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1 Introduction

The solutions of the low-energy limit of M-theory, i.e. 11D supergravity, consist of two branes
— the M2-brane and the M5-brane. An M2-brane is electrically charged under the supergravity
field C3 while its electromagnetic dual, an M5-brane, is charged magnetically. In the absence
of compactification the only known supersymmetric excitations of M-theory are the M2-brane,
the M5-brane and three fields — a 3-form gauge field C3, a graviton and a gravitino. An
M5-brane carries a self-dual (or chiral) 2-form gauge field on its worldvolume.

The first description of the worldvolume theory of two coincident M2-branes was given
by the maximally supersymmetric BLG model [1–5]. Soon after, it was generalised to an
arbitrary number of M2-branes by the ABJM superconformal field theory [6]. The 3D
worldvolume theory of a stack of M2-branes is well-understood by now. However, the 6D
worldvolume theory of a stack of M5-branes, known as the (2,0) superconformal field theory, is
yet to be fully comprehended. Its non-abelian symmetry structure and nonlinear self-duality
conditions obscure its understanding. For many reasons (see for e.g. [7]) it is possible that a
classical Lagrangian for this theory simply does not exist and this theory can be described
only at the quantum level. Despite its evasiveness the (2,0) superconformal field theory is
worth pursuing as it enables the deduction of a large number of properties and dualities of
lower-dimensional effective quantum field theories.

In the context of developing and studying the action of a single M5-brane, initially the
super-embedding formulation was used to determine the field equations [8, 9] which were
later derived using the action principle [10–12]. These different formulations were shown to
be equivalent in [13, 14]. M5-brane models based on the Nambu-Poisson bracket are given
in [15, 16]. Although it is easier to approach a model of a single M5-brane than that of
multiple M5-branes, construction of the Lagrangian of a single M5-brane has had its own
share of problems — lack of manifest invariance under diffeomorphism [12, 17, 18], being
non-polynomial [10, 11, 19], having an infinite number of auxiliary fields [20–22], requiring
going to a higher dimension [23, 24], etc. These are more generally also the issues associated
with most theories invariant under electromagnetic duality. Such hurdles impede further
developments such as quantising the action and understanding its interactions.

In recent years there has been considerable interest in the study of M5-brane actions
(e.g. [17, 25–46]). In light of string field theory, Ashoke Sen put forward a new formalism
for duality-symmetric actions in [47, 48] which describes abelian self-dual 2n-form fields in
(2n+2) spacetime dimensions. The shortcomings of the prior approaches to construct duality-
symmetric and M5-brane actions are avoided by Sen’s formalism. It realises self-duality
off-shell and preserves Lorentz invariance by introducing an unphysical auxiliary field which
decouples from the dynamics. Initially this formalism was shown on a flat background in the
weak gravity limit but recently it was extended to a general background [49].

Among other developments, Sen’s formalism has been employed in the direction of
constructing M5-brane actions [7, 32, 37–39, 42, 46]. In [7] Sen’s model was supersymmetrised
to obtain a (2,0) action in Minkowski spacetime and showed its generalisation to an interacting
non-abelian theory. It was further investigated in [37] which explored different geometrical
aspects of the abelian (2,0) superconformal action. The results turned out to be consistent
with the low-energy physics of an M5-brane action. In [38] Sen’s formalism was extended to
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construct a complete M5-brane action using the Green-Schwarz formalism, where the only
manifest supersymmetry exists in the target space. In one of the recent M5-brane models [32]
the mathematical origin of Sen’s action was provided by employing the language of homotopy
Maurer-Cartan theory. [46] presented a rheonomic Lagrangian describing non-interacting
tensor multiplets on coincident M5-branes in superspace. As exhibited by all of these works,
Sen’s formalism has proved to be very useful.

While Sen’s formalism realises Lorentz invariance manifestly, the same is not true of
diffeomorphism invariance, which is realised in an unconventional and involved way. In [49]
Hull put forth an action that is a generalisation of Sen’s duality-symmetric action [47, 48].
Hull’s theory can be formulated geometrically on any manifold and is invariant under
standard diffeomorphisms. The non-standard diffeomorpshim in Sen’s action turns out
to be a consequence of restricting the auxiliary sector metric in Hull’s action to be the
Minkowski metric.

The PST formulation of a duality invariant action [50–52], which is an alternative to
Sen’s formulation, has most of the characteristics required of a duality-invariant action like
manifest covariance, finite number of auxiliary fields, etc. but it is not polynomial. It has
derivatives of a scalar field present in its denominator making the Lagrangian singular when
the scalar field is constant in spacetime. In [53, 54], a polynomial formulation of the PST
Lagrangian1 was shown.

In this paper we present a class of M5-brane Lagrangians which circumvent all of the
earlier mentioned problems associated with M5-brane Lagrangians, and serve as an alternative
to the M5-brane Lagrangians based on Sen’s formulation. The Lagrangians given here are
manifestly covariant, polynomial and have a finite number of auxiliary fields. Although
these Lagrangians can be shown to reduce to the PST type non-polynomial M5-brane
Lagrangian [10, 11] by solving for and eliminating specific auxiliary fields, these polynomial
Lagrangians remain regular throughout, unlike the earlier non-polynomial Lagrangian. We
find that the only remnant of the non-polynomial structure of the earlier Lagrangian [10, 11]
occurring in our model of polynomial Lagrangians, is in the gauge symmetry linked with an
infinitesimal shift of the Stückelberg field a. But this does not affect the dynamics or the
nonlinear self-duality condition of the polynomial Lagrangians.

The polynomial Lagrangians are analytic and devoid of issues like discontinuity and
singularity. They can be useful for the construction of the Hamiltonian formulation of an
M5-brane [55], quantisation [56–58] and extension to the non-abelian case [33, 42]. They
can also be more amenable in performing the dimensional reduction of M5-brane actions to
D-brane actions [39, 43, 59, 60] and in the search for the interactions of M5-branes [61].

The outline of this paper is as follows. In section 2 we introduce a polynomial M5-brane
Lagrangian in which an auxiliary 2-form field appears via its field strength denoted by G.
We discuss the dynamics, symmetries and the self-duality condition of that Lagrangian. In
section 3 we show the analysis of the polynomial M5-brane Lagrangian expressed in terms of
the gauge potentials of the auxiliary 2-form fields through a field redefinition. Section 4 shows
the non-polynomial M5-brane Lagrangian obtained on eliminating the auxiliary 2-form fields
from the Lagrangian in section 3. Then in section 5 we demonstrate the equivalence of the

1Not to be confused with the PST M5-brane Lagrangian.
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Lagrangians given in sections 2–4 with the PST M5-brane Lagrangian [10, 11]. Our results
and possible future directions are discussed in section 6. In appendix A we show a few other
polynomial M5-brane Lagrangians alternative to the Lagrangians presented in sections 2
and 3. Appendix B summarises our conventions and notation. Appendices C and D contain
the proofs for certain identities used in obtaining some of the results in this paper.

2 A polynomial M5-brane Lagrangian with Field J

We begin with introducing the background spacetimes. The worldvolume of an M5-brane is six-
dimensional with the local coordinates denoted by xµ (µ = 0, 1, . . . 5). The coordinates of 11D
supergravity background are given by ZM = (Xm, θα) where Xm are the bosonic coordinates
with m = 0, 1, . . . 10 and θα are the Majorana spinor coordinates with α = 1, 2, . . . 32. The
supervielbein we use to switch between the curved spacetime and the tangent spacetime
is EM

A(Z). Here M denotes the curved spacetime indices and A the tangent spacetime
indices. The 11D metric is the Minkowski metric ηMN (Z). The 6D worldvolume metric
of the M5-brane is written as gµν(x) = Eµ

AEν
BηAB. Both gµν(x) and ηMN (Z) have the

mostly-plus signature.
Now we look at the field content. The chiral gauge potential of the M5-brane is denoted

by the 2-form field A(x) and its field strength F (x) = dA(x). The M5-brane is coupled to
the 3-form field C3(Z) and the 6-form field C6(Z), which are the background fields in 11D
supergravity. The field strength of C6 is dual to that of C3 as follows:

dC6 = ∗dC3 −
1
2 C3∧dC3 . (2.1)

Apart from the three fields A(x), C3(Z) and C6(Z) we have five auxiliary fields − three scalar
fields a(x), b(x), c(x) and two 2-form fields B(x) and K(x). The field strength of B(x) is
G(x) = dB(x). A manifestly covariant M5-brane Lagrangian which is polynomial, is given by

LJ12 = da∧K∧
[
∗J − 2 c J + 1

2 c K∧∗(∗J∧ι∂a∗J)
]

+ H∧(J − C3) − C6 + 2 ∗(c − c b2 − b).

(2.2)

Here H = (F +C3) is referred to as the generalised field-strength of A. The field J = (H +a G)
is introduced for conciseness of notation. In the above Lagrangian ι∂a∗J is the interior product
of ∗J with the vector field ∂a2= ∂µa ∂µ. ∗ denotes the Hodge dual (see appendix B.2). By
identity (B.17) ι∂a∗J can also be written as −∗(da∧J) where da = ∂µa dxµ = ∂a♭ is a
1-form (for details see appendix B.3). The term (H∧C3 + C6) in Lagrangian (2.2) is the
Wess-Zumino term.

The two terms in Lagrangian (2.2) which contain the 2-form K as well as the scalar c,
have the field J appearing in them once and twice respectively. Therefore the Lagrangian is
labelled with the subscript ‘12 ’. By changing the number of the J fields in those two terms
of the Lagrangian it is possible to get a total of eight different Lagrangians: LJ00, LJ01,

LJ02, LJ03, LJ10, LJ11, LJ12, LJ13. Four of them are shown in appendix A. The subscript
nomenclature is useful to distinguish between such Lagrangians.

2This notation is in accordance with the standard notation wherein a vector field X is given by X = Xµ ∂µ.
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The M5-brane action is expressed as

SJ12 =
∫
M6

LJ12 , (2.3)

where M6 is the 6D worldvolume manifold of the M5-brane.
The equations of motion of Lagrangian (2.2) are as follows:

Ea ≡ d[K∧{∗J − 2 c J + c K∧∗(∗J∧ι∂a∗J)}] + G∧(J − ι∂a∗K − 2 c da∧K)
− c da∧K∧K∧∗(ι∂a∗G∧ι∂a∗J) = 0 ,

Eb ≡ 2 b c + 1 = 0 ,

Ec ≡ K∧
[
2 da∧J − 1

2 K∧∗(ι∂a∗J∧ι∂a∗J)
]

+ 2 ∗(b2 − 1) = 0 ,

EA ≡ d
[
ι∂a∗K − H + da∧[2 c K + c ∗{∗(K∧K)∧ι∂a∗J}] + a G

]
= 0 ,

EB ≡ d
[
a {ι∂a∗K − H + da∧[2 c K + c ∗{∗(K∧K)∧ι∂a∗J}]}

]
= 0 ,

EK ≡ da∧[∗J − 2 c J + c K∧∗(∗J∧ι∂a∗J)] = 0 ,

EC3 ≡ ι∂a∗K + F + da∧[2 c K + c ∗{∗(K∧K)∧ι∂a∗J}] + a G = 0 . (2.4)

They describe the dynamics of Lagrangian LJ12.

