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ABSTRACT1
This paper introduces a novel framework for generating activity schedules in the context of house-2
holds over a 7-day period. By combining an activity generation model based on the Multiple3
Discrete Continuous Extreme Value (MDCEV) approach with a constraint satisfaction optimiza-4
tion approach, the proposed framework addresses the limitations of existing studies that focus on5
single-day activities. The MDCEV model estimates utility parameters for different activities and6
income levels based on data from the German Mobility Panel, providing a foundation for under-7
standing activity preferences. The schedule frame and fine-tuning models then generate realistic8
schedules, considering work hours, joint activities, and leisure time. Although the model is in its9
prototype phase, it already demonstrates promising results and can be integrated into agent-based10
travel demand models like mobiTopp and MATSim. Future work will involve further calibration11
and exploration of chore allocation within households, the impact of flexible work arrangements,12
and the influence of non-travel activities such as online shopping on activity patterns and travel13
behavior. Overall, this research contributes to a more holistic understanding of household interac-14
tions and provides valuable insights for travel demand modeling and urban planning.15
Keywords: activity-based model, activity-schedules, MDCEV, household interactions, multi-day16
model17
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INTRODUCTION1
Activity-based approaches have become state-of-the-art in travel demand modelling due to their2
behavioural realism. While there have been great advances in modelling techniques, most studies3
do not consider the household context, and almost all are limited to the generation of single-day4
activity schedules. Therefore, we propose an activity generation and scheduling approach for5
one week, considering the household context. This study provides a general overview over the6
proposed framework, and further details the model used to generate household-level activity time-7
use for the period of one week.8

Activity-based approaches can be categorised into rule-based and econometric models.9
Rule-based models rely on hard-coded rules and heuristics, which make them easier to imple-10
ment. However, this limits their behavioural realism and the ability to generalise model results.11
Econometric approaches mitigate these limitations by modelling individual decisions, not through12
rules and heuristics, but based on the principle of utility maximisation. Bowman and Ben-Akiva13
(1) presented the first disaggregate activity-based approach, which generates activity schedules by14
sequentially modelling individual decisions through (nested) logit models. Although the sequen-15
tial model of decisions remains a popular approach in activity-based travel demand models, the16
method has some limitations. The sequence in which the analyst considers the decisions in the17
model claims that there is an order among the individual decisions. This possibly arbitrary order18
does not allow for consideration of trade-offs between all choices. This limitation has given rise19
to the development and application of the multiple discrete-continuous extreme value (MDCEV)20
model (2, 3). In this approach, individuals do not consider alternatives as perfect substitutes for21
each other but simultaneously as a combination of different activities and the time allocated to22
them, subject to a time budget constraint. While the first formulation of the model only allowed23
for modelling aggregated time allocation to each activity type, more recent studies show that the24
model can also consider activity episodes (4) and their order (5). Another approach to overcome25
some of the limitations of sequential models is to consider trade-offs between daily scheduling26
choices by formulating an optimization problem (6, 7). In this approach, the objective is to max-27
imise the utility of an individual’s schedule through a mixed-integer linear program. Although28
the presented approaches all improve state-of-the-art activity-based models, some limitations are29
worth noting. First, they only consider activities and their schedules for one day. However, past30
studies highlight the importance of considering multiple days for a more realistic simulation of31
travel behaviour within travel demand models (8, 9). Furthermore, all choices are considered on32
an individual level and most studies do not adequately consider the context of the household (10).33
While this is sensible for some activities like work or work-related activities, the household context34
influences who conducts certain activities, such as shopping or escorting activities. The interaction35
of intra-household activities has been analyzed frequently in the past (11–17), only few studies36
have included them in activity-scheduling frameworks.37

