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CHAPTER 1

Introduction

The general idea behind portfolio optimization problems is the following: An investor, endowed
with some fixed initial capital x ∈ R, has to decide how many shares of which assets she should
hold at which time in order to maximize her optimality criterion in terms of her wealth at some
fixed time T > 0 (Korn, 1997, p. 1).

The most intuitive approach to defining such a problem is probably to maximize the expected value
of the investor’s terminal wealth. In general, however, this does not reflect an investor’s attitude
towards risk. Indeed, most investors prefer a sure return of 2 percent over some risky investment
with an expected return of 2.2 percent (Eberlein and Kallsen, 2019, p. 461). In the early stages of
portfolio optimization problems, there were two approaches to describe the preferences of investors.
Von Neumann and Morgenstern (1947) proposed axioms of rational behavior and proved that an
investor accepts and acts according to these axioms if, and only if, she measures her preferences in
terms of the expectation of some utility function applied to her terminal wealth. A utility function
is a strictly increasing, strictly concave function capturing that most investors are risk-averse and
prefer larger amounts of money over smaller amounts. The second approach was established by
Markowitz (1952). He used a mean-variance criterion, i.e., he considered investors trying to achieve
a high expected return while keeping the variance of the portfolio small. More specifically, the
expected return is maximized under the constraint that the variance is bounded by some constant.
While Von Neumann and Morgenstern (1947) only considered gambles or lotteries, Markowitz
(1952) was the first to consider a problem of optimal investment. At that time, the mean-variance
approach was only suited for one-period problems (Korn, 1997, p. 1). The starting point for
continuous-time portfolio optimization problems using expected utility was provided by Merton
(1969). He considered stock prices in continuous time governed by geometric Brownian motions.
He also showed that the problem of optimal investment (and consumption) can be reduced to
solving the so-called Hamilton-Jacobi-Bellman equation, a nonlinear partial differential equation.
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Later, Karatzas et al. (1987) introduced a different method for solving continuous-time portfolio
optimization problems – namely, the martingale approach.

Note that many authors, including Merton (1969) and Karatzas et al. (1987), consider optimal
investment-consumption pairs and maximize the sum of cumulated (over time) utility from
consumption and terminal utility of wealth. In this thesis, we are interested exclusively in optimal
portfolios and do not consider the problem of optimal consumption any further.

Soon after its introduction, expected utility theory attracted substantial criticism. One famous
example is the Allais paradox (Allais, 1953; Karmarkar, 1979). Further criticism followed from
Kahneman and Tversky (1979) (see also Tversky and Kahneman, 1992), whose (cumulative)
prospect theory presented an alternative to the classical terminal utility maximization. In spite of
all criticism, expected utility maximization is still the most widely used objective for portfolio
optimization. However, the method has since been further developed in many different directions.
Let us mention a few examples of modifications of the original problem. One direction includes
financial markets beyond geometric Brownian motion, including stochastic volatility, jumps, or
more general semimartingale stock dynamics (see, for example, Kallsen and Muhle-Karbe, 2010,
for utility maximization in a stochastic volatility model; Bäuerle and Blatter, 2011, for optimal
investment and reinsurance in a jump-diffusion model; and Černỳ and Kallsen, 2007, for the
mean-variance problem in a general semimartingale model). Other generalizations of the original
problem include the use of adaptive utility functions (so-called forward utilities), additional
constraints, or separate utility functions for gains and losses (see Musiela and Zariphopoulou, 2006,
for the introduction of forward utilities; Basak and Shapiro, 2001, for an example of an additional
constraint; and Tversky and Kahneman, 1992, for the cumulative prospect theory in which gains
and losses are treated separately).

A relatively recent development in the field of portfolio optimization is the inclusion of competition
between investors. This feature is motivated by the large variety of empirical evidence for
competition between managers in the mutual and hedge fund industry. Indeed, Lacker and
Soret (2020) state that a „particularly important and by now well-established point is that
mutual fund choice is highly influenced by relative performance“. Moreover, Bielagk et al. (2017)
give the following intuitive justification of relative performance concerns: „Making a 1 Euro
profit while everyone else made 2 Euro feels distinctly different had everyone lost 2 Euro“. The
empirical literature on relative performance is vast and we can only cover a fraction here. Some
frequently mentioned articles are Chevalier and Ellison (1997) as well as Sirri and Tufano (1998)
for competition between mutual fund managers, Agarwal et al. (2004) for competition between
hedge fund managers, and Brown et al. (2001) as well as Kempf and Ruenzi (2008) for competition
motivated by career motives. Further, we refer to the introductions of Basak and Makarov (2015)
as well as Lacker and Zariphopoulou (2019) for a more detailed overview. Relative concerns can be
motivated by different factors. On one hand, there are career concerns (Basak and Makarov, 2015)
like promotion schedules for managers (Anthropelos et al., 2022) or peer-based underperformance
penalties (Bielagk et al., 2017). On the other hand, companies are concerned with their reputation
as well as their desire to attract new clients (Anthropelos et al., 2022) and to generate higher
money inflows (Lacker and Zariphopoulou, 2019). Taking the argument a step further, Dos Reis
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and Platonov (2022) argue that „benchmarking is a feature of human nature“.

The empirical evidence on competition between managers gave motivation to the new research area
of competitive portfolio optimization problems in continuous time which has grown rapidly over
the last decade. Adding to the introductory work of Espinosa (2010), Basak and Makarov (2014),
and their many successors, this thesis is focused on portfolio optimization problems in continuous
time for some (infinitely) large number of agents that base their decisions on relative performance
concerns. In five main chapters, we take a look at such problems from various perspectives and
on different levels of generality. The competitive feature is incorporated in three different ways –
via the objective function, in a stochastic constraint, and via cumulative price impact. In each of
these situations, we are able to find explicit solutions to the emerging multi-objective optimization
problems applying two different notions of optimality.

Each of the main chapters (Chapters 3 and 5 – 8) includes a comprehensive introduction containing
a literature overview of the corresponding research area and a general motivation of the problem.
More precisely, this thesis is structured as follows. Chapter 2 contains basic tools and definitions
from stochastic calculus, mathematical finance, and multi-objective optimization, which are used
throughout this thesis. It also contains the specification of a very general semimartingale financial
market which forms the basis of most problems considered in this thesis. In Chapter 3, we
display a portfolio optimization problem for a finite number of competitive agents. We use the
notion of competitive utility functions, which incorporate relative performance concerns into the
classical portfolio optimization problem. Without any specific assumptions on the model and the
utility functions, we explain a method for determining Nash equilibria for n-player problems by
decomposing the multi-objective optimization into a single-agent problem and a system of linear
equations, which turns out to be uniquely solvable. This method is applied to various examples
in Chapter 4, including models with jumps or stochastic volatility, and the more generalized
cumulative prospect theory. In the subsequent Chapter 5, we consider the corresponding mean
field game to the n-agent game solved in Chapter 3. First, we motivate the problem by analyzing
the Nash equilibrium in the limit as the number of agents tends to infinity. Afterwards, we
define the mean field game properly and provide a solution method similar to the one displayed
in Chapter 3. In Chapter 6, we take a look at a different notion of optimality, namely, Pareto
optimality. In a general model, without specific restrictions on the financial market or the utility
functions, we explain a suitable scalarization of the n-player game and use it to find a Pareto
optimum in terms of terminal wealth. It turns out that the Pareto optimum coincides with the
Nash equilibrium from Chapter 3. In the next Chapter 7, we consider a financial market which
differs strongly from the previous chapters as it consists of agents whose investments influence
the stock prices. Thus, the competition between the agents now originates from two different
sources. One source remains the competitive utility function from Chapter 3. However, as the
agents have a cumulative impact on the stock price, they undergo a different, more subtle, source
of competition. In a linear price impact model, we are able to determine the unique constant Nash
equilibrium for both exponential and power utility functions. In the case of exponential utility, we
also consider nonlinear price impact and analyze whether the resulting optimization problem has a
finite optimal solution. In the final Chapter 8, we apply the relative concerns through a stochastic
constraint instead of the competitive utility function. The constraint is motivated by the value at
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risk based approach introduced by Basak and Shapiro (2001). In a general financial market, we
find the optimal terminal wealth for a finite number of agents using general utility functions. Due
to the complicated structure of the solution, we consider a different terminal wealth profile similar
to the optimal solution found by Basak and Shapiro (2001). In this more restrictive class of wealth
profiles, we find the unique Nash equilibrium in terms of terminal wealth and discuss some of its
properties. Finally, Chapters A–C in the Appendix contain additional material for Chapters 6–8.

Last but not least, it should be noted that the terms agent, player, investor, and trader are used
interchangeably throughout this thesis.



CHAPTER 2

Fundamentals

The following chapter contains some mathematical basics used throughout this thesis. We assume
that the reader is familiar with basic topics in probability theory, mathematical finance, and
stochastic optimization. More specifically, we expect a basic understanding of stochastic processes,
Itô calculus, no-arbitrage pricing theory, and portfolio optimization. For the mentioned topics, we
refer to Protter (2005) for a rigorous discussion of Itô calculus, to Karatzas and Shreve (1998) as
well as Eberlein and Kallsen (2019) for a widespread overview of topics regarding mathematical
finance, and to Pham (2009) for an introduction to stochastic optimization. Nevertheless, we state
below some classical results which are used throughout this thesis.

The remainder of this chapter is based on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P), where
T > 0 is some arbitrary but fixed finite time horizon. We assume that the filtration (Ft)t∈[0,T ]

satisfies the usual conditions, i.e., it is right-continuous and complete.

2.1. Basic tools from stochastic calculus

This section contains important tools from stochastic calculus, which are used frequently throughout
this thesis. The first and probably most important tool from stochastic calculus is the Itô-Doeblin
formula.

Theorem 2.1 (Itô-Doeblin formula; Protter, 2005, pp. 81-82). Let X = (X1, . . . , Xd) be a
continuous d-dimensional semimartingale (i.e., each Xj, j = 1, . . . , d, is a semimartingale) and
f ∈ C2(Rd,R), i.e., all second order partial derivatives ∂2f

∂xi∂xj
, i, j ∈ {1, . . . , d}, exist and are

continuous. Then the process f(X) is also a semimartingale and the following formula holds

f(Xt) − f(X0) =
d∑
i=1

∫ t

0

∂f

∂xi
(Xs) dXi

s + 1
2

∑
1≤i,j≤d

∫ t

0

∂2f

∂xi∂xj
(Xs) d⟨Xi, Xj⟩s, t ∈ [0, T ].
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According to Protter (2005, p. 66), the quadratic (co)variation (or bracket) process ⟨·, ·⟩ is defined
by

⟨X,Y ⟩t = XtYt −
∫ t

0
XsdYs −

∫ t

0
YsdXs, ⟨X⟩t = ⟨X,X⟩t, t ∈ [0, T ],

where X and Y are continuous semimartingales. Protter (2005) provides a formula for the
quadratic (co)variation of Itô integrals, which is often a helpful tool when dealing with stochastic
differential equations. The formula is given in the following lemma.

Lemma 2.2 (Protter, 2005, p. 167). Let X and Y be semimartingales and let H ∈ L(X), G ∈ L(Y ),
where L(X) describes the set of predictable, X-integrable processes (see (2.3) in Subsection 2.3.1
below). Then

⟨H • X,G • Y ⟩t =
∫ t

0
HsGs d⟨X,Y ⟩s, t ∈ [0, T ]. (2.1)

In (2.1), we used the abbreviation (H • X)t =
∫ t

0 Hs dXs, t ∈ [0, T ].

The Itô-Doeblin formula has many useful applications. Below are two results that can be deduced
directly from the Itô-Doeblin formula.

Corollary 2.3 (Integration by Parts, Protter, 2005, p. 68). Let X and Y be continuous semi-
martingales. Then XY is a semimartingale and

XtYt =
∫ t

0
XsdYs +

∫ t

0
YsdXs + ⟨X,Y ⟩t, t ∈ [0, T ].

Another important consequence of the Itô-Doeblin formula is the stochastic exponential displayed
in Theorem 2.4 below. Note that Theorem 2.4 is stated for a general semimartingale which is
not necessarily continuous. Thus, a generalized version of the Itô-Doeblin formula is necessary
to prove the assertion of the theorem. The general Itô-Doeblin formula can be found in Protter
(2005, pp. 81–82).

Theorem 2.4 (Stochastic Exponential; Protter, 2005, p. 84). Let X be a semimartingale with
X0 = 0. Then there exists a unique semimartingale Z that satisfies the equation Zt = 1+

∫ t
0 Zs−dXs,

given by

Zt = exp
(
Xt − 1

2⟨X⟩t
) ∏

0<s≤t
(1 + ∆Xs) exp

(
−∆Xs + 1

2(∆Xs)2
)
, t ∈ [0, T ], (2.2)

where the infinite product converges.

If X is a continuous semimartingale, the representation (2.2) of Zt simplifies to (see Protter, 2005,
p. 85)

Zt = exp
(
Xt − 1

2⟨X⟩t
)
.

The stochastic exponential Z corresponding to a semimartingale X is sometimes denoted by E(X),
i.e.,

E(X) = exp
(
X − 1

2⟨X⟩
)
.

We conclude this section with a stochastic version of Fubini’s theorem. The theorem uses the the
predictable σ-algebra P, which is generated by the class of adapted processes with càglàd paths
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(i.e., the paths are left continuous with existing right limits). We refer to Definition 2.6 below for
a formal definition and a brief discussion of predictable processes.

Theorem 2.5 (Stochastic version of Fubini’s theorem; Protter, 2005, pp. 211–212). Let (A,A, µ)
be a measure space, where µ is a positive, finite measure on A. Further, let X be a semimartingale
on a probability space (Ω,F ,P) and let (Ha

t )t≥0 be an A⊗P-measurable stochastic process. Further,
assume that (∫

A
(Ha

t )2µ(da)
) 1

2
∈ L(X),

where L(X) describes the set of predictable processes that are integrable with respect to X. Finally,
assume that (a, t, ω) 7→ Zat (ω), where Zat :=

∫ t
0 H

a
s dXs, defines an A ⊗ B((0,∞)) ⊗ F-measurable

process and that Za is càdlàg (i.e., the paths are right continuous with existing left limits) for any
a ∈ A. Then the integral ∫

A
Zat µ(da) =

∫
A

∫ t

0
Ha
s dXsµ(da)

exists and ∫
A

∫ t

0
Ha
s dXsµ(da) =

∫ t

0

∫
A
Ha
sµ(da)dXs

holds in the sense that the integral on the left-hand side is a càdlàg version of the integral on the
right-hand side.

2.2. Definition of σ-martingales

In what follows, we explain a generalization of local martingales, so-called σ-martingales. Such
processes play an important role in the general semimartingale financial market explained in
Subsection 2.3.1 below. First, we need to introduce the notion of predictable processes.

As it is the case in most applications, we associate the filtration (Ft)t∈[0,T ] with the flow of
information in our model. To be coherent with this interpretation, we need to make sure that all
considered processes are in some sense in line with the flow of information. Apart from adapted
and progressively measurable processes, we also need the definition of a predictable process. The
following definition is taken from Protter (2005, pp. 56, 102) and Eberlein and Kallsen (2019, p.
98).

Definition 2.6. a) The predictable σ-algebra P is the smallest σ-algebra on Ω × [0,∞) such
that all adapted processes with càglàd paths (i.e., paths that are left continuous with existing
right limits) are measurable with respect to P.

b) A random set D ⊂ Ω × [0,∞) is called predictable if D ∈ P.

c) An Rd-valued stochastic process X is called predictable if it is measurable with respect to P
(interpreted as a mapping X : Ω × [0,∞) → Rd).

♦

Remark 2.7. To understand the concept of predictable processes, it helps to consider the discrete-
time analogue. A discrete-time process (Xn)n∈N0 is called predictable if X0 is F0–measurable
and, for any n ∈ N, Xn is Fn−1–measurable (Jacod and Shiryaev, 2003, Definition I.2.36). This
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definition can be interpreted as follows: A decision made at time n can only use information
available at previous times, i.e., up to time n−1. This justifies the term predictable. Measurability
of processes with càglàd paths provides a continuous-time analogue to the definition in discrete
time. ♢

According to Protter (2005, p. 103), a predictable stochastic process is also progressively measurable,
but the reverse does not hold in general.

