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ABSTRACT
Numerical simulation of fluid flow plays an essential role in modeling many physical phenomena, which enables technological advancements,
contributes to sustainable practices, and expands our understanding of various natural and engineered systems. The calculation of heat trans-
fer in fluid flow in simple flat channels is a relatively easy task for various simulation methods. However, once the channel geometry becomes
more complex, numerical simulations become a bottleneck in optimizing wall geometries. We present a combination of accurate numerical
simulations of arbitrary, flat, and non-flat channels as well as machine learning models trained on simulated data to predict the drag coef-
ficient and Stanton number. We show that convolutional neural networks (CNNs) can accurately predict target properties at a fraction of
the computational cost of numerical simulations. We use CNN models in a virtual high-throughput screening approach to explore a large
number of possible, randomly generated wall architectures. Data augmentation techniques are incorporated to enforce physical invariances
toward shifting and flipping, contributing to precise prediction for fluid flow and heat transfer characteristics. Moreover, we approach the
interpretation of the trained model to better understand relevant channel structures and their influence on heat transfer. The general approach
is not only applicable to simple flow setups as presented here but can be extended to more complex tasks, such as multiphase or even reactive
unit operations in chemical engineering.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0187783

I. INTRODUCTION

Heat transfer in fluid flow is an important physical phe-
nomenon, with relevance across many science and engineering dis-
ciplines ranging from microfluidic devices in chemical engineering
and biomedical implants, all the way to high-temperature physics
and cosmology. In this proof-of-concept study, we explore an inter-
esting engineering question, which can be posed as follows: “Is it

possible to introduce structural changes to the wall of a channel
that increases heat transfer, without having a corresponding increase
in the pressure drop?” This fundamental question linked to the
ultimate goal of dissimilar flow control or dissimilar heat transfer
enhancement that has been asked for decades by various research
groups in different application fields.

Dissimilar heat transfer enhancement is proven to be extremely
challenging due to similarity in the mechanisms of momentum
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and heat transfer.1 Investigations of various surfaces including spe-
cially designed fins,2,3 dimples,4 or vortex generators5 report that
an increase in heat transfer (where heat transfer is described by
the Stanton number St) is always accompanied by inevitable man-
ifold increase in pressure drop (described by the drag coefficient
C f ). This eventually results in a decrease in the Reynolds analogy
factor RA = 2St/C f

6 in comparison to a flat channel configuration.
It is, however, known that a dissimilar modification of momen-
tum and heat transfer is possible when sophisticated flow control
methods are applied. Those control methods, for instance, can be
based on the introduction of flow perturbations or optimally dis-
tributed blowing/suction profiles from the wall surface.7–11 These
studies confirm that a significant enhancement of the Reynolds anal-
ogy factor (tripling RA in comparison to the uncontrolled channel
flow) is possible when an appropriate flow manipulation is created.
It is found that an introduction of large-scale spanwise rolls signif-
icantly promotes heat transfer while the drag coefficient remains
less affected. This concept has also been successfully tested in the
framework of turbulent channel flows, where RA > 2 can be achieved
instead of RA = 1 in an uncontrolled flow configuration.12,13 Recent
studies in turbulent flows also report a possibility of RA modifi-
cation using streamwise elongated structures, leading to the for-
mation of turbulence-driven secondary motions.14 The modifica-
tion of RA is, however, limited in this case to several percent
due to increase in the wetted area and the corresponding increase
in C f .

Most of the above studies were focused on turbulent flow
regimes. To simplify the scenario, in the present study, we
consider the laminar flow regime in a two-dimensional chan-
nel with heat transfer. The immersed boundary method is used
for introducing the wall structuring. This approach allows for
rapid execution of direct numerical simulations (DNSs), making
it possible to investigate a wide range of arbitrarily generated
surfaces.

Due to rapid growth in ML method development, there is also
a growing interest in applying ML methods to challenges in the
field of fluid dynamics. Seminal work on ML in fluid mechanics
was focused on image processing based on convolutional neu-
ral networks (CNNs). CNNs have been successfully utilized as a
straightforward method for learning from flow field data, reduc-
ing the computational cost.15,16 For instance, deep CNNs have
been used to construct velocity fields from image pairs of particle
image velocimetry.17 Furthermore, the CNN-based superresolution

algorithm has contributed to turbulent flow reconstruction.18 A
recent study established two different models based on CNNs and
encoder–decoder (ED) architectures to predict characteristics of the
flow and heat transfer around the NACA.19 The established CNN
predicts the aerodynamic coefficients and the Nusselt number. How-
ever, there are still open challenges approaching dissimilar heat
transfer enhancement and applying ML algorithms to this challenge.
Furthermore, interpreting ML models can offer additional insights
to complement human understanding and engineering intuition.

