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ABSTRACT1
This paper presents a novel approach to enhance household travel survey (HTS) data by predict-2
ing telecommuting engagement using machine learning (ML) classification techniques. The study3
aims to address the debate surrounding the impact of telecommuting on overall travel behavior,4
considering rebound effects and latent demand. While previous research has primarily relied on5
questionnaires or HTS data for analysis, few studies have successfully integrated telecommut-6
ing behavior into travel demand models. The intricate relationship between telecommuting and7
travel behavior has been a challenge, limiting the incorporation of telecommuting data into exist-8
ing models. This study fills this research gap by utilizing ML algorithms to predict telecommuting9
engagement based on one-day HTS data, employing features such as daily distances traveled and10
time spent at home.11

Three feature selection algorithms, Boruta, VSURF, and Recursive Feature Elimination12
(RFE), were applied to identify the most relevant features for the ML models. Among the five clas-13
sification methods tested, the Random Forest (RF) model utilizing features selected by the Boruta14
algorithm demonstrated superior performance, achieving high accuracy, specificity, F1-Score, and15
Matthew’s Correlation Coefficient (MCC). The Bayesian Network (BN) model, while performing16
well in sensitivity, underperformed in other metrics due to the unsuitability of continuous data.17

To evaluate the proposed approach’s generalization, the RF model was applied to a sepa-18
rate HTS dataset from the German Mobility Panel (MOP). The out-of-sample prediction achieved19
promising results, with a 76% accuracy in predicting telecommuting days. The approach presented20
in this study has potential applications in enhancing HTS data and can be extended to other data21
sources to improve activity-based models.22

23
Keywords: household travel survey data, machine learning, data fusion, data enhancement24
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INTRODUCTION1
Telecommuting has been analyzed as a measure to reduce travel and subsequent emissions for al-2
most five decades (1) (1). Although studies consistently show that working from home decreases3
the number of commuting trips, it is still debated whether telecommuting decreases overall travel4
or if rebound effects and latent demand are high enough to offset any benefits. To this day, the5
majority of studies analyze travel behavior impacts of telecommuting based on questionnaires or6
household travel surveys (HTS) through descriptive or statistical model analysis (see, e.g., (2–6)).7
Despite the growing interest in incorporating telecommuting behavior into travel demand mod-8
els, few studies have successfully done so. This is mainly due to the intricate relationship between9
telecommuting and travel behavior, which even most activity-based models fail to account for. Fur-10
thermore, data on telecommuting engagement is limited, particularly when using HTS. Although11
some surveys ask respondents about the frequency at which they work from home, information on12
whether they worked from home on the day of the survey is only available in a few surveys, usually13
when the respective study is focused on in-home activities in addition to travel behavior (7). As14
emphasized by Asgari et al. (5), this information is crucial for accurately modeling telecommut-15
ing in travel demand models, and in light of the increase in work-from-home activities since the16
pandemic, it is essential that we examine this issue more closely. However, as appropriate data17
sources are scarce, new methods have to be explored on how existing data can be leveraged to18
inform timely research.19

This paper aims to predict telecommuting engagement among respondents of a Household20
Travel Survey (HTS) by employing machine learning (ML) classification techniques. The study21
will utilize activity-travel behavior and sociodemographic data to train and assess various models22
using a one-day HTS. The efficacy of the trained models will be assessed by implementing them23
on a separate seven-day HTS dataset. This study’s findings demonstrate that machine learning24
methods can be used to enhance HTS data using a secondary data source.25