Now that we are familiar with predictable processes, we can generalize the concept of a local
martingale. Recall that a local martingale is a stochastic process that behaves like a martingale if
we truncate time with respect to an increasing sequence of stopping times (see, e.g., Jacod and
Shiryaev, 2003, Definition I.1.45). If we not only truncate with respect to t, but also with respect
to ω, we obtain a σ-martingale.

Definition 2.8 (Jacod and Shiryaev, 2003, Definition III.6.33). An R-valued semimartingale X
is called a σ-martingale if there exists an increasing sequence (Dn)n∈N of predictable sets with
Dn ↑ Ω × [0,∞) (up to an evanescent1 set) such that, for any n ≥ 1, the process 1DnX is a
uniformly integrable martingale. An Rd-valued semimartingale is called a σ-martingale if each
component is an R-valued σ-martingale. ♦

Using Proposition III.6.34 in Jacod and Shiryaev (2003), this is in fact a generalization of a local
martingale as any local martingale is a σ-martingale while the reverse does not hold in general
(see, e.g., Jacod and Shiryaev, 2003, Example III.6.40). Further, Delbaen and Schachermayer
(1998) state that the notion of σ-martingales „relates to martingales similarly as σ-finite measures
relate to finite measures“.

There is also a different definition of σ-martingales used throughout the literature (see, for example,
Protter, 2005, p. 237; Delbaen and Schachermayer, 2006, Definition 14.2.1). There, an Rd-valued
semimartingale X is called σ-martingale if there exist an Rd-valued martingale M and an M -
integrable, predictable, (0,∞)-valued process φ such that X can be written as2 X = X0 + φ • M .
However, it can be shown, using Theorem 89 in Protter (2005, pp. 237–238) and Theorem III.6.41
by Jacod and Shiryaev (2003), that the two definitions are equivalent.

The notion of σ-martingales is popular in the mathematical finance literature due to the paper by
Delbaen and Schachermayer (1998). There, the equivalence of the „no free lunch with vanishing
risk“ condition and the existence of an equivalent σ-martingale measure is shown, which provides
a generalization of the classical fundamental theorem of asset pricing. We also use the absence of
arbitrage in the presence of an equivalent σ-martingale measure in Subsection 2.3.1. However, we
understand arbitrage strategies in a slightly different sense. Delbaen and Schachermayer (2006,
p. 142) also argue that the notion of a σ-martingale is „tailormade“ for the purpose of excluding
arbitrage (in some sense) in general semimartingale markets. Namely, it is first unavoidable to find
a more general concept than local martingales if S should be allowed to have jumps of unbounded
size. Second, they argue that „for the purposes of hedging contingent claims the notion of a

1A set D ⊂ Ω × [0, ∞) is called an evanescent set if its projection onto Ω is a P-null set, i.e., if
P ({ω ∈ Ω| ∃ t ∈ [0, ∞) with (ω, t) ∈ D}) = 0 (see, for example, Jacod and Shiryaev, 2003, p. 3).

2Note that the definition given by Protter (2005) does not include the initial value X0. However, at the beginning
of Chapter IV, Protter (2005) assumes, without loss of generality, that all processes X start in 0.
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σ-martingale is just as useful as the notion of a local martingale“ (see Delbaen and Schachermayer,
2006, p. 142).

2.3. Basics from mathematical finance

In this section, we explain some basic concepts from the general area of mathematical finance. In
Subsection 2.3.1, we explain a very general semimartingale market which forms the foundation
of most problems considered in this thesis. Afterwards, we discuss the issue of completeness in
Subsection 2.3.2. Finally, we give a short introduction to portfolio optimization problems and
common methods to solve such problems in Subsection 2.3.3.

2.3.1. General semimartingale market

In the following, we describe a general semimartingale financial market. The market is taken from
Černỳ and Kallsen (2007) and Delbaen and Schachermayer (1996). We want to emphasize at this
point that we do not need any special requirements for our later analysis. The financial market is
therefore as general as possible, while all stochastic integrals that arise are well-defined. Thus, the
stock prices are taken as semimartingales with càdlàg paths (i.e., the paths are right continuous
with existing left limits). Delbaen and Schachermayer (2006, p. 130) argue that semimartingales
are „precisely the class of processes allowing for a satisfactory integration theory“.

The financial market is assumed to be frictionless and perfectly elastic3. It consists of d ∈ N stocks
with price processes Sk = (Sk(t))t∈[0,T ], k = 1, . . . , d, (which are assumed to be not identical,
i.e., there are no two distinct indices j, k ∈ {1, . . . , d} such that Sj and Sk are modifications of
another) collected in the d-dimensional process S = (S1(t), . . . , Sd(t))t∈[0,T ]. Moreover, there exists
a riskless bond which is, without loss of generality, assumed to be identical to 1. This is not a
restriction since we could simply take the bond as numéraire4 (see Delbaen and Schachermayer,
1995). Moreover, we assume that S is an L2(P)-semimartingale with càdlàg paths (i.e., the paths
are right continuous with existing left limits). Following Delbaen and Schachermayer (1996), an
L2(P)-semimartingale is defined as follows.

Definition 2.9. An Rd-valued semimartingale S that satisfies

sup
{
E
[
(Sk(τ ∧ T ))2

]
: τ is an (Ft)t∈[0,T ]-stopping time, k = 1, . . . , d

}
< ∞

is called L2(P)-semimartingale ♦

To ensure that our financial market does not contain arbitrage opportunities, we require the
existence of an equivalent probability measure under which the stock price processes become

3A market is called frictionless if there are no transaction costs and no limitations on short selling (Karatzas and
Shreve, 1998, p. 8). Moreover, the term perfectly elastic expresses that the stock prices are not changed by the
agents’ orders, i.e., investors are assumed to be „small“. We refer to Chapter 7 for a more detailed discussion of
this topic.

4According to Bingham and Kiesel (2004), a numéraire is a price process (Xt)t∈[0,T ] that is strictly positive almost
surely for any t ∈ [0, T ]. It can be interpreted as a benchmark unit used in the financial market. The prices of
different assets in the market are given in terms of (relative to) the numéraire.
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σ-martingales. Thus, following Černỳ and Kallsen (2007), we make the following standing
assumption.

Assumption 2.10. There exists an equivalent probability measure Q with square-integrable
density, i.e., Q ∼ P with E

[(
dQ
dP

)2]
< ∞, such that S is a σ-martingale with respect to Q. Such a

Q is called σ-martingale measure (with respect to S) (SσMM) with square integrable density. ♦

For the aforementioned SσMM Q, we denote the associated density process by

ZQ
t := E

[dQ
dP

∣∣∣Ft

]
, t ∈ [0, T ].

Černỳ and Kallsen (2007) argue that Assumption 2.10 „can be interpreted as a natural no-free-
lunch condition in the present quadratic context“. We can explain this statement in more detail,
but we have to define the set of admissible strategies first. Instead of simply stating the set of
admissible strategies, we give a more illustrative derivation of the set similar to Černỳ and Kallsen
(2007).

First, we need to ensure that a strategy φ, i.e., an Rd–valued stochastic process, where φk(t)
represents the number of shares of stock k held at time t, is integrable with respect to the stock
price process S. Hence, we require that φ ∈ L(S), where

L(S) :=
{
φ : φ is (Ft)-predictable and S-integrable

}
. (2.3)

The term „S-integrable“ needs to be defined in more detail. Let

S = S0 +M +A

describe the unique (up to modifications) semimartingale decomposition of S, i.e., S0 is F0-
measurable, M is a local martingale with M0 = 0, and A is a finite variation process with A0 = 0
(see, for example, Protter, 2005, Theorem 1 and 2, pp. 102–103). Then we say that φ is S-integrable
if, and only if, φ satisfies (see Jacod and Shiryaev, 2003, Definition III.6.17)

P
(∫ T

0
(φk(t))2d⟨Sk⟩t < ∞

)
= 1, P

(∫ T

0
φk(t)dAk(t) < ∞

)
= 1,

where the integrals with respect to ⟨Sk⟩ and A are defined as pathwise Lebesgue-Stieltjes integrals
(see, for example, Protter, 2005, p. 39). For φ ∈ L(S), we denote the stochastic integral of φ with
respect to S by

(φ • S)t :=
d∑

k=1

∫ t

0
φk(u)dSk(u), t ∈ [0, T ].

The set A of admissible strategies will be constructed from the L2(P)-closure (in some sense) of
the set of simple strategies. More specifically, strategies are called admissible if their integral with
respect to S can be approximated in L2(P) using a sequence of simple strategies. Let us give a
more detailed explanation of this choice. A stochastic process φ is called simple (or elementary) if
there exist finite stopping times τ1 ≤ · · · ≤ τn and bounded, Fτk

-measurable random variables Yk
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such that φ can be written as

φt(ω) =
n∑
k=1

Yk(ω)1(τ1(ω),τ2(ω)](t), t ∈ [0, T ], ω ∈ Ω

(see, e.g., Černỳ and Kallsen, 2007; Delbaen and Schachermayer, 1996). Eberlein and Kallsen
(2019, p. 584) argue that simple strategies, although not very interesting mathematically, are still
important because they are the only ones that are feasible in real life.

Now a stochastic process φ ∈ L(S) is called admissible if the stochastic integral of φ with respect
to S can be approximated by a sequence of stochastic integrals of simple strategies φ(n) with
respect to S. More specifically, φ ∈ L(S) is called admissible if there exists a sequence (φ(n))n∈N

of simple strategies such that5

(
φ(n) • S

)
t

P−→ (φ • S)t for any t ∈ [0, T ],(
φ(n) • S

)
T

L2(P)−→ (φ • S)T , n → ∞.

While this definition of admissible strategies allows for a straightforward interpretation as limits of
strategies which are feasible in real life, the above condition is impractical in general. Therefore,
Černỳ and Kallsen (2007) presented an equivalent characterization of this condition which is more
convenient to use. They showed that some Rd-valued process φ is admissible (regarding the above
definition) if, and only if, φ is in L(S), (φ • S)T ∈ L2(P), and (φ • S)ZQ is a P-martingale for any
SσMM Q with square integrable density. Thus, the set of admissible strategies reads as

A =
{
φ ∈ L(S) : (φ • S)T ∈ L2(P), (φ • S)ZQ is a P-martingale for all SσMM Q

with density process ZQ and square integrable density
}
. (2.4)

The wealth process (Xφ
t )t∈[0,T ] associated to some φ ∈ A is given by

Xφ
t = x0 + (φ • S)t, t ∈ [0, T ], (2.5)

for the initial capital x0 ∈ R. In the previously described setting, the time-zero price of any claim
X ∈ L2(P) is given by (see, for example, Bingham and Kiesel, 2004, Theorem 6.1.4)

EQ[X] = E
[
ZQ
TX

]
(2.6)

for all SσMM Q with square integrable density. Note that, in general, the price depends on the
choice of Q. Nevertheless, for Xφ

T from (2.5), we obtain EQ[Xφ
T ] = x0 for any choice of Q (see

Eberlein and Kallsen, 2019, p. 540).

Now that the set of admissible strategies is fixed, we can justify that Assumption 2.10 implies
the absence of arbitrage strategies contained in A. Černỳ and Kallsen (2007) explain that
Assumption 2.10 implies

KS
2 (0) − L2

+ ∩ L2
+ = {0}, (2.7)

5By P−→ we denote convergence in probability.
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where L2
+ is the set of non-negative, square integrable random variables. The closure needs to be

understood in the L2(P)-sense. In their notation, the set KS
2 (0) describes the L2(P)-closure of the

set of all claims that are attainable from simple strategies with zero initial endowment, i.e., claims
H that can be written as H = (φ • S)T for a simple strategy φ. Those are exactly the wealth
processes attainable from admissible strategies φ ∈ A with an initial capital of 0. Then (2.7)
implies that the only non-negative, square integrable random variable obtainable by a reduction of
some attainable claim is constantly equal to zero. Hence, A does not contain arbitrage strategies.

2.3.2. A note on completeness

In addition to the absence of arbitrage, an often desirable property of financial markets is its
completeness. Without going into detail, a financial market is called complete if any claim H is
attainable by some admissible strategy φ (see, for example, Eberlein and Kallsen, 2019, p. 540).
In general, a claim is an FT -measurable random variable H. In most cases, H is required to
satisfy additional properties like non-negativity, integrability or boundedness by a suitable random
variable (see, e.g., Karatzas and Shreve, 1998, pp. 21-22; Eberlein and Kallsen, 2019, p. 587;
Jeanblanc et al., 2009, p. 87). A claim is called attainable if there exist an admissible strategy φ
and an initial capital x0 such that H = Xφ

T = x0 + (φ • S)T . Apart from requiring that φ is self
financing, the conditions imposed on admissible strategies depend strongly on the specific model.
If one is interested in defining the unique arbitrage free price of a claim H, being able to hedge
this claim by some replicating strategy is of utmost importance.

In many cases, the so-called second fundamental theorem of asset pricing gives an equivalent
characterization of completeness of an arbitrage free financial market. The statement of this
theorem is (more or less) the same in different market models. While absence of arbitrage is
associated with the existence of an equivalent (σ-/local) martingale measure, completeness is
related to the uniqueness of such a measure. This type of assertion can be found in many
cases varying from discrete-time models, considered, for example, by Föllmer and Schied (2016,
Theorem 5.37), to general semimartingale models like the one used by Eberlein and Kallsen (2019,
Theorem 11.54). Similar to the characterization of absence of arbitrage, there is neither the
perfect model choice nor the optimal characterization of completeness. That is why we decided
not to give a general characterization of completeness in this thesis. To the best of our knowledge,
there is no equivalent characterization of completeness that fits the semimartingale market from
Subsection 2.3.1. For the characterization that comes closest to the model considered above, we
refer to Theorem 11.54 in Eberlein and Kallsen (2019).

Let us conclude this discussion with a popular example of a complete financial market. Assume
that there exist a riskless bond with zero interest rate and d stocks. Let the d stock price processes
be geometric Brownian motions, i.e., they take the form

Sk(t) = Sk(0) exp
((

µk − 1
2

d∑
ℓ=1

σ2
kℓ

)
t+

d∑
ℓ=1

σkℓWℓ(t)
)
, t ∈ [0, T ],

k = 1, . . . , d, where W1, . . . ,Wd are independent Brownian motions. The drift vector µ and the
volatility matrix σ are assumed to be deterministic and constant in time. Then the market is
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complete if, and only if, the volatility matrix σ is regular (see, for example, Karatzas and Shreve,
1998, Theorems 4.2 and 6.6 in Chapter 1). Here, completeness means that any FT -measurable
random variable X, which is bounded from below, is attainable by a square integrable, progressively
measurable portfolio process.

2.3.3. Introduction to portfolio optimization

The basic idea behind portfolio optimization is the following. Given some initial capital x0

and fixed time horizon T > 0, an investor aims to maximize her expected terminal wealth via
optimal investment. Maximizing the expected terminal wealth usually results in an unbounded
optimization problem. Thus, instead of maximizing expected wealth itself, it is usually assumed
that investors measure their preferences by some (Inada) utility function applied to their terminal
wealth. A utility function is defined as follows (see, for example, Korn, 1997, p. 38; Eberlein and
Kallsen, 2019, pp. 462–463).

Definition 2.11. A strictly increasing, continuous function U : D → R, D ∈ {(0,∞),R}, is called
utility function. Additionally, if U is strictly concave and continuously differentiable, and satisfies
the Inada conditions

lim
x→inf D

U ′(x) = ∞, lim
x→∞

U ′(x) = 0,

U is called Inada utility function. ♦

Some common examples of Inada utility functions are the natural logarithm, the power utility
function

U : (0,∞) → R, x 7→
(

1 − 1
δ

)−1
x1− 1

δ (2.8)

for a parameter δ > 0, δ ̸= 1, or the exponential utility function

U : R → R, x 7→ − exp
(

−1
δ
x

)
(2.9)

for a parameter δ > 0 (see, for example, Eberlein and Kallsen, 2019, p. 463). Utility functions are
often characterized in terms of their absolute or relative risk aversion. The notion was introduced
by Pratt (1964) and Arrow (1974) and is defined as follows (see also Föllmer and Schied, 2016, pp.
82-83).