2.1 Gauge symmetries of LJ12

In this subsection we look at the gauge symmetries of Lagrangian LJ12. As the fields A and
B appear in (2.2) only through their field strengths F and G, the Lagrangian is invariant
under the following abelian gauge transformations which are independent of each other:

δdA = dY1 , (2.5)
δdB = dY2 , (2.6)

with Y1 and Y2 being arbitrary 1-forms.
It can be seen that J = (H + a G) = (dA + C3 + a dB), as well as Lagrangian LJ12,

are invariant under the gauge transformation

δA = − a da∧Y3 , δB = da∧Y3 , (2.7)

where Y3 is an arbitrary 1-form. Every term in LJ12 with the field K has an exterior
product with da. We know that da∧da = 0. Therefore, shifting the field K by an exterior
product with da:

δaK = da∧Y4 where Y4 is an arbitrary 1-form, (2.8)

does not alter the Lagrangian. The auxiliary field a is a Stückelberg field as it makes the
Lagrangian diffeomorphism invariant. When the field a shifts by an infinitesimal scalar φ,
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the other fields transform in the following manner to give a gauge symmetry:

δφa = φ , δφb = (2 b c − 1)
2 ι∂a(da) ι∂aι∂φ∗(K∧ι∂a∗J) , δφc = − 2 c2

ι∂a(da) ι∂aι∂φ∗(K∧ι∂a∗J) ,

δφA = − a δφB , δφK = − ι∂a

ι∂a(da)

[
ι∂φ∗(ι∂aJ)

ι∂a(da) − φ ∗G + dφ∧K

]
,

δφB = − ι∂a

ι∂a(da)∗
[

dφ∧ι∂a{∗J − 2 c J + c K∧∗(∗J∧ι∂a∗J)}
ι∂a(da) + ∗(2 dφ∧B + φ dB)

+ c d(φB) − 2 c K∧∗{∗d(φB)∧ι∂a∗J} − c K∧∗(∗J∧ι∂a∗J)

− c (δφK)∧∗(∗J∧ι∂a∗J) − δφc {2 J − K∧∗(∗J∧ι∂a∗J)}
]
. (2.9)

Due to the presence of ι∂a(da) = ∂µa ∂µa in the denominator, the above gauge symmetry does
not hold when ι∂a(da) = 0, which happens when the scalar field a(x) is constant in spacetime.
Transformation (2.9) is the only non-polynomial gauge transformation of Lagrangian LJ12.
The general form of the solution to polynomial Lagrangian (2.2) is represented by its
nonlinear self-duality relation (2.17). As we will see in section 2.2, derivation of the nonlinear
self-duality relation of the M5-brane Lagrangian makes use of gauge transformations (2.6)
and (2.7). Hence transformation (2.9) does not have any bearing on the general solution or
the polynomial nature of Lagrangian LJ12. This transformation simply depicts the gauge
freedom of the Stückelberg scalar field a.

The background gauge fields C3 and C6 can also be transformed in a way such that
Lagrangian (2.2) remains invariant:

δW A = −W , δW C3 = dW , δW C6 = dW∧C3 where W is an arbitrary 2-form. (2.10)

All of these gauge transformations form a closed algebra.

2.2 Nonlinear Self-Duality Condition for LJ12

Except the equation of motion of the Stückelberg field a which lacks independent dynamics,
the equations of motion and the Lagrangian are invariant under the gauge transformations
given in section 2.1. So we have the freedom to apply the gauge transformations to the
Lagrangian, the equations of motion of the fields other than a, and any combination of those
equations of motion. Doing so we can arrive at the general form of the solution to Lagrangian
LJ12. As the gauge potential A is a chiral field, it obeys a nonlinear self-duality condition,
which gives the general condition satisfied by the solution.

Here we show the derivation of the nonlinear self-duality condition using the equations
of motion of the fields A and B but other equations of motion barring Ea can also be used if
desired. For convenience we repeat the expressions of EA and EB below.

EA ≡ d
[
ι∂a∗K − H + da∧[2 c K + c ∗{∗(K∧K)∧ι∂a∗J}] + a G

]
= 0 ,

EB ≡ d
[
a {ι∂a∗K − H + da∧[2 c K + c ∗{∗(K∧K)∧ι∂a∗J}]}

]
= 0 . (2.11)

We consider a particular combination of these two equations, viz. EA − d[ι∂a(EB − a EA)/
ι∂a(da)] = 0, which gives

da∧d

[
ι∂aJ

ι∂a(da) + 2 B − 2 c K − c ∗{∗(K∧K)∧ι∂a∗J}
]

= 0. (2.12)
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The general solution to the equation da∧dX = 0 where X is a p-form, is X = dY + da∧Z

with Y and Z being arbitrary (p − 1)-forms (see [54]). So eq. (2.12) can be written as

ι∂aJ

ι∂a(da) + 2 B − 2 c K − c ∗{∗(K∧K)∧ι∂a∗J} = dY + da∧Z, (2.13)

where Y and Z are arbitrary 1-forms. On performing gauge transformation (2.6) with
δdB = d(Y/2) and transformation (2.7) such that δA = − a da∧(Z/2) , δB = da∧(Z/2), the
above equation gives us the nonlinear self-duality condition:

ι∂aJ = {ι∂a(da)}[2 (c K − B) + c ∗{∗(K∧K)∧ι∂a∗J}]. (2.14)

In view of gauge symmetry (2.8), the term da∧ι∂aK present in ∗[da∧ι∂a(EB − a EA)] = 0,
can be gauged away, effectively giving us

K = ι∂a∗J

ι∂a(da) . (2.15)

The field B appears in Lagrangian LJ12 and its equations of motion only via the field strength
G and not simply as the gauge potential B. So solving for B is not straightforward here.
However, it can be checked that B can be expressed as:

B = ι∂aJ − 2 c ι∂a∗J − c ∗[K∧∗(ι∂a∗J∧ι∂a∗J)]
ι∂a(da) . (2.16)

This expression for B is consistent with all the equations of motion. Absorbing the above
two expressions for K and B into eq. (2.14), the nonlinear self-duality condition for LJ12
gets written as:

ι∂aJ = ι∂a∗J̃ ⇔ da∧(∗J − J̃) = 0 , where J̃ = 2 c J − c ι∂a∗J∧∗(∗J∧ι∂a∗J)
ι∂a(da) . (2.17)

This condition portrays the nonlinear chirality of the 2-form gauge potential constituting the
M5-brane. The anti self-duality condition ι∂aJ = − ι∂a∗J̃ can be obtained by redefining b and
c in LJ12 as (− b) and (− c) respectively. By virtue of the self-duality condition (2.17) it can
be seen that the auxiliary field B (2.16) vanishes on-shell. This implies that in J = H + a dB

we can set dB = 0 which reduces self-duality condition (2.17) to

ι∂aH = ι∂a∗H̃ ⇔ da∧(∗H − H̃) = 0 , where H̃ = 2 c H − c ι∂a∗H∧∗(∗H∧ι∂a∗H)
ι∂a(da) .

(2.18)

Hence, we have seen the nonlinear duality symmetric structure of the polynomial Lagrangian
LJ12 describing an M5-brane. In the next section we introduce Lagrangian LH12, for which
it is relatively easier to solve the equations of motion including the equation of motion of
the field B. Consequently the simplification of the nonlinear self-duality condition is more
tractable in the framework of LH than of LJ . We elaborate on this condition in section 3.2.
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3 A polynomial M5-brane Lagrangian with field H

Now we look at an alternate formalism of Lagrangian LJ12, in which the auxiliary field B

appears without an exterior derivative acting on it. For deriving this formalism we perform
the field redefinition A → A − a B on Lagrangian LJ12. It gives us

LH12 = da∧K∧
[
∗H − 2 c H − ι∂a∗B + 1

2 c K∧∗(∗H∧ι∂a∗H)
]
− H∧(da∧B + C3) − C6

+ 2 ∗(c − c b2 − b) . (3.1)

This Lagrangian appears with the generalised field strength H whereas the expression of
LJ12 (2.2) was in terms of the field J . Rewriting the above Lagrangian as below,

LH12 = da∧K∧∗H − H∧C3 − C6 + da∧B∧(H − ι∂a∗K)

+ c

[
da∧K∧{− 2 H + 1

2 K∧∗(∗H∧ι∂a∗H)} + 2 ∗(1 − b2)
]
− 2 ∗b , (3.2)

we can see that the auxiliary fields B and c are Lagrange multipliers. Solving the equation
of motion of B gives us the solution for K and on solving the equation of motion c we
get the solutions for b.

The dynamics of LH12 is described by the following equations of motion:

Ea ≡ d[K∧(∗H − 2 c H − ι∂a∗B) − c H∧∗{∗(K∧K)∧ι∂a∗H} + B∧(H − ι∂a∗K)] = 0 ,

Eb ≡ 2 b c + 1 = 0 ,

Ec ≡ da∧K∧
[
2 H − 1

2 K∧∗(∗H∧ι∂a∗H)
]

+ 2 ∗(b2 − 1) = 0 ,

EA ≡ d
[
ι∂a∗K − H + da∧[2 c K + c ∗{∗(K∧K)∧ι∂a∗H} − B]

]
= 0 ,

EB ≡ da∧(ι∂a∗K − H) = 0 ,

EK ≡ da∧[∗H − 2 c H − ι∂a∗B + c K∧∗(∗H∧ι∂a∗H)] = 0 ,

EC3 ≡ ι∂a∗K + F + da∧[2 c K + c ∗{∗(K∧K)∧ι∂a∗H} − B] = 0 . (3.3)

In comparison with the equations of motion of LJ12 (2.4), equations (3.3), which are in
terms of H instead of the field J , are shorter and some of them are easier to solve, such
as Ea = 0 and EB = 0.

3.1 Gauge symmetries of LH12

Here only the gauge potential A has the abelian gauge symmetry wherein for an arbitrary
1-form field Y1, LH12 is invariant under

δdA = dY1 . (3.4)

If we transform gauge potential A by da∧Y2, with Y2 being an arbitrary 1-form, then B can
be transformed to compensate for δA in order to keep LH12 invariant as follows:

δA = da∧Y2 , δB = − dY2 . (3.5)
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In Lagrangian (3.2) we can see that all the terms with the fields B and K in them have an
exterior product with da. Hence, using arbitrary 1-forms Y3 and Y4, we have the following
two independent gauge symmetries:

δaB = da∧Y3 ; (3.6)
δaK = da∧Y4 . (3.7)

On giving an arbitrary infinitesimal shift to the Stückelberg field a by another scalar field φ,
we need to transform the other fields as shown below to keep the Lagrangian invariant:

δφa = φ , δφb = (2 b c − 1)
2 ι∂a(da) ι∂aι∂φ∗(K∧ι∂a∗H) , δφc = − 2 c2

ι∂a(da) ι∂aι∂φ∗(K∧ι∂a∗H) ,

δφA = φB , δφK = − ι∂a

ι∂a(da)

[
ι∂φ∗

{ ι∂aH

ι∂a(da) − B
}
− φ ∗(dB) + dφ∧K

]
,

δφB = − ι∂a

ι∂a(da)∗
[

dφ∧ι∂a{∗H − 2 c H + c K∧∗(∗H∧ι∂a∗H)}
ι∂a(da) + ∗(2 dφ∧B + φ dB)

+ c d(φB) − 2 c K∧∗{∗d(φB)∧ι∂a∗H} − c K∧∗(∗H∧ι∂a∗H)

− c (δφK)∧∗(∗H∧ι∂a∗H) − δφc {2 H − K∧∗(∗H∧ι∂a∗H)}
]
. (3.8)

As in the case of LJ12, here also this non-polynomial gauge symmetry stemming from
an infinitesimal shift in the Stückelberg field a, does not affect the general form of the
solution of LH12. If we transform every field f by an infinitesimal gauge transformation
δgf while Ef = δL/(δf),3 then

δgS =
∫
M6

δgL =
∫
M6

(δgaEa+δgbEb+δgcEc+δgA∧EA+δgB∧EB+δgK∧EK+δgC3∧EC3) = 0.

