
K(∗) defined at eq. (2.6) is equal to Rνν̄

K(∗) ≃ 1.1, again not large
enough to significantly reduce the Belle II excess in Rνν̄

K [51]. To conclude, in this scenario
as well we observe an opposite behaviour in the tau sector compared to the one observed
for the light leptons, with the product of the tau couplings showing again an opposite sign
and a prediction for the NP effect in this sector equal to Cτ

L(µb) ∼ 0.8, again in the case
of degenerate masses.

On the other hand, the situation in the b→ c sector is again different: the tau couplings
product reads here in both cases |yτ

1 33x
τ
1 23| ≃ 0.5, again too small to reproduce the desired
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ye
3 21 ye

3 31 yµ
3 22 yµ

3 32

0.622 0.533 0.622 −0.533

Table 5. Values for the IR FP of the four non-vanishing LQ couplings entering in ye
3 and yµ

3
matrices defined in eq. (5.1). Additional solutions obtained via sign permutation are allowed as
well, see text for further details.

phenomenology. It is nevertheless interesting to investigate, in this scenario as well, the
implications of taking values for the couplings above the FP solution. Indeed, taking for
both couplings a value in modulus of the order ∼

√
2, we can observe again the emergence

of a Landau pole, found this time at the scale µ ∼ 108 GeV.
In conclusion, we observed that the study of IR FPs yield interesting phenomenological

implications when the SM is extended with the 6 scalar LQs Re
2, Rµ

2 , Rτ
3 , Se

3, Sµ
3 and Sτ

3 .
In particular, the LFU required at the low scale for b→ sℓ+ℓ− transitions can be obtained
by the FP behaviours of the Se

3 and Sµ
3 couplings, whose masses are require to be at the

∼ 10 TeV scale while no additional conditions are requested for the coupling values at the
high-scale. On the other hand, a value for the Rτ

3 couplings is required to be above the FP
solution when confronting with b → cτ ν̄, implying the emergence of an upper limit to the
LQU scale equal to MLQU ≲ 108 GeV.

5.3 The S3 extension

We conclude this section by studying the FP solution of SM extensions of S3 LQs only, even
if in this scenario b → cτ ν̄ data cannot be explained. Indeed, motivated by the findings
of sections 5.1 and 5.2, it is interesting to investigate whether the dynamical emergence
of LFU in the S3 contributions to b → sℓ+ℓ− transitions arises only in the presence of
additional LQs in the theory as well, or it is an exclusive feature of the triplet LQs.

Following the approach of the previous analyses, we start our study from the scenario
where only Se

3 and Sµ
3 are added to the theory, with non-vanishing values for the couplings

ye
3 31, ye

3 21, yµ
3 32 and yµ

3 22. The only found family of solutions complying with requirement
i) is given in table 5. These solutions share the same features of the scenarios studied in
sections 5.1 and 5.2, when only two copies of the triplet LQ were allowed. In particular,
once again an odd number of minus signs is allowed for the four couplings, yielding to 8
different solutions distinguished by sign permutations. Moreover, requirement ii) is again
not fulfilled, due to the emerging feature ye

3 21y
e
3 31 = −yµ

3 22y
µ
3 32.

Moving on to the generalized case where the Sτ
3 LQ is included as well, the solutions

following requirements i) and ii) are reported in table 6. Also these solutions are quali-
tatively similar to the ones studied in the previous sections, when all three copies of S3
were allowed. Indeed, each family of solutions is characterized by the same sign ambiguity,
with the sign for both Se

3 and Sµ
3 couplings products having to be the same, respectively,

and opposite for Sτ
3 one. Moreover, requirement ii) is again dynamically fulfilled and the

following LQ masses are predicted:

MSe
3

= MSµ
3

= 15.3
√

0.04
|VtbV

∗
ts|

√
−0.4
CU

L

TeV , (5.8)
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ye
3 21 ye

3 31 yµ
3 22 yµ

3 32 yτ
3 23 yτ

3 33

0.760 0.189 0.191 0.759 0.639 −0.452
0.189 0.760 0.759 0.191 0.639 −0.452

Table 6. Values for the IR FP of the six non-vanishing LQ couplings entering in ye
3, yµ

3 and yτ
3

matrices defined in eq. (5.2). Additional solutions obtained via sign permutation are allowed as
well, see text for further details.

We therefore find that, in order to obtain this feature, the additional presence of singlet
or doublet LQs in the theory is not required. It is worth to mention that, if one would
employ a different version of requirement ii) requesting, e.g., universality among electrons
and taus, those two sectors would be the ones having couplings with the same product,
with the product of muon ones being different and opposite in sign.