Definition 2.12. Let U : D → R, D ∈ {(0,∞),R} be a twice continuously differentiable Inada
utility function. Then

A(x) := −U ′′(x)
U ′(x) , x ∈ D,

defines the absolute and
R(x) := −xU ′′(x)

U ′(x) , x ∈ D,

the relative Arrow-Pratt risk aversion coefficient. ♦

The absolute Arrow-Pratt risk aversion coefficient of the exponential utility function (2.9) is given
by δ−1. Thus, the exponential utility function belongs to the so-called CARA (constant absolute
risk aversion) utility functions. Moreover, the relative risk aversion coefficient of the logarithm and
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the power utility function (2.8) is given by δ−1 with δ = 1 for the logarithm. Hence, power and
logarithmic utility belong to the class of CRRA (constant relative risk aversion) utility functions.
This explains why we refer to δ−1 as the risk aversion and to δ as the risk tolerance parameter.

For an investor with initial capital x0 and utility function U : D → R, the optimization problem
of expected utility maximization reads as maxφ∈A E[U(Xφ

T )],

s.t. Xφ
T = x0 + (φ • S)T .

(2.10)

The set of admissible portfolio strategies A depends on the specific financial market. It usu-
ally contains some measurability and integrability conditions imposed on the portfolio process
φ : [0, T ] × Ω → Rd, where d describes the number of stocks in the underlying financial market.
As the control of an agent is a stochastic process, (2.10) describes a special dynamic optimization
problem. For portfolio optimization problems like (2.10), there are two solution methods used
in the literature - the martingale method and the dynamic programming approach. We do not
explain these methods in detail, but we give a short idea on the methods as they are both used in
this thesis.

The martingale method (see, for example, Section 3.4 in Korn, 1997) consists of two sub-problems.
The first one is the static optimization problem in which the optimal terminal wealth is determined.
The second one is the representation problem that comprises the search for a replicating strategy
for the optimal terminal wealth from the first step. The martingale approach is usually applied in
complete markets since, in that case, it can be guaranteed that the representation problem has a
solution. The static optimization problem is often uniquely solvable due to the concave objective
function. If the underlying financial market has a unique (σ-/local) martingale measure Q with
dQ
dP = ZT (see Subsection 2.3.1), the unique solution to the static optimization problem is given by

X∗ = I(λ∗ZT )

(see, for example, Kramkov and Schachermayer, 1999). The function I = (U ′)−1 describes the
inverse of the first order derivative of U and λ∗ > 0 denotes the Lagrange multiplier which is
determined by the budget constraint E[ZTX∗] = x0. For a more in-depth explanation of the
martingale method, we refer to Kramkov and Schachermayer (1999) as well as Section 3.4 in Korn
(1997).

Let us now explain the second method. The idea behind the dynamic programming approach is
to derive a partial differential equation for the value function

J(t, x) := sup
φ∈A

E [U(Xφ
T )|Xφ

t = x] , t ∈ [0, T ], x ∈ D,

with the terminal constraint J(T, x) = U(x), x ∈ D. The derivation of the partial differential
equation is based on the so-called Bellman principle (or sometimes called dynamic programming
principle). It states that

J(t, x) = sup
φ

E
[
J(t′, Xφ

t′ )|X
φ
t = x

]
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holds for all 0 ≤ t ≤ t′ ≤ T (see, for example, Equation (3.20) in Pham, 2009). Together with the
Itô-Doeblin formula (see Theorem 2.1), one can derive a partial differential equation, the so-called
Hamilton-Jacobi-Bellman (HJB) equation, which is then used to find a candidate for the value
function J . From a solution G to the HJB equation, one can infer a candidate for the optimal
control. Finally, a verification theorem is necessary to ensure that the candidate control is in fact
optimal and that the solution to the HJB equation coincides with the value function. For a more
detailed explanation of the method, we refer to Chapter 3 in Pham (2009).

2.4. Introduction to multi-objective optimization

Generally speaking, a multi-objective optimization problem is an optimization problem that
involves multiple (coupled) objective functions. We want to take a game theoretic approach
to multi-objective optimization problems. Thus, we consider n agents with objective functions
J1, . . . , Jn. Each agent is able to choose some control φi ∈ Ai, i = 1, . . . , n, where Ai is the set of
admissible strategies of agent i, i.e., the set of controls agent i is allowed to choose from. In the
problems considered throughout this thesis, controls φi are Rd-valued stochastic processes, defined
on a finite time interval [0, T ]. The set of admissible strategies usually contains some measurability
and integrability conditions that depend on the specific model. Moreover, agent i aims to maximize
Ji(φ1, . . . , φn), i.e., each objective function depends on all n strategies. Thus, there are n objective
functions that need to be maximized simultaneously. As the resulting objective function is Rn-
valued, it is not clear a priori under which conditions a vector of admissible strategies should
be called optimal. Therefore, we need to clarify when a vector (φ1, . . . , φn) with φi ∈ Ai for all
i ∈ {1, . . . , n} is considered optimal. Throughout this thesis, we apply two different notions of
optimality. The first one is the so-called Nash equilibrium, in which agents act competitive whereas
the second one, a so-called Pareto optimum, is obtained when the public good of all n players is
optimized. In the following, we explain these two concepts in more depth. First, we consider Nash
equilibria. The definition dates back to Nash (1951).

Definition 2.13. Let Ji : ×n
j=1 Aj → R be the objective function of agent i, i = 1, . . . , n. A

vector
(
φ1,∗, . . . , φn,∗

)
of admissible strategies is called a Nash equilibrium if, for all admissible

φi ∈ Ai and i ∈ {1, . . . , n},

Ji(φ1,∗, . . . , φi,∗, . . . , φn,∗) ≥ Ji(φ1,∗, . . . , φi−1,∗, φi, φi+1,∗, . . . , φn,∗). (2.11)

Further,
(
φ1,∗, . . . , φn,∗

)
is called a constant Nash equilibrium, if φi,∗t = φi,∗0 holds for each t ∈ [0, T ]

and each i ∈ {1, . . . , n}. ♦

Remark 2.14. For a vector (φ1,∗, . . . , φn,∗) of constant strategies, i.e., φi,∗(t) = φi,∗(0) for all
i ∈ {1, . . . , n}, to be a constant Nash equilibrium, condition (2.11) still needs to be satisfied for
any φi ∈ Ai, not just for constant strategies. ♢

Definition 2.13 shows that a Nash equilibrium can be interpreted as a vector of admissible
strategies, chosen by the n players, such that none of the agents would benefit from deviating from
the equilibrium strategy unilaterally. Thus, Nash equilibria provide a concept of optimality for
competitive agents, where each agent is focused on maximizing her own objective and takes the
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controls of the other agents as given. In the literature on n-agent games, there are two different
kinds of Nash equilibria which need to be distinguished – open-loop and closed-loop Nash equilibria.
Carmona and Delarue (2018a, p. 72) argue that the above definition of a Nash equilibrium only
makes sense once it is properly defined how the strategies of the players j ̸= i are „frozen“ from
the perspective of agent i. To be more specific, it is important to explain how the players update
their strategies. In an open-loop equilibrium, agent i treats the strategies of the other agents as
fixed in the sense that the strategies do not change when agent i changes her strategy in order
to find the optimal one. On the other hand, when looking for a closed-loop equilibrium, agent i
considers the strategies of the other players in feedback form. Thus, if agent i changes her strategy,
the strategies of the other players change as well. Carmona and Delarue (2018a, pp. 72-75) give
rigorous definitions of open-loop and closed-loop equilibria.

Definition 2.15 (see Carmona and Delarue, 2018a, Definition 2.4). Let (φ1,∗, . . . , φn,∗) be a
vector of admissible strategies such that (2.11) holds for all i ∈ {1, . . . , n}. If, for all i ∈ {1, . . . , n},
the vector (φ1,∗, . . . , φi−1,∗, φi+1,∗, . . . , φn,∗) remains the same if player i changes her strategy from
φi,∗ to a different strategy φi, (φ1,∗, . . . , φn,∗) is called an open-loop Nash equilibrium. ♦

Definition 2.16 (see Carmona and Delarue, 2018a, Definition 2.6). Let (φ1,∗, . . . , φn,∗) be a
vector of admissible strategies of the form φi,∗ = ϕi,∗

(
t,X1,φ1,∗

[0,t] , . . . , Xn,φn,∗

[0,t]
)
. If

Ji
(
ϕ1,∗(t,X[0,t]

)
, . . . , ϕn,∗

(
t,X[0,t]

))
≥ Ji

(
ϕ1,∗(t, X̃[0,t]

)
, . . . , ϕi−1,∗(t, X̃[0,t]

)
, ϕi
(
t, X̃[0,t]

)
, ϕi+1,∗(t, X̃[0,t]

)
, . . . , ϕn,∗

(
t, X̃[0,t]

))
holds for all i ∈ {1, . . . , n}, where φi = ϕi

(
t, X̃[0,t]

)
, Xt =

(
X1,φ1,∗

t , . . . , Xi,φi,∗

t , . . . , Xn,φn,∗

t

)
,

and X̃t =
(
X1,φ1,∗

t , . . . , Xi−1,φi−1,∗

t , Xi,φi

t , Xi+1,φi+1,∗

t , . . . , Xn,φn,∗

t

)
, then (φ1,∗, . . . , φn,∗) is called

a closed-loop Nash equilibrium. ♦

In general, closed-loop equilibria are preferable in terms of a more realistic interpretation, whereas
open-loop equilibria are mathematically more tractable. Thus, open-loop equilibria are often
preferred in the literature on dynamic optimization for n-agent games (Carmona and Delarue,
2018a, Remark 2.8). Throughout this thesis, we only consider open-loop Nash equilibria and thus,
refer to them simply as Nash equilibria. It should be noted that for constant Nash equilibria
open-loop and closed-loop Nash equilibria coincide (see, e.g., Lacker and Zariphopoulou (2019)).

As the games considered in this thesis are motivated by competitive investors, Nash equilibria
are the most used notion of optimality. However, we also want to consider a different type of
optimality, namely, Pareto optimality. A Pareto optimum is defined as follows.

Definition 2.17 (Miettinen, 1999, Definition 2.2.1). A vector (φ1,∗, . . . , φn,∗) of admissible
strategies φi,∗ ∈ Ai, i = 1, . . . , n, is called Pareto optimal if there is no vector (φ1, . . . , φn) of
admissible strategies such that

Ji(φ1, . . . , φn) ≥ Ji(φ1,∗, . . . , φn,∗) for all i = 1, . . . , n

and
Ji(φ1, . . . , φn) > Ji(φ1,∗, . . . , φn,∗) for at least one i ∈ {1, . . . , n}. ♦
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In contrast to Nash equilibria, Pareto optima are related to optimization of the public good
instead of each individuals objective. A Pareto optimum is attained if no player can increase her
objective without decreasing the objective of another player. One could also imagine some kind of
central planner or manager that controls the state processes of n clients simultaneously. Thus,
the manager wants to satisfy all clients at the same time, and therefore aims to achieve a Pareto
optimum. We revisit this interpretation in Chapter 6.





CHAPTER 3

Nash equilibria for relative investors

Dating back to the pioneering work of Von Neumann and Morgenstern (1947) and Markowitz
(1952), portfolio optimization problems have been treated extensively in the mathematical finance
literature. It is usually assumed that one single investor aims to maximize an objective function
applied to her terminal wealth, possibly under additional constraints. Such problems include
expected utility maximization, mean-variance optimization, and many others. Although these
problems might look very different, they have one thing in common: all of them consider only a
single investor. However, due to the widespread empirical evidence on competition between fund
managers (briefly presented in the introduction of this thesis), there is a rapidly growing strand of
literature on competitive optimal investment and related issues.

In general, there are two different types of competitive optimization problems – zero-sum1 and
non-zero-sum games. Our focus lies solely on non-zero-sum games, for an example of a zero-sum
investment game between two players we refer to Browne (2000).

Espinosa and Touzi (2015) argue that the most natural approach to modeling the interaction
between competing investors is a general equilibrium model, where the behavior of the agents
is coupled via market equilibrium2 constraints. However, this leads to intractable calculations,
which create the need for a different method to include interactions. It turns out that a different
kind of equilibrium is better suited to treat the model mathematically. Instead of searching for
market equilibria, portfolio optimization problems can be transformed to multi-objective portfolio
optimization problems in which the search for Nash equilibria becomes the main goal. Most of the
literature on many player games of wealth optimization includes the competitive feature into the
problem by changing the argument of the objective function of a classical portfolio optimization

1Zero-sum games are competitive games in which the objective functions of all participants add up to zero (see,
e.g., Carmona, 2016, p. 177).

2A financial market is in equilibrium if market-clearing is realized. That is, if the supply and demand for assets in
the market coincide (see, e.g., Yan, 2018, p. 47).
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problem. Instead of the (terminal) wealth of a single investor, a so-called relative performance
metric is used inside the objective function (see, e.g., Geng and Zariphopoulou, 2017; Dos Reis
and Platonov, 2021, 2022). With the relative performance metric, each agent places a certain
weight on the optimization of her performance compared to competitors in the same market.
Hence, maximizing the relative performance metric allows the agent to simultaneously maximize
her own state variable (e.g., her terminal wealth) while also comparing her outcome to that
of her competitors. Using a relative performance metric transforms the single-agent portfolio
optimization problem into a multi-objective portfolio optimization problem.

Most competitive portfolio optimization problems use either the additive or the multiplicative
relative performance metric. For n agents with state variables X1, . . . , Xn, the additive relative
performance metric

Xi − θi
n

n∑
j=1
j ̸=i

Xj (3.1)

of agent i ∈ {1, . . . , n} is given as the difference of her own state variable and a weighted arithmetic
mean of the other agents’ state variables. Alternatively, the multiplicative relative performance
metric

Xi

(
n∏

j=1, j ̸=i
Xj

)− θi
n

(3.2)

of agent i ∈ {1, . . . , n} describes the quotient of her own state variable and a weighted geometric
mean of those of the other agents. In most cases, the state variables X1, . . . , Xn describe the
wealth of n agents at the end of some time period [0, T ], where T > 0 is fixed beforehand. In
both expressions, the parameters θi ∈ [0, 1], i = 1, . . . , n, indicate how much agent i cares about
her performance with respect to her competitors. A larger choice of θi implies that the agent is
more concerned with her relative performance. Hence, we refer to θi as the competition weight
of agent i. Sometimes θi is also called concern rate or jealousy factor (see Bielagk et al., 2017).
Throughout this thesis, we refer to the composition of a utility function and one of the relative
performance metrics as the competitive utility function.

To the best of our knowledge, the additive relative performance metric first appeared in Palomino
(2005) in a non-zero-sum game of n fund managers competing to maximize their compensation.
As the argument of an expected utility criterion, it first appeared in the PhD thesis of Espinosa
(2010). The results were later published by Espinosa and Touzi (2015). The linear structure of
the additive relative performance metric makes the resulting optimization particularly tractable,
especially when combined with an expected utility of CARA type. The combination of the additive
relative performance metric and CARA utility was, for instance, used by Frei and Dos Reis (2011)
as well as Lacker and Zariphopoulou (2019) in stock markets modeled by Itô diffusions with
constant parameters, and by Deng et al. (2020) in a model with unobservable drift of the risky
stock. Moreover, Hu and Zariphopoulou (2022) used CARA utility functions combined with the
additive relative performance metric in a market model with stock price dynamics that contain
possibly non-Markovian drift and volatility processes. Fu et al. (2020) modified (3.1) by allowing
for a random competition weight parameter. Tangpi and Zhou (2022) used expected CARA utility
in combination with a modified version of (3.1) as well. In their model, each agent i assigns a
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specific competition weight θij to each competitor j ̸= i. Apart from CARA utility, the additive
relative performance metric was also used in combination with a mean-variance criterion by Guan
and Hu (2022) as well as Yang and Chen (2022), or a convex, monetary risk measure by Bielagk
et al. (2017).