(3.9)

Considering gauge transformation (3.8) where δga = φ with φ being infinitesimally small,
we get

δφS =
∫
M6

φ

[
Ea + 1

φ
(δφb Eb + δφc Ec + δφA∧EA + δφB∧EB + δφK∧EK)

]
= 0. (3.10)

As φ is an arbitrary infinitesimal parameter, by the fundamental lemma of calculus of
variations the expression inside the square brackets is identically zero, i.e.,

Ea = − 1
φ

(δφb Eb + δφc Ec + δφA∧EA + δφB∧EB + δφK∧EK). (3.11)

Thus gauge symmetry (3.8) helps us see that the dynamics of the Stückelberg field a is
determined by the dynamics of the other fields in the 6D worldvolume of the M5-brane:
a is a gauge field with no independent dynamics of its own. Ea = 0 is trivially satisfied
by the solutions of the other equations of motion, and does not yield any new solution. It

3Neglecting the total derivative terms appearing in (δf∧Ef ) as they vanish on integration and do not
contribute to δS.
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effectively acts as a conditional identity, the conditions being the equations of motion of
all the fields except the Stückelberg field a.

The gauge symmetry of LH12 involving the background gauge fields C3 and C6, is the
same as the corresponding symmetry of LJ12 (2.10):

δW A = −W , δW C3 = dW , δW C6 = dW∧C3 where W is an arbitrary 2-form. (3.12)

3.2 Nonlinear self-duality condition for LH12

As in section 2.2 we again use EA and EB to obtain the general condition obeyed by the
solution to LH12.

EA ≡ d
[
ι∂a∗K − H + da∧[2 c K + c ∗{∗(K∧K)∧ι∂a∗H} − B]

]
= 0 ,

EB ≡ da∧(ι∂a∗K − H) = 0 . (3.13)

The equation EA − d[ι∂aEB/ι∂a(da)] = 0 gives us

da ∧ d

[
ι∂aH

ι∂a(da) − 2 c K − c ∗{∗(K∧K)∧ι∂a∗H} + B

]
= 0. (3.14)

As discussed in section 2.2, such an equation can be re-expressed as

ι∂aH

ι∂a(da) − 2 c K − c ∗{∗(K∧K)∧ι∂a∗H} + B = dX + da ∧ Y, (3.15)

where X and Y are arbitrary 1-forms. We apply gauge transformation (3.5) with δA =
− da∧(X/2) and δB = d(X/2), getting

ι∂aH

ι∂a(da) − 2 c K − c ∗{∗(K∧K)∧ι∂a∗H} + B = da∧
[
Y + ι∂adX

2 ι∂a(da)

]
. (3.16)

Now if we transform the field B in the above equation using (3.6) such that δaB = da∧[Y +
(ι∂adX)/2 ι∂a(da)], we get the following relation:

ι∂aH = {ι∂a(da)}[2 c K − B + c ∗{∗(K∧K)∧ι∂a∗H}]. (3.17)

If one wishes to incorporate EK in the above derivation, the expression for da∧B in the
equation ∗ι∂aEK = 0 can be substituted into eq. (3.14). Then gauge transformations (3.5)
and (3.6) can be applied along similar lines as above. Alternatively the solution for B

(which we get on solving EK = 0) can be plugged into relation (3.17). Using either of
these two ways, we arrive at

ι∂aH = {ι∂a(da)}
[
c K + 1

2 c ∗{∗(K∧K)∧ι∂a∗H}
]

+ c ι∂a∗H + 1
2 c ∗{K∧∗(ι∂a∗H∧ι∂a∗H)}.

(3.18)

Now we solve EB = 0. It can be seen that ∗EB = 0 gives

K = ιda∗H

ι∂a(da) + da∧ιdaK

ι∂a(da) . (3.19)
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K = [ιda∗H/ι∂a(da)] is a particular solution of the above equation. Let the general solution
be K = [ιda∗H/ι∂a(da)] + Z where Z is an as yet unknown 2-form. Plugging this solution
into eq. (3.19) gives Z = [da∧ι∂aZ/ι∂a(da)]. So the general solution can be written as

K = ιda∗H

ι∂a(da) + da∧ιdaZ

ι∂a(da) . (3.20)

Applying gauge transformation (3.7) δaK = da∧Y4 in the above equation, with the transfor-
mation parameter Y4 gauge fixed to ι∂aZ/ι∂a(da), we get the solution for K as:

K = ιda∗H

ι∂a(da) . (3.21)

Similarly, EK = 0 can be solved to get:

B = ι∂aH − 2 c ι∂a∗H − c ∗[K∧∗(ι∂a∗H∧ι∂a∗H)]
ι∂a(da) . (3.22)

Although we have shown the derivations of relation (3.17) and the solution for K (3.21)
within the self-contained framework of LH12, these expressions can also be obtained by
redefining A → A−a B in the corresponding expressions of LJ12, viz. (2.14)–(2.15). Inserting
solutions (3.21)–(3.22) for K and B into (3.17) gives the same relation as the one obtained on
substituting the solution of K into condition (3.18). The relation is the nonlinear self-duality
condition in terms of the fields A, C3, a and c:

ι∂aH = ι∂a∗H̃ ⇔ da∧(∗H − H̃) = 0 where H̃ = 2 c H − c ι∂a∗H∧∗(∗H∧ι∂a∗H)
ι∂a(da) .

(3.23)

This self-duality relation is the same as that seen earlier in eq. (2.18). This condition
characterises the chiral nature of the field strength H comprising the M5-brane. Here again,
as in the case of LJ12 in section (2.2), the solution for the auxiliary field B (3.22) vanishes
on-shell in view of the self-duality condition. If we consider Lagrangian (3.1) with b → −b

and c → −c, then we get the anti self-duality condition ι∂aH = − ι∂a∗H̃ . Hence we have seen
the gauge symmetries and the (anti) self-duality of the polynomial M5-brane Lagrangians.

4 A non-polynomial M5-brane Lagrangian

In this section we introduce a non-polynomial expression of the M5-brane Lagrangian. We
get this Lagrangian by simply plugging solutions (3.21)–(3.22) for the fields B and K present
in the previous section, into Lagrangian LH12 (3.1).

Lnp = ιv∗H∧
[
∗(ιvH) − 2 c ∗(ιv∗H) + 1

2 c ιv∗H∧∗
(
ιv∗H∧ιv∗H

)]
−H∧C3−C6+2 ∗(c−c b2−b)

(4.1)
where v = vµ ∂µ = (∂µa/

√
∂νa ∂νa) ∂µ is a normalised vector-field.
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The dynamics of Lnp can be seen via the following equations of motion:

Ea ≡ d

[
v♭∧ιv∗H∧ιv∗H + v♭∧ιvH∧[ιvH − 4 c ιv∗H − 2 c ∗{ιv∗H∧ ∗ (ιv∗H∧ιv∗H)}]√

ι∂a(da)

]
= 0 ,

Eb ≡ 2 b c + 1 = 0 ,

Ec ≡ ιv∗H∧∗(ιv∗H) − 1
4 ιv∗H∧ιv∗H∧∗(ιv∗H∧ιv∗H) + ∗(b2 − 1) = 0 ,

EA ≡ d
[
v♭∧[ιvH − 2 c ιv∗H − c ∗{ιv∗H∧ ∗ (ιv∗H∧ιv∗H)}]

]
= 0 ,

EC3 ≡ F − v♭∧[ιvH − 2 c ιv∗H − c ∗{ιv∗H∧ ∗ (ιv∗H∧ιv∗H)}] = 0 . (4.2)

For the definition of v♭ see appendix B.3.
Lnp is invariant under the gauge transformations δdA = dY1 and δaA = da∧Y2. The

gauge symmetry associated with an infinitesimal shift of the Stückelberg field a is

δφa = φ , δφb = (2 b c − 1)
2
√

ι∂a(da)
ιvι∂φ∗(ιv∗H∧ιv∗H) ,

δφc = − 2 c2√
ι∂a(da)

ιvι∂φ∗(ιv∗H∧ιv∗H) , δφA = φ ιvH√
ι∂a(da)

, (4.3)

where φ is an arbitrary scalar field and H = H −∗H̃ = H − c ∗[2 H −{ιv∗H∧∗ (∗H∧ιv∗H)}].
By virtue of this gauge symmetry we can express the equation of motion of the Stückelberg
field a in terms of the equations of motion of the other fields in the 6D worldvolume of
the M5-brane −EA, Eb and Ec:

Ea = 2 EA∧ιvH√
ι∂a(da)

+ d

[(2 Eb − E2
b − 4 c2 ∗Ec) v♭∧ιv∗H∧ιv∗H√

ι∂a(da)

]
. (4.4)

The above relation can be verified by observing the following:

2 EA∧ιvH√
ι∂a(da)

= d

[
v♭√

ι∂a(da)
∧ιvH∧ιvH

]

= d

[
v♭√

ι∂a(da)
∧
[
ιvH∧ιvH − 4 c ιvH∧ιv∗H + 4 c2 ιv∗H∧ιv∗H

− 2 c ιvH∧∗{ιv∗H∧∗(ιv∗H∧ιv∗H)} + 4 c2 ιv∗H∧∗{ιv∗H∧∗(ιv∗H∧ιv∗H)}

+ c2 ∗{ιv∗H∧∗(ιv∗H∧ιv∗H)}∧∗{ιv∗H∧∗(ιv∗H∧ιv∗H)}
]]

(4.5)

and

d

[(2 Eb − E2
b − 4 c2 ∗Ec) v♭∧ιv∗H∧ιv∗H√

ι∂a(da)

]

= d

[
v♭√

ι∂a(da)
∧
[
c2[∗{ιv∗H∧ιv∗H∧∗(ιv∗H∧ιv∗H)}](0) + (1 − 4 c2)

− 4 c2[∗{ιv∗H∧∗(ιv∗H)}](0)
]
ιv∗H∧ιv∗H

]
.
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The superscript (0) serves as a reminder indicating that the expression inside its bracket is a
scalar. Using identities (C.7) and (C.10) from appendix C the above expression becomes

d

[
− c2 v♭√

ι∂a(da)
∧[∗{ιv∗H∧∗(ιv∗H∧ιv∗H)} + 4 ιv∗H]∧ ∗ {ιv∗H∧ ∗ (ιv∗H∧ιv∗H)}

+ (1 − 4 c2)√
ι∂a(da)

v♭∧ιv∗H∧ιv∗H

]
. (4.6)

On adding eqs. (4.5) and (4.6), we get

d

[
v♭√

ι∂a(da)
∧
[
ιv∗H∧ιv∗H + ιvH∧

{
ιvH − 4 c ιv∗H − 2 c ∗{ιv∗H∧ ∗ (ιv∗H∧ιv∗H)}

}]]
,

(4.7)

which is the expression for Ea in (4.2). Hence, relation (4.4) is verified.
From relation (4.4) we can see that whenever EA, Eb and Ec are satisfied, Ea is trivially

satisfied. So it is evident that the Stückelberg field a does not have independent dynamics
of its own and is a gauge field.