In this study, we present a workflow consisting of numeri-
cal simulations (Sec. II A), the key parameters for quantifying the
performance of a thermo-fluid system (Sec. II B), and dataset gen-
eration along with the ML model (i.e., the CNN model) training
(Sec. II C). In Sec. III, We show that the ML model can predict fluid
flow and heat transfer characteristics with a large speedup compared
to numerical simulations and with a high enough accuracy to pre-
screen a large database of possible channel geometries. Following an
analysis of the velocity and temperature fields of some of the relevant
structures in the training dataset (Sec. IV A), we interpret the trained
ML model using SHapely Additive exPlanations (SHAP), which is
a widely used explainable artificial intelligence method (Sec. IV B).
Finally, we summarize the conclusions of the current study in Sec. V.

II. METHODS
A. Numerical procedure

For the problem setup, we consider a laminar channel flow with
arbitrary wall structuring. The coordinate system of the numeri-
cal domain and its geometry (Lx × Ly = 10δ × 2δ with δ being the
half channel height) are illustrated in Fig. 1, where (x, y) = (x1, x2)
correspond to the streamwise and wall-normal directions, respec-
tively. The velocity components in the two directions are denoted by
(u, v) = (u1, u2). The analysis is carried out using flow and tempera-
ture fields produced by DNS in a channel flow driven at a constant
flow rate (CFR). Assuming an incompressible flow, the velocity field
is required to satisfy continuity,

∇ ⋅ u = 0, (1)

and the Navier–Stokes equations for a constant property Newtonian
fluid:

∂u
∂t
+ (u ⋅ ∇)u = 1

ρ
Px −

1
ρ
∇p + ν∇2u + FIBM. (2)

FIG. 1. Laminar channel flow with imposed wall structuring.

APL Mach. Learn. 2, 016108 (2024); doi: 10.1063/5.0187783 2, 016108-2

© Author(s) 2024

 30 January 2024 14:49:18

https://pubs.aip.org/aip/aml


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

Here, p is the fluctuating pressure part, ρ is the density, ν is the kine-
matic viscosity, and FIBM represents the external volume force per
unit mass required for the immersed boundary method (IBM) with
which the wall structuring is introduced into the flow domain.20

In the present configuration, FIBM corresponds to frictional drag
between the flow and the part of the surface reproduced by the
immersed boundary method, i.e., the structured wall surface. Px is
the absolute value of the mean streamwise pressure gradient added
to the equation in order to drive the flow through the channel.

Due to the CFR approach, the bulk Reynolds number is fixed
to Reb = 2Ubδ/ν = 200 for all the considered simulations, where Ub

= 1
2δ ∫

2δ
0 udy is the bulk mean velocity. This means that any modifica-

tion of the flow is translated into an alteration of the resulting mean
streamwise pressure gradient Px required to maintain the chosen
flow rate. Periodic boundary conditions are applied in the stream-
wise directions while the wall-normal extension of the flow domain
is bounded by no-slip boundary conditions at the lower and upper
domain walls (y = 0, 2δ). Subscript l and u are used throughout
the manuscript to denote quantities on the lower and upper walls,
respectively.

Temperature T is treated as a passive scalar and has to satisfy
the scalar transport equation:

∂T
∂t
+ (u ⋅ ∇)T = α∇2T +QIBM , (3)

where α denotes the thermal diffusivity. Periodic boundary con-
ditions are applied for the thermal field in the x-direction, while
constant temperature is prescribed on both the lower and upper
walls of the flow domain. The non-dimensionalized temperature is
defined as θ = (T − T l)/ΔTw with ΔTw = Tu − T l, such that θl = 0
and θu = 1. The Prandtl number is chosen to be Pr = ν/α = 1. QIBM
is proportional to the heat transfer rate between the flow and the
structured wall and can be considered as the counterpart to the vol-
ume force FIBM,x in the momentum equation. This term is adjusted
to fulfill the temperature boundary condition on the structured wall.
Due to the use of periodic boundary condition for temperature,
the absolute value of the heat transfer rate on the two walls should
be identical once the solution reaches thermal equilibrium. For the
same reason, the mean heat flux in the wall-normal direction is
constant in the channel. The present thermal boundary condition
is chosen following other studies of heat transfer above structured
walls.21–23