Recently, studies have started to consider household interactions more holistically (4, 5, 7).38
However, the presented studies focus on a single day of activities and the proposed approaches39
cannot simply be transferred from the single-day to the 7-day context. Considering 7-day sched-40
ules and household context significantly in-creases the dimensions of the models, which will likely41
render the currently defined optimization problems too large to find a solution within a sensible42
timespan. Furthermore, we challenge that the underlying assumptions regarding the choice sit-43
uations of scheduling activities still hold in the 7-day context. In utility theory, we assume that44
individuals know all possible alternatives within a choice set and choose the one that maximises45
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their utility. Manser et al. (6) elaborate on the issue concerning this assumption regarding mod-1
elling activity schedules and present a method to generate a feasible choice set. Although the2
authors propose a sensible approach for single-day activity schedules, it is arguable whether ac-3
tivity schedules of one week actually result from individuals com-paring and choosing among a4
set of alternative schedules or rather from scheduling activities such that they meet a set of con-5
straints. In this study we combine the idea of activity generation through an MDCEV model and6
the scheduling using an optimization approach and present the current state of our proposed pro-7
totype model. The rest of this paper is structured as follows. We will first provide an overview8
over the activity generation and scheduling framework. Subsequently, we describe the data used9
in our study and detail the model specification of the MDCEV model. We further elaborate on the10
two optimization problems formulated to construct activity schedules based on the input from the11
MDCEV model. We go on to present the estimation results and some preliminary findings on the12
scheduling process. Finally, we conclude our paper with future work and final remarks.13

MATERIALS AND METHODS14
This section, first provides an overview over the proposed framework. We subsequently provide a15
brief overview over the data used in this study, and finally specify the model.16

Activity Generation Scheduling Framework17
We propose an activity generation and scheduling approach for one week, considering the house-18
hold context through a combination of the MDCEV model and a constraint satisfaction optimiza-19
tion approach. The framework for activity generation and scheduling is illustrated in figure . The20
input data can consist of either 7-day travel diary data or time-use data. Additionally, multi-day21
data generated through pattern sampling based on single-day data (as proposed by Zhang et al.22
(18)) is also possible.23

FIGURE 1 Overview over the proposed activity generation and scheduling framework
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Based on this data, we estimate an MDCEV model. The estimated parameters are then ap-1
plied to the synthetic population of the model region. At this stage, we define the model according2
to Bhat’s (2) original formulation such that activities and the time allocated to them are predicted3
at an aggregate level.4

Given the household-level activity types and times, the activity scheduler then considers5
each time slice of the activities and allocates it to a time slice within a household member’s sched-6
ule. This discrete schedule frame is then used as input for a second optimization model in which7
the schedules are fine-tuned to generate minute-level activity schedules. Similar to Pougala et al.8
(7) and Manser et al.(6), we propose to define an optimization problem to generate these schedules.9
However, instead of the considering one day of travel, we formulate two optimization models to10
account for activities in one week.11

Data12
The data used in this study stems from the German Mobility Panel (MOP), a longitudinal survey13
that has been conducted annually since 1994. In the survey, participants report their trips in a 7-day14
travel diary in addition to providing personal and household information. For this study, we used15
data from 2017 to 2019, which includes data on 4.564 house-holds. As the data is collected using a16
travel diary and not a time-use diary, we had to pre-pare the data such that it reflects activity time-17
use. We set the start of each diary to mid-night of the first survey period and assigned the time until18
the first trip to “home”. We repeated the same for the activity of the last trip of the week, setting19
the end of the diary to midnight on the last assigned survey day. We then determined the time-use20
for each activity per person and subsequently summarized the values at the household-level. At21
this point of development, we are considering six types of activities: home, work of household22
member 1, work of household member 2, shopping, leisure, and joint leisure activities. Further,23
we have included parameters to account for household information on income (high vs. low).24