The multiplicative relative performance metric was (seemingly) first applied by Basak and Makarov
(2014) in a model that contains n competing agents aiming to maximize expected (kinked) CRRA
utility applied to (3.2) for the terminal wealth of the n investors. The multiplicative structure of
(3.2) works well combined with CRRA utility and hence, this combination is very popular in the
literature on many player games of wealth optimization. Basak and Makarov (2015) continued to
work with expected CRRA utility applied to the multiplicative relative performance metric of two
agents including an asset specialization incentive. Their work was later extended to an n-agent
game by Whitmeyer (2019), allowing for competition weights θij specifically assigned by agent i to
competitor j. Similar problems were also considered by Lacker and Zariphopoulou (2019) as well as
Lacker and Soret (2020), where the latter were focused on finding optimal investment-consumption
strategies for n competing agents. The problem of optimal investment and consumption was also
considered by Bo and Li (2022) in a stochastic growth model with jumps. In a generalized Heston
model, Kraft et al. (2020) solved the problem of optimal investment for two players with CRRA
utility combined with the multiplicative relative performance metric. Moreover, Wang and Ye
(2023) maximized the running reward of n competing agents, where the objective function consists
of the accumulated, exponentially discounted CRRA utility applied to a modified version of (3.2).
A similar objective function, including a running as well as a terminal reward, was also used in
the previously mentioned article by Bo and Li (2022).

Although the problem of (classical) expected utility maximization involving some kind of relative
performance metric takes up a large portion of the competitive portfolio optimization literature,
there are different strands of research that emerged from the seminal works of Espinosa (2010)
and Basak and Makarov (2014). For example, Geng and Zariphopoulou (2017) combine the
multiplicative relative performance metric with forward utilities. Their work has later been taken
up and extended by Dos Reis and Platonov (2021, 2022) as well as Anthropelos et al. (2022).
Another application of the relative performance metric lies in the study of competing insurance
companies. This problem was considered by Deng et al. (2018), Guan and Hu (2022), and Yang
and Chen (2022). A third strand of literature is focused on so-called market impact games in which
competing agents are interested in the optimal execution or liquidation of a fixed position. Such
issues arise in financial markets where the agents are „large“ in the sense that their investment
has an impact on the stock price movements. We give an explanation of such models and a short
literature overview in Chapter 7.

In what follows, we are able to solve an n-player competitive portfolio optimization problem in
which the agents maximize an expected utility function applied to the additive relative performance
metric of terminal wealth. In contrast to most of the articles mentioned above, we do not need
to specify the utility function. Moreover, we are able to solve the problem in a very general
semimartingale financial market that covers most settings in the existing literature. The foundation
lies in our ability to reduce the n-player problem to a classical single-investor portfolio optimization
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problem. We can therefore rely on the wide variety of literature on single-investor portfolio
optimization problems. However, we are not able to relax all assumptions used in the previously
mentioned articles. In the following, we discuss the restrictions used throughout this chapter.
Note that these limitations are present in the other chapters as well.

For one thing, we pose the assumption of full diversification for all n agents. This means that
the assets traded in the financial market are available to each of the n investors. This restriction
stands in contrast to the asset specialization models which are used frequently in the literature.
In these settings, each agents specializes to a specific stock (or a set of stocks) and does not
consider the other assets available in the market. The assumption of asset specialization was, for
instance, used by Basak and Makarov (2015), Lacker and Zariphopoulou (2019), Lacker and Soret
(2020), and Dos Reis and Platonov (2021, 2022), to name just a few. The main justification is that
investors tend to invest into stocks they are familiar with (see Basak and Makarov, 2015, and their
references). Other reasons include the reduction of trading or learning cost (see, e.g., Dos Reis
and Platonov, 2022, and references therein). However, there is also an increasing number of
research papers that consider a model of full diversification. Some examples are Frei and Dos Reis
(2011), Espinosa and Touzi (2015), and Geng and Zariphopoulou (2017). The article by Basak
and Makarov (2015) treats both asset specialization and diversification and provides a comparison
of the optimal values in the two settings. It turns out that choosing a fully diverse portfolio is
beneficial for risk-averse investors. Since our focus lies solely on risk-averse agents, the assumption
of full diversification instead of asset specialization is reasonable. Moreover, full diversification has
the additional advantage of being mathematically more manageable than problems where agents
specialize to a specific stock.

Additionally, we need to assume that the agents agree upon their beliefs on the stock price
dynamics. This assumption is of purely technical nature, a model allowing for heterogeneous
beliefs on the stock price dynamics would, apparently, be more realistic. There are a few articles
allowing for heterogeneous beliefs, like the market impact game considered by Evangelista and
Thamsten (2021). However, the literature on n-agent games under heterogeneous beliefs on the
market dynamics is still very sparse.

Another rather restrictive assumption is that each agent faces the same time horizon T > 0. This
assumption is solely for mathematical purposes, since the empirical evidence suggests the exact
opposite. Geng and Zariphopoulou (2017) and Anthropelos et al. (2022) discuss this restriction in
more detail. We merely give a short summary of their arguments. While it is typical for managers
to report their performance within standardized time frames (e.g., quarterly or annually), agents
do not act in a single trading horizon but consider their past performance. Hence, we cannot
divide the optimization problems, which they face over a longer time period, into a sequence
of decisions over standardized time intervals. Moreover, horizons of performance evaluation are
company specific factors and cannot be generalized for a large number of agents. However, as
explained at the beginning of this paragraph, we need to make the assumption of a common
time horizon for tractability reasons. It should be noted that the assumption is very common
throughout the literature. To the best of our knowledge, Anthropelos et al. (2022) were the only
authors to allow for different time horizons among the competing agents.
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Finally, we need to make the assumption of each agent having full information about their
competitors’ model parameters (e.g., initial capital, risk tolerance, and competition weight). We
can refer to Basak and Makarov (2015), Wang and Ye (2023), and the references therein for how
these parameters can be estimated from observed data.

To conclude this introduction, we give a short overview of the current chapter. In Section 3.1, we
state the n-player portfolio optimization problem based on the semimartingale financial market
presented in Subsection 2.3.1. The statement of the problem is followed by Section 3.2, where
we find the unique Nash equilibrium for the n-player optimization problem. More specifically,
questions of existence and uniqueness of a Nash equilibrium are reduced to asking for the existence
and uniqueness of an optimal solution to the corresponding single-investor problem. At the
end of this chapter, we provide a brief discussion of the general equilibrium, which is taken up
and extended in Chapter 4 in a variety of examples covered by the semimartingale model from
Subsection 2.3.1.

3.1. Relative performance problem under general utility

We assume that there are n agents trading in the semimartingale market from Subsection 2.3.1.
To summarize, there are d+ 1 assets – a riskless bond with zero interest rate and d risky stocks
with price process (S(t))t∈[0,T ] = (S1(t), . . . , Sd(t))t∈[0,T ], defined on the finite time interval [0, T ].
The stock prices are given as L2(P)–semimartingales with càdlàg paths. To exclude arbitrage
strategies, we require the existence of an equivalent σ–martingale measure Q.

Each of the n agents has the same investment opportunities provided by the semimartingale
financial market. Thus, we work in the framework of full diversification. To include interaction
into the optimization problem, we combine the additive relative performance metric with the
expected utility of terminal wealth. The n agents are allowed to be heterogeneous in the sense
that their initial wealth, their preference parameters, and their utility functions are allowed to be
distinct.

To be more specific, we consider the following setting. Each investor i is endowed with an
initial capital xi0 ∈ R. The preferences of agent i are measured with respect to a utility function
Ui : Di → R, Di ∈ {(0,∞),R}, and a competition weight θi ∈ [0, 1], i = 1, . . . , n. The utility
function can be rather general here. We only require Ui to be continuous and strictly increasing
(see also Definition 2.11). For convenience, we extend all utility functions to functions on R by
setting Ui(x) = −∞ if x /∈ D. A similar convention was used by Kramkov and Schachermayer
(1999). Note that this does not affect the optimal value of the problem. The objective function of
agent i ∈ {1, . . . , n} consists of her expected utility applied to the additive relative performance
metric of her own as well as the other agents’ terminal wealth. Moreover, she is limited to her
initial capital. Hence, agent i aims to solve the following optimization problem supφi∈A E

[
Ui
(
Xi,φi

T − θiX̄
−i,φ
T

)]
,

s.t. Xi,φi

T = xi0 + (φi • S)T ,
i = 1, . . . , n, (3.3)
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where X̄−i,φ
T = 1

n

∑
j ̸=iX

j,φj

T and φj ∈ A, j ̸= i, are fixed admissible strategies and A denotes the
set of admissible strategies from (2.4). For the later analysis, it is slightly more convenient to scale
the sum by n instead of n− 1.

Using a weighted difference of the terminal wealth of all n agents instead of only her own terminal
wealth incorporates the fact that agent i wants to maximize her own terminal wealth, while also
making a good performance with respect to the other agents. We sometimes refer to the function
X 7→ Ui

(
X − θiX̄

−i,φ
T

)
as the competitive utility function of agent i.

Remark 3.1. We need to ensure that agent i is able to attain a terminal wealth Xi,φi

T such that
Xi,φi

T − θiX̄
−i,φ
T ∈ Di P-almost surely. Otherwise, the problem is trivial. We will later see that

this condition is satisfied when we choose the competition weight θi ∈ [0, 1] under the constraint
xi0 − θi

n

∑
j ̸=i x

j
0 ∈ Di. Obviously, this constraint is only relevant if Di = (0,∞). In this case, we

need to make sure that
xi0 − θi

n

∑
j ̸=i

xj0 > 0

is satisfied. This is equivalent to

(
1 + θi

n

)
xi0 − θi

n

n∑
j=1

xj0 > 0 ⇐⇒
θi
n

1 + θi
n

<
xi0∑n
j=1 x

j
0

⇐⇒ θi
n
<

αi
1 − αi

,

where
αi := xi0∑n

j=1 x
j
0

describes the fraction of the collective initial capital originating from investor i. Therefore, the
constraint xi0 − θi

n

∑
j ̸=i x

j
0 > 0 implies an upper bound on the choice of θi, which is increasing in

the fraction αi. Hence, the upper bound is increasing in terms of the i-th agent’s initial capital and
decreasing in terms of the other n− 1 agents’ initial investment. We can interpret this observation
as follows: The more an investor contributes in the beginning, the more she may care about the
other agents’ investment behavior. Moreover, the upper bound on θi is strictly smaller than 1 if,
and only if, αi < (n+ 1)−1, i.e., if the fraction of initial wealth originating from agent i is smaller
than (n+ 1)−1. If, for example, each agent invests the same amount in the beginning, there are
no restrictions on the competition weight parameters. ♢

The optimization problem (3.3) contains n objective functions, where each objective function
depends on all n strategies φj , j = 1, . . . , n. Since these objective functions need to be maximized
simultaneously, (3.3) is a multi-objective optimization problem. There is no a priori given notion of
optimality for such problems. We work with the concept of Nash equilibria, i.e., each investor tries
to maximize her own objective function while the strategies of the other investors are assumed to be
fixed. For the definition of a Nash equilibrium, we refer to Definition 2.13 as well as Definition 2.15.
To summarize, a Nash equilibrium is a vector of admissible strategies, chosen by the players, such
that no agent would benefit from deviating unilaterally from her equilibrium strategy. To be more
specific, we search for open-loop Nash equilibria. For a differentiation between open-loop and
closed-loop Nash equilibria, we refer to Section 2.4.
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3.2. Solution method via problem reduction

Next, we explain how to find (open-loop) Nash equilibria for (3.3). Thus, each investor tries to
maximize her own objective function while the strategies of the other investors are assumed to be
fixed. This maximization, often called best response problem, results in the optimal strategy of
agent i in terms of the strategies of her competitors. The second step of the optimization process is
a fixed point problem in order to find the n-tuple of admissible strategies to satisfy each investors’
preference determined in the first step.

Generally, one would proceed in the previously described way by fixing some investor i, fixing the
other agents’ strategies, maximizing the i-th objective function, and solving the fixed point problem
afterwards. While being very intuitive, the described approach brings some disadvantages. First,
the fixed point problem in the second step can be nonlinear and hence, hard or even impossible to
solve. Moreover, the method depends strongly on the explicit model and often requires a very
restrictive mathematical environment. For example, Lacker and Zariphopoulou (2019) were only
able to consider constant Nash equilibria and a Black-Scholes type market with constant market
parameters. Note that the restrictive environment is also partly caused by the asset specialization
framework in their paper.

To avoid these technical difficulties, we choose a different approach to find a Nash equilibrium and
discuss its uniqueness, which enables us to solve the problem in a very general financial market
without any specific assumptions on the utility function. Moreover, the method can even be
extended to problems beyond utility maximization (see Remark 3.4 and Section 4.5).

First, we consider the expression inside the utility function in (3.3). Since agent i can only control
her own strategy, the random variable θiX̄−i,φ

T can be understood as a fixed asset claim. An
arbitrary strategy φ ∈ A can due to linearity always be decomposed into

Xφ
T = Xφ

T −Xφ′

T +Xφ′

T = Xφ−φ′

T +Xφ′

T ,

for arbitrary φ′ ∈ A. Investor i can, without loss of generality, invest some fraction of her initial
capital in order to hedge the claim θiX̄

−i,φ
T . The remaining part of her initial capital can then

be used to maximize her own terminal wealth. This idea leads to a much simpler method of
determining Nash equilibria in the given context.

The first step is to determine the price of the claim θiX̄
−i,φ
T . Each investor j, where j ̸= i, has

some initial capital xj0. Hence, the time zero price of Xj,φj

T equals the initial capital xj0 (see (2.6)
in Subsection 2.3.1). By linearity, the price of the claim θiX̄

−i,φ
T is simply given by

θix̄
−i
0 := θi

n

∑
j ̸=i

xj0.

This shows that the time zero price is independent of the strategies φj , j ̸= i, chosen by the other
investors. Hence, the maximization problem in the second step does not depend on the other n− 1
agents’ strategies.

In the second step, investor i needs to solve a classical portfolio optimization problem, using the
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utility function Ui and the reduced initial capital x̃i0 := xi0 − θix̄
−i
0 . The portfolio optimization

problem 
sup
ψi∈A

E
[
Ui
(
Y i,ψi

T

)]
,

s.t. Y i,ψi

T = x̃i0 + (ψi • S)T ,
(3.4)

can be solved using standard methods. Existence and uniqueness of a solution does of course
depend on the specific choice of the utility function and underlying financial market. We assume
here that there exists a unique optimal strategy ψi,∗ ∈ A for (3.4).

In the last step, the Nash equilibria are determined using the linearity of the price process. By
construction, the process (Y i,ψi,∗

t )t∈[0,T ] can be written as

Y i,ψi,∗

t = Xi,φi

t − θi
n

∑
j ̸=i

Xj,φj

t

P-almost surely for all t ∈ [0, T ]. Then, using the linearity of the wealth process (recall that we
assumed in Subsection 2.3.1 that stock prices are not identical) and the uniqueness of ψi,∗, the
strategies φj ∈ A are obtained from

ψi,∗k (t) = φik(t) − θi
n

∑
j ̸=i

φjk(t), k = 1, . . . , d, i = 1, . . . , n, (3.5)

P-almost surely for all t ∈ [0, T ]. Hence, the Nash equilibria can be determined as the solution to
the system of linear equations (3.5), where the solutions ψi,∗k to the classical problems are given.
If (3.4) and (3.5) have a unique solution, the resulting Nash equilibrium is unique as well. The
question of uniqueness has been posed as an open problem in Lacker and Zariphopoulou (2019).
Our setting gives a partial answer to their question due to the asset specialization feature in their
model.