The need to account for non-travel activities has been addressed in previous studies on the26
design of advanced survey methods. Aschauer et al. (8) present a "Mobility-Activity-Expenditure-27
Diary" in which both travel and non-travel activities were reported. Schmid et al. (9) conducted a28
multi-stage survey to account for travel behavior and time allocation. A smartphone-based survey29
of travel, activities, and time use was presented by Alho et al. (10). Similarly, Winkler et al. (11)30
adopted a smartphone-based survey method in which travel is tracked passively, and respondents31
supplement the data by providing detailed information on activities and expenditures. Although32
the data collected in these surveys are undeniably valuable, all surveys offered monetary incentives33
to ensure high-quality responses. However, necessary funds are not always available. In an effort34
to reduce costs and make the most of existing data, researchers have explored the integration of35
data from various sources, including mobile phone surveys and web surveys (12). The utilization36
of smart card data can be augmented with HTS data (13), while the purpose of trips can be inferred37
through TNC data via HTS data (14). Moreover, HTS data can be supplemented with data from38
mobile phones (15) or social media (16). Studies have indicated the potential benefits of combining39
older, yet information-rich, HTS data with newer HTS data (17), as well as how the combination40
of data from two HTS can minimize biases and underrepresentation (18). All of these studies41
incorporate either weighting techniques (12, 13, 17) or econometric approaches (14–16, 18) to42
enhance the respective datasets. Machine learning techniques have primarily been used to improve43
data that has been collected passively, such as GPS-tracked trips. These techniques have been44
employed to identify the purpose of trips, the types of destinations, and the mode of transportation45
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used. (19).1
This study contributes to the current body of research on leveraging existing data sources to2

improve the value of the data by inferring non-travel activities. By utilizing ML-based data fusion3
of multiple sources, we can determine if in-home activities are linked to telecommuting. This will4
improve the data required for integrating telecommuting into travel demand models.5

The rest of this paper is structured as follows. We first present the two HTS used in this6
study. We further provide an overview of the machine learning classifiers analyzed in this research,7
including feature selection algorithms. Subsequently, we describe the performance metrics used to8
assess the suitability of each classifier for the proposed task. We go on to describe and discuss our9
findings. We conclude this paper by providing a summary and general implications of our study.10

MATERIALS AND METHODS11
In this section, we first provide an overview of the research design applied in this study. Further,12
we describe the travel diary data used in our models, including a descriptive analysis of the key13
variables. Subsequently, we elaborate on the classification methods we applied to predict telecom-14
muting participation on the survey day, including the utilized feature selection algorithms.15

Considering that ML methods have not yet been utilized for data fusion of HTS, there is16
no apriori way of knowing which ML classifier will perform best. Similarly, it is unclear which17
features should be included or left out. We have, therefore, opted to train and test multiple machine-18
learning classifiers based on different feature configurations. The overall research framework em-19
ployed in this study is illustrated in figure 1. The data in this study stems from an HTS, which20
was split into a train and a test data set with a ratio of 70% (train) to 30% (test). Based on the test21
data, we applied three feature selection methods. For each of the three selected feature configura-22
tions, we trained five machine-learning classifiers. Subsequently, we predicted the telecommuting23
engagement in the test data. We determined the confusion matrix for each model and feature con-24
figuration pair and calculated six performance metrics. We chose the overall best scoring model,25
which was then used to predict telecommuting engagement in another HTS.26

In the next subsections, we will provide more detail on the different parts of the research27
framework.28

Household Travel Survey Data29
This paper is based on data from a household travel survey conducted in the metropolitan area30
of Stuttgart, Germany. The survey was conducted in the fall of 2021 among 9,543 respondents31
in 4,567 (households. The scope of the survey was twofold: the data is used to update the travel32
demand model of the region, which is supplemented to account for telecommuting. Thus, the33
second scope of the survey was to gather detailed information on working from home behavior of34
respondents. The data used in this study stems from the travel diaries, which respondents kept for35
one day, and household- and person-level information. Based on the travel diaries, we determined36
variables of respondents’ activity-travel patterns, namely duration of the activities home, work,37
work-related, shopping/errands, education, escorting someone, roundtrips, and other. The number38
of trips was determined by each category, as well as the overall travel time and distances traveled.39
Telecommuting engagement on the survey day was measured by one question, which asked where40
respondents worked on the given day. Additionally, we tested if the sociodemographic information41
of respondents influenced the models.42