Household-Level Time-Use Estimation25
The household-level time use is estimated using a MDCEV model approach as it was first presented26
by Chandra Bhat (Bhat, 2005). The model is specified such that home activities are treated as an27
outside good. Integrating an outside good ensures the positive consumption of that alternative; in28
this case the specification results in all individuals conducting a home activity. The problem is29
defined by:30

max
K

∑
k=1

γ

α
ψk((

xk

γk
+1)α −1) (1)

Subject to the budget constraint B31

B =
K

∑
k=1

xk (2)

where K is the number of considered activities, xk is the amount of time spent on activity32
k. The budget of a household is the number of minutes per week (10.080) times the number of33
household members. The α and γ parameters determine the satiation. In our model, we specified34
α such that it does not vary over alternatives, while different γ parameters are determined for each35
alternative. The probability of an observed combination of activities including their duration is36
given by:37



Reiffer, and Vortisch 6

P(x∗1,x
∗
2, ...,x

∗
M,0, ...,0) =

1
σM−1 (

M

∏
m=1

fm)(
M

∑
m=1

pm

fm
)(

∏
M
m=1 e

Vi
σ

∑
K
k=1 e

Wk
σ

M
)(M−1)! (3)

Scheduling1
After determining the aggregated weekly time-use of a household, the model moves on to generate2
episodes and a schedule for each household member. This is done in two steps. In the first step, a3
schedule frame for each household member is created, which is the fine-tuned in the second step.4
In both steps, an optimization problem is solved considering all household member’s schedules at5
the same time to allow for trade-offs between scheduling choices. Table 1 provides an overview of6
the sets, parameters, and variables included in the two optimization problems.7

Both optimiziation problems are solved using IBM ILOG CPLEX Optimization Studio,8
version 20.1.0 (19) and called using the API for Python 3. We chose a commercial over an open-9
source software tool due to its fast run times (20), which is preferable during model development10
and calibration. However, once the model is fully implemented and integrated into the open-source11
travel demand simulation, we will move the model to an open-source solver.12

TABLE 1 Sets, Parameters, Variables in Scheduling Optimization Problem
Sets
a ∈ A Activity type
a ∈ Aw ⊆ A Work activities
a ∈ As ⊆ A Shopping activities
a ∈ Ah ⊆ A In-home activities
a ∈ Al ⊆ A Leisure activities
a ∈ A jl ⊆ Al ⊆ A Joint leisure activities
h ∈ H Household members
h ∈ Hw ⊆ H Employed household members
d ∈ D Day of the week
d ∈ Dw ⊆ D Work days
d ∈ Ds ⊆ D Days of the week where shops are open
t ∈ T Time of day
t ∈ Ts ⊆ T Time of day when shops are open
soh ∈ Ts ⊆ T Shops opening time
socl ∈ Ts ⊆ T Shops closing time
e ∈ E Episode index generated by schedule frame
Parameters
ω weighting parameters in schedule frame objective function
tua,hr ∈ N0 household time-use by activity a at the hour-level
tua,min ∈ N0 household time-use by activity a at the minute-level
pwsh ∈ [1,24] preferred start of the workday of household member h
mwd ∈ [1,24] maximum allowed daily work duration
mdht ∈ [1,24] minimum time per day spent at home
Variables
xa,h,d,t ∈ {1,0} Assignment of a to h on d at t
wsh,d ∈ [1,24] time of the first work activity of agent h on day d
weh,d ∈ [1,24] time of the last work activity of agent h on day d
δwsh,d ∈ [1,24] Absolute difference between pwsh and wsh,d
δwdurh ∈ [1,24] Absolute difference of daily work duration of agent h between two days
λh,i,d,t ∈ {1,0} Auxiliary variable; is 1 if household member h and household member i

are at home on the same day d at the same time t
σh,d,t,u ∈ {1,0} Auxiliary variable; is 1 if two consecutive work activities are the same
τh,a,e duration of episode e with activity purpose a, conducted by household member h
ψh,a,e start time of episode e with activity purpose a, conducted by household member h
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Schedule Frames1
In the first scheduling step, schedule frames are created that represent schedules and episodes at a2
coarse temporal solution in time-steps of one hour. For this purpose, the time-use of a household3
estimated by applying the MDCEV-Model are first rounded to the full hour. For all activities that4
are non-home activities, the ceiling value is chosen to ensure that no activity is dropped. The time-5
use of home activities acts as a filler such that the time-use at the hour-level adds up to 24x7xh,6
where h is the number of household members.7