The solver implementation is based on a spectral solver for
incompressible boundary layer flows.24 The Navier–Stokes equa-
tions are numerically integrated using the velocity-vorticity for-
mulation by a spectral method with Fourier decomposition in the
horizontal directions and Chebyshev discretization in the wall-
normal direction. For temporal advancement, the convection and
viscous terms are discretized using the third-order Runge–Kutta
and Crank–Nicolson methods, respectively. The flow domain is dis-
cretized with Nx ×Ny = 256 × 129 grid nodes, while the immersed
boundary method is applied on the dealiased grid (3/2 rule) with
Mx ×My = 384 × 129 grid nodes.

B. Performance indices
Contrary to the laminar flow in a flat channel, no univer-

sal analytical solution can be derived for a channel with arbitrary

structuring at both channel walls. Utilizing the meltdown heights of
the imposed structure for both walls (hu, hl) and splitting the flow
into two halves based on the position yc of the maximal spatially
averaged velocity (Fig. 1), the balance between pressure drop Px and
the average effective wall shear stress τeff is given by

τeff =
(δl + δu)

2
Px, (4)

where δu and δl define the upper and lower effective channel half
heights with respect to yc. Based on the wall shear stress the mean
drag coefficient is given as

C f =
2τeff

ρUeff
b

2 . (5)

Here, the effective bulk mean velocity

Ueff
b =

1
(δu + δl)∫

2δ

0
⟨u⟩dy = 2δ

(δu + δl)
Ub. (6)

The brackets ⟨⟩ denote a quantity averaged in x-direction so that
a split-up into the mean part ⟨ϕ⟩(y) and spatial fluctuation part
ϕ′(x, y) can be performed for any quantity ϕ(x, y):

ϕ(x, y) = ⟨ϕ⟩(y) + ϕ′(x, y). (7)

Due to asymmetry in the temperature boundary condition, the
heat transfer properties have to be separately evaluated for each wall.
Hence, the hydraulic diameter is defined for the upper and lower
walls as

Dh,u/l = 4δu/l. (8)

The Nusselt number for both walls can be estimated with

Nuu/l =
4δu/lqtot

λΔθb,u
, (9)

where qtot denotes the total heat flux and the bulk mean temperature
differences are defined as

Δθb,l =
1

δlUeff
b,l
∫

yc

0
⟨u⟩⟨θ⟩dy, (10)

and

Δθb,u =
1

δuUeff
b,u
∫

2δ

yc

⟨u⟩(1 − ⟨θ⟩)dy. (11)

The average of Nul and Nuu is computed to determine the resultant
Nusselt number of a particular case. The effective bulk mean velocity
for each channel half is given by
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Ueff
b,l =

1
δl
∫

yc

0
⟨u⟩dy or Ueff

b,u =
1
δu
∫

2δ

yc

⟨u⟩dy. (12)

The total heat flux qtot, which is a constant as mentioned previously,
can be estimated as the sum of

qtot = λ
d⟨θ⟩
dy
− ρcp⟨v′θ′⟩ + ρcpQy

IBM, (13)

where the three terms are, respectively, named the laminar, total
fluctuation, and IBM contributions.14 Here, cp denotes the specific
heat capacity and Qy

IBM = −∫
δ

y QIBM dy. Finally, the Stanton number
is defined based on ReDh = 2(δl + δu)Ueff

b /ν and Prandtl number Pr:

St = Nu
ReDh Pr

. (14)

Reynolds analogy factor RA relates Stanton number to the drag
coefficient

RA = 2St
C f

, (15)

and it is used to evaluate the similarity between drag coefficient and
heat transfer.25 An increase in RA highlights a stronger enhance-
ment in heat transfer compared to that in the drag coefficient and
hence is desirable in the design of an energy-efficient thermo-fluid
system. It has to be noted that under the specified boundary condi-
tions RA = 0.5333, with St = 0.016 and C f = 0.06, for the flat channel
configuration, and can be derived analytically. Hereafter, the values
associated with the flat channel configuration will be denoted with
the subscript “ref.” To find out the uncertainty in C f and St calcu-
lations based on IBM simulations, we performed simulations of 150
flat channels that are located symmetrically or asymmetrically about
y = δ (refer to Fig. 1). Though the mean absolute error (MAE) in C f
was found to be 0.05%, the maximum absolute error (MaxAE) was
found to be 2.17%. Similarly, the MAE and MaxAE for St were found
to be 0.01% and 5.62%, respectively. So, the expected MaxAE in RA
is around 3.45%.