The gauge symmetry linked with the fields C3 and C6 remains the same for Lnp as for
all the other Lagrangians in this paper:

δW A = −W , δW C3 = dW , δW C6 = dW∧C3 where W is an arbitrary 2-form. (4.8)

This transformation commutes with the rest of the gauge transformations. All of the above
gauge transformations collectively constitute a closed group.

EA in (4.2) can be written as d(v♭∧ιvH) = 0 or equivalently da∧d[(ι∂aH)/ι∂a(da)] = 0.
We know that the general solution of the equation da ∧ dU = 0, with U being an arbitrary
p-form, is U = dX + da ∧ Y where X and Y are arbitrary (p − 1)-forms. So the general
solution to da∧d[(ι∂aH)/ι∂a(da)] = 0 is

ι∂aH
ι∂a(da) = dX + da∧Y, (4.9)

where X and Y are arbitrary 1-forms. Due to this equation we know that

da∧ι∂aH = ι∂a(da) da∧dX. (4.10)

It can be noticed that in ι∂a∗H̃ , H always appears as ι∂a∗H = −∗(da∧H) which is invariant
under the gauge transformation δA = − da∧X. So applying this gauge transformation, i.e.
δA = − da∧X to eq. (4.10), we get

da∧ι∂aH = 0 . (4.11)

The general solution to the above equation is ι∂aH = da∧Z, with Z being an arbitrary 1-form.
Taking the interior product of this equation with ∂a, we get Z = (da∧ι∂aZ)/ι∂a(da) which we
plug into the relation ι∂aH = da∧Z, finally arriving at the general form of the solution for H :

ι∂aH = 0 ⇔ ι∂aH = ι∂a∗H̃ ⇔ da∧(∗H − H̃) = 0. (4.12)

It shows the nonlinear self duality of the chiral field H , the generalised field strength of A. The
anti self-duality condition is obtained by redefining b → −b and c → −c in Lagrangian (4.1).
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5 Equivalence with the PST M5-brane Lagrangian

In this section we show the equivalence of the M5-brane Lagrangians given in sections 2–4,
with the PST M5-brane Lagrangian [10, 11]. Having eliminated the auxiliary fields B and K

in the last section, we now eliminate two more auxiliary fields − b and c such that finally we
are left with only the fields A, a, C3 and C6 in the Lagrangian. On solving Ec = 0 in (4.2)
we get the following two solutions for b:

b± = ∓
[
1 + ∗{ιv∗H∧∗(ιv∗H)} − 1

4 ∗{ιv∗H∧ιv∗H∧∗(ιv∗H∧ιv∗H)}
](1/2)

. (5.1)

Plugging these solutions for b into Eb = 0 gives us

c± = − 1
2 b±

= ± 1
2

[
1 + ∗{ιv∗H∧∗(ιv∗H)} − 1

4 ∗{ιv∗H∧ιv∗H∧∗(ιv∗H∧ιv∗H)}
](−1/2)

.

(5.2)

So we have two sets of solutions for b and c: (b+, c+) and ( b−, c−). We can eliminate fields b

and c from Lagrangian Lnp by inserting either of the two solution sets into (4.1). On using
the solution set (b+, c+) we get the below Lagrangian:

Le+ = ιv∗H∧∗ιvH + [4 + 4 ∗{ιv∗H∧∗(ιv∗H)} − ∗{ιv∗H∧ιv∗H∧∗(ιv∗H∧ιv∗H)}](1/2) ∗1
− H∧C3 − C6 , (5.3)

while adopting ( b−, c−) gives

Le− = ιv∗H∧∗ιvH − [4 + 4 ∗{ιv∗H∧∗(ιv∗H)} − ∗{ιv∗H∧ιv∗H∧∗(ιv∗H∧ιv∗H)}](1/2) ∗1
− H∧C3 − C6 . (5.4)

The term under the square-root in the above Lagrangians is the Dirac-Born-Infeld (DBI)
term which describes the dynamics of the electromagnetic fields living on the worldvolumes
of D-branes and M-branes. Lagrangian Le+ differs from Le− by the sign of the DBI term.
Le+ obeys the nonlinear on-shell self-duality condition ιvH = ιv∗H̃e where

H̃e = H̃|c=c+ = 2 H − {ιv∗H∧∗(∗H∧ιv∗H)}√
4 + 4 ∗{ιv∗H∧∗(ιv∗H)} − ∗{ιv∗H∧ιv∗H∧∗(ιv∗H∧ιv∗H)}

(5.5)

while Le− obeys the nonlinear on-shell anti self-duality condition ιvH = − ιv∗H̃e. Le+ is
the same as the PST M5-brane Lagrangian presented earlier in [10, 11]. This can be seen
by noting that

det (g − i ιv∗H) = g

[
1 + ∗{ιv∗H∧∗(ιv∗H)} − 1

4 ∗{ιv∗H∧ιv∗H∧∗(ιv∗H∧ιv∗H)}
]

. (5.6)

For details see appendix D.
The M5-brane Lagrangians (5.3) and (5.4) can be reduced to the linear-duality symmetric

PST Lagrangians [50–52]. For this we first decouple the M5-brane from the background
supergravity fields C3 and C6, doing which eliminates the terms containing C3 and C6
from Le+ and Le−. Then on replacing the DBI term in Le+ by ιv∗F∧∗(ιv∗F ) we get the
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self-dual PST Lagrangian whereas implementing this replacement in Le− gives the anti
self-dual PST Lagrangian.

From here onwards we discuss the dynamics and symmetries of Le+. This discussion
can be extended to Le− by changing the signs corresponding to the sign of the DBI term.
The equations of motion of Le+ are as follows:

Ea ≡ d

[
v♭∧{ιvH∧ιv(H − 2 ∗H̃e) + ιv∗H∧ιv∗H}

2
√

ι∂a(da)

]
= 0 ,

EA ≡ d (v♭∧ιvHe) = 0 ,

EC3 ≡ F − v♭∧ιvHe = 0 , (5.7)

where He = H − ∗H̃e. Le+ has the usual gauge symmetries δdA = dY1 and δaA = da∧Y2
with arbitrary 1-forms Y1 and Y2. The infinitesimal shift symmetry of the Stückelberg field
a is now given as

δφa = φ , δφA = φ ι∂aHe

ι∂a(da) . (5.8)

Here again, the above infinitesimal shift symmetry of the Stückelberg field a enables us to
see that, as expected of a gauge field, the dynamics of a is determined by that of A:

Ea = EA∧ι∂aHe

ι∂a(da) . (5.9)

The fourth gauge transformation of Le+ involves the 11D supergravity fields C3 and C6. This
transformation is the same as for all the other Lagrangians in this paper; see (4.8). It can be
seen from the commutators of the above transformations that they form a closed algebra.

Following a derivation similar to that shown in section 4, we arrive the general condition
obeyed by all the solutions of Le+, the nonlinear self-duality condition:

ι∂aHe = 0 ⇔ ι∂aH = ι∂a∗H̃e ⇔ da∧(∗H − H̃e) = 0. (5.10)

Hence we have seen the duality and gauge symmetric structure of the M5-brane Lagrangian.

6 Discussion

In the ’90s Schwarz and Sen put forth an electromagnetic duality symmetric action [62] which
is the low-energy effective action of toroidally compactified heterotic string theory. It is not
manifestly invariant under Lorentz transformations and diffeomorphism. Shortly afterwards,
covariant versions of this action were presented by Pasti, Sorokin and Tonin [50–52] via
the introduction of an auxiliary vector field which was initially introduced as a constant
vector field in [63]. Subsequently the PST formalism was employed in [10, 11] to formulate a
covariant M5-brane action. So the lack of manifest covariance in the earlier duality symmetric
action [62] was tackled by the insertion of an auxiliary field which is a Stückelberg field.
However, though the PST action has most of the properties sought in a duality symmetric
Lagrangian, it is not polynomial and becomes singular when the denominator containing the
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Stückelberg field vanishes. More than two decades after the PST action came out, it was
expressed in a polynomial form in [53, 54], again by introducing another auxiliary field into
the Lagrangian. Correspondingly now, we have shown in this paper that the non-polynomial
PST M5-brane Lagrangian [10, 11], which is covariant by virtue of the Stückelberg field a in
it, can also be made polynomial by the introduction of a few more auxiliary fields. Hence in
all of these developments the desired characteristics of the duality symmetric action such
as manifest covariance and polynomiality have been achieved by including new auxiliary
fields into the action.

We have shown that the long-standing problem of the non-polynomial nature of the
PST M5-brane action in [10, 11] can be transcended by the presence of a few additional
auxiliary fields in the action. The M5-brane Lagrangian in [10, 11] is non-polynomial on
two accounts — the presence of the derivative of a scalar field in the denominator and the
presence of the DBI term which comes with a square-root. In this paper we have presented
Lagrangians in sections 2 and 3, which overcome both of these non-polynomial features of the
earlier Lagrangian. Owing to the structure of the Lagrangian, there are eight such polynomial
Lagrangians (see appendix A). We have discussed the dynamics, the gauge symmetries and
the (anti) self-duality conditions of our polynomial M5-brane Lagrangians.

While in the case of the PST Lagrangian [50–52], removing the non-polynomiality due to
the derivative of the Stückelberg field a present in the denominator requires the introduction of
only one auxiliary field [53, 54], removing that non-polynomiality from Lagrangian Lnp (4.1),
as shown in this paper, necessitates including at least two auxiliary fields. On account of the
linear self-duality condition obeyed by the PST Lagrangian LP ST = F∧∗F + ιvF∧∗ιv(∗F),
where F = (F − ∗F ), the non-polynomial term, i.e. ιvF∧∗ιv(∗F), can be written as a square
term (a term of the kind T∧∗T ) which is − ιvF∧∗ιvF . Consequently, when making LP ST

polynomial as in [53, 54], the Lagrange multiplier is allowed to be identical with the auxiliary
field whose solution we get by solving the equation of motion of the Lagrange multiplier.
However, the same is not true of the non-polynomial M5-brane Lagrangian Lnp in eq. (4.1),
which can be written as

Lnp = 2 c H∧∗H + ιvH∧∗ιv(∗H − 2 c H) + 1
2 c ιv∗H∧ιv∗H∧∗

(
ιv∗H∧ιv∗H

)
− H∧C3 − C6

+ ∗(c − c b2 − b).

Here the non-polynomial part ιvH∧∗ιv(∗H − 2 c H) + 1
2 c ιv∗H∧ιv∗H∧∗

(
ιv∗H∧ιv∗H

)
cannot

be expressed as a square term due to nonlinear self-duality. So when making Lnp polynomial,
the Lagrange multiplier cannot be the same as the auxiliary field solved for by integrating out
the Lagrange multiplier. Therefore, whereas the PST Lagrangian can be made polynomial
by the introduction of only one auxiliary field [53, 54], making Lnp polynomial requires
incorporating at least two auxiliary fields — B and K.