Theorem 3.2. If (3.4) has a unique (up to modifications) optimal portfolio strategy ψi,∗ for all
i ∈ {1, . . . , n}, then there exists a unique Nash equilibrium for (3.3) given by

φik(t) := n

n+ θi
ψi,∗k (t) + θi

(n+ θi)(1 − θ̂)

n∑
j=1

n

n+ θj
ψj,∗k (t), (3.6)

k = 1, . . . , d, i = 1, . . . , n, P-almost surely for all t ∈ [0, T ], where θ̂ :=
∑n
i=1

θi
n+θi

.

The proof of Theorem 3.2 uses the following lemma.

Lemma 3.3. Let θi ∈ [0, 1], i = 1, . . . , n. Then

θ̂ =
n∑
i=1

θi
n+ θi

∈ [0, 1).

Proof. Since θi ∈ [0, 1], i = 1, . . . , n, we obtain

0 ≤ θ̂ =
n∑
i=1

θi
n+ θi

=
n∑
i=1

(
1 + n

θi

)−1
≤

n∑
i=1

(1 + n)−1 = n

n+ 1 < 1.
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Proof (Theorem 3.2). Without knowing ψi,∗ explicitly, we can determine the solution to (3.5) in
terms of ψi,∗, i = 1, . . . , n, for all t ∈ [0, T ] and P-almost all ω ∈ Ω. Therefore, we fix some
arbitrary t ∈ [0, T ] and ω ∈ Ω (we omit the argument ω in the following calculations), and define

φ̂k(t) :=
n∑
j=1

φjk(t), k = 1, . . . , d. (3.7)

Hence, (3.5) is equivalent to

ψi,∗k (t) = n+ θi
n

φik(t) − θi
n
φ̂k(t)

and therefore, φik(t) is implicitly given by

φik(t) = n

n+ θi

(
ψi,∗k (t) + θi

n
φ̂k(t)

)
. (3.8)

Inserting (3.8) into (3.7) yields

φ̂k(t) =
n∑
i=1

φik(t) =
n∑
i=1

n

n+ θi
ψi,∗k (t) + φ̂k(t)

n∑
i=1

θi
n+ θi

=
n∑
i=1

n

n+ θi
ψi,∗k (t) + θ̂φ̂k(t),

which is equivalent to

(1 − θ̂)φ̂k(t) =
n∑
i=1

n

n+ θi
ψi,∗k (t),

where we used the abbreviation of θ̂. Therefore, using Lemma 3.3, we can deduce further that

φ̂k(t) = 1
1 − θ̂

n∑
i=1

n

n+ θi
ψi,∗k (t) (3.9)

holds P-almost surely for all t ∈ [0, T ]. Finally, inserting (3.9) into (3.8) yields the stated
expression for the Nash equilibrium. The line of arguments implies that there exists a unique
(up to modifications) Nash equilibrium given by (3.6) if, and only if, there exists a unique (up to
modifications) optimal portfolio strategy ψi,∗ to the auxiliary problem (3.4).

Remark 3.4. The described method is not limited to classical expected utility maximization. Some
examples of other types of optimization problems that can be treated with the described method
are the VaR-based optimization by Basak and Shapiro (2001), the rank-dependent utility model
with a VaR-based constraint by He and Zhou (2016), or general mean-variance problems that
can be found for example in Korn (1997). Another example is the cumulative prospect theory
(CPT) by Tversky and Kahneman (1992), that is further analyzed in Section 4.5. Moreover,
the arguments presented in the current section also apply for financial markets in discrete time.
In order to keep the setting as simple, but also as general as possible, we consider a setting in
continuous time that covers many important market models (see Chapter 4 for some examples).
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However, the arguments in the current section do not depend at all on the underlying financial
market, so that one could also have a general arbitrage-free financial market in discrete time in
mind. Later, we take a closer look at a discrete,time financial market in Section 4.3.
Additionally, we want to point out that the use of the additive relative performance metric is
crucial here. One could argue that a similar approach might work for the multiplicative relative
performance metric if one uses the invested fraction instead of the number of shares. In that case,
the wealth of an agent is a stochastic exponential and thus, the multiplicative relative performance
metric applied to the terminal wealth of the agents has an exponential structure as well. However,
the expression inside the exponential function is not linear since, for general semimartingales X
and Y ,

E(X) · E(Y ) = E(X + Y + ⟨X,Y ⟩) ̸= E(X + Y )

holds in the (interesting) cases where ⟨X,Y ⟩ ≠ 0. Recall that E(X) denotes the stochastic
exponential of X (see Theorem 2.4). For the first equality, we refer to Theorem 38 in Protter
(2005, p. 86). ♢

Remark 3.5. Since the Nash equilibrium given in Theorem 3.2 explicitly contains the optimal
solutions to the associated classical portfolio optimization problems, we can compare the optimal
solution ψi,∗k of the classical problem to the associated component φik of the Nash equilibrium.
Indeed, if we set θi = 0, the agent does not care about the other agents and just solves the classical
portfolio problem, i.e., φik = ψi,∗k . If ψi,∗k > 0 (< 0) and

∑
j ̸=i

n
n+θj

ψj,∗k > 0 (< 0), φik(t) is increasing
(decreasing) in terms of θi, which can be seen directly considering the partial derivative

∂

∂θi
φik(t) = n

(n+ θi)2

(
1 + θi

(n+ θi)(1 − θ̂)

)(
n

(n+ θi)(1 − θ̂)
− 1

)
ψi,∗k (t)

+ n

(n+ θi)2(1 − θ̂)

(
1 + θi

(n+ θi)(1 − θ̂)

)∑
j ̸=i

n

n+ θj
ψj,∗k (t).

Except from the third factor in the first summand, all factors are obviously non-negative. Moreover,

n

(n+ θi)(1 − θ̂)
≥ n

(n+ θi)
(
1 − θi

n+θi

) = 1, (3.10)

using the definition of θ̂. Hence, the remaining factor is non-negative as well. Thus, under these
conditions in a competitive environment (θi > 0), agent i invests more in the stocks than in a
classical non-competitive environment (θi = 0). A similar result was obtained by Espinosa and
Touzi (2015) (in a less general setting). ♢



CHAPTER 4

Application of the method from Section 3.2

In the following, we apply the method described in Section 3.2 to different examples from the
literature, including a discrete-time market, a market with jumps, and a stochastic volatility model,
as well as a problem that goes beyond expected utility maximization. In Section 4.1, we consider
agents applying exponential utility functions in a Lévy market with jumps. A special case of the
Lévy market, a Black-Scholes market, is considered in Section 4.2. There, we consider exponential
utilities in Subsection 4.2.1, as well as power and logarithmic utility functions in Subsection 4.2.2.
Section 4.3 covers a financial market in discrete time, the Cox-Ross-Rubinstein market, in which
agents use exponential utilities. In Section 4.4, we consider a model with stochastic volatility, and
the final Section 4.5 contains an example that goes beyond expected utility maximization, namely,
cumulative prospect theory.

It should be noted that the definition of the set A of admissible strategies changes throughout
this chapter. In each example, we take A to be the set of strategies satisfying the necessary
assumptions for the specific example according to the paper from which the example is taken.

4.1. Lévy market

The first example is a Lévy market taken from Bäuerle and Blatter (2011). The market consists
of a riskless bond with interest rate r = 0 and d stocks. Let W be a d-dimensional Brownian
motion and N a Poisson random measure on [0, T ] × (−1,∞)d, i.e., N([0, t] ×B) is the number of
all jumps taking values in the set B ∈ B((−1,∞)d) up to the time t ∈ [0, T ], where B((−1,∞)d)
denotes the Borel σ-algebra on (−1,∞)d. For the definition of a Poisson random measure (or
Poisson point process), we refer to Definition 19.1 of Sato (1999) as well as Last and Penrose
(2017, p. 19). We denote the associated Lévy measure by ν, i.e., ν(B) = E[N([0, 1] ×B)] gives the
expected number of jumps per unit time whose size belongs to B (see, e.g., Cont and Tankov, 2004,
Definition 3.4). For notational convenience, let us define N̄(dt, dz) := N(dt, dz) − 1{∥z∥<1}ν(dz)dt.
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The price processes for k ∈ {1, . . . , d} are given by the stochastic differential equation

dSk(t) =Sk(t−)
(
µk dt+

d∑
ℓ=1

σkℓ dWℓ(t) +
∫

(−1,∞)d
zk N̄(dt, dz)

)
, (4.1)

where Sk(0) = 1, σkℓ ≥ 0, k, ℓ = 1, . . . , d. By µ = (µ1, . . . , µd) we denote the drift vector and by
σ = (σkℓ)1≤k,ℓ≤d the volatility matrix, which is assumed to be regular. The restriction of N onto
[0, T ] × (−1,∞)d, which has the interpretation that the size of any jump is strictly larger than −1,
ensures that the stock price processes (4.1) stay positive (see, e.g., Proposition 8.21 in Cont and
Tankov, 2004, or Theorem 2.4).

There are n investors trading in the Lévy market, each endowed with an initial capital of xi0 ∈ R,
i = 1, . . . , n. We assume that each investor uses an exponential utility function

Ui : R → R, Ui(x) = − exp
(

− 1
δi
x

)
,

for parameters δi > 0, i = 1, . . . , n. Hence, the objective function of agent i is given by

E
[
− exp

(
− 1
δi

(
Xi,φi

T − θiX̄
−i,φ
T

))]
,

for the competition weight parameters θi ∈ [0, 1], i = 1, . . . , n. We assume that the market is free
of arbitrage for an appropriate strategy class and that∫

∥z∥>1

∥z∥ exp
( 1
δi

Λi∥z∥
)
ν(dz) < ∞ (4.2)

for constants 0 < Λi < ∞, i = 1, . . . , n. The integrability condition (4.2) is used in the proof of
Theorem 2.1 by Bäuerle and Blatter (2011), which provides the unique optimal solution to the
problem of maximizing exponential utility shown below.

Now we use the method from Section 3.2 to determine the Nash equilibrium in the given situation.
First, the unique (up to modifications) optimal solution to the optimization problem

 supψi∈A E
[
− exp

(
−δ−1

i Y i,ψi

T

)]
,

s.t. Y i,ψi

T = x̃i0 + (ψi • S)T ,

for x̃i0 = xi0 − θi
n

∑
j ̸=i x

j
0, is given by

ψi,∗k (t) = πi,∗k
Sk(t)

.

Here, (πi,∗1 , . . . , πi,∗d ) is the (deterministic and constant) solution of

0 = µk − 1
δi

d∑
ℓ=1

d∑
r=1

πi,∗r σkℓσrℓ +
∫

(−1,∞)d
zk

(
exp

(
− 1
δi

d∑
r=1

πi,∗r zr

)
− 1{∥z∥<1}

)
ν(dz), (4.3)
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k = 1, . . . , d, which we assume to exist and be unique (see Bäuerle and Blatter, 2011). Regarding
the existence of a solution to (4.3), Blatter (2009) states that one could apply a fixed point theorem
which can be found, for example, in Schäfer (2007). If the parameters of the model are chosen
such that the conditions of the fixed point theorem are satisfied, we can guarantee the existence
of a solution to (4.3). However, according to Blatter (2009), it is not possible to derive explicit
conditions on the model parameters.

Using Theorem 3.2, we know that the unique (up to modifications) Nash equilibrium is then given
by

φi,∗k (t) = n

n+ θi
ψi,∗k (t) + θi

(n+ θi)(1 − θ̂)

n∑
j=1

n

n+ θj
ψj,∗k (t)

P-almost surely for all t ∈ [0, T ] and therefore, the Nash equilibrium πik(t) := φi,∗k (t)Sk(t) for
k = 1, . . . , d, i = 1, . . . , n, in terms of invested amounts, is deterministic and constant.

4.2. Black-Scholes market

Our next example is a special case of the setting used in Section 4.1. We consider a Black-Scholes
market consisting of a riskless bond with interest rate r = 0 and d stocks with price processes

dSk(t) = Sk(t)
(
µkdt+

d∑
ℓ=1

σkℓdWℓ(t)
)
, Sk(0) = 1, k = 1, . . . , d,

driven by a d-dimensional Brownian motion W = (W1, . . . ,Wd). By µ = (µ1, . . . , µd) we denote
the drift vector and by σ = (σjk)1≤j,k≤d the volatility matrix, which is again assumed to be regular.
This model can be obtained from the Lévy market described in Section 4.1 by omitting the jump
component.

4.2.1. Optimization under exponential utility

First, we assume that agents use exponential utility functions with risk tolerance parameters
δi > 0, i = 1, . . . , n. The method from Section 3.2 can be used to find all Nash equilibria for

E
[

− exp
(

− 1
δi

(
Xi,φi

T − θiX̄
−i,φ
T

))]
, i = 1, . . . , n.

The unique optimal solution to the auxiliary problem supψi∈A E
[

− exp
(

− δ−1
i Y i,ψi

T

)]
,

s.t. Y i,ψi

T = x̃i0 + (ψi • S)T ,

is given by

ψik(t)Sk(t) = δi
(
σσ⊤)−1

µ, k = 1, . . . , d, i = 1, . . . , n

(see, e.g., Eberlein and Kallsen, 2019, Example 10.20, for one stock – the extension to d stocks
is straightforward). Therefore, the amount invested into the d stocks is constant in time and
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deterministic. Hence, Theorem 3.2 implies that the unique (up to modifications) Nash equilibrium
in terms of invested amounts is given by

πi,∗(t) =
(

nδi
n+ θi

+ θi

(n+ θi)(1 − θ̂)

n∑
j=1

nδj
n+ θj

)
·
(
σσ⊤)−1

µ, t ∈ [0, T ], i = 1, . . . , n. (4.4)

Thus, the Nash equilibrium in terms of invested amounts is deterministic and constant in time.

Remark 4.1. If we set d = 1, µ1 = µ, and σ1 = σ > 0, we obtain the constant Nash equilibrium
found by Lacker and Zariphopoulou (2019, Corollary 2.4). They use the slightly different objective
function

E
[

− exp
(

− 1
δi

(
Xi,φi

T − θi
n

n∑
j=1

Xj,φj

T

))]
,

which can be rewritten as
E
[
− exp

(
− 1
δ̃i

(
Xi,φi

T − θ̃iX̄
−i,φ
T

))]
(4.5)

by introducing the parameters δ̃i = δi

1− θi
n

and θ̃i = θi

1− θi
n

. Hence, solving (4.5) for i = 1, . . . , n

yields the (one-dimensional) Nash equilibrium

π∗
i =

(
δi + θi

δ̄n

1 − θ̄n

)
µ

σ2 ,

where we used the auxiliary calculations

nδ̃i

n+ θ̃i
= δi,

n∑
j=1

θ̃j

n+ θ̃j
= θ̄n,

and the abbreviations θ̄n := 1
n

∑n
j=1 θj , δ̄n = 1

n

∑n
j=1 δj . It is important to notice here that Lacker

and Zariphopoulou (2019) had to restrict their problem to finding constant Nash equilibria while
we are able to consider a more general Nash equilibrium which turns out to be constant. ♢

Comparison to the single-agent optimization problem

In the single-agent problem of maximizing the expected exponential utility of the terminal wealth
in the underlying Black-Scholes market, the optimally invested amount is known to be given by

πi,∗ = δi
(
σσ⊤)−1

µ. (4.6)

A comparison of the optimal portfolio (4.6) in the single-agent problem and the Nash equilibrium
(4.4) shows that the overall structure is the same. In both cases, the optimal amount invested into
the d stocks is constant over time and deterministic. Moreover, the optimally invested amount is
given as (σσ⊤)−1µ multiplied by a constant. We define the constant in (4.4) by Ci, i.e.,

Ci := nδi
n+ θi

+ θi

(n+ θi)(1 − θ̂)

n∑
j=1

nδj
n+ θj

. (4.7)

In the single-agent scenario (θi = 0), the constant is simply given by δi.
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Let us discuss some properties of Ci. First, we rewrite Ci as

Ci = nδi
n+ θi

(
1 + θi

(n+ θi)(1 − θ̂)

)
+ θi

(n+ θi)(1 − θ̂)
∑
j ̸=i

nδj
n+ θj

.