C. Dataset and machine learning model
To generate a diverse dataset of wall structuring, we used a

random walk algorithm combined with spline interpolation and dis-
cretization on the simulation grid. Each wall structure consists of n
supporting points (see Table I) between the start and the end x grid
points located at Mxs = 0 and Mxe = 384. The y grid points Mys and
Mye , corresponding to Mxs and Mxe , have the same y-position to sat-
isfy periodic boundary conditions. The grid points along the x-axis
for the supporting points are sampled from

Mxi ∼ 𝒩(μ = i ⋅ 384
n

, σ = σx ⋅
384
n
) (16)

where i is the ith supporting point in the interval [1, n]. σx is varied
according to Table I.

TABLE I. Parameters for the structure generation algorithm.

Parameter Variations

n [2, 3, 4, 5, 6, 7, 8, 9, 10]
σx [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
σy [0.05, 0.1, 0.15, 0.2]
r [0.0, 0.05, 0.1, 0.15, 0.2]
a [0.0, 0.05, 0.1, 0.15, 0.2]

The grid point along the y-axis at each respective Mxi is sampled
from

Myi ∼ 𝒩(μ =Myi−1 , σ = σy ⋅ Δ), (17)

where σy is varied from Table I and Δ the available build space in
y-direction. A minimum of 50% of the channel height Ly = 2δ is
kept empty for the flow. To allow for larger meanders, the genera-
tion algorithm of the first wall surface can use the full 50% of build
space, so here Δ remains a constant equal to My/2 (i.e., 64.5) for all x
positions. For the second channel surface, Δ is adjusted according to
the first channel surface. It is important to note that the first Myi grid
point, corresponding to Mxs , is drawn from a uniform distribution
in the interval [0, Δ].

The obtained supporting points are then interpolated with
cubic Bézier curves. The distance of the control points from the sup-
porting points is determined by the parameter r. For small values
of r, the radius of the curves can get very small, resulting in sharp
features. The parameter a controls the smoothness of the curve. The
values of both r and a are varied in the range [0, 0.2] as mentioned in
Table I. For a = 0, the angle through one supporting point is deter-
mined by the mean of directions to both neighboring points. At
higher a, the direction to one neighboring point is weighted higher
and hence the curve features stronger edge.26

The obtained bottom and top wall curves were then projected
onto the dealiased grid. Using 20 random initializations per para-
meter variation, 108 000 random wall structures were generated,
hereafter called the repository set.

We calculated C f and St using the simulation method described
in Sec. II A for a randomly sampled subset of 10 800 channel
geometries (10% of the repository set). The 10 800 calculations each
requiring 20–30 min single core execution on an Intel Xeon Gold
6230 CPU result in a total cost of 3600–5400 CPU h. Out of these,
9185 met specific criteria related to temperature convergence and
geometric validity. We set aside 5% (459) of these data to be included
in the test set.

We used varying fractions of the remaining 8726 channel
geometries (hereafter called the labeled set) for hyperparameter opti-
mization of CNNs. Hyperparameters were determined without flat
channel geometries. We used a total of 8776 channel geometries as
the training set and 464 channel geometries as the test set. We added
50 flat channels with various channel heights to the training dataset
and 5 to the test dataset. The inputs for the CNN are binary images
where 1 and 0, respectively, represent solid and fluid domains. Each
binary image with 384 × 129 × 1 pixels represents a cross section of
the channel geometry, i.e., exactly the same input that is also used
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FIG. 2. (a) Overview of CNN architecture and (b) examples of input images when they are shifted and flipped.

TABLE II. The name of the hyperparameters, the range of values considered for their optimization, and the optimum value.