Although the travel times are estimated by the MDCEV-Model, we do not include them in8
this presentation of the prototype model. We will discuss how the travel times are included in a9
later paper, in which the travel simulation results and the underlying framework will be included.10
In this study, the travel times are added to the time-use at home.11

This hourly discretized time-use of a household serves as input to the schedule frame opti-12
mization problem, which is defined as follows:13

maxω1 ∑
h∈H

∑
i∈H

∑
d∈D

∑
t∈T

λh,i,d,t +ω2 ∑
h∈H

∑
d∈D

∑
t∈T

∑
u∈T

σh,d,t,u −ω3δwdurh −ω4δchores (4)

subject to the following constraints:14

∑
a∈A

xa,h,d,t = 1 ∀h ∈ H ,d ∈ D , t ∈ T (5)

∑
h∈H

∑
d∈D

∑
t∈T

xa,h,d,t = tua,hr ∀a ∈ A (6)

24

∑
t=1

xa,h,d,t ≥ mdht a ∈ Ah,∀h ∈ H ,d ∈ D , t ∈ T (7)

xa,h,d,t = 0 ∀a ∈ As,h ∈ H ,d ∈ D \Ds, t ∈ T \Ts (8)
xa,h,d,t = 0 ∀a ∈ Al,h ∈ H ,d ∈ D \Ds, t ∈ T \Tl (9)

xa,h,d,t = 0 ∀a = w1,h = 2,d ∈ D ,∈ T (10)
xa,h,d,t = 0 ∀a = w2,h = 1,d ∈ D ,∈ T (11)

24

∑
t=1

xa,h,d,t ≤ mwd ∀a ∈ Aw,h ∈ H ,d ∈ D , t ∈ T (12)

xa,h,d,t = 0 ∀a ∈ Aw,h ∈ H ,d ∈ D \Dw, t ∈ T \Tw (13)

| ∑
t∈T

xa,h,d,t − ∑
t∈T

xa,h,e,t | ≤ δwdurh

∀{a ∈ Aw,h ∈ H ,d,e ∈ D : d ̸= e}
(14)

σh,d,t,u ≤ xa,h,d,t (15)
σh,d,t,u ≤ xa,h,d,u (16)

xa,h,d,t + xa,h,d,u −1 ≤ σh,d,t,u (17)
∀{a ∈ Aw,h ∈ H ,d ∈ D , t,u ∈ T : u = t +1}
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| ∑
d∈D

∑
t∈T

xa,h,d,t − ∑
d∈D

∑
t∈T

xa,i,d,t | ≤ δchores

∀{a ∈ As,h, i ∈ H : h ̸= i}
(18)

λh,i,d,t ≤ xa,h,d,t (19)
λh,i,d,t ≤ xa,i,d,t (20)

xa,h,d,t + xa,i,d,t −1 ≤ λh,i,d,t (21)
∀{a ∈ Ah,h, i ∈ H ,d ∈ D , t ∈ T : h ̸= i}

xa,h,d,t = xa,i,d,t

∀{a ∈ A j,h, i ∈ H ,d ∈ D , t ∈ T : h ̸= i}
(22)