We further used data from the German Mobility Panel (MOP). The MOP is a longitudi-43
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FIGURE 1: Overview of the research framework employed in this study

nal household travel survey that has been conducted annually since 1994. Because of its panel1
design, the questionnaires are relatively rigid to ensure the comparability and compatibility of sur-2
vey waves. Furthermore, respondents are asked to keep a travel diary for seven consecutive days,3
which puts a high response burden on them, and person- and household-level questionnaires have4
to be kept as concise as possible. Thus, only a few questions concerning working from home are5
included. In the 2022 wave, one additional question was included asking how many days respon-6
dents worked from home in the survey week; however, not on which specific days they did. We use7
this data to evaluate how the models perform on out-of-sample data. The data was prepared similar8
to the 1-day HTS data. However, in this data, respondents were not asked where they worked on9
a given survey day. Instead, they provided the number of days worked from home in the survey10
week. Thus, the models’ ability to predict telecommuting engagement can only be evaluated at an11
aggregate level.12

Data preparation13
Because work from home is limited to - axiomatically - to employed respondents and furthermore,14
by the jobs they hold or their employer. Thus the number of respondents dropped considerably15
in both surveys after applying the respective filters. However, we were still able to leverage a16
large enough sample for our study. The prevalence of working from home is relatively low in both17
surveys. In the training data set, 473 out of the total used sample of 1380 attested they had worked18
from home on the survey date. This amounts to about 37%. A similar proportion is provided in19
the MOP data. Overall, 3896 telecommuting days were reported out of the 10515 reported survey20
days, which equals a proportion of 34%.21

In machine learning classification tasks, dealing with unbalanced classes can present sig-22
nificant challenges. Unbalanced classes refer to situations where the distribution of class labels is23
highly imbalanced, with one class having a much larger number of instances than the others. When24
this occurs, standard classifiers tend to be biased toward the majority class, leading to poor per-25
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formance on the minority class and reduced overall predictive accuracy. Consequently, the model1
might struggle to generalize well to real-world scenarios where the minority class is of primary2
interest. One common issue is that the classifier might achieve high accuracy simply by always3
predicting the majority class while completely overlooking the minority class. One strategy to miti-4
gate this issue is to apply the synthetic minority over-sampling technique (SMOTE) (20). SMOTE5
works by creating synthetic samples of the minority class by interpolating between existing in-6
stances. It selects a random instance from the minority class, identifies its k-nearest neighbors, and7
then generates new samples by combining the features of the selected instance with those of its8
neighbors.9

Classification Algorithms10
In this section, we provide a concise overview of each classification algorithm investigated in this11
study.12

Bayesian Networks13
Bayesian networks are probabilistic graphical models that represent the dependencies between ran-14
dom variables using a directed acyclic graph (DAG) (21, 22). Each node in the graph corresponds15
to a random variable, and the edges between nodes encode conditional dependencies. The condi-16
tional probability distribution for each variable given its parents is modeled using Bayes’ rule. Let17
Xi denote the i-th random variable, and Pa(Xi) be the set of parent nodes of Xi in the graph. The18
joint probability distribution of all variables can be written as:19

P(X1,X2, . . . ,Xn) =
n

∏
i=1

P(Xi |Pa(Xi)) (1)

Inference in Bayesian networks involves computing probabilities or making predictions20
based on observed evidence. Popular algorithms for inference include variable elimination and21
Markov chain Monte Carlo (MCMC) methods.22

Binary Regression23
Binary regression, also known as logistic regression, is a popular supervised learning algorithm24
for binary classification tasks. Given a dataset with input-output pairs (xi,yi), where xi is a feature25
vector and yi ∈ {0,1} is the binary class label, the goal is to learn a model that estimates the26
probability of the positive class, i.e., P(yi = 1 |xi). The logistic regression model assumes a linear27
relationship between the features and the log-odds of the positive class:28

log
(

P(yi = 1 |xi)

1−P(yi = 1 |xi)

)
= wT xi +b (2)

where w is the weight vector and b is the bias term. To obtain probabilistic predictions, the29
logistic function is applied to the output of the linear model:30

P(yi = 1 |xi) =
1

1+ e−(wT xi+b)
(3)

Decision Trees31
Decision trees are non-linear, hierarchical models used for both classification and regression tasks32
(23). They recursively split the data into subsets based on the values of individual features, aiming33