Name Type Min Max Optimum

Kernel size Int 2 20 7
Num. of convolution steps Int 2 5 5
Num. of filters Int 1 128 128
Num. of neurons Int 50 6000 6000
Final learning rate Double 1.0 × 10−11 1.0 × 10−4 6.105 × 10−6

Dropout Double 0.05 0.5 0.3

in the numerical simulations. The input is passed through a vary-
ing number of convolution steps, each consisting of a convolution
with padding, a varying kernel size and a varying number of filters,
followed by a ReLU-activation and a 2x2x max.-pooling with stride
2. The output of these convolutions is then flattened and passed
through one hidden dense layer with ReLU-activation and a vary-
ing number of neurons. This hidden layer is additionally regularized
by a varying dropout. C f and St are then predicted with an output
layer with two neurons and linear activation. An overview of the
optimized CNN model is shown in Fig. 2(a).

The model was implemented using TensorFlow27 and Keras,28

and training was done using the Adam optimizer.29 The model was
trained for 100 epochs with a batch size of 256 using the mean
squared error (MSE) loss while logarithmically reducing the learn-
ing rate from 1 × 10−3 at the tenth epoch to a varying final learning
rate at the last epoch.

The hyperparameter optimization was done with Bayesian
optimization to find the most optimal set of hyperparameters, where
optimal was defined as the lowest validation set error (see Table II).
The reported errors of the model were then calculated on a separate
test set. It ensures that overfitting to the training set is minimized
and potential overfitting to the validation set during hyperparameter

optimization is not included in the reported test set errors. For
this, SigOpt was employed30,31 with 140 experiments on eight asyn-
chronous parallel channels. Each channel has access to a single Tesla
A100 GPU. To ensure stable predictions, for each evaluation the

FIG. 3. Training and testing loss curves of the CNN model.
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mean MSEs for the predicted C f and St of a fivefold cross-validation
were used as metrics.

Under the present flow and temperature conditions, where no
volume forces are considered and temperature is treated as a pas-
sive scalar, C f and St of a channel do not change when the channel
geometry is flipped along the channel centerline or shifted along
the streamwise direction. We used this information to augment the
data during the ML model training. We divided input images into
batches. For instance, 35 batches containing 256 images were cre-
ated. Each half of the 256 images in each batch was flipped and
shifted randomly during the training. The channel geometry was
flipped about the y-axis and also randomly shifted in the x-direction
within the range of Mxs and Mxe [see Fig. 2(b)]. Input images are
shuffled every epoch so that the same images are not always flipped
and shifted in the same order. Hence, multiple shifted and/or flipped

copies of channel geometries from a single geometry were gen-
erated without the need for any additional numerical simulation.
The effect of shifting and flipping on the test data is discussed in
detail in the Appendix. In the end, the computational cost of train-
ing the model is negligible (around 20 min on a NVIDIA Tesla
V100 GPU).

III. RESULTS
We trained the CNN model and obtained MAEs of 1.90 × 10−3

(3.16% of C f ,ref) and 1.29 × 10−4 (0.81% of Stref) for C f and St pre-
dictions on the test dataset. This corresponds to an expected MAE of
1.25 × 10−2 in RA (2.35% of RAref). The respective r2-scores for C f
and St are 0.951 and 0.925. Figure 3 shows training and testing loss
as a function of epochs. The curves converge from around epoch

FIG. 4. Predictions of the CNN model of (a) drag coefficient C f and (b) Stanton number St compared to the ground truth on the test set.

FIG. 5. Learning curve, i.e., mean absolute error as a function of the training data size of CNN models for (a) drag coefficient C f and (b) Stanton number St.
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20 toward 100. A comparison of CNN predictions with simulated
ground truth values for the test set is shown in Fig. 4. Most values
of C f and St are well correlated. For a perfect model, the predictions
and the ground truth values are the same, so all points would lie on
the unity line. Deviations for large values can be seen (C f = 0.12 ∼,
St = 0.020 ∼), but at the same time, this only affects very few channels
that are not of practical relevance.