If one tries to look at the construction of the polynomial M5-brane Lagrangians presented
in this paper from the perspective of starting from the PST M5-brane Lagrangian [10, 11],
then the following detail is worth noting. Although modifying a Lagrangian by adding a
Lagrange multiplier to it and thus making it polynomial, is generally straightforward, what
makes it non-trivial in the context of this work, is the specific manner of adding it which
ensures that the equations of motion of the polynomial Lagrangian, when subjected to its
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gauge transformations, give the self-duality condition independently, i.e. without resorting
to the earlier non-polynomial Lagrangian. To this end, the Lagrange multiplier along with
the other auxiliary fields is required to be introduced into the non-polynomial Lagrangian
in a way such that each of the following two criteria is met:

1. The equations of motion of those fields in the polynomial Lagrangian which have
independent dynamics, are gauge invariant.

2. The polynomial Lagrangian is invariant under the kind of gauge transformations which
can gauge away certain parts of the general solutions of the equations of motion and
their combinations (e.g. transformations (3.5) and (3.6) in the case of LH12), leading
to the self-duality relation.

As the polynomial M5-brane Lagrangians presented in this paper meet both the above criteria,
they form self-sufficient systems. They have all the essential symmetries and dynamics which
characterise an M5-brane Lagrangian.

We have focused on the bosonic degrees of freedom coupled to bosonic background gauge
fields. The local symmetry of the fermionic sector, known as the kappa-symmetry [11, 64],
can be shown in the future. It might be worthwhile to look for the nonlinear self-interactions
of M5-branes using the polynomial Lagrangians presented here. Eventually one can also
venture in the direction of describing the interactions of non-abelian (2,0) superconformal
field theory using this formalism.

Now that we have analytic M5-brane Lagrangians, it could be useful to construct their
Hamiltonian formalism, e.g. [55], which allows us to identify the first-class and second-class
constraints of the theory. We can then count the number of degrees of freedom and show
explicitly their correspondence with the physical fields in the theory, thus distinguishing them
from the auxiliary gauge fields. The gauge system of the theory can be seen more distinctly
in the Hamiltonian formalism. The polynomial form of the Lagrangians also opens up new
avenues for the quantisation of the theory. Some earlier works in this direction are given
in [56, 57]. A quantum treatment of Sen’s duality invariant formulation is presented in [58]. We
will explore the quantum formulation of the polynomial M5-brane Lagrangians in the future.

So far two chiral 4-form models are known in 10 dimensions — quadratic 4-form chiral
theory along with its type IIB supergravity generalization, and a generalisation of Bialynicki-
Birula electrodynamics [65, 66]. However, an M5-brane-like action has not been generalised
to 10 dimensions as it requires solving the condition imposed by the PST gauge invariance. It
has proven difficult to solve that condition in 10 and higher dimensions, even perturbatively.
Our new polynomial formalism seems favourable for addressing this problem.

As the origin of many D-branes in string theory is the M5-brane in M-theory, dimensionally
reducing an M5-brane action gives us D-brane actions. For e.g. performing double dimensional
reduction of an M5-brane on a circle gives the world volume dual of the D4-brane of type IIA
string theory [67] while doing that on a torus gives the D3-brane of type IIB string theory
directly reduced on a circle [59]. A D3-brane action was also obtained in [60] by dimensionally
reducing the PST M5-brane action. Now the polynomial Lagrangians given in this paper can
also be used to implement dimensional reductions giving D-brane actions. Thus, in a variety
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of ways the polynomial structure of these M5-brane Lagrangians may prove to be relatively
more tractable for carrying out further developments with M5-brane actions.
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A Alternate polynomial M5-brane Lagrangians

The polynomial Lagrangians presented in sections 2 and 3 have two terms containing both c

and K. By changing the number of J (or H) fields in those terms, we can get 8 different La-
grangians: L00,L01,L02,L03,L10,L11,L12,L13. Here we show four of them: L00,L02,L11,L13.
The remaining Lagrangians can be similarly constructed and analysed.

A.1 Lagrangian L00

A.1.1 Lagrangian LJ00

LJ00 = da∧K∧
[
∗J − 2 c ι∂a∗K + 1

2 c ι∂a(da) K∧ι∂a∗(K∧K)
]

+ H∧(J − C3)

+ 2 ∗(c − c b2 − b) . (A.1)

Equations of motion:

Ea ≡ d
[
K∧[∗J − 4 c ι∂a∗K + {da + ι∂a(da)} c K∧ι∂a∗(K∧K)]

]
+ G∧J = 0 ,

Eb ≡ 2 b c + 1 = 0 ,

Ec ≡ da∧K∧
[
2 ι∂a∗K − 1

2 ι∂a(da) K∧ι∂a∗(K∧K)
]

+ 2 ∗(b2 − 1) = 0 ,

EA ≡ d(ι∂a∗K − H + a G) = 0 ,

EB ≡ d[a (ι∂a∗K − H)] = 0 ,

EK ≡ da∧[∗J − 4 c ι∂a∗K + 2 c ι∂a(da) K∧ι∂a∗(K∧K)] = 0 ,

EC3 ≡ ι∂a∗K + F + a G = 0 . (A.2)

On subjecting the general solution to the equation EA − d[ι∂a(EB − a EA)/ι∂a(da)] = 0, to
the gauge transformations δdB = dY1 and δA = − a da∧Y2 , δB = da∧Y2 with appropriate
choices for Y1 and Y2, we get the nonlinear self-duality condition as follows:

ι∂aJ = − 2 {ι∂a(da)}B. (A.3)
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A.1.2 Lagrangian LH00

Redefining A → (A − a B) in LJ00 we arrive at LH00:

LH00 = da∧K∧
[
∗H − ι∂a∗(2 c K + B) + 1

2 c ι∂a(da) K∧ι∂a∗(K∧K)
]
− H∧(da∧B + C3)

− C6 + 2 ∗(c − c b2 − b) . (A.4)

Equations of motion:

Ea ≡ d
[
K∧(∗H − ι∂a∗(4 c da∧K + B) + 2 c ι∂a(da) K∧K∧ι∂a∗(K∧K)

− c da∧ι∂a(K∧K)∧ι∂a∗(K∧K) + B∧(H − ι∂a∗K)
]

= 0 ,

Eb ≡ 2 b c + 1 = 0 ,

Ec ≡ da∧K∧
[
2 ι∂a∗K − 1

2 ι∂a(da) K∧ι∂a∗(K∧K)
]

+ 2 ∗(b2 − 1) = 0 ,

EA ≡ d(ι∂a∗K − H − da∧B) = 0 ,

EB ≡ da∧(ι∂a∗K − H) = 0 ,

EK ≡ da∧[∗H − ι∂a∗(4 c K + B) + 2 c ι∂a(da) K∧ι∂a∗(K∧K)] = 0 ,

EC3 ≡ ι∂a∗K + F − da∧B = 0 . (A.5)

Applying the gauge transformations δA = da∧Z1 , δB = − dZ1 and δaB = da∧Z2 with suitable
choices for Z1 and Z2, on the general solution to the equation EA−d[ι∂aEB/ι∂a(da)] = 0, gives

ι∂aH = −{ι∂a(da)}B . (A.6)

EB = 0 is satisfied by the following solution for K:

K = ι∂a∗H

ι∂a(da) , (A.7)

and EK = 0 admits the solution:

B = ι∂aH

ι∂a(da) − 4 c K + 2 c ι∂a∗[K∧ι∂a∗(K∧K)]. (A.8)

Drawing on solutions (A.7) and (A.8), we can see that eq. (A.6) gives the same nonlinear
self-duality condition as in eq. (3.23), i.e.

ι∂aH = ι∂a∗H̃, where H̃ = 2 c H − c ι∂a∗H∧∗(∗H∧ι∂a∗H)
ι∂a(da) . (A.9)

A.2 Lagrangian L02

A.2.1 Lagrangian LJ02

LJ02 = da∧K∧
[
∗J − 2 c ι∂a∗K + 1

2 c K∧∗(∗J∧ι∂a∗J)
]

+ H∧(J − C3) − C6

+ 2 ∗(c − c b2 − b) . (A.10)
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Equations of motion:

Ea ≡ d[K∧{∗J − 2 c J + c K∧∗(∗J∧ι∂a∗J)}] + G∧(J − ι∂a∗K − 2 c da∧K)
− c da∧K∧K∧∗(ι∂a∗G∧ι∂a∗J) = 0 ,

Eb ≡ 2 b c + 1 = 0

Ec ≡ da∧K∧
[
2 ι∂a∗K − 1

2 K∧∗(∗J∧ι∂a∗J)
]

+ 2 ∗(b2 − 1) = 0 ,

EA ≡ d[ι∂a∗K − H − c ∗{ι∂a∗(K∧K)∧ι∂a∗J} + a G] = 0 ,

EB ≡ d
[
a[ι∂a∗K − H − c ∗{ι∂a∗(K∧K)∧ι∂a∗J}]

]
= 0 ,

EK ≡ da∧[∗J − 4 c ι∂a∗K + c K∧∗(∗J∧ι∂a∗J)] = 0 ,

EC3 ≡ ι∂a∗K + F − c ∗{ι∂a∗(K∧K)∧ι∂a∗J} + a G = 0 . (A.11)

In view of two gauge symmetries of LJ02 viz. δdB = dY1 and δA = − a da∧Y2 alongside
δB = da∧Y2, the equation EA − d[ι∂a(EB − a EA)/ι∂a(da)] = 0 leads to the following:

ι∂aJ = {ι∂a(da)}[− 2 B + c ∗{∗(K∧K)∧ι∂a∗J}]. (A.12)

∗[da∧ι∂a(EB − a EA)] = 0 effectively gives

K = ι∂a∗J

ι∂a(da) , (A.13)

Plugging this expression for K into eq. (A.12) gives us the nonlinear self-duality condition
as below:

ι∂aJ = c ∗[∗(ι∂a∗J∧ι∂a∗J)∧ι∂a∗J ]
ι∂a(da) − 2 {ι∂a(da)}B. (A.14)

A.2.2 Lagrangian LH02

LH02 = da∧K∧
[
∗H − ι∂a∗(2 c K + B) + 1

2 c K∧∗(∗H∧ι∂a∗H)
]
− H∧(da∧B + C3)

− C6 + 2 ∗(c − c b2 − b) . (A.15)

Equations of motion:

Ea ≡ d[K∧{∗H − ι∂a∗(4 c K + B)} − c H∧∗{∗(K∧K)∧ι∂a∗H} + B∧(H − ι∂a∗K)] = 0 ,

Eb ≡ 2 b c + 1 = 0 ,

Ec ≡ da∧K∧
[
2 ι∂a∗K − 1

2 K∧∗(∗H∧ι∂a∗H)
]

+ 2 ∗(b2 − 1) = 0 ,

EA ≡ d
[
ι∂a∗K − H + da∧[c ∗{∗(K∧K)∧ι∂a∗H} − B]

]
= 0 ,

EB ≡ da∧(ι∂a∗K − H) = 0 ,

EK ≡ da∧[∗H − ι∂a∗(4 c K + B) + c K∧∗(∗H∧ι∂a∗H)] = 0 ,

EC3 ≡ ι∂a∗K + F + da∧[c ∗{∗(K∧K)∧ι∂a∗H} − B] = 0 . (A.16)
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The equation EA − d[ι∂aEB/ι∂a(da)] = 0 modulo the terms that can be gauged away via the
gauge transformation δA = da∧Z1 with δB = − dZ1, and δaB = da∧Z2, gives

ι∂aH = {ι∂a(da)}[−B + c ∗{∗(K∧K)∧ι∂a∗H}]. (A.17)

Neglecting the terms that can be gauged away, the solutions for K and B are

K = ι∂a∗H

ι∂a(da) ,

B = ι∂aH

ι∂a(da) − 4 c K − c

ι∂a(da) ∗[K∧∗(ι∂a∗H∧ι∂a∗H)]. (A.18)

On inserting these solutions for B and K into relation (A.17), we get the usual non-
linear self-duality condition (3.23), i.e. ι∂aH = ι∂a∗H̃ where H̃ = 2 c H − [c ι∂a∗H∧ ∗
(∗H∧ι∂a∗H)/ι∂a(da)].