Reiffer, Kagerbauer, Vortisch 7

to maximize the information gain or Gini impurity at each split. Each internal node in the tree1
represents a decision based on a feature, and each leaf node corresponds to a predicted class or2
regression value. The decision tree can be represented as a set of rules, and the final prediction for3
a given input is determined by following the path from the root to the appropriate leaf node.4

Random Forest5
Random forests are ensemble learning methods that combine multiple decision trees to improve6
predictive performance and reduce overfitting (24, 25). The key idea is to build a collection of7
decision trees by training each tree on a random subset of the training data (bootstrap sampling)8
and selecting a random subset of features at each split. The final prediction is made by aggregating9
the predictions of all individual trees, often using majority voting for classification problems or10
averaging for regression problems. Random forests tend to be more robust and accurate than indi-11
vidual decision trees, and they can handle high-dimensional data and capture complex relationships12
between variables.13

Support Vector Machines14
Support Vector Machines (SVMs) are powerful supervised learning algorithms used for both clas-15
sification and regression tasks. SVMs aim to find the optimal hyperplane that best separates the16
data points of different classes while maximizing the margin between the classes (26). In the17
case of binary classification, given a training dataset (xi,yi), where xi is the feature vector and18
yi ∈ {−1,1} is the class label, SVMs find the weight vector w and bias term b that define the19
decision boundary:20

wT xi +b = 0 (4)
The margin is computed as the distance between the hyperplane and the closest data points21

(support vectors) from each class. SVM aims to maximize this margin while penalizing misclas-22
sifications. For non-linearly separable data, SVM can use kernel tricks to map the data into a23
higher-dimensional space, where linear separation becomes possible. Common kernel functions24
include polynomial, radial basis function (RBF), and sigmoid kernels.25

Feature Selection26
We further present the feature selection algorithms applied. We have trained and tested all al-27
gorithms on the dataset described above using the features determined by the respective feature28
algorithm.29

Boruta30
Boruta is a method for determining the importance of variables in a system using random forests.31
The system involves replicating each descriptive variable and randomly permuting the values of32
replicated variables across objects (27). The randomization is different for each run of the random33
forest algorithm. The importance of each variable is computed for each run, and a statistical test34
is performed to determine if the variable is significant or not. An attribute is considered important35
for a single run if its level of importance is greater than the highest level of importance among all36
randomized attributes. If a variable is deemed unimportant, it is removed from the system along37
with its replicated mirror pair. The procedure is repeated for a predefined number of iterations or38
until all attributes are either rejected or deemed important. The algorithm was applied using the R39
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package boruta (28).1

Variable Selection Using Random Forests - VSURF2
Another method based on RF is the VSURF algorithm, which is short for "Variable Selection3
Using Random Forests" (29). The procedure consists of two steps. In the first step, the variables4
are ranked based on their importance, estimating a threshold value for variable importance (VI)5
using the standard deviation of VI for less important variables and retaining only the variables6
with an averaged VI value above the threshold. In the second step, a sequence of ascending RF7
models is used to make predictions. Variables are added to each model only if they significantly8
decrease the error rate, using a threshold based on the out-of-bag (OOB) error decrease. The final9
set of variables comes from the last model. In this study, we applied the VSURF method using the10
R package with the same name (29).11

Recursive Feature Elimination - RFE12
Recursive Feature Elimination (RFE) was first introduced by Guyon et al. (30). It is a method13
for feature selection similar to backward feature elimination (31) but allows for the elimination14
of multiple variables simultaneously instead of having to eliminate one feature at a time through15
exhaustive enumeration. In the RFE procedure, a model is first built on all features. In the second16
step, a ranked feature list is created by ranking the combination of each feature. Lastly, features17
are eliminated if they do not meaningfully contribute to the model. We applied the RFE method18
using the R package caret (32).19

Performance Metrics20
We utilize several quantitative metrics to assess the performance of the ML classifiers. They all21
rely on the true positive (TP), true negative (TN), false positive (FP), or false negative (FN) values22
in one way or another. In the context of this study, these values are defined as:23

• true positive (TP): model correctly classifies a telecommuting day24
as a telecommuting day25