To demonstrate the expected exponential behavior of the learn-
ing curve and to estimate necessary training set sizes for given target
errors, we generated learning curves (see Fig. 5), where we observe
the MAE in C f and St as a function of the training set size. The
hyperparameters were kept constant, and the amount of training
data was varied from 5% to 90% of a total of training and test set,
9240 channel geometries. With each diverse dataset, every model
is trained independently, and fluctuations are to be expected due

to randomly sampled initial weights. We observe an exponential
decrease in MAE with increase in the training set size. It can be seen
from Fig. 5 that larger datasets increase the model accuracy. In the
case of C f , the MAE score for the test dataset is approximately twice
smaller than that of 5%. In the case of St, the factor is slightly smaller.
As the plots continue to decrease exponentially, further improve-
ment in the model accuracy can only be expected by substantially
increasing the number of data. However, we do not observe strong
saturation, indicating that the model is not limited by capacity or
incomplete input information.

The scatter plot of 8726 labeled data points from the reposi-
tory set used for training the CNN is shown in Fig. 6(a). We would
like to point out that the training set contains geometries that are
well representative of the flow configurations usually encountered
in fluid dynamics. Three of such structures that are highlighted in

FIG. 6. Scatter plots of the normalized C f vs St for (a) the labeled set and (b) the combined labeled and unlabeled sets from the repository. Histogram representation of the
labeled and unlabeled sets for (c) C f and (d) St.
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Fig. 6(a) are discussed in detail in Sec. IV. Almost all the points
fall below the RA/RAref = 1 line in Fig. 6(a), indicating that devia-
tions from a flat channel lead to an increase in C f that outweighs
the simultaneous increase in St. We then exploited the speedup of
the surrogate machine learning model (<100 ms per channel) com-
pared to the numerical simulation (≈20 − 30 min per channel) to
explore the flow and heat transfer characteristics (C f and St) of a
much larger set of unlabeled channel geometries. The term unla-
beled set is part of the repository set for which the ground truth
information is absent, signifying that no simulations have been con-
ducted for these geometries. The calculation of C f and St for the
unlabeled channel geometries took only 2.5 GPU hours. Thus, the
benefit of training a machine learning model becomes evident when

the model is used for inference on new structured channel geome-
tries. The scatter plot of C f vs St for the repository set, split up into
labeled and unlabeled data points, is shown in Fig. 6(b). In general,
it is very difficult to find geometries that can result in dissimilar
heat transfer enhancement, i.e., RA/RAref > 1. However, as can be
seen from Figs. 6(a) and 6(b), there are some points very close to
(and above) the RA/RAref = 1 line. However, these points fall within
the combined uncertainty level from the simulation results plus the
ML prediction. The structures corresponding to these points closely
resemble either a flat channel, the trivial solution, or the nontrivial
geometry of structure C (see Sec. IV A). To come up with more inno-
vative structures with RA/RAref > 1, we can combine the speedup of
the surrogate model with evolutionary optimization techniques.32 It

FIG. 7. Mean velocity and temperature fields for structures (a) structure A, (b) structure B, and (c) structure C. Streamlines are added on top of the velocity fields for a better
understanding of the flow field, especially the recirculation regions. The white dashed lines in the temperature fields indicate θ = 0.10 and 0.90 and are representative of the
thermal boundary layer.
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is essential to note that evolutionary optimization algorithms in gen-
eral require the optimization of their own set of hyperparameters.
In this context, having a surrogate ML model that can provide val-
ues for the quantities of interest (RA for example) in a fraction of
a second is highly beneficial. Figures 6(a) and 6(b) also show that
the training data adequately represent the repository set. The his-
togram representation of the repository set shown in Figs. 6(c) and
6(d) confirms the same.

IV. DISCUSSIONS
A. Thermo-fluid aspect of the selected structures

In this section, we analyze in detail the pressure loss and heat
transfer characteristics of the three labeled structures highlighted in
Fig. 6(a) (namely, structures A, B, and C). The mean flow and tem-
perature fields of these structures are shown in Fig. 7, and their C f ,
St, and RA values are listed in Table III. Interestingly, these three
structures resemble three canonical flow configurations encountered
in fluid dynamics: vortex generator, converging–diverging nozzle,
and backward-facing step. For the three considered structures, the
percentage increase in surface area with respect to a flat channel is
25.1%, 5.4%, and 6.3%, respectively.