A.3 Lagrangian L11

A.3.1 Lagrangian LJ11

LJ11 = da∧K∧
[
∗J − 2 c J + 1

2 c K∧ι∂a∗(K∧ι∂a∗J)
]

+ H∧(J − C3) − C6 + 2 ∗(c − c b2 − b).

(A.19)

Equations of motion:

Ea ≡ d

[
K∧(∗J − 2 c J) + 1

2 c K∧{K∧ι∂a∗(K∧ι∂a∗H) + ι∂a∗H∧ι∂a∗(K∧K)}

+ 1
2 c H∧ι∂a∗{K∧ι∂a∗(K∧K)}

]
+ G∧(J − ι∂a∗K − 2 c da∧K)

− 1
2 c da∧K∧K∧ι∂a∗(K∧ι∂a∗G) = 0 ,

Eb ≡ 2 b c + 1 = 0 ,

Ec ≡ K∧
[
2 da∧J − 1

2 da∧K∧ι∂a∗(K∧ι∂a∗J)
]

+ 2 ∗(b2 − 1) = 0 ,

EA ≡ d
[
ι∂a∗K − H + da∧

[
2 c K − 1

2 c ι∂a∗{K∧ι∂a∗(K∧K)}
]

+ a G
]

= 0 ,

EB ≡ d
[
a {ι∂a∗K − H + da∧

[
2 c K − 1

2 c ι∂a∗{K∧ι∂a∗(K∧K)}
]

= 0 ,

EK ≡ da∧
[
∗J − 2 c J + c da∧{K∧ι∂a∗(K∧ι∂a∗J) + 1

2 ι∂a∗J∧ι∂a∗(K∧K)}
]

= 0 ,

EC3 ≡ ι∂a∗K + F + da∧
[
2 c K − 1

2 c ι∂a∗{K∧ι∂a∗(K∧K)}
]

+ a G = 0 . (A.20)

By removing the terms allowable to be gauged away, the equation EA − d[ι∂a(EB − a EA)/
ι∂a(da)] = 0 gives us the following relation:

ι∂aJ = {ι∂a(da)}
[
2 (c K − B) − 1

2 c ι∂a∗{K∧ι∂a∗(K∧K)}
]

. (A.21)
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Also, from ∗[da∧ι∂a(EB − a EA)] = 0 we effectively get

K = ι∂a∗J

ι∂a(da) . (A.22)

So eq. (A.21) becomes

ι∂aJ = 2 ι∂a∗J + c ∗[ι∂a∗J∧∗(ι∂a∗J)∧ι∂a∗J ]
ι∂a(da) − 2 {ι∂a(da)}B, (A.23)

the nonlinear self-duality condition of LJ11.

A.3.2 Lagrangian LH11

LH11 = da∧K∧
[
∗H − 2 c H − ι∂a∗B + 1

2 c K∧ι∂a∗(K∧ι∂a∗H)
]
− H∧(da∧B + C3) − C6

+ 2 ∗(c − c b2 − b) . (A.24)

Equations of motion:

Ea ≡ d

[
K∧(∗H − 2cH − ι∂a∗B) + 1

2cK∧{K∧ι∂a∗(K∧ι∂a∗H) + ι∂a∗H∧ι∂a∗(K∧K)}

+ 1
2cH∧ι∂a∗{K∧ι∂a∗(K∧K)}

]
+ B∧(H − ι∂a∗K)] = 0,

Eb ≡ 2bc + 1 = 0,

Ec ≡ da∧K∧
[
2H − 1

2K∧ι∂a∗(K∧ι∂a∗H)
]

+ 2∗(b2 − 1) = 0,

EA ≡ d
[
ι∂a∗K − H + da∧

[
2cK − 1

2cι∂a∗{K∧ι∂a∗(K∧K)} − B

] ]
= 0,

EB ≡ da∧(ι∂a∗K − H) = 0,

EK ≡ da∧
[
∗H − 2cH − ι∂a∗B + cda∧

{
K∧ι∂a∗(K∧ι∂a∗H) + 1

2 ι∂a∗H∧ι∂a∗(K∧K)
}]

= 0,

EC3 ≡ ι∂a∗K + F + da∧[2cK − 1
2cι∂a∗{K∧ι∂a∗(K∧K)} − B] = 0. (A.25)

The particular combination of EA and EB, EA − d[ι∂aEB/ι∂a(da)] = 0, when subjected to
two of the gauge transformations of LH11, enables us to see that

ι∂aH = {ι∂a(da)}
[
2 c K − B − 1

2 c ι∂a∗{K∧ι∂a∗(K∧K)}
]

. (A.26)

The fields K and B have the following solutions (shown without the terms which are
redundant on account of gauge symmetries):

K = ι∂a∗H

ι∂a(da) ,

B =
ι∂aH − 2 c ι∂a∗H + c ι∂a∗{K∧ι∂a∗(K∧ι∂a∗H) + 1

2 ι∂a∗H∧ι∂a∗(K∧K)}
ι∂a(da) . (A.27)

Again, it can be seen that substituting solutions (A.27) into eq. (A.26) gives us the usual
nonlinear self-duality condition (3.23) in terms of the fields a and H: ι∂aH = ι∂a∗H̃.
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A.4 Lagrangian L13

A.4.1 Lagrangian LJ13

LJ13 = da∧K∧
[
{ι∂a(da)}(∗J − 2 c J) + 1

2 c ι∂a∗J∧∗(∗J∧ι∂a∗J)
]

+ H∧(J − C3) − C6

+2 ∗(c − c b2 − b) .

(A.28)

Equations of motion:

Ea ≡ d

[
{ι∂a(da)}K∧

{
∗J − 2 c J + 1

2 c ι∂a∗J∧∗(∗J∧ι∂a∗J)
}

+ ι∂a{K∧∗ι∂a(J − 2 c ∗J)}

− 1
2 c J∧∗{K∧∗(ι∂a∗J∧ι∂a∗J) − 1

2 c J∧∗{∗J∧ι∂a∗(K∧ι∂a∗J)
]

+ G∧{J − {ι∂a(da)}(ι∂a∗K − 2 c da∧K)} − c K∧
[1

2 {ι∂a∗G∧∗(ι∂a∗J∧ι∂a∗J)

+ ι∂a∗J∧∗(ι∂a∗J∧ι∂a∗G)
]

= 0 ,

Eb ≡ 2 b c + 1 = 0 ,

Ec ≡ da∧K∧
[
2 {ι∂a(da)} J − 1

2 ι∂a∗J∧∗(∗J∧ι∂a∗J)
]

+ 2 ∗(b2 − 1) = 0 ,

EA ≡ d

[
{ι∂a(da)}(ι∂a∗K + 2 c da∧K) − H − 1

2 c ∗ι∂a{K∧∗(ι∂a∗J∧ι∂a∗J)}

− c ∗{ι∂a∗J∧ι∂a∗(K∧ι∂a∗J)} + a G

]
= 0 ,

EB ≡ d

[
a

[
{ι∂a(da)}(ι∂a∗K + 2 c da∧K) − H − 1

2 c ∗ι∂a{K∧∗(ι∂a∗J∧ι∂a∗J)}

− c ∗{ι∂a∗J∧ι∂a∗(K∧ι∂a∗J)}
]]

= 0 ,

EK ≡ da∧
[
{ι∂a(da)}(∗J − 2 c J) + 1

2 c ι∂a∗J∧∗(∗J∧ι∂a∗J)
]

= 0 ,

EC3 ≡ {ι∂a(da)}(ι∂a∗K + 2 c da∧K) + F − 1
2 c ∗ι∂a{K∧∗(ι∂a∗J∧ι∂a∗J)}

− c ∗{ι∂a∗J∧ι∂a∗(K∧ι∂a∗J)} + a G = 0 . (A.29)

We consider the equation EA − d[ι∂a(EB − a EA)/ι∂a(da)] = 0, which when subjected to
the gauge transformations δdB = dY1 and δA = − a da∧Y2 alongside δB = da∧Y2, provides
us with the following relation:

ι∂aJ = {ι∂a(da)}
[
2[{ι∂a(da)}cK−B]+ 1

2c∗{K∧∗(ι∂a∗J∧ι∂a∗J)}+c∗{ι∂a∗J∧∗(K∧ι∂a∗J)}
]

.

(A.30)
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∗[da∧ι∂a(EB − a EA)] = 0 effectively gives

K = ι∂a∗J

{ι∂a(da)}2 . (A.31)

Inserting the above expression for K into eq. (A.30), the nonlinear self-duality relation of
LJ13 gets expressed as

ι∂aJ = 2 c ι∂a∗J + 3 c ι∂a∗J∧∗(ι∂a∗J∧ι∂a∗J)
2 ι∂a(da) − 2 {ι∂a(da)}B. (A.32)

A.4.2 Lagrangian LH13

LH13 = da∧K∧
[
{ι∂a(da)}(∗H − 2 c H − ι∂a∗B) + 1

2 c ι∂a∗H∧∗{∗H∧ι∂a∗H}
]

− H∧(da∧B + C3) − C6 + 2 ∗(c − c b2 − b). (A.33)

Equations of motion:

Ea ≡ d

[
3 {ι∂a(da)}K∧(∗H − 2 c H − ι∂a∗B) − 2 da∧ι∂a{K∧(∗H − 2 c H − ι∂a∗B)}

− 1
2 c H∧∗{K∧∗(ι∂a∗H∧ι∂a∗H)} − c H∧∗{ι∂a∗H∧∗(K∧ι∂a∗H)}

+ B∧{H − {ι∂a(da)}ι∂a∗K}
]

= 0 ,

Eb ≡ 2 b c + 1 = 0 ,

Ec ≡ da∧K∧
[
2 {ι∂a(da)}H − 1

2 ι∂a∗H∧∗(∗H∧ι∂a∗H)
]

+ 2 ∗(b2 − 1) = 0 ,

EA ≡ d

[
{ι∂a(da)}ι∂a∗K − H + da∧

[
2 {ι∂a(da)} c K + 1

2 c ∗{K∧∗(ι∂a∗H∧ι∂a∗H)}

+ c ∗{ι∂a∗H∧∗(K∧ι∂a∗H)} − B

]]
= 0 ,

EB ≡ da∧[{ι∂a(da)}ι∂a∗K − H] = 0 ,

EK ≡ da∧
[
{ι∂a(da)}(∗H − 2 c H − ι∂a∗B) + 1

2 c ι∂a∗H∧∗(∗H∧ι∂a∗H)
]

= 0 ,

EC3 ≡ {ι∂a(da)}ι∂a∗K + F + da∧
[
2 c K + 1

2 c ∗{K∧∗(ι∂a∗H∧ι∂a∗H)}

+ c ∗{ι∂a∗H∧∗(K∧ι∂a∗H)} − B

]
= 0 . (A.34)

We apply the gauge transformations δA = da∧Z1 , δB = − dZ1 and δaB = da∧Z2 to the
general solution of the equation EA − d[ι∂aEB/ι∂a(da)] = 0, and get

ι∂aH ={ι∂a(da)}
[
[2c{ι∂a(da)}K−B]+ c

2∗{K∧∗(ι∂a∗H∧ι∂a∗H)}+c∗{ι∂a∗H∧∗(K∧ι∂a∗H)}
]
.