Regarding the monotonicity of Ci in terms of θi, we take the first order partial derivative with
respect to θi. Thus,

∂

∂θi
Ci = − nδi

(n+ θi)2

(
1 + θi

(n+ θi)(1 − θ̂)

)

+ nδi
n+ θi

(
n

(n+ θi)2
1

1 − θ̂
+ θi
n+ θi

1
(1 − θ̂)2

n

(n+ θi)2

)

+
∑
j ̸=i

nδj
n+ θj

(
n

(n+ θi)2
1

1 − θ̂
+ θi
n+ θi

1
(1 − θ̂)2

n

(n+ θi)2

)

= nδi
(n+ θi)2

(
n

n+ θi

1
1 − θ̂

− 1
)(

1 + θi

(n+ θi)(1 − θ̂)

)
(4.8)

+
∑
j ̸=i

nδj
n+ θj

(
n

(n+ θi)2
1

1 − θ̂
+ θi
n+ θi

1
(1 − θ̂)2

n

(n+ θi)2

)
. (4.9)

The second summand (4.9) is strictly positive since θ̂ < 1 for every admissible choice of θ1, . . . , θn

(see Lemma 3.3). Moreover, all factors in the first summand (4.8) are non-negative (see (3.10)
for the second factor). Hence, the constant Ci is strictly increasing in terms of θi. Moreover, the
factors Ci and δi coincide if, and only if, θi = 0.

Let us now analyze the influence of θi on the optimal terminal wealth of agent i. As the optimally
invested amount for agent i is deterministic and constant in time, the optimal terminal wealth is
given by

Xi,φi,∗

T = xi0 + Ciµ
⊤(σσ⊤)−1µT + Ciµ

⊤(σσ⊤)−1σW (T )

= xi0 + Ci∥σ−1µ∥2T + Ci(σ−1µ)⊤W (T ).

Therefore, the expected optimal terminal wealth is given by

E
[
Xi,φi,∗

T

]
= xi0 + Ci∥σ−1µ∥2T (4.10)

and thus, strictly increasing in terms of θi. Hence, in order to maximize the expected terminal
wealth, agent i should choose the competition weight θi = 1.

However, choosing a high competition weight also brings the disadvantage of increasing the
probability of a loss (with respect to the initial capital xi0). To justify this assertion, we choose a
constant K < xi0 and consider the probability that the optimal terminal wealth Xi,φi,∗

T is less or
equal than K. Since W (T ) has a d-dimensional normal distribution, we obtain

(
σ−1µ

)⊤
W (T ) ∼ N

(
0, ∥σ−1µ∥2T

)
,
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and therefore, it follows

P
(
Xi,φi,∗

T ≤ K
)

= P
(
xi0 + Ci∥σ−1µ∥2T + Ci(σ−1µ)⊤W (T ) ≤ K

)
= P

(
(σ−1µ)⊤W (T )

∥σ−1µ∥
√
T

≤ K − xi0
Ci∥σ−1µ∥

√
T

− ∥σ−1µ∥
√
T

)

= Φ
(

K − xi0
Ci∥σ−1µ∥

√
T

− ∥σ−1µ∥
√
T

)
, (4.11)

where Φ denotes the distribution function of the standard normal distribution. The expression
inside Φ is increasing in θi since K − xi0 < 0. Hence, the probability of the terminal wealth being
significantly smaller than the initial wealth is strictly increasing in terms of θi. Thus, a larger
choice of θi results in a riskier strategy.

The question remains which of the two factors is more significant - the expected optimal terminal
wealth or the probability of a loss. More precisely, we are interested in how the parameter θi
should be optimally chosen (depending on the investor’s risk tolerance). We discuss this question
based on numerical results obtained from the explicit representations (4.10) and (4.11). For this
purpose, let d = 1 (one stock), n = 12, and consider the expected optimal terminal wealth of
agent 1 while the other agents use risk tolerance parameters increasing from 0.5 to 2.7 in steps
of size 0.2, and competition weights increasing from 0 to 1 in steps of size 0.1. Further, let
T = 3, x1

0 = 10, µ = 0.03, and σ = 0.2. To simplify the representation of our numerical results,
define ε(θ1) := E

[
X1,φ1,∗

T

]
and ρ(θ1) = ρ(θ1,K) := P

(
X1,φ1,∗

T ≤ K
)
, given that agent 1 uses the

competition weight θ1. The results are displayed in Figure 4.2.1 and Table 4.1.

Figure 4.2.1 illustrates a comparison of the expected optimal terminal wealth and the probability
of a loss for agent 1 in terms of θ1 ∈ [0, 1]. The underlying data was generated using K = 0.99x1

0
and three different choices for the risk tolerance parameter δ1 ∈ {0.5, 1, 2}. Note that the expected
terminal wealth ε(θ1) was shifted appropriately (scaled by x1

0 and moved down by the value 0.75)
to simplify the comparison between the expected optimal terminal wealth and the probability of a
loss. Of course, the shift does not change the overall growth behavior of ε. Figure 4.2.1 shows
that, as explained earlier, both expressions are strictly increasing in terms of θ1. However, the
probability of a loss ρ grows steeper than the expected terminal wealth ε. The difference in slope
between ε and ρ decreases as the risk tolerance parameter δ1 increases.

A similar observation can be made in Table 4.1. The table shows the change of ε and ρ between
θ1 = 0 and θ1 = 1 for five different values of δ1. For both ε and ρ, we displayed the value at
θ1 = 0, and the total and relative change between θ1 = 0 and θ1 = 1. We notice again that ε and
ρ are increasing in terms of θ1 since, for both ε and ρ, the total difference is larger than 0 and the
relative change is larger than 1 for each parameter choice. Moreover, we observe an increase in
both ε(0) and ρ(0) as the risk tolerance δ1 increases. However, we also notice that the total and
relative change in ε is increasing in δ1, whereas the total and relative change in ρ is decreasing in
terms of δ1. We can interpret this observation as follows. If an agent is more careful due to her
strong aversion against risk, the change between θ1 = 0 and θ1 = 1 has a relatively small effect on
the expected optimal terminal wealth and a relatively large effect on the probability of a loss. It
should also be noted that the loss probability ρ(0) is much smaller for a highly risk-averse agent
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Figure 4.2.1.: Illustration of (4.10) and (4.11) for the first of n = 12 agents for market parameters
d = 1, T = 3, µ = 0.03, and σ = 0.2. The agents j ≥ 2 use θj and δj , j ≥ 2,
increasing from 0 to 1 with step size 0.1, and from 0.5 to 2.7 by step size 0.2,
respectively. The figure shows ε(θ1) (shifted appropriately) in a solid and ρ(θ1) in a
dashed line, in terms of θ1 with δ1 ∈ {0.5, 1, 2} and fixed K = 0.99x1

0.

δ1 = 0.5 δ1 = 1 δ1 = 2 δ1 = 5 δ1 = 10

ε(0) 10.0338 10.0675 10.1350 10.3375 10.6750

ε(1) − ε(0) 0.1764 0.1787 0.1833 0.1971 0.2201

ε(1)/ε(0) 1.0176 1.0178 1.0181 1.0191 1.0206

ρ(0) 0.1516 0.2596 0.3255 0.3681 0.3827

ρ(1) − ρ(0) 0.1991 0.0979 0.0408 0.0107 0.0036

ρ(1)/ρ(0) 2.3134 1.3771 1.1255 1.0292 1.0094

Table 4.1.: Comparison of (4.10) and (4.11) for the first of n = 12 agents. Agent 1 uses θ1 ∈ {0, 1}
and δ1 ∈ {0.5, 1, 2, 5, 10} for comparison while the other agents use θj and δj , j ≥ 2,
increasing from 0 to 1 with step size 0.1, and from 0.5 to 2.7 by step size 0.2, respectively.
The market parameters are d = 1, T = 3, µ = 0.03, and σ = 0.2.

(δ1 = 0.5) than for a more risk-tolerant agent (δ1 ∈ {5, 10}). If, in contrast, the agent is more
tolerant towards risk, the change in the expected optimal terminal wealth is relatively large and
the change in the loss probability is a lot smaller than the change observed for a highly risk-averse
agent. It should be noted that the more risk-tolerant agent faces a high loss probability even for
θ1 = 0.

To summarize, in the current example a highly risk-averse agent should choose a value of θ1 close
to 0 as the benefit from an increase in expected return does not outweigh the increase in the
probability of a loss. If, however, the agent is more tolerant towards risk, a choice of θ1 close to
one seems more appropriate since the increase in the loss probability is small while the increase in
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expected return is relatively high. We note at this point that, due to the strictly concave utility
function chosen in this example, all investors are assumed to be risk-averse. However, some agents
are more tolerant towards risk (larger value of δ1) than others (smaller value of δ1).

4.2.2. Optimization under power utility

Let the underlying financial market again be given by the Black-Scholes market introduced at the
beginning of Section 4.2. Further, we assume that each agent uses a power utility function of the
form

Ui : (0,∞) → R, Ui(x) =
(

1 − 1
δi

)−1
x

1− 1
δi ,

for risk tolerance parameters δi > 0, δi ̸= 1, i = 1, . . . , n. The objective function of agent i is then
given by

E
[(

1 − 1
δi

)−1 (
Xi,φi

T − θiX̄
−i,φ
T

)1− 1
δi

]
.

The competition weights θi ∈ [0, 1] are chosen with respect to the condition xi0 − θi
n

∑
j ̸=i x

j
0 > 0

for the initial capitals xi0 > 0, i = 1, . . . , n. The unique optimal solution to the auxiliary problem
supψi∈A E

[(
1 − 1

δi

)−1(
Y i,ψi

T

)1− 1
δi

]
s.t. Y i,ψi

T = x̃i0 + (ψi • S)T ,

is given by

ψik(t)Sk(t) = δix̃
i
0

((
σσ⊤)−1

µ
)
k

exp
(
δi
(
σ−1µ

)⊤
W (t) +

(
δi − δ2

i

2

)
µ⊤(σσ⊤)−1

µt

)
,

k = 1, . . . , d, i = 1, . . . , n (using Korn, 1997, p. 58), i.e., the optimally invested fraction of wealth
is constant. Hence, using Theorem 3.2, the unique (up to modifications) Nash equilibrium is given
by

φik(t) := n

n+ θi
ψi,∗k (t) + θi

(n+ θi)(1 − θ̂)

n∑
j=1

n

n+ θj
ψj,∗k (t),

for t ∈ [0, T ], k = 1, . . . , d, and i = 1, . . . , n.

Remark 4.2. Lacker and Zariphopoulou (2019) suggest that the multiplicative relative performance
metric is better suited for CRRA utility functions. Consequently, they use objective functions of
the form

E
[(

1 − 1
δi

)−1
(
Xi,φi

T

( n∏
j=1

Xj,φj

T

)− θi
n

)1− 1
δi
]
, i = 1, . . . , n.

Indeed, the multiplicative structure of the argument does simplify some calculations and is also
used in this thesis (see Section 7.4). Moreover, the constant Nash equilibrium (in terms of invested
fractions) has a shorter and overall „nicer“ representation (see Lacker and Zariphopoulou, 2019,
Corollary 3.2). However, the solution is less general since the method described in Section 3.2
cannot be applied here (see Remark 3.4) and thus, only constant Nash equilibria are considered. ♢
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4.3. Binomial model in discrete time

The next example is a Cox-Ross-Rubinstein market in discrete time (see, for example, Bäuerle
and Rieder, 2011, p. 60). The model brings the advantage of being very simple, but also quite
popular among financial markets in discrete time. Moreover, the Cox-Ross-Rubinstein model
is a discrete-time approximation of the Black-Scholes market. Hence, it does not come as a
surprise that the overall structures of the Nash equilibria in the Black-Scholes market and the
Cox-Ross-Rubinstein market coincide.

The market consists of one riskless bond with zero interest rate and one stock (d = 1) with price
process (S(tk))k=0,...,N , where tk = k · T/N , k = 0, . . . , N . The stock price process is given by

S(tn) = S(0)
n∏
k=1

Rk, n = 0, . . . , N.

The random variables Rk for k ∈ {1, . . . , N} are independent and identically distributed with
P(Rn = u) = p = 1 − P(Rn = d) for 0 < d < u and p ∈ (0, 1). We assume that d < 1 < u to
exclude arbitrage (see, e.g., Bäuerle and Rieder, 2011, Example 3.1.7). For a self financing strategy
φ = (φ(tk))k=0,...,N−1 and some initial capital x0 ∈ R, the wealth process of an investor is given
by (see, e.g., Bäuerle and Rieder, 2017, Lemma 2.2)

Xφ
tk

= x0 +
k∑
ℓ=1

φ(tℓ−1)(S(tℓ) − S(tℓ−1)).

Thus, the wealth process is linear in φ. Moreover, we assume that investors use exponential utility
functions given by

Ui : R → R, Ui(x) = − exp
(

− 1
δi
x

)
,

for risk tolerance parameters δi > 0, i = 1, . . . , n. The unique optimal solution to the classical
optimization problem  supψi∈A E

[
− exp

(
− 1
δi
Y i,ψi

T

)]
,

s.t. Y i,ψi

T = x̃i0 +
∑N
ℓ=1 ψ

i(tℓ−1)(S(tℓ) − S(tℓ−1)),

is given by

ψi,∗(tk) = δi
S(tk)

log
(

1−q
1−p

)
− log

(
q
p

)
u− d

,

where q = 1−d
u−d (see Bäuerle and Rieder, 2011, p. 92). Theorem 3.2 yields the unique (up to

modifications) Nash equilibrium πi,∗, i = 1, . . . , n, where

π∗
i =

(
n

n+ θi
δi + θi

(n+ θi)(1 − θ̂)

n∑
j=1

n

n+ θj
δj

) log
(

1−q
1−p

)
− log

(
q
p

)
u− d

describes the invested amount. Similar to the Nash equilibrium (4.4) in Subsection 4.2.1, the
invested amount is constant in time and given as the constant Ci from (4.7) multiplied by some
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expression depending only on the market parameters. If the expression
log
( 1−q

1−p

)
−log

(
q
p

)
u−d is strictly

positive (this is equivalent to p > q), we can use the same argumentation regarding the monotonicity
of πi,∗ in terms of θi as in Subsection 4.2.1.

4.4. Market with stochastic volatility

In this section, we consider a stochastic volatility model, the so-called Heston model (see Heston,
1993; Kallsen and Muhle-Karbe, 2010). The model consists of one risky asset (a stock) and a
riskless bond with zero interest rate. There are two correlated Brownian motions WS and WZ

with correlation ρ. The price process S of the risky asset is described by the system of stochastic
differential equations

dSt = St
(
λZtdt+

√
ZtdWS

t

)
, S0 > 0,

dZt = κ(ϑ− Zt)dt+ σ
√
ZtdWZ

t , Z0 > 0, (4.12)

t ∈ [0, T ]. The constants λ, κ, ϑ, and σ are assumed to be positive and satisfy the Feller condition
2κϑ ≥ σ2 to ensure that Z is strictly positive (see, e.g., Jeanblanc et al., 2009, p. 357).

Remark 4.3. The volatility process (Zt)t∈[0,T ] describes a so-called square root diffusion. The
process originates from the idea to model the square root of the volatility process as an Ornstein-
Uhlenbeck process, i.e.,

d
√
Zt = −β

√
Ztdt+ δdWZ

t

for constants β, δ > 0 (see Heston, 1993). Using the Itô-Doeblin formula (Theorem 2.1), it can be
shown that the process Z solves (4.12) if the constants are chosen appropriately. ♢

We assume here that each agent uses a power utility function of the form

Ui : (0,∞) → R, Ui(x) =
(

1 − 1
δi

)−1
x

1− 1
δi ,

for risk tolerance parameters δi > 0, δi ̸= 1, i = 1, . . . , n. The objective functions are given by

E
[(

1 − 1
δi

)−1 (
Xi,φi

T − θiX̄
−i,φ
T

)1− 1
δi

]
, i = 1, . . . , n.