Among the three structures, the heat transfer achieved is max-
imum for structure A with the vortex-generating wing-like protru-
sion. Vortex generators of varying shapes, similar to the wing-like
protrusion of structure A, are commonly used in heat exchanger
devices to introduce unsteady swirling motions that can increase
heat transfer.33 Though there are two vortices inside the flow field
as can be seen in Fig. 7(a), these vortices are part of the recircula-
tion regions. Such regions in fact isolate the wall from the bulk of
the fluid and are detrimental to effective heat transfer. Nonetheless,
the developing thermal boundary layers generated on both the top
and bottom walls [refer to the temperature field in Fig. 7(b)] result
in an 80% increase in heat transfer. At the same time, the shape of

TABLE III. C f , St, and RA values for the structures A, B, and C. Also shown are
the values normalized with the corresponding values for the flat channel, i.e., C f ,ref
= 0.06 and Stref = 0.016.

Stru. C f
C f

C f,ref
St St

Stref
RA RA

RAref

A 0.2606 4.3429 0.0276 1.7875 0.2113 0.3965
B 0.1715 2.8580 0.0185 1.1593 0.2163 0.4058
C 0.0782 1.3037 0.0208 1.3006 0.5321 0.9976

structure A together with its increased surface area of 25% intro-
duces significant pressure loss leading to a 60% reduction in RA
when compared to the flat channel.

For structure B, the flow inside gets accelerated inside the con-
verging section followed by fluid deceleration inside the diverging
section. Unlike the case of structure A, a strong variation in the ther-
mal boundary layer thickness is present only along the bottom wall.
The presence of a recirculation region, covering the entire bottom
wall except for the converging–diverging section, further limits heat
transfer from the bottom wall. As a result, the increase in heat trans-
fer is only 16%. The considerable pressure loss due to the absence
of a well-streamlined converging–diverging section leads to a 60%
reduction in RA with respect to the flat channel.

Structure C is unique owing to the fact that it contains the
backward-facing step together with wall meandering. The structure
results in a RA/RAref value approximately equal to unity but with a
30% increase in heat transfer with respect to the flat channel. This
means that the structure results in a proportional increase in pres-
sure loss as well. With the exception of the immediate area down-
stream of the backward step, the streamlines in the wall-normal
direction exhibit behavior akin to those found within a rectilinear
channel, maintaining a uniform and evenly spaced distribution. The
absence of a developing thermal boundary layer indicates that wall
meandering with a 6% increase in the surface area should be the

FIG. 8. Shap value for structure A: The top plot corresponds to the local distribution of the shap value for C f and the bottom one corresponds to that for St. A nonlinear color
bar is used for better visualization; however, a linear scale is applied between −10−3 and 10−3 to avoid having the plot go to infinity around zero.
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primary reason for increased heat transfer. This suggests the pos-
sibility of achieving a value greater than unity for the RA/RAref value
with carefully selected parameters for wall meandering.34–36 Some of
the structures in Figs. 6(a) and 6(b) also indicate this trend. Nev-
ertheless, experimental validation is required to assess the practical
efficacy of these geometries, and this constitutes one of our future
research objectives.

B. Explainable artificial intelligence
Given a specific structured channel geometry, it is worth know-

ing which local aspects of this given geometry influence the CNN
prediction. In this regard, we used Shapely Additive exPlanations
(SHAP) developed by Lundberg and Lee.37 The resulting Shapley
value maps for structure A are shown in Fig. 8. Since our CNN model
predicts two outputs, C f and St, we have two plots that provide local
approximations for these two outputs. The outline of structure A is
superimposed on top of these plots to obtain a better understanding
of the local distribution of the Shapley values.

The Shapley values generated using the DeepExplainer mod-
ule within the SHAP Python package are computed using the CNN
model alongside a distribution of background samples. Here, we
are interested in understanding how C f and St change with respect
to that of a flat channel configuration. Hence, we used around 90
flat channels that are located symmetrically or asymmetrically about
y = δ as background samples. It is important to note that the sum-
mation of the Shapley value is equal to the difference between the
model prediction for the given structure and the mean prediction
derived from the background samples.