• true negative (TN): model correctly classifies a non-telecommuting day26
as a non-telecommuting day27

• false positive (FP): model incorrectly classifies a non-telecommuting day28
as a telecommuting day29

• false negative (FN): model incorrectly classifies a telecommuting day30
as a non-telecommuting day31

Accuracy32
The accuracy of a classification model is the percentage of sample objects that are correctly classi-33
fied and labeled. This is done by calculating the ratio of the total number of true predictions to the34
sum of all observations.35

Accuracy =
T P+T N

T P+T N +FP+FN
(5)

Precision36
Precision, also known as the positive predictive value (PPV), is defined as the ratio of correctly37
classified positive cases over all classified positive cases (33).38
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Precision = PPV =
T P

T P+FP
(6)

Recall1
Recall, also referred to as sensitivity or true positive rate (TPR), is defined as the ratio of correctly2
classified positive cases over all actually positive cases (33). Recall and precision are often trade-3
offs of each other.4

Recall = Sensitivity = T PR =
T P

T P+FN
(7)

Specificity5
Specificity, also known as the true negative rate (TNR), is determined like the TPR, except that6
negative cases are now relevant. The TNR is defined as the ratio of correctly classified negative7
cases over all actually negative cases (33).8

Speci f icity = T NR =
T N

T N +FP
(8)

F1 Score9
The F1-score is determined by calculating the harmonic mean of the precision (eq. 6) and recall10
(eq. 7) (33). The F1-score can take values between 0 and 1, where 1 constitutes a perfect clas-11
sification. As can be seen in the formula, this is achieved if the sum of false positives and false12
negatives is zero.13

F1 =
2 ·T P

2 ·T P+FP+FN
=

2 ·Precision ·T PR
Precision+T PR

(9)

Matthew’s Correlation Coefficient14
Although many studies use accuracy as the gold standard of model evaluation, it is very sensitive to15
unbalanced data, which can lead to a false sense of model performance (33). A way to counteract16
the issue of class imbalance when evaluating model performance is to calculate the Matthews17
Correlation Coefficient (MCC) (34). The MCC is calculated similarly to the Pearson product-18
moment correlation coefficient based on the confusion matrix of the model. The MCC can take19
on values between -1 and 1, where -1 is the worst possible value (T P = T N = 0) and 1 is the best20
possible value (i.e., FP = FN = 0).21

MCC =
T P ·T N −FP ·FN√

(T P+FP) · (T P+FN) · (T N +FP) · (T N +FN)
(10)

RESULTS AND DISCUSSION22
We first assess the results of the feature selection algorithms, which are presented in 1. Most23
strikingly is the similarity between boruta and rfe. The only difference in the two feature set is car24
access (included in rfe but not boruta) and the number of work-related trips (included in boruta bot25
not in rfe). The vsurf feature set ist the smallest, consisting of eight features. Features included26
in all three feature sets are daily distance traveled, travel time, the hour of the last trip of the day,27
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the number of work trips the time spent at home, spent for leisure activities, spent shopping, and1
on work-related activities.. While it is expected that time spent at home is an important feature,2
we initially assumed that this would also be the case for time spent at work, which was deemed3
unimportant by the vsurf algorithm.4

TABLE 1: Selected features by selection method. Values indicate if feature was selected by the
method (1) or not (0)

value boruta rfe vsurf
age 1 1 0
car access 0 1 0
telecommuting Frequency 1 1 0
distance traveled 1 1 1
travel time 1 1 1
escorting someone 1 1 0
first trip of the day 1 1 0
last trip of the day 1 1 1
home 1 1 0
leisure 1 1 0
other 1 1 0
round trip 1 1 0
shopping 1 1 0
work 1 1 1
work-related 1 0 0
time use escorting someone 1 1 0
time use home 1 1 1
time use leisure 1 1 1
time use round trip 1 1 0
time use shopping 1 1 1
time use work 1 1 0
time use work-related 1 1 1