The competition weights θi ∈ [0, 1] are chosen with respect to the condition x̃i0 = xi0− θi
n

∑
j ̸=i x

j
0 > 0

for the initial capital xi0 > 0, i = 1, . . . , n. The unique (up to modifications) optimal solution of
the classical portfolio optimization problem

supψi∈A E
[(

1 − 1
δi

)−1 (
Y i,ψi

T

)1− 1
δi

]
,

s.t. Y i,ψi

T = x̃i0 + (ψi • S)T ,
(4.13)

is given by
ψi,∗(t)S(t)

Y i,∗
t

= δiλ+ fi(t) (4.14)
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P-almost surely for all t ∈ [0, T ], where the deterministic function fi can be given explicitly (see
Kallsen and Muhle-Karbe, 2010). By (Y i,∗

t )t∈[0,T ], we denote the optimal wealth process for (4.13),
i.e., the expression on the right-hand side of (4.14) describes the optimally invested fraction of
wealth. Finally, φi,∗, i = 1, . . . , n, given by

φi,∗(t) = n

n+ θi
ψi,∗(t) + θi

(n+ θi)(1 − θ̂)

n∑
j=1

n

n+ θj
ψi,∗(t)

P-almost surely for all t ∈ [0, T ], is the unique (up to modifications) Nash equilibrium.

4.5. Cumulative prospect theory

In the cumulative prospect theory (CPT), introduced by Tversky and Kahneman (1992), investors
evaluate their wealth relative to some reference point ξ > 0. Values smaller than ξ are treated as
losses while values larger than ξ are seen as gains. Studies have shown that people tend to act
risk-seeking when dealing with losses and risk-averse when dealing with gains (see Tversky and
Kahneman, 1992, and references therein). This effect is captured by S-shaped utility functions
U : (0,∞) → R, for example of the form

U(x) =

−a · (ξ − x)δ, x ≤ ξ,

b · (x− ξ)γ , x > ξ,
(4.15)

for 0 < δ ≤ 1, 0 < γ < 1 and a > b > 0. Figure 4.5.1 shows the S-shaped utility function (4.15)
for the parameters1 a = 2.25, b = 1, and δ = γ = 0.5. The reference point is chosen as ξ = 1 which
could, for example, describe the initial capital of some investor.
Berkelaar et al. (2004) found the unique optimal solution to the associated single investor portfolio
optimization problem in a Black-Scholes market with constant market parameters. The stock
price processes are hence given by

dSk(t) = Sk(t)
(
µkdt+

d∑
ℓ=1

σkℓdWℓ(t)
)
, t ∈ [0, T ], k = 1, . . . , d.

Moreover, there exists a riskless bond with zero interest rate. Since this thesis is focused on
investors evaluating their wealth with respect to the wealth of their competitors, we use a reference
point in terms of the weighted arithmetic mean of the other investors’ wealth. Therefore, the
objective function of agent i is given by

E
[

− ai ·
(
θi
n

∑
j ̸=i

Xj,φj

T −Xi,φi

T

)δi

1

{
Xi,φi

T ≤ θi
n

∑
j ̸=i

Xj,φj

T

}

+ bi ·
(
Xi,φi

T − θi
n

∑
j ̸=i

Xj,φj

T

)γi

1

{
Xi,φi

T >
θi
n

∑
j ̸=i

Xj,φj

T

}]

1Berkelaar et al. (2004) used the similar parameter choice a = 2.25, b = 1, ξ = 1, and δ = γ = 0.88. However, we
use δ = γ = 0.5 for a better illustration of the S-shape of U .



40 Chapter 4. Application of the method from Section 3.2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
wealth

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0
ut
ilit

y

Figure 4.5.1.: Illustration of the S-shaped utility function (4.15) for ξ = 1, a = 2.25, b = 1, and
δ = γ = 0.5.

for 0 < δi ≤ 1, 0 < γi < 1, and ai > bi > 0, i = 1, . . . , n. We further introduce the constraint
Xi,φi

T − θi
n

∑
j ̸=iX

j,φj

T ≥ −ξi for some ξi > 0. Economically, this means that the investor only
accepts a downward deviation from the weighted average wealth of the other investors by a
constant ξi. The introduction of ξi ensures that the corresponding classical problem is similar to
the optimization considered by Berkelaar et al. (2004). Hence, the optimization problem reads as

supφi∈A E
[

− ai ·
(
θi
n

∑
j ̸=iX

j,φj

T −Xi,φi

T

)δi

1

{
Xi,φi

T ≤ θi
n

∑
j ̸=iX

j,φj

T

}
+ bi ·

(
Xi,φi

T − θi
n

∑
j ̸=iX

j,φj

T

)γi

1

{
Xi,φi

T > θi
n

∑
j ̸=iX

j,φj

T

} ]
,

s.t. Xi,φi

T = xi0 + (φi • S)T , Xi,φi

T − θi
n

∑
j ̸=iX

j,φj

T ≥ −ξi,

for i = 1, . . . , n. The unique solution to the associated classical problem
supψi∈A E

[
−ai

(
ξi − Y i,ψi

T

)δi

1

{
Y i,ψi

T ≤ ξi
}

+ bi
(
Y i,ψi

T − ξi
)γi

1

{
Y i,ψi

T > ξi
}]
,

s.t. Y i,ψi

T = x̃i0 + ξi + (ψi • S)T , Y i,ψi

T ≥ 0,

is then given by (Berkelaar et al., 2004, Proposition 6)

ψi,∗k (t)Sk(t) =
((
σσ⊤

)−1
µ
)
k

·

 ξiϕ
(
g(t, Z̄i)

)
∥κ∥

√
T − t

+
(

biγi
λiZ(t)

) 1
1−γi

eΓi(t)

 ϕ
(
g(t, Z̄i) + ∥κ∥

√
T−t

1−γi

)
∥κ∥

√
T − t

+
Φ
(
g(t, Z̄i) + ∥κ∥

√
T−t

1−γi

)
1 − γi

  ,
where κ and (Z(t))t∈[0,T ] are the market price of risk and state price density process in the given
Black-Scholes market, i.e., κ = σ−1µ and Z(t) = E(−κ • W )t. By ϕ and Φ we denote the density
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and cumulative distribution function of the standard normal distribution. Moreover, g and Γi are
functions in terms of the market parameters, where g(t, ·) also depends on Z(t). Finally, λi > 0
is the Lagrange multiplier to the constraint E[Z(T )Y i,ψi

T ] = x̃i0 + ξi, and Z̄i is the unique root of
some additional function fi, which depends only on the market and preference parameters of the
problem. Explicit representations of the mentioned functions can be found in Proposition 6 in
Berkelaar et al. (2004).

Finally, φi,∗k , k = 1, . . . , d, i = 1, . . . , n, given by

φi,∗k (t) = n

n+ θi
ψi,∗k (t) + θi

(n+ θi)(1 − θ̂)

n∑
j=1

n

n+ θj
ψi,∗k (t)

P-almost surely for all t ∈ [0, T ] and i = 1, . . . , n, is the unique (up to modifications) Nash
equilibrium. Apparently, ψi,∗k (t) > 0 holds for all t ∈ [0, T ] if, and only if,

((
σσ⊤)−1

µ
)
k
> 0,

k = 1, . . . , d. If this is the case, it follows from Remark 3.5 that the associated component φi,∗k (t)
of the Nash equilibrium is increasing in terms of θi.





CHAPTER 5

Mean field equilibria for relative investors

In the following, we give a short introduction to the extensive field of research on mean field
games. Inspired by the mean field theory from physics for large particle systems, mean field games
were introduced independently by Huang et al. (2006) and Lasry and Lions (2007) to simplify the
solution to n-player games where the number of agents is large. We refer to Lacker (2018) for
a general introduction and motivation of the topic, and to Carmona and Delarue (2018a,b) for
a thorough treatment of mean field game theory and its numerous applications. Still, we give a
brief motivation and highlight the key assumptions and features of mean field games considered in
the literature. After the discussion of general mean field games, we take a look at the literature
on mean field portfolio optimization for relative investors, which is closely related to the results
presented in this chapter.

The basic motivation to introducing mean field games was to find a mathematically tractable
approximation of n-player games with a large number of players. As Carmona and Delarue (2013)
state, „large stochastic differential games are notoriously untractable“. Similar to the mean field
theory used in physics, where infinite particle systems are used to approximate the finite particle
setting, a model containing an infinite number of players (a continuum) is used to approximate
the corresponding n-player game. Heuristically, due to the law of large numbers, some form of
averaging is expected when the number of agents tends to infinity (see Carmona and Delarue,
2013; Lacker, 2016). To provide a mathematically rigorous explanation of this heuristic idea, one
has to make two fundamental assumptions on the model. The first is that the agents are „small“
in the sense that each player has very little influence on the overall system and the influence
becomes negligible for large n (see Lacker, 2016; Carmona and Delarue, 2013). The second basic
assumption is that the agents are indistinguishable or, as Carmona and Delarue (2013) describe
it, „statistically identical“. Lacker (2018) phrases this assumption by asserting that players are
„interchangeable“. The symmetry among the players implies that the system does not depend on
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the individual states of the players, but only on their collective empirical distribution. Roughly
speaking, we are only interested in which states are present, but not to whom each state belongs.
If these basic assumptions are satisfied, we can expect the mean field game to provide a sufficiently
accurate approximation of the underlying n-player game.

Generally, the mean field game is more tractable than its n-player counterpart since, instead of
solving a system of n coupled problems, we only need to deal with a standard control problem
faced by a single representative agent who interacts with the environment (Carmona et al., 2016).
By the term „environment“ we describe the state of the continuum of agents, which can be
assumed to be fixed since the influence of the representative agent on the system is negligible.
After solving the control problem for a single agent, the next step is to find a fixed point of the
so-called consistency condition. A rough intuition for this condition is that one has to make sure
that the representative agent is, in fact, representative for the whole population.

There are two different approaches to mean field games in the literature. The first is to solve
the problem with a continuum of agents and then construct an approximate solution for the
corresponding n-player game (see, among others, Huang et al., 2006). The second approach is to
solve the n-player game first and then consider the limit as n tends to infinity (see, e.g., Lasry and
Lions, 2007). The relationship between the n-player and the mean field game is one of the three
key questions tackled by the literature. More precisely, it contains two subquestions: Does each
n-player solution converge to a mean field solution and, conversely, can any mean field solution be
obtained as the limit of some (approximate) n-player solution? Under fairly general assumptions,
it is possible to show that the answer to both subquestions is affirmative (see Lacker, 2016). The
other main questions considered in the context of mean field games comprise the existence and
uniqueness of solutions, both for the n-player and the mean field game. Of course, if there is
a one-to-one correspondence between mean field solutions and sequences of n-player solutions,
existence and uniqueness of solutions for the n-player and the mean field game are equivalent. It
is possible to prove under general assumptions on the model parameters, that both the n-player
and the mean field game admit a unique solution (see, e.g., Lacker, 2018; Lasry and Lions, 2007).

Furthermore, one key feature of a mean field game model is whether or not it contains common
noise. In the early literature on the topic, the state diffusions of individual agents were assumed to
be governed by independent Brownian motions. To include the more realistic scenario of random
perturbations affecting each agent simultaneously, Carmona et al. (2016) introduced mean field
games with common noise by adding an additional independent Brownian motion to the state
diffusion of each agent. Later in this chapter, we consider a problem of competitive investment in
a financial market common to all agents. Thus, in contrast to the majority of literature on mean
field games, we consider common noise only.

Finally, let us mention the two different ways of solving mean field games as they appear in the
literature (see Lacker, 2015). The first is an analytic approach based on two tightly coupled partial
differential equations. One of the partial differential equations has a terminal condition and has
to be solved backward in time while the second has an initial condition and needs to be solved
forward in time. This approach was, for instance, used by Lasry and Lions (2007) as well as by
Guéant et al. (2011). Carmona and Delarue (2013) chose a different, probabilistic approach to
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tackle mean field games. Their method, based on the stochastic maximum principle, results in
coupled forward-backward stochastic differential equations.

Later in this chapter, we consider a special mean field game which is not solved using the classical
methods described above. Thus, we do not go into any more detail on the general theory on mean
field games. Let us instead consider the special case of mean field portfolio problems for relative
investors, which are closely related to the problem solved in this chapter. To be more specific,
we focus on portfolio optimization problems where agents measure their preferences with respect
to the expected utility of an additive relative performance metric applied to their own as well as
their competitors’ terminal wealth. For the definition of relative performance metrics in n-player
games, we refer to the introduction of Chapter 3.

Lacker and Zariphopoulou (2019) were the initiators of the study of mean field games for relative
investors. In a continuous-time financial market with constant market parameters, they consider
agents which specialize in a single stock each, and they incorporate both an independent as well as
a common noise term. After finding explicit representations of unique constant Nash equilibria for
CARA and CRRA utility functions, they consider the (heuristic) limit of the n-player equilibria
as the number of agents tends to infinity. Following this informal derivation, they define the mean
field game rigorously for both the additive and the multiplicative relative performance metric.
Finally, they give explicit representations of the unique mean field equilibrium for both relative
performance metrics which turn out to coincide with the previously derived informal limits.

The mean field problem introduced by Lacker and Zariphopoulou (2019) was soon extended in
various ways. For reasons of tractability, each of the subsequent authors used either the additive
relative performance metric in combination with CARA utility, or the multiplicative relative
performance metric together with CRRA utility. The setting closest to the original was considered
by Lacker and Soret (2020). They added consumption to the CRRA problem with a multiplicative
relative performance metric. The assumption of constant market parameters was lifted by Fu
et al. (2020) and Fu and Zhou (2023), who consider a model with random coefficients for CARA
and CRRA utility, respectively. Hu and Zariphopoulou (2022) allowed for the market coefficients
of the stock, which is common to all agents, to depend on an additional independent Brownian
motion. Bo, Wang and Yu (2023) extended the financial market by allowing for jumps in the
stock price process.

Instead of classical utility functions, some authors consider forward utilities. For example, Dos Reis
and Platonov (2021, 2022) used forward utilities with CARA and CRRA priors, respectively.
The underlying stock price processes coincide with those used by Lacker and Zariphopoulou
(2019). Park (2022) considered forward utilities with CARA priors as well, allowing the stock
price coefficients to be suitable stochastic processes. In contrast to the articles mentioned up to
this point, which feature only risk-averse agents, Nguyen (2022) considered a system consisting of
both risk-averse and risk-seeking investors. Moreover, he allowed for competition weights taking
values between −1 and 1, which previously had to be chosen between 0 and 1.

Finally, we want to mention an extension of the original problem which considers competing
insurance companies instead of investors. For example, Guan and Hu (2022), Bo, Wang and Zhou
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(2023), and He et al. (2023) searched for optimal investment and (re-)insurance strategies for
competing insurance companies.

Apart from Hu and Zariphopoulou (2022), all of the previously mentioned authors assumed that
investors specialize in a particular stock. Furthermore, each of the above articles requires specific
assumptions regarding the utility function employed by the agents and the underlying financial
market. In contrast to these models, we consider a mean field game for relative investors using
a general utility function to evaluate their terminal wealth with respect to the continuum of
competitors in the market. The relative concerns of an investor are measured with respect to the
additive relative performance metric. Moreover, the underlying financial market, which is common
to all investors, takes a very general form. We use the semimartingale financial market introduced
in Subsection 2.3.1, but assume that the probability space now contains three additional random
variables. These are assumed to be independent of the stock price processes and represent the
initial capital, the risk tolerance parameter, and the competition weight of a representative agent
taken from the continuum of infinitely many investors. Similar to Section 3.1, we are able to
reduce the mean field game to a single-agent portfolio optimization problem and to express the
mean field equilibrium in terms of the unique solution of the corresponding classical problem.
Although the setting is rather general (especially compared to the existing literature), we need to
assume that each agent in the continuum uses the same utility function U . Only the risk tolerance
parameter is allowed to differ between agents. In the corresponding n-agent game in Section 3.1,
we did not require this assumption. However, mean field games call for a lot of symmetry among
the agents. At least, the specific choice of U is not relevant for the proof displayed below.