The Shapley value plots depicted in Fig. 8 suggest that the
CNN model predominantly emphasizes the detection of geomet-
ric characteristics, such as well-defined edges, corners, and recessed
regions when making predictions—especially those geometric char-
acteristics that are responsible for the appearance of flow features,
such as boundary layer growth, flow separation, and recirculation
regions, that influence the local drag and heat transfer. For struc-
ture A, the wing-like protrusion on the bottom wall and the sharp
corner on the top wall are the predominant features responsible for
the developing boundary layer and also for flow separation leading
to the generation of recirculation regions. Since these features con-
tribute to an increase in both C f and St, the Shapely value plots for
them also look similar. Thus, even though the CNN model has been
trained on binary representations of structured channel geometries,
the ML model has the ability to capture geometrical features of wall
structuring related to the flow physics as indicated by the Shapely
value distributions. The Shapley value distribution not only helps to
understand what the ML model is focusing on, but it can also be used
to optimize the shape of the structured channel to achieve a desirable
outcome, for example, to increase heat transfer, which we will try to
exploit in future work.

V. CONCLUSIONS AND OUTLOOK
We have trained a convolutional neural network (CNN) based

on fluid flow and heat transfer simulations in two-dimensional
laminar structured channel geometries. The trained CNN model
accurately predicts the target properties, i.e., drag coefficient C f and

Stanton number St, for a structure geometry based on its binary rep-
resentation. As a surrogate model, the CNN can predict the target
properties at a fraction of the time (<100 ms per channel) required
by numerical simulations (≈20 − 30 min per channel). The signif-
icant speedup provided by the surrogate model was then used for
predicting C f and St values of around 80 000 randomly generated
geometries. This was done to find out geometries with normalized
Reynolds analogy factor RA greater than unity, where RA = 2St/C f
is an indicator of dissimilar heat transfer enhancement. However,
our study suggests that to achieve such a goal, we have to exploit
the speedup of the surrogate model by combining it with powerful
optimization techniques.32

One of the highlights of the present CNN model is how we
used domain-specific knowledge to augment the original train-
ing dataset. Recognizing that C f and St remain invariant when
a structure geometry is shifted along the flow direction or mir-
rored along the channel centerline, we populated the training dataset
accordingly.

We showed that the training data generated using Bézier splines
adequately represent structures that are commonly used in thermo-
fluid applications. We then used Shapely Additive exPlanations as an
explainable artificial intelligence tool to understand the CNN model.
When applied to a structure, the Shapley values provide insights into
the contributions of specific geometry features to the model’s output
in comparison to the background reference. In this regard, the Shap-
ley values are not only valuable in understanding the ML models but
can also be used to improve their performance.

The current CNN model is trained for a specific set of flow con-
ditions, in terms of the Reynolds number and boundary conditions.
As part of future work, we are interested in extending the current
ML model to cover a wide range of these conditions. Additionally,
in order to further exploit ML models in general and CNNs in par-
ticular for the design of chemical engineering unit operations, we
plan to implement active learning approaches and generative mod-
els to reliably explore the possible design space of structured channel
geometries and directly solve the inverse problem, i.e., the sugges-
tion of channel structures given desired target properties. Moreover,
trying to predict not just the values of C f and St but also the velocity
and temperature fields inside these arbitrary geometries, for exam-
ple, using a physics-informed neural network38 or graph neural
network,39 can be thought of as a natural extension of the present
work.

The general approach presented here can be extended to more
complex tasks, such as three-dimensional multiphase or even reac-
tive unit operations in chemical engineering. The limitation will be
the availability of data or the associated computational cost of the
underlying simulations.
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FIG. 9. Effect of shifting and flipping on the CNN prediction of C f (left) and St (right) on the training data.
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APPENDIX: MODEL INVARIANCES TOWARD SHIFTING
AND FLIPPING

As mentioned in Sec. II B, we investigated the effect of shift-
ing and flipping of structures on the CNN prediction of C f and St.
Each of the test data points, excluding the flat channels (i.e., 459
data points), were examined as follows: For each test data point, 32
shifted and flipped copies were generated. Within this set, 16 struc-
tures were systematically produced by shifting the original structure
along the x-direction in a total of 16 distinct increments within Mxs

and Mxe . The remaining 16 structures were obtained by creating
flipped images of the previously shifted structures. Subsequently,
the (C f , St) values of these 32 structures were averaged and com-
pared with their respective ground truth values as shown in Fig. 9.
The error in mean prediction is within ±5% for the majority of
structures in the case of C f and for nearly all structures in the
case of St. Similarly, the percentage error in mean prediction for
(C f , St) for structures A, B, and C is within a reasonable range and
is estimated to be (−13.87, 4.04), (−15.17, −0.53), and (12.91, 2.85),
respectively.
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