6 Conclusions

In this paper, we studied the implications of RGE effects to LQ couplings to fermions in
selected BSM scenarios. A popular way to address the recent discrepancies observed in
several observables in the decays b→ cτ ν̄ and b→ sℓ+ℓ− with ℓ = e, µ consists of extending
the SM sectors by means of scalar LQs. In particular, the minimal subset of required
new fields includes the presence of triplet LQs Se

3 and Sµ
3 , coupled with equal strength

to electrons and muons, respectively, and of either the singlet LQ Sτ
1 or the doublet LQ

Rτ
2 coupled to taus. Indeed, the former pair of LQs are required to explain anomalies in

b → sµ+µ− without violating the reanalysed results of the LFUV ratios RK(∗) ∼ 1, while
the latter LQ is necessary to address anomalies in the b→ cτ ν̄ sector.

While these new fields are expected to live at scales between a few and a few tens of TeV,
one expects a large mass gap between the scales MLQ and MQLU, the scale where the LQs
are generated within a theory of quark-lepton unification, because gauge bosons coupling a
quark to a lepton must be very heavy. The presence of this large scale separation therefore
implies the possibility that the pattern of values of the LQ Yukawa couplings observed
at the B meson decay scale (when employing this kind of SM extensions to address the
anomalous data) has a dynamical origin stemming from the infrared behaviour of the RG
evolution rather than from symmetry properties. In particular, the possibility of such an
explanation of the LFU pattern inferred for the Se

3 and Sµ
3 couplings from RK(∗) ∼ 1 is

tantalizing. To this end, we studied the IR fixed-point (FP) solutions of the beta functions
of the LQ couplings and inspected their phenomenology using low-energy flavour data.

We found interesting phenomenological solutions in several scenarios. In particular,
every time that the SM is extended by three triplet LQs coupled each to a specific lepton,
namely Se

3, Sµ
3 and Sτ

3 , we find IR fixed point solutions for which the product of Se
3

couplings is equal to the one of the Sµ
3 couplings, so that electron-muon universality can

arise dynamically. Such universality is therefore independent from the values assumed by
the couplings at the high scale, as shown in an illustrative example in figure 3, and occurs
both when the triplet LQs are the only fields added to the SM, or come together with
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either three singlet LQs or three doublet ones, namely Se
1, Sµ

1 and Sτ
1 , or Re

2, Rµ
2 and

Rτ
2 , respectively. Moreover, a prediction for the masses of Se,µ

3 between 14 and 15 TeV is
obtained (according to the specific scenario), together with a 10% enhancement in Rνν̄

K(∗) .
While LQs with these masses are beyond the reach of current collider searches, such an
increase in Rνν̄

K(∗) is within the reach of the Belle II experiment. Furthermore, electron-
muon universality implies an IR FP for the product of Sτ

3 couplings with opposite sign,
enhancing Cτ

L over Ce,µ
L .

A widely studied research line of flavour physics aims at an understanding of quark
masses and Yukawa couplings in terms of broken flavour symmetries. Once LQs are in-
cluded in such a theory of flavour, it is mandatory to address their representations w.r.t.
the chosen flavour group (see ref. [71] for a comprehensive study). The experimental result
RK(∗) ∼ 1 teaches us that LQs addressing b → sℓ+ℓ− anomalies must come in multiple
copies distinguished by the lepton flavour number to avoid dangerously large contribu-
tions to µ → e transitions. Their mass matrix (for the first two generations) must be
close to the unit matrix to both avoid µ→ e transitions emerging from rotations between
weak and mass eigenstates and to accommodate RK(∗) ∼ 1 without the tuning of masses
against couplings. This suggest that the LQ mass matrix obeys the SU(2) flavour symme-
try of the lepton sector exactly. The results of our paper imply that no symmetry model
building for the LQ couplings is necessary: if they are close to their IR fixed-points, LFU
emerges dynamically. In this case it will be extremely difficult to gain any insight into
their high-energy values, because even small uncertainties of the low-energy values inflate
to large errors at high scales (see figure 3) making predictive flavour model-building for
these couplings impossible.

On the contrary, a dynamical origin has not been found for the couplings required
to address anomalies in b → cτ ν̄ decays. Indeed, both in the singlet and in the doublet
scenario the IR FP for the relevant couplings have been always found to be below the
implied values from low-energy data. Nevertheless, such findings are of phenomenological
interest as well, since couplings values above the IR FP imply the emergence of a Landau
pole at the scale µ ∼ 1011 GeV or µ ∼ 108 GeV, depending on whether the SM is extended
by scalar or doublet LQs, respectively. This scale can therefore be interpreted as an upper
limit on MQLU, giving an upper bound on the energy scale where quark-lepton unification
should occour.
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