After selecting the features, we trained each model with the three feature sets on 70% of the5
1-day HTS data. Subsequently, we tested the models on the remaining 30% by predicting whether6
a respondent in the test data worked from home on the respective survey day. In order to measure7
the performance of these models, we calculated the confusion matrix of predicted and real values,8
which provided us with values for true positive, true negative, false positive, and false negative.9
Figure 2 presents the confusion matrices for each classifier and each feature selection method.10



Reiffer, Kagerbauer, Vortisch 11

FIGURE 2: Confusion matrix by classifier and feature selection algorithm

The highest true positive values are predicted by the random forest model with 238 cor-1
rectly classified true values based on the boruta and rfe feature sets, and 231 based on the vsurf2
feature set, respectively. All models have only few false negative vales, with bayesian networks3
based on the rfe feature set. This seems to come at the price of a very high value for false positive4
predictions. These are comparatively low in all other models, with random forest, again, perform-5
ing best. Finally, true positive predictions are highest in the Bayesian network model based on6
the rfe feature set and lowest also for the Bayesian network when considering the boruta feature7
set. This is an interesting finding, as the boruta and rfe feature sets are almost identical (see Table8
1), highlighting the need for pre-processing of data as Bayesian networks are often unsuited for9
continuous data or outliers (35). All other models show almost identical confusion matrices for10
these two feature sets.11

To further assess the performance of the model, we put the values of each confusion matrix12
into context with each other. The performance metrics for each model based on the values in the13
confusion matrices are presented in table 2.14
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TABLE 2: Performance metrics by classification model and feature selection algorithm

classifier feature selection accuracy precision sensitivity specificity F1-Score mcc
Bayesian Network rfe 0.55 0.43 0.96 0.33 0.59 0.34
Random Forest rfe 0.88 0.79 0.91 0.87 0.84 0.76
Support Vector Machnie rfe 0.86 0.73 0.92 0.82 0.81 0.71
Binary Regression rfe 0.86 0.75 0.91 0.84 0.82 0.72
Decision Trees rfe 0.86 0.72 0.94 0.81 0.82 0.72
Bayesian Network vsurf 0.86 0.73 0.92 0.83 0.82 0.71
Random Forest vsurf 0.87 0.75 0.94 0.84 0.83 0.74
Support Vector Machnie vsurf 0.87 0.74 0.95 0.83 0.83 0.74
Binary Regression vsurf 0.85 0.72 0.94 0.81 0.81 0.71
Decision Trees vsurf 0.86 0.72 0.94 0.81 0.82 0.72
Bayesian Network boruta 0.77 0.65 0.70 0.80 0.68 0.50
Random Forest boruta 0.89 0.79 0.92 0.88 0.85 0.77
Support Vector Machnie boruta 0.87 0.74 0.93 0.83 0.82 0.73
Binary Regression boruta 0.86 0.74 0.91 0.84 0.82 0.71
Decision Trees boruta 0.86 0.72 0.94 0.81 0.82 0.72

Overall, we can see that almost all models achieved high rates of accuracy with only two1
models achieving an accuracy below 0.85. In both cases, bayesian network classification per-2
formed much worse compared to the other models. The recall/sensitivity metric shows even higher3
values, with, again, only the bayesian network model based on the features selected through the4
boruta algorithm reaching values below 0.91. Specificity/the true negative rate is not as high as5
the previous two metrics, but overall, almost consistently values of over .80 are reached. Regard-6
ing the F1-Score and the Matthew’s Correlation Coefficient (MCC), a similar trend concerning7
Bayesian networks is detectable: overall, the metric values are relatively high and over 0.80 and8
0.70, respectively. However, both metrics are much lower for the Bayesian network model based9
on the features selected through rfe and boruta. Our analysis indicates that the random forest model10
utilizing features from the boruta selection exhibited the most superior performance overall. This11
model achieved the highest accuracy, specificity, F1-Score, and mcc values in comparison to the12
other models. However, it did present a comparatively low sensitivity value. On the other hand, the13
bayesian network model based on rfe feature selection demonstrated the highest sensitivity value,14
but underperformed in all other metrics.15