(A.35)
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On solving EB = 0 and EK = 0 we find,

K = ι∂a∗H

{ι∂a(da)}2 ,

B = ι∂a(H − 2 c ∗H)
ι∂a(da) − c ∗{ι∂a∗H∧∗(ι∂a∗H∧ι∂a∗H)}

2 {ι∂a(da)}2 . (A.36)

Here the solutions for K and B are independent of each other. B and K can be eliminated
from eq. (A.35) using the above solutions, arriving at the nonlinear self-duality condition:

ι∂aH = ι∂a∗H̃, where H̃ = 2 c H − c ι∂a∗H∧∗(∗H∧ι∂a∗H)
ι∂a(da) .

B Notation and conventions

B.1 Levi-Civita tensor and generalised Kronecker Delta function

The Levi-Civita symbol, denoted by ε̂µ1µ2...µd
, is defined as follows:

ε̂µ1µ2...µd =


+1 if (µ1, µ2, . . . , µd) is an even permutation of (1, 2, . . . , d),
−1 if (µ1, µ2, . . . , µd) is an odd permutation of (1, 2, . . . , d),
0 otherwise ,

(B.1)

and the Levi-Civita tensor as follows:

ϵµ1µ2...µd = sgn(g)√
|g|

ε̂µ1µ2...µd , (B.2)

where g is the determinant of the metric and sgn(g) is its signature.
The generalized Kronecker delta function (gKd) is defined as

δµ1µ2...µp
ν1ν2...νp

=

∣∣∣∣∣∣∣∣
δµ1

ν1 · · · δ
µp
νp

... . . . ...
δ

µp
ν1 · · · δ

µp
νp

∣∣∣∣∣∣∣∣ , (B.3)

where δµ1
ν1 is the Kronecker Delta function. The gKd is related to the Levi-Civita tensor

as follows:

ϵµ1...µpλp+1...λd ϵν1...νpλp+1...λd
= sgn(g) (d − p)! δµ1µ2...µp

ν1ν2...νp
. (B.4)

B.2 Differential forms

In the following, the expressions shown inside the big round brackets are the expressions
used in index notation.

p-form

A(p) = 1
p!

(
A[µ1µ2...µp]

)
dxµ1∧dxµ2∧ . . . dxµp . (B.5)
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Exterior Product

A(p)∧B(q)∧ . . .∧C(r)

= 1
(p + q + . . . r)!

((p + q + . . . r)!
p! q! . . . r! A[µ1...µp

Bν1...νq . . . Cλ1...λr]

)
dxµ1∧ . . . dxµp∧dxν1∧

. . . dxνq . . . ∧dxλ1∧ . . . dxλr .

(B.6)

Interior Product. For a vector field v = vµ1 ∂
∂xµ1 ,

ιv(A(p)) = 1
(p − 1)!

(
vµ1A[µ1µ2...µp]

)
dxµ2∧dxµ3 . . .∧dxµp . (B.7)

Hodge Dual

∗(A(p)) = (∗A)(d−p) = 1
(d − p)!

( 1
p! ϵµ1µ2...µd

Aµ1µ2...µp

)
dxµ(p+1)∧ . . . dxµd . (B.8)

∗(A(p)∧B(q)∧ . . .∧C(r))

= 1
n!

( 1
p! q! . . . r! ϵµ1...µpν1...νq ...λ1...λrσ1...σnAµ1...µpBν1...νq . . . Cλ1...λr

)
dxσ1∧ . . . dxσn . (B.9)

where n = d − p − q − . . . r.

Exterior Product of p-form with Hodge Dual of p-form

A(p)∧ ∗ (B(p)) = A(p)∧(∗B)(d−p)

= 1
d!

(
d!

(p!)2 (d − p)! Bν1...νp ϵν1...νp[ν(p+1)...νd
Aµ1...µp]

)
dxµ1∧ . . . dxµp∧dxν(p+1)∧ . . . dxνd

(B.10)

= 1
d!

( 1
p! ϵµ1...µpν(p+1)...νd

Aν1...νp Bν1...νp

)
dxµ1∧ . . . dxµp∧dxν(p+1)∧ . . . dxνd . (B.11)

Exterior Derivative

d(A(p)) = 1
(p + 1)!

(
(p + 1) ∂[µ1Aµ2...µ(p+1)]

)
dxµ1∧dxµ2∧ . . . dxµ(p+1) . (B.12)

Integral. The volume element is

ϵ(d) = 1
d! ϵµ1µ2...µd

dxµ1∧dxµ2∧ . . .∧dxµd =
√
|g| dx0∧dx1∧ . . .∧dx(d−1) ≡

(√
|g| ddx

)
.

(B.13)

On a d-dimensional manifold, the integral of a d-form is as follows:

∫
C(d) ≡

∫
ϵ(d) (∗C)(0) ≡

∫
ddx

√
|g|
d! ϵµ1µ2...µd

Cµ1µ2...µd . (B.14)
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B.3 Exterior algebra identities

We take a 0-form a, two normalised vector fields u and v, and two p-forms A and B. The
number of dimensions is d. For a vector field v = vµ ∂µ, the corresponding 1-form vµ dxµ

is denoted by v♭.4

∗∗A = sgn(g)(−1)p(d−p)A , (B.15)
A∧∗B = B∧∗A , (B.16)

ιv∗A = ∗(A∧v♭) , (B.17)

∗(ιvA) = (−1)(p−1) v♭∧∗A = (−1)(d−1) (∗A)∧v♭ , (B.18)

ιu(v♭∧A) + v♭∧ιuA = (uµ vµ) A , (B.19)

Q(d) = v♭∧ιuQ

(uµ vµ) , (B.20)

ιv(u♭∧∗A) = ∗(v♭∧ιuA) , (B.21)

v♭∧ιu∗A = ∗ιv(u♭∧A) . (B.22)

C Recasting certain 5-form expressions

Let v be a normalised vector field such that ιvv♭ = vµ vµ = 1. Let P be a 2-form such that
ιvP = 0. So P = ιv(v♭∧P ). Define u♭ ≡ ∗(v♭∧P∧P ). Note that ιvu♭ = 0. To show this, consider

ιvu♭ = ιv∗(v♭∧P∧P ) = −∗(v♭∧v♭∧P∧P ) = 0 . (C.1)

Since in six dimensions antisymmetrisation over seven indices is trivially zero, we have

7v[µ0Pµ1µ2Pµ3µ4Pµ5µ6] = vµ0P[µ1µ2Pµ3µ4Pµ5µ6] + 6 v[µ1Pµ2µ3Pµ4µ5Pµ6]µ0 = 0. (C.2)

Multiplying by 1
8 ϵµ1µ2µ3µ4µ5µ6 dxµ0 , we get

(vµ0dxµ0)
(1

8ϵµ1µ2µ3µ4µ5µ6Pµ1µ2Pµ3µ4Pµ5µ6

)
+3

(1
4ϵµ1µ2µ3µ4µ5µ6vµ1Pµ2µ3Pµ4µ5

)
Pµ6µ0dxµ

0 = 0

⇒ ∗(P∧P∧P )v♭+3uµ6Pµ6µ0dxµ0 = 0

⇒ ∗(P∧P∧P )v♭+3 ιuP = 0. (C.3)

Furthermore, using (B.19) and the fact that P∧P∧P is a full-rank form, we have P∧P∧P =
v♭∧ιv(P∧P∧P ) = 3 v♭∧(ιvP )∧P∧P = 0. It implies that

ιuP = 0. (C.4)

4Referred to as “v-flat” adopting a musical isomorphism.
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Then it follows that

∗[P∧v♭∧∗{P∧∗(P∧P )}] = −∗[P∧∗{ιv
(
P∧∗(P∧P )

)
}] (using (B.18))

= −∗[P∧∗{P∧ιv∗(P∧P )}]

= −∗{P∧∗(P∧u♭)}
= −∗(P∧ιu∗P ) (using (B.17))
= −∗ιu(P∧∗P )

= ∗(P∧∗P ) u♭ (using (B.18)). (C.5)

When P = ιv∗H the above identity gives

∗[v♭∧ιv∗H∧∗{ιv∗H∧∗ (ιv∗H∧ιv∗H)}] = [∗{ιv∗H∧∗ (ιv∗H)}](0) ∗(v♭∧ιv∗H∧ιv∗H), (C.6)

where the superscript (0) reminds us that the term is a 0-form/scalar. Taking Hodge dual
of both sides, we get

v♭∧ιv∗H∧∗{ιv∗H∧ ∗ (ιv∗H∧ιv∗H)} = [∗{ιv∗H∧∗(ιv∗H)}](0) v♭∧ιv∗H∧ιv∗H. (C.7)

Next we have

∗[v♭∧∗{P∧∗(P∧P )}∧∗{P∧∗(P∧P )}]
= −∗[∗{P∧ιv∗(P∧P )}∧∗{P∧∗(P∧P )}] (using (B.18))

= −∗[∗(P∧u♭)∧∗{P∧∗(P∧P )}]
= −∗[ιu∗P∧∗{P∧∗(P∧P )}] (using (B.17))
= −∗ιu[∗P∧∗{P∧∗(P∧P )}] + ∗[∗P∧ιu∗{P∧∗(P∧P )}]

= ∗[∗P∧∗{P∧∗(P∧P )}]u♭ + ∗[∗P∧∗{P∧u♭∧∗(P∧P )}] (using (B.18) and (B.17))

= ∗[∗P∧∗{P∧∗(P∧P )}]u♭ − ∗[∗P∧∗{P∧∗(2 ιuP∧P ))}] (using (B.18))

= ∗[∗P∧∗{P∧∗(P∧P )}]u♭

= ∗{P∧∗(P∧P )∧∗(∗P )}u♭ (using (B.16))

= −∗{P∧P∧∗(P∧P )}u♭. (C.8)

When P = ιv∗H the above identity gives

∗[v♭∧∗{ιv∗H∧∗(ιv∗H∧ιv∗H)}∧∗{ιv∗H∧∗(ιv∗H∧ιv∗H)}]

= −[∗{ιv∗H∧ιv∗H∧ ∗ (ιv∗H∧ιv∗H)}](0) ∗(v♭∧ιv∗H∧ιv∗H). (C.9)

The superscript (0) reminds us that the expression inside its bracket is a 0-form. Taking
the Hodge dual of both the sides, we get

v♭∧∗{ιv∗H∧∗(ιv∗H∧ιv∗H)}∧∗{ιv∗H∧∗(ιv∗H∧ιv∗H)}

= − [∗{ιv∗H∧ιv∗H∧ ∗ (ιv∗H∧ιv∗H)}](0) v♭∧ιv∗H∧ιv∗H. (C.10)
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D Recasting a determinant