The problem is formulated as a scalarizing multi-objective problem, in which the time that1
two household members spend at home together is maximized, while the number of work activity2
switches is to be minimized and the workduration between different days and the assignemnt of3
chores should be balanced. This objective is subject to a number of constraints. The first constraint4
(6) ensures that assignments are unique, i.e., that only one activity is assigned each time slot, and5
the second constraint ensures that the assignments add up to the aggregated time-use. Constraint6
(7) ensures that an agent has to spend a minimum number of hours per day at home, e.g., for7
maintenance activities. Constraints (8) and (9) consider that certain activities can only be con-8
ducted in given time frames. Shopping is constraint to (8) while leisure activities are constraint to9
a pre-determined preference (9). The latter is currently drawn from a distributions of the reported10
start and end times of first and respectively last leisure activities of the day. Constraint (12) limits11
the maximum number of day someone can work. This is currently set to 10 hours, but could be12
adapted to the type of job or other regulations, if the respective information is provided. Constraint13
(13) also pertains to work activities, in which work is limited to week days and provided work14
hours, which is currently set to 5 a.m. to 9 p.m. Again, these can be set individually for each agent.15
Constraint (14) ensures that the work duration is spread evenly throughout the week. Finally, con-16
straints (15)-(17) are implemented to ensure that work is mostly conducted continuously and that17
the number of activity switches during the workday is limited.18

Constraints (18) - (22) pertain to household interactions. In eq. (18), the split between the19
assigned chores is determined. Currently, the prototype model is formulated such that this split is20
balanced between household members. However, we will investigate if this assumption is correct.21
Literature for example shows that chores are more likely assigned to females compared to males,22
which we aim to integrate in the final model version (21). Constraints (19)-(21) pertain to the time23
that two household members spend at home together. This integrates the findings from (22) who24
show that household members value quality time together at home. Finally, the schedule frame is25
set up such that it already accounts for the fact that joint activities have to be conducted together26
(22).27

Schedule Fine-Tuning28
The result of the frame schedule is a list of episodes on and hour-level by activity purpose, includ-29
ing their order and the day on which they are conducted as well as the assignment to the household30
members. In the next step, the discrete schedules serve as input to the schedule fine-tuning prob-31
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lem, which turns them into minute-level activity schedules. The problem is defined as follows:1

min δws1 +δws2 (23)
subject to2

∑
h

∑
e

τh,a,e = tua,min ∀a ∈ A. (24)

ψh,a,e =
e

∑
1

∑
a

τh,a,e ∀h ∈ H (25)

ψh,a,e = 0 ∀h ∈ H &e = 0. (26)

δwsh = ∑
e

∣∣ψh,a,e − pwsh ·60+daye ·1440
∣∣ ∀h ∈ Hw,e ∈ E f d,a ∈ Aw (27)

ψh,a,e ≥ plsh ·60+daye ·1440 ∀h ∈ H ,a ∈ Al,e ∈ E (28)

ψh,a,e = ψi,a, f (29)
τh,a,e = τi,a, f ∀h, i ∈ H ,a ∈ A j,e, f ∈ Ea : h ̸= i,e = f (30)

ψh,a,e ≥ sho ·60+daye ·1440 (31)
ψh,a,e + τh,a,e ≥ shcl ·60+daye ·1440 ∀h ∈ H ,a ∈ As,e ∈ E (32)

ψh,a,e + τh,a,e ≤ phth ·60+daye ·1440 ∀h ∈ H ,a ∈ A (33)
The objective function (eq. 23) of this problem is much simpler. The objective of the3