To further evaluate the performance of our proposed approach to data enhancement, we16
predicted the telecommuting engagement in a separate HTS. For this purpose, we leveraged data17
from the German Mobility Panel in which respondents keep a travel diary for seven days. As the18
random forest models performed best, we used those for prediction. To evaluate how the compar-19
atively large number of features from the best model (boruta feature set) compares to the smaller20
feature set from the vsurf algorithm, we conducted two out-of-sample predictions. Because infor-21
mation on telecommuting engagement is provided at the week-level and not the day-l, we cannot22
calculate the aforementioned performance metrics. Instead, we predicted the telecommuting en-23
gagement for each day and added them over the week for each respondents to get a comparative24
measure. At the aggregate level over the entire dataset, the model based on the boruta feature25
set performs slightly better. This model detects 803 telecommuting days out of the 915 (87.7%)26
reported days. Whereas the model based on the smaller vsurf feature set predicts 792 work from27
home days (85.6%) The confusion matrices by the number of telecommuting days are presented28
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in Figure 3. On the left (Figure 3a), the results based on the boruta feature set are depicted, and1
on the right (Figure 3b) those on the vsurf feature set. Values above the diagonal are likely false2
negatives while values below the diagonal are most likely false positives.3

(a) based on the boruta feature set (b) based on the vsurf feature set

FIGURE 3: Predicted and actual number of work-from-home days in German Mobility Panel
dataset.

The two models perform very similar. Both have a high rate of predicted non-telecommuting4
days over reported non-telecommuting days but also a relatively large rate of predicted non-5
telecommuting days over the reported one day of telework per week. In the latter case, vsurf6
performs slightly better than boruta. This performance difference is negated for a larger number of7
telework days per week.8

Overall, the application of the models on the MOP dataset shows promising results and9
shows that the approach is viable to be applied to other HTS data. Random forest models are best10
suited for this approach and perform well even on a relatively small feature set. To the best of our11
knowledge, this is the first study testing different machine learning models to enhance in-home12
activity information in HTS data. Thus, we cannot compare our results to other studies. However,13
other studies comparing the performance of classification methods also find random forests to be14
one of the best performing methods (36, 37).15

CONCLUSION16
In this study, we evaluated how machine learning methods can be leveraged to classify telecom-17
muting engagement as an in-home activity to enhance data from a household travel survey. We18
evaluated five classification methods, namely Bayesian Networks (BN), Binary Regression (BR),19
Decision Trees (DT), Random Forest (RF), and Support Vector Machines (SVM). Overall, the NB20
reached the highest specificity; however, it was outperformed by the other models on all other met-21
rics. Overall, the RF model based on features selected using the boruta method performed best.22
The out-of-sample prediction based on data from the German Mobility Panel shows promising23
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outcomes with an aggregate ratio of predicted telecommuting days over reported telecommuting1
days of 76%.2

The research framework proposed is versatile and can be applied to various data sources3
and research questions. The models mainly utilized features that focused on the travel patterns4
of the respondents, making them suitable for GPS-based data. Variables that were particularly5
important in the models included daily distances traveled and time spent at home, which can easily6
be derived from GPS-based data. However, because additional features were still important in7
model prediction, we anticipate that the performance of ML models might be slightly lower than8
our application. Moreover, the method presented in this paper can be utilized to improve HTS data.9
The approach can be applied to time-use data, which will provide more detailed information on10
activities and enhance HTS data.11

There are also some limitations worth noting. In our study, we applied the same feature12
selection algorithms for all machine learning methods without any feature engineering. This ap-13
proach was adopted to evaluate the performance of unprocessed data. However, this technique14
proved to be especially limiting for Bayesian network models. Therefore, future work will need to15
explore more advanced feature engineering techniques to optimize the performance of these mod-16
els. Further, the surveys used were not solely conducted for the purpose of this study, meaning this17
was not a controlled experiment. It would be interesting to repeat this effort with, e.g., GPS-based18
data that was enriched with information on telecommuting engagement as a controlled study to19
further evaluate the proposed approach.20

Future work will, thus, include evaluating how feature engineering can improve the models.21
Further, we intend to apply the approach to other similar survey data to enhance existing data22
sources. Namely, we will evaluate how time-use data can be merged with household travel survey23
data to make the best of both worlds.24
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