Short communication

Note on "A classification of peak-pit maximal Condorcet domains" by Guanhao Li, Mathematical Social Sciences 125 (2023), 42-57

${ }^{\text {a }}$ Department of Economics and Management, Karlsruhe Institute of Technology, Germany
${ }^{\mathrm{b}}$ Department of Mathematics, University of Auckland, New Zealand

ARTICLE INFO

Keywords:

Condorcet domains
Peak-pit domains
A B S T R A C T
The note presents a counter example to Li (2023).

In this note we present a counterexample to Lemma 1 in Li (2023). Lemma 1 in Li (2023) states that any locally maximal weakly separated system of sets is an ideal. (All definitions are taken from the paper by Li (2023); see Definitions 18 and 19 for the notion of a locally maximal weakly separated set-system, and Definition 11 for the notion of an ideal.)

We will now exhibit a system of subsets on the set [5] :=\{1,2,3,4,5\} that is locally maximal weakly separated but not an ideal. Consider the graded system $S:=\cup_{i=0}^{5} S_{i}$ where
$S_{0}=\{\emptyset\}$,
$S_{1}=\{\{1\},\{2\},\{5\}\}$,
$S_{2}=\{\{1,2\},\{2,4\},\{2,5\},\{4,5\}\}$,
$S_{3}=\{\{1,2,3\},\{1,2,4\},\{2,3,4\},\{2,4,5\},\{3,4,5\}\}$,
$S_{4}=\{\{1,2,3,4\}\}$,
$S_{5}=\{\{1,2,3,4,5\}\}$.
This is not an ideal since the sets $\{2,4,5\}$ and $\{3,4,5\}$ do not have corresponding supersets in S of cardinality 4. Let us check that S is locally maximal weakly separated. We need to consider for every triple $\{i, j, k\}$ of pairwise different elements of [5] the reduced set system
$S_{\{i, j, k\}}=\{X \cap\{i, j, k\} \mid X \in S$, and $\{i, j, k\} \subseteq[5]\}$,
and show that it has cardinality 7 with either a singleton or a pair missing from $2^{\{i, j, k\}}$. We have:
$S_{\{1,2,3\}}=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,2,3\}\}$ and $\{1,3\}$ is absent,
$S_{\{1,2,4\}}=\{\emptyset,\{1\},\{2\},\{4\},\{1,2\},\{2,4\},\{1,2,4\}\}$ and $\{1,4\}$ is absent,
$S_{\{1,2,5\}}=\{\emptyset,\{1\},\{2\},\{5\},\{1,2\},\{2,5\},\{1,2,5\}\}$ and $\{1,5\}$ is absent,
$S_{\{1,3,4\}}=\{\emptyset,\{1\},\{4\},\{1,3\},\{1,4\},\{3,4\},\{1,3,4\}\}$ and $\{3\}$ is absent,
$S_{\{1,3,5\}}=\{\emptyset,\{1\},\{3\},\{5\},\{1,3\},\{3,5\},\{1,3,5\}\}$ and $\{1,5\}$ is absent,
$S_{\{1,4,5\}}=\{\emptyset,\{1\},\{4\},\{5\},\{1,4\},\{4,5\},\{1,4,5\}\}$ and $\{1,5\}$ is absent,
$S_{\{2,3,4\}}=\{\emptyset,\{2\},\{4\},\{2,3\},\{2,4\},\{3,4\},\{2,3,4\}\}$ and $\{3\}$ is absent,
$S_{\{2,3,5\}}=\{\emptyset,\{2\},\{5\},\{2,3\},\{2,5\},\{3,5\},\{2,3,5\}\}$ and $\{3\}$ is absent,
$S_{\{2,4,5\}}=\{\emptyset,\{2\},\{5\},\{2,4\},\{2,5\},\{4,5\},\{2,4,5\}\}$ and $\{4\}$ is absent,
$S_{\{3,4,5\}}=\{\emptyset,\{3\},\{4\},\{5\},\{3,4\},\{4,5\},\{3,4,5\}\}$ and $\{3,5\}$ is absent.

Hence S is locally maximal and weakly separated but not an ideal. Thus, Lemma 1 in Li (2023) is not correct. Since Lemma 1 represents a pivotal step in the analysis of that paper, most of the proofs in Sections 3 and 4 of Li (2023) are therefore incomplete.

Indeed, in Section 3, the proof of Lemma 2 relies on Lemma 1; the proof of Theorem 1, in turn, relies on both Lemmas 1 and 2; the proof

[^0]of Lemma 4 relies on Theorem 1; the proof of Theorem 2 relies on Lemma 4; the proof of Lemma 5 relies on Lemma 1 (via Theorem 1); the proof of Corollary 1 relies on Lemmas 4 and 5 , as well as Theorems 1 and 2; the proof of Lemma 6 relies on Corollary 1, and the proof of Corollary 2 relies on Corollary 1 and Lemma 6.

In Section 4, the pivotal statement is the aforementioned Corollary 1 from Section 3 which is used to prove both Lemmas 8 and 9. The proof of Theorem 3 relies on Lemma 9, and the proof of Theorem 4 uses both Theorems 2 and 3 .

CRediT authorship contribution statement

Clemens Puppe: Writing - original draft. Arkadii Slinko: Writing - original draft.

Data availability

No data was used for the research described in the article.

References

Li, G., 2023. A classification of peak-pit maximal condorcet domains. Math. Social Sci.
125, 42-57.

[^0]: * Corresponding author.

 E-mail address: clemens.puppe@kit.edu (C. Puppe).