problem is to ensure stability between workdays throughout the week (8). Although the objective4
is simple, there are quite a few constraints surrounding the decision variables τh,a,e, which refers5
to the exact duration in minutes of an episode e for activity purpose a assigned to agent h and6
ψh,a,e, the start time of these activities. The start times of each episodes are determined in minutes7
and refer to the start of the week, e.g., ψh,a,e = 4993 refers to the 4,993th minute of the week,8
which translates to Thursday, 11:13 p.m. The episodes are passed from the schedule frames in9
different ways. Indices are produced as a sorted sequence over all episodes, as a sorted sequence10
over episodes of the same activity purpose, or as a sorted sequence over one day and activity11
purpose. This allows us to make several different comparisons between two episodes. Similar to12
the schedule frame model, constraint (24) ensures that all episodes given their duration τh,a,e add13
up to the time-use of the household that was determined by the MDCEV model. In this case, this14
is the actual time-use at the minute-level. The two constraint (25) and (26) define the start time15
ψh,a,e of an episode, based on its duration τh,a,e. Essentially, all durations of previous episodes16
are added up and constraint (26) handles the case of an episode being the first in a schedule.17
The variable δwsh used in the objective function is defined in (27), by determining the absolute18
difference between the first work episode of a day and the preferred work start time. Similarly,19
the preferred start time for leisure activities is regarded in constraint (28). Constraints (29) and20
(30) ensures that joint activities are conducted at the same time (29) and have the same duration21
(30). Shopping is again constraint to shop opening hours, as defined in (31) and (32). Finally, each22
household member is assigned a preferred time by which they would like to be home (33). Similar23
to the work start time, this value is currently polled from the distribution of arrival times at home24
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after the last out-of-home episode.1

RESULTS AND DISCUSSION2
In this section we provide an overview over the results of the proposed model. We first describe the3
results from the MDCEV model estimation and go on to present the results of the schedule frame4
and fine-tuning model parts. Table 2 provides the estimated parameters of the MDCEV model on5
household-level activity time use.6

TABLE 2 MDCEV-Estimation results

activity δ -coefficient γ-coefficient
work hh-member 1 1163.34394
intercept -5.923
high Income 0.2137
work hh-member 2 1074.92137
intercept -7.546
high Income 0.39811
leisure 220.09584
intercept -3.767
high Income 0.021
joint leisure 437.60339
intercept -4.71023
high Income 0.14193
shopping -2.806 24.43087
travel 3.293 0.05656

The results show that travelling has largest the δ parameter indicating that this is the most7
popular activity. This is not surprising as in our case, all activities (except home) are bound to8
travelling to a different location. On the other hand, considering the satiation parameter of travel,9
we can see that the least time is invested in travel. All other utility (δ ) parameters are relatively10
similar. Compared to the other activities, shopping is rather popular. This reasonable, as almost all11
households conduct some shopping activity throughout the week.12

Work from both household members have a relatively low utility, although both coeffi-13
cients for higher income are positive. Despite the low utilities, the satiation parameters show that14
a lot of time of the weekly time budget is spent on work activities. Interestingly, both the δ - and15
γ-coefficients indicate that the second household member participates less often in paid work ac-16
tivities. Although we did not assume a head of household based on any measures, but used the17
IDs the respondents provided in the survey, there seems to be a survey effect on who identifies18
themselves as the primary bread winner and head of household.19

Leisure activities are less popular than shopping activities, indicating that households con-20
duct fewer leisure activities compared to shopping, however, the satiation parameter shows that a21
comparatively large amount of time is invested. Although the utility coefficient is lower for joint22
activities, the satiation parameter is larger, indicating that more time is invested into joint activities.23
It should be highlighted, that the model is based on household time-use based on the number of24
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household members. Joint leisure is, therefore, considered twice meaning that although the satia-1
tion parameter is higher, given that both household members invest the same amount of time, i.e.,2
when joint activities are conducted, axiomatically, both household members contribute to the time3
investment. There are few comparable studies that allow for a discussion of the model results in4
relation to other research. Although the studies on application of the MDCEV models continue to5
rise, few studies have regarded the household in time-use studies based on the MDCEV model, and6
most have focused on individual choices. Our model is most similar to the aggregated time-use7
model presented by Palma et al. (4). In this study, the authors also find that travelling is considered8
the most popular activity, whereas work and escorting activities are less popular.9