Leibniz formula for determinants tells us that the determinant of an n × n matrix M whose
elements are denoted by Mµν , is given by

det(M) = 1
n! ε̂i1i2...in ε̂j1j2...jn Mµ1ν1Mµ2ν2 . . . Mµnνn , (D.1)

where ε̂i1i2...in is the Levi-Civita symbol with ε̂12...n = 1.
So in 6D-spacetime where gµν is the metric and Tµν is a rank-2 tensor with indices

µ, ν = 0, 1, . . . 5, the determinant of (gµν + Tµν) can be given by

det(gµν + Tµν) = 1
6! ε̂µ0...µ5 ε̂ν0...ν5 (gµ0ν0 + Tµ0ν0)(gµ1ν1 + Tµ1ν1) . . . (gµ5ν5 + Tµ5ν5). (D.2)

If Tµν is antisymmetric then the above equation can also be written as

det(gµν + Tµν) = 1
6! ε̂µ0...µ5 ε̂ν0...ν5 (gµ0ν0 − Tν0µ0)(gµ1ν1 − Tν1µ1) . . . (gµ5ν5 − Tν5µ5). (D.3)

As gµν is a symmetric tensor, we can exchange its indices without getting any change in its
sign. Performing this exchange on the right hand side (r.h.s. ) of the above equation we get

det(gµν + Tµν) = 1
6! ε̂µ0...µ5 ε̂ν0...ν5 (gν0µ0 − Tν0µ0)(gν1µ1 − Tν1µ1) . . . (gν5µ5 − Tν5µ5) ,

= det(gµν − Tµν). (D.4)

As det(gµν + Tµν) is even under Tµν → −Tµν , the expansion of det(gµν + Tµν) consists of
only the even powers of Tµν . We continue to work with Tµν as an anti-symmetric tensor.
Using binomial expansion, (D.2) can be expressed as

det(Tµν + gµν)

=
6∑

n=0

6!
n! (6 − n)!

1
6! ε̂µ0...µ5 ε̂ν0...ν5 (Tµ0ν0 . . . Tµ(n−1)ν(n−1))(gµnνn . . . gµ5ν5)

= |g|
6∑

n=0

6!
n! (6 − n)!

1
6! ϵµ0...µ5 ϵν0...ν5 (Tµ0ν0 . . . Tµ(n−1)ν(n−1))(gµnνn . . . gµ5ν5) (using (B.2))

= |g|
6∑

n=0

1
n! (6 − n)! ϵµ0...µ5 ϵν0...ν(n−1)µn...µ5 Tµ0

ν0 . . . Tµ(n−1)
ν(n−1)

= |g|
6∑

n=0

sgn(g)
n! δ

µ0...µ(n−1)
ν0...ν(n−1) Tµ0

ν0 . . . Tµ(n−1)
ν(n−1) (using (B.4))

= g

[
1 + 1

2! δµ0µ1
ν0ν1 Tµ0

ν0Tµ1
ν1 + 1

4! δµ0µ1µ2µ3
ν0ν1ν2ν3 Tµ0

ν0Tµ1
ν1Tµ2

ν2Tµ3
ν3

+ 1
6! δµ0µ1µ2µ3µ4µ5

ν0ν1ν2ν3ν4ν5 Tµ0
ν0Tµ1

ν1Tµ2
ν2Tµ3

ν3Tµ4
ν4Tµ5

ν5

]
. (D.5)
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In the last line above we have used the fact that |g| = −g and sgn(g) = −1 for our Minkowski
metric gµν with mostly-plus signature. We simplify each term on the r.h.s. separately.

1
2! δµ0µ1

ν0ν1 Tµ0
ν0Tµ1

ν1

= 1
2 (δµ0

ν0 δµ1
ν1 − δµ0

ν1 δµ1
ν0 ) Tµ0

ν0Tµ1
ν1

= 1
2 Tµ0µ1T µ0µ1

= 1
4 δµ0µ1

ν0ν1 Tµ0µ1T ν0ν1

= sgn(g) 1
96 ϵµ0µ1µ2µ3µ4µ5{Tµ0µ1(ϵν0ν1µ2µ3µ4µ5T ν0ν1)} (using (B.4))

= − 1
96 ϵµ0µ1µ2µ3µ4µ5

{
(2!)2 4!

6! (T∧∗T )
}

(using (B.10))

= − 1
96

6! (2!)2 4!
6! ∗(T∧∗T ) (using (B.11))

= −∗(T∧∗T ) (in differential form notation). (D.6)

From (B.3) we know that

δµ0µ1µ2µ3
ν0ν1ν2ν3

= δµ0
ν0 δµ1

ν1 δµ2
ν2 δµ3

ν3 −δµ0
ν0 δµ1

ν1 δµ2
ν3 δµ3

ν2 −δµ0
ν0 δµ1

ν2 δµ2
ν1 δµ3

ν3 +δµ0
ν0 δµ1

ν2 δµ2
ν3 δµ3

ν1 +δµ0
ν0 δµ1

ν3 δµ2
ν1 δµ3

ν2 −δµ0
ν0 δµ1

ν3 δµ2
ν2 δµ3

ν1

−δµ0
ν1 δµ1

ν0 δµ2
ν2 δµ3

ν3 +δµ0
ν1 δµ1

ν0 δµ2
ν3 δµ3

ν2 +δµ0
ν1 δµ1

ν2 δµ2
ν0 δµ3

ν3 −δµ0
ν1 δµ1

ν2 δµ2
ν3 δµ3

ν0 −δµ0
ν1 δµ1

ν3 δµ2
ν0 δµ3

ν2 +δµ0
ν1 δµ1

ν3 δµ2
ν2 δµ3

ν0

+δµ0
ν2 δµ1

ν0 δµ2
ν1 δµ3

ν3 −δµ0
ν2 δµ1

ν0 δµ2
ν3 δµ3

ν1 −δµ0
ν2 δµ1

ν1 δµ2
ν0 δµ3

ν3 +δµ0
ν2 δµ1

ν1 δµ2
ν3 δµ3

ν0 +δµ0
ν2 δµ1

ν3 δµ2
ν0 δµ3

ν1 −δµ0
ν2 δµ1

ν3 δµ2
ν1 δµ3

ν0

−δµ0
ν3 δµ1

ν0 δµ2
ν1 δµ3

ν2 +δµ0
ν3 δµ1

ν0 δµ2
ν2 δµ3

ν1 +δµ0
ν3 δµ1

ν1 δµ2
ν0 δµ3

ν2 −δµ0
ν3 δµ1

ν1 δµ2
ν2 δµ3

ν0 −δµ0
ν3 δµ1

ν2 δµ2
ν0 δµ3

ν1 +δµ0
ν3 δµ1

ν2 δµ2
ν1 δµ3

ν0 .

(D.7)

Kronecker-delta δν
µ is symmetric in µ, ν whereas Tµ

ν is anti-symmetric in µ, ν. Therefore
when the above twenty-four terms are contracted with Tµ0

ν0Tµ1
ν1Tµ2

ν2Tµ3
ν3 , fifteen of them

give 0. We are left with

1
4! δµ0µ1µ2µ3

ν0ν1ν2ν3 Tµ0
ν0Tµ1

ν1Tµ2
ν2Tµ3

ν3

= 1
24(δµ0

ν1 δµ1
ν0 δµ2

ν3 δµ3
ν2 −δµ0

ν1 δµ1
ν2 δµ2

ν3 δµ3
ν0 −δµ0

ν1 δµ1
ν3 δµ2

ν0 δµ3
ν2 −δµ0

ν2 δµ1
ν0 δµ2

ν3 δµ3
ν1 +δµ0

ν2 δµ1
ν3 δµ2

ν0 δµ3
ν1 −δµ0

ν2 δµ1
ν3 δµ2

ν1 δµ3
ν0

−δµ0
ν3 δµ1

ν0 δµ2
ν1 δµ3

ν2 −δµ0
ν3 δµ1

ν2 δµ2
ν0 δµ3

ν1 +δµ0
ν3 δµ1

ν2 δµ2
ν1 δµ3

ν0 )Tµ0
ν0Tµ1

ν1Tµ2
ν2Tµ3

ν3

= 1
24(3Tµ0µ1T µ0µ1Tν0ν1T ν0ν1−6Tµ0µ1T µ1ν0Tν0ν1T ν1µ0)

= 1
8 Tµ0µ1Tν0ν1(T µ0µ1T ν0ν1−2T µ1ν0T ν1µ0)

= 3
8 Tµ0µ1Tν0ν1T [µ0µ1T ν0ν1]

= 1
64 Tµ0µ1Tν0ν1 δµ0µ1ν0ν1

λ0λ1λ2λ3
T λ0λ1T λ2λ3

= sgn(g) 1
128 ϵµ0µ1ν0ν1λ4λ5{Tµ0µ1Tν0ν1(ϵλ0λ1λ2λ3λ4λ5T λ0λ1T λ2λ3)} (using (B.4))
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=− 1
128 ϵµ0µ1ν0ν1λ4λ5

(4!)2 2!
6!

{
(2!)2

(2+2)!

}2

{T∧T∧∗(T∧T )}

 (using (B.6) & (B.10))

=− 1
128

6!(4!)2 2!
6!

{
(2!)2

(2+2)!

}2

{T∧T∧∗(T∧T )} (using (B.11))

=− 1
4 ∗{T∧T∧∗(T∧T )} (in differential form notation). (D.8)

Similarly it can be seen that

1
6! δµ0µ1µ2µ3µ4µ5

ν0ν1ν2ν3ν4ν5 Tµ0
ν0Tµ1

ν1Tµ2
ν2Tµ3

ν3Tµ4
ν4Tµ5

ν5

= sgn(g) 1
482 ϵµ0µ1µ2µ3µ4µ5{Tµ0µ1Tµ2ν3Tµ4ν5(ϵν0ν1ν2ν3ν4ν5T ν0ν1T ν2ν3T ν4ν5)}

= − 1
36 ∗{T∧T∧T∧∗(T∧T∧T )} (in differential form notation). (D.9)

Incorporating expressions (D.6), (D.8) and (D.9) into eq. (D.5), we get

det(gµν + Tµν)

= g

[
1 − ∗(T∧∗T ) − 1

4∗{T∧T∧∗(T∧T )} − 1
36 ∗{T∧T∧T∧∗(T∧T∧T )}

]
. (D.10)

On setting T = − i ιv∗H, we get

det (g − i ιv∗H) =g

[
1 + ∗{ιv∗H∧∗(ιv∗H)} − 1

4 ∗{ιv∗H∧ιv∗H∧∗(ιv∗H∧ιv∗H)}

+ 1
36 ∗{ιv∗H∧ιv∗H∧ιv∗H∧∗(ιv∗H∧ιv∗H∧ιv∗H)}

]
. (D.11)

Since (ιv∗H∧ιv∗H∧ιv∗H) is a 6-form in the 6D worldvolume of the M5-brane, by iden-
tity (B.20) it can be written as

ιv∗H∧ιv∗H∧ιv∗H = v♭∧ιv(ιv∗H∧ιv∗H∧ιv∗H) = 0. (D.12)

Therefore, we find

det (g − i ιv∗H) = g

[
1 + ∗{ιv∗H∧∗(ιv∗H)} − 1

4 ∗{ιv∗H∧ιv∗H∧∗(ιv∗H∧ιv∗H)}
]

. (D.13)
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