Next we present results of the scheduling models. Figure 4 shows an output of the sched-10
ule frame models from a two-person household, in which both household members are employed11
fulltime. The figure shows that the work hours are evenly split across the five workdays. Joint12
activities are scheduled at the same time, while individual leisure activities are individually sched-13
uled. Both household members are home during the night, showing reasonable scheduling results.14
Somewhat unrealistic is the switch back home after one hour of work on Thursday in the top sched-15
ule. Although this is controlled for by the activity switch constraint, the weights of that constraint16
used in the objective function are not yet fully calibrated.17

FIGURE 2 Output of the schedule frame model

Based on this schedule frame, the fine tuning model generates schedules for the two-18
household members at the minute-level. The output of that model for the same household as before19
is presented in Figure 4. We can see, that in the top schedule, the work start times are consistent20
throughout the week. This is not the case for the second schedule. The joint activities are held in21
place and are scheduled at the same time and have the same durations.22
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FIGURE 3 Output of the schedule fine tuning model

Looking at the start times of all generated schedules (Figure 4), we can see that, although1
the prototype is not fully calibrated, the start times are generally realistic. There is a large morning2
peak for work activities. Trips back home are consistent with afternoon peak hours. Joint leisure3
and leisure activities show similar distributions with slight peaks around lunch and in the afternoon.4
Shopping activities are scheduled relatively evenly throughout the day.5
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FIGURE 4 Distributions of episode start times

Although still in the prototype phase, the model already shows realistic results and is able1
to generate sensible schedules. Once calibrated and applied to a synthetic population, it will can2
serve as input to agent-based travel demand models. In a first step, the model is integrated into3
mobiTopp (23), as the framework already allows for the simulation of multiple days and up to a4
week. As mobiTopp can combined with MATSim simulations (24), the model will also be used5
for MATSim simulations.6

Future work7
Beyond calibration, there are multiple avenues that will be explored. Firstly, the allocation of8
chores: because the model accounts for time use at the household level for multiple days, it allows9
for the analysis of how household chores are distributed among its members. This pertains, e.g., to10
shopping activities and escorting children to childcare. Although the allocation of chores among11
household members has considerable effect on scheduling (25), the effect on travel has not gained12
as much attention (26). This will be a focal point of future work. It will be analyzed how different13
methods account for the allocation process, e.g. static proportions or sophisticated game theoretic14
approaches (27, 28).15

Furthermore, the model allows for integration of flexible work arrangement and the con-16
sideration of their impact on time use and scheduling choices. Working from home considerably17
impacts activity patterns (29). Considering this effect in activity-scheduling models is especially18
important considering the increase in telecommuting since the Covid-19 pandemic (10).19

Additionally, non-travel activities that influence activity patterns can be explored. As online20
shopping continues to rise, its impact on travel behavior will likely increase as well. As online21
shopping behavior and subsequent delivery traffic is already included in mobiTopp’s last mile22
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logistics extension logiTopp (30), the framework allows for easy integration of online shopping1
within the activity scheduling framework (provided appropriate data sources exist).2

CONCLUSION3
In conclusion, this paper presents a novel activity generation and scheduling framework that con-4
siders household interactions over a 7-day context. The proposed approach combines the use of5
an MDCEV model for activity generation with a constraint satisfaction optimization approach for6
scheduling. The results from the MDCEV model estimation show reasonable utility parameters7
for different activities and income levels. The schedule frame and fine-tuning models demonstrate8
the ability to generate sensible schedules for household members, considering work hours, joint9
activities, and leisure time. Although the model is still in the prototype phase and requires further10
calibration, it shows promising results and the potential to be integrated into agent-based travel11
demand models such as mobiTopp and MATSim.12

Future work will focus on calibrating the model, exploring the allocation of chores among13
household members, considering the impact of flexible work arrangements, and investigating the14
influence of non-travel activities (e.g., online shopping) on activity patterns and travel behavior.15
Overall, this research contributes to a more holistic understanding of household interactions in the16
context of travel demand modeling and provides a foundation for further studies in this area.17
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