The chapter is organized as follows. In Section 5.1, we provide an informal derivation of the mean
field equilibrium as the limit of the n-player Nash equilibrium from Theorem 3.2 when the number
of agents tends to infinity. Afterwards, we define the mean field game properly, similar to Lacker
and Zariphopoulou (2019). Finally, we reduce the mean field game to a suitable single-agent
problem and display the unique mean field equilibrium in terms of the solution of the corresponding
single-agent problem. It turns out that the mean field equilibrium coincides with the informal
limit derived earlier.

5.1. Motivation and heuristic derivation of the mean field
game

In Chapter 3, we modeled n agents through their type vector ζi = (xi0, δi, θi) which contains the
initial wealth and preference parameters of agent i ∈ {1, . . . , n}. In the mean field game, the type
vector of some representative agent will be given as the realization of a suitable random vector
ζ = (ξ, δ, θ), which is independent of the price processes in the underlying financial market. Before
we properly define the mean field game, we provide a heuristic derivation of its solution. More
specifically, we provide an informal derivation of the limit of the Nash equilibrium (3.6) as n tends
to infinity. A similar heuristic can be found in Lacker and Zariphopoulou (2019).
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Recall that the i-th entry of the Nash equilibrium (3.6) is given by

φi,∗k (t) := n

n+ θi
ψi,∗k (t) + θi

(n+ θi)(1 − θ̂)

n∑
j=1

n

n+ θj
ψj,∗k (t), k = 1, . . . , d, t ∈ [0, T ],

where ψj,∗, j ∈ {1, . . . , n}, describes the unique optimal portfolio for a suitable auxiliary problem.
First, we obtain

lim
n→∞

n

n+ θi
= 1, lim

n→∞
nθi
n+ θi

= θi.

Moreover, if we assume that θ1, θ2, . . . are independent and identically distributed random variables,
independent of the underlying filtration (Ft)t∈[0,T ], we obtain

θ̂ =
n∑
j=1

θj
n+ θj

a.s.−→ E[θ1], n → ∞,

since, using the law of large numbers1,

θ̂ =
n∑
j=1

θj
n

· n

n+ θj
≤

n∑
j=1

θj
n

a.s.−→ E[θ1], n → ∞,

θ̂ =
n∑
j=1

θj
n

· n

n+ θj
≥ n

n+ 1

n∑
j=1

θj
n

a.s.−→ E[θ1], n → ∞.

Finally, if we assume that, conditional on FT , ψ1,∗
k (t), ψ2,∗

k (t), . . . are independent and identically
distributed random variables (for any t ∈ [0, T ], k ∈ {1, . . . , d}) we obtain (analogously, using the
law of large numbers and a sandwich argument)

n∑
j=1

1
n+ θj

ψj,∗k (t) a.s.−→ E
[
ψ1,∗
k (t)|FT

]
, n → ∞.

Note that we can only assume that ψj,∗k (t) are independent and identically distributed given FT

as they are solutions to portfolio optimization problems at time T .

Hence, we expect that the components φi,∗k (t) of the Nash equilibrium (3.6) converge to

ψ∗
k(t) + θ

1 − E[θ]E[ψ∗
k(t)|FT ], k = 1, . . . , d,

as n → ∞, where θ D= θ1 and ψ∗
k(t)

D= ψ1,∗
k (t) given FT . By D= we denote equality in distribution.

The convergence of the Nash equilibrium as the number n of agents tends to infinity can also be
observed in Figure 5.1.1. There, the first component of the Nash equilibrium (in terms of the
number of stocks) for n agents using exponential utility functions is displayed in terms of the
number of agents. The underlying financial market is a one-dimensional Black-Scholes market
with zero interest rate, constant drift µ = 0.03, and constant volatility σ = 0.2. Moreover,
the competition weights θi and risk tolerance parameters δi, i = 1, . . . , n, are realizations of
independent and identically U(0, 1)- and U(0.5, 3)-distributed random variables, respectively.

1By a.s.−→ we denote P-almost sure convergence.
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Figure 5.1.1.: Illustration of φ1,∗(t) in a Black-Scholes market with d = 1, r = 0, µ = 0.03, and
σ = 0.2, at t = 1 for n ∈ {1, . . . , 200} under CARA utility, where θi and δi are
realizations of i.i.d. U(0, 1)- and U(0.5, 3)-distributed random variables, respectively.
The dashed line marks the optimal solution to the single-agent problem (θ1 = 0) for
the realization δ1 of the U(0.5, 3)-distributed random variable used for agent 1.

Considering Figure 5.1.1, we notice that for small values of n, φ1,∗ grows very fast compared to
the behavior for larger values of n. Moreover, Figure 5.1.1 indicates that, for n ≥ 2, the first
component of the Nash equilibrium is always larger than the strategy obtained for n = 1, which
corresponds to the optimal strategy without competition. This observation can be explained as
follows

φi,∗k (t) =
(

n

n+ θi
+ θi

(n+ θi)(1 − θ̂)

)
ψi,∗k (t) + θi

(n+ θi)(1 − θ̂)

n∑
j=1
j ̸=i

n

n+ θj
ψj,∗k (t)

≥ ψi,∗k (t) + θi

(n+ θi)(1 − θ̂)

n∑
j=1
j ̸=i

n

n+ θj
ψj,∗k (t) ≥ ψi,∗k (t) (5.1)

where φi,∗k (t) is taken from (3.6). The chain of inequalities in (5.1) holds if ψj,∗k (t) ≥ 0 for all
j = 1, . . . , n, which is the case in the framework used to generate Figure 5.1.1. Moreover, we also
used that θ̂ ∈ [0, 1) (see Lemma 3.3).

Remark 5.1. One might argue that it is not necessary to consider the mean field game associated
to problem (3.3) since there exists a unique explicit solution to the n-player game given in
Theorem 3.2. However, as Lacker and Zariphopoulou (2019) argue, the mean field model presented
here might be generalized to more involved models in which the mean field game formulation is
mathematically tractable whereas the n-player game brings some serious difficulties. We do not
elaborate this any further and refer to Lacker and Zariphopoulou (2019) for examples on models
with difficult n-player games but promising corresponding mean field game formulations. ♢
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5.2. Formal definition of the mean field game

Let us now give a formal definition of the mean field game and a mean field equilibrium. Further,
we prove that the mean field equilibrium coincides with the informally derived limit above. The
structure of the mean field game is similar to the problem introduced by Lacker and Zariphopoulou
(2019, Section 2.2). We use the semimartingale financial market described in Subsection 2.3.1 again.
To summarize, the market consists of a riskless bond with zero interest rate and d stocks. The
stock price processes (Sk(t))t∈[0,T ], k = 1, . . . , d, are assumed to be semimartingales with càdlàg
paths (i.e., the paths are right continuous with existing left limits). Further, it is assumed that
there exists an equivalent σ-martingale measure Q. Additionally, we assume that the underlying
probability space contains a (0,∞) × (0,∆] × [0, 1]-valued random vector ζ = (ξ, δ, θ) independent
of the filtration (Ft)t∈[0,T ] with ∆ > 0. We assume that E[ξ2] < ∞. Finally, we define an additional
filtration (FMF

t )t∈[0,T ] given by

FMF
t := σ (Ft, ζ) , t ∈ [0, T ].

The random variables ξ, δ, and θ denote the initial capital and preference parameters of a
representative investor. In this setting, the wealth process of a representative agent is given by

Xφ
t = ξ + (φ • S)t, t ∈ [0, T ],

where φ is an admissible strategy representing the number of stocks held at time t ∈ [0, T ]. We
say that φ is an admissible strategy if φ ∈ AMF, where

AMF :=
{
φ ∈ LMF(S) : (φ • S)T ∈ L2(P), (φ • S)ZQ is a P-martingale for all SσMM Q

with density process ZQ and dQ
dP ∈ L2(P)

}
.

By LMF(S) we denote the set of (FMF
t )-predictable, S-integrable stochastic processes.

Further, we assume that U : D → R is a utility function, in the sense of Definition 2.11, defined
on a domain D ∈ {R, (0,∞)} including some parameter δ > 0. We again extend the definition
of U to the whole real line by setting U(x) = −∞ if x /∈ D. Now assume that δ is part of the
characterization of the representative investor. Then the combination of U and δ (by inserting δ
as the parameter in U) yields a (stochastic) utility function denoted by Uδ. Now a representative
investor faces the following optimization problem

 supφ∈AMF E
[
Uδ
(
Xφ
T − θX̄

)]
,

s.t. Xφ
T = ξ + (φ • S)T , X̄ = E[Xφ

T |FT ].
(5.2)

The consistency condition X̄ = E[Xφ
T |FT ] (see Lacker and Zariphopoulou, 2019) models the feature

that each agent in the continuum faces the same type vector ζ and the same randomness from the
financial market. Hence, if we condition on the information FT provided by the financial market at
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time T , each agent faces an independent and identically distributed copy of the same optimization
problem. Roughly speaking, the consistency condition ensures that the representative agent is
indeed representative for the whole population of agents.

Remark 5.2. We need to ensure that there is at least one strategy φ ∈ AMF such that Xφ
T −θX̄ ∈ D

P-almost surely. If D = (0,∞), we can therefore only allow choices of ξ and θ that satisfy ξ−θξ̄ > 0
P-almost surely, where ξ̄ := E[ξ]. ♢

The optimal solution to (5.2) is called mean field equilibrium.

Definition 5.3 (Lacker and Zariphopoulou, 2019, Definition 2.9). A strategy φ∗ ∈ AMF is called
a mean field equilibrium, if it is an optimal solution to the optimization problem (5.2). This means
in particular that φ∗ needs to satisfy the consistency condition X̄ = E[Xφ∗

T |FT ]. ♦

5.3. Solution method via problem reduction

The optimization problem (5.2) can be solved similarly to the n-agent problem. Therefore, we
define the auxiliary problem  supψ∈AMF E

[
Uδ(ZψT )

]
,

s.t. ZψT = ξ − θξ̄ + (ψ • S)T .
(5.3)

Then the mean field equilibrium for (5.2) is given in the following theorem in terms of the optimal
solution to the auxiliary problem (5.3). Note that we obtain exactly the representation we derived
heuristically in Section 5.1.

Theorem 5.4. Let E[θ] =: θ̄ < 1. If (5.3) has a unique (up to modifications) optimal portfolio
strategy ψ∗, then there exists a unique mean field equilibrium for (5.2) given by

φ∗
k(t) = ψ∗

k(t) + θ

1 − θ̄
E [ψ∗

k(t)|FT ] , k = 1, . . . , d, (5.4)

P-almost surely for all t ∈ [0, T ].

Proof. In order to solve the optimization problem (5.2), we assume that X̄ is an FT -measurable
random variable of the form

X̄ = E [Xα
T |FT ]

for an admissible strategy α ∈ AMF with Xα
0 = ξ. Moreover, we define the process

X̄α
t := E [Xα

t |FT ] , t ∈ [0, T ].

Since Xα
t can be written as

Xα
t = ξ +

d∑
k=1

∫ t

0
αk(u)dSk(u),

we obtain

X̄α
t = ξ̄ +

d∑
k=1

∫ t

0
ᾱk(u)dSk(u), (5.5)
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where ᾱk(u) := E[αk(u)|FT ], k = 1, . . . , d, and ξ̄ = E[ξ]. The representation (5.5) of X̄α
t requires

more explanation. As a first step, we used the independence of ξ and (Ft)t∈[0,T ], and the linearity
of the conditional expectation. To obtain

E
[∫ t

0
αk(u)dSk(u)

∣∣∣FT

]
=
∫ t

0
ᾱk(u)dSk(u), (5.6)

we first observe that the sample space can be written as Ω = Ω1 ×Ω2 with σ-algebras F (1) and F (2)

on Ω1, Ω2, respectively, and probability measures P1 and P2 on F (1), F (2), satisfying P = P1 ⊗ P2,
due to the independence of (Ft) and ζ. Hence, Ω1 and Ω2 are associated to (Ft) and ζ, respectively.
It follows that for any F ∈ FT , there exists a unique G ∈ F (1) such that F = G× Ω2. Now we
prove that the conditional expectation with respect to FT of some FMF

T -measurable, P-integrable
random variable Y = Y (ω1, ω2) can be written as an integral over Ω2 with respect to P2. First,
we notice that E[Y |FT ] is a random variable that can, due to the FT -measurability, be written
in terms of ω1 only. Now let F ∈ FT with decomposition F = G× Ω2. It follows (using Fubini’s
theorem and the definition of conditional expectation2)∫

G

∫
Ω2
Y (ω1, ω2)dP2(ω2)dP1(ω1) =

∫
F
Y (ω1, ω2)dP(ω1, ω2)

=
∫
F
E[Y |FT ](ω1, ω2)dP(ω1, ω2)

=
∫
G

∫
Ω2

E[Y |FT ](ω1, ω2)dP2(ω2)dP1(ω1)

=
∫
G

∫
Ω2

E[Y |FT ](ω1)dP2(ω2)dP1(ω1)

=
∫
G
E[Y |FT ](ω1)dP1(ω1).

Therefore, we obtain
E[Y |FT ](ω1) =

∫
Ω2
Y (ω1, ω2)dP2(ω2)

for P1-almost all ω1 ∈ Ω1 (following the arguments of the proof of Theorem 8.12 in Klenke, 2020).
Now we can use this result to prove (5.6)

E
[∫ t

0
αk(u)dSk(u)

∣∣∣FT

]
=
∫

Ω2

∫ t

0
αk(u)dSk(u)dP2(ω2)

=
∫ t

0

∫
Ω2
αk(u)dP2(ω2)dSk(u)

=
∫ t

0
E[αk(u)|FT ]dSk(u)

=
∫ t

0
ᾱk(u)dSk(u).

The second equality holds due to a stochastic version of Fubini’s theorem by Protter (2005) (see
Theorem 2.5). Hence, the representation (5.5) is in fact correct and we can proceed with the

2If X is an integrable random variable and G a sub σ-algebra of F , the conditional expectation of X given G is
the almost surely unique, G-measurable random variable Y such that

∫
G

X dP =
∫

G
Y dP for all G ∈ G (see, for

example, Klenke, 2020, Definition 8.11 and Theorem 8.12).
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solution of problem (5.2). By construction, the equation X̄α
T = X̄ holds. Using the previously

defined process (X̄α
t ), we define another process (Zt)t∈[0,T ] for φ ∈ AMF and Xφ

0 = ξ by

Zt := Xφ
t − θX̄α

t .

Thus, Zt can be written as

Zt = ξ − θξ̄ +
d∑

k=1

∫ t

0
(φk(u) − θᾱk(u))︸ ︷︷ ︸

=:ψk(u)

dSk(u) =: Zψt .

The random variable ZψT coincides with the argument of the objective function in (5.2). Therefore,
we consider the auxiliary problem (5.3)

 supψ∈AMF E
[
Uδ(ZψT )

]
,

s.t. ZψT = ξ − θξ̄ + (ψ • S)T .

If ψ∗ is the unique optimal portfolio strategy to (5.3), we can determine the solution to (5.2) as
follows. By definition, we have Zψ

∗

T = Xφ
T − θX̄ or equivalently Xφ

T = Zψ
∗

T + θX̄. Moreover, the
random variable X̄ needs to satisfy the consistency condition X̄ = E [Xφ

T |FT ] . Hence, it follows

X̄ = E
[
Xφ
T |FT

]
= E

[
Zψ

∗

T + θX̄
∣∣FT

]
= E

[
Zψ

∗

T

∣∣FT

]
+ X̄E

[
θ|FT

]
= E

[
Zψ

∗

T

∣∣FT

]
+ θ̄X̄,

where we used that X̄ is FT -measurable and that θ is independent of (Ft). Moreover, we introduced
the notation θ̄ := E[θ]. Under the assumption that θ̄ < 1, we obtain

X̄ = 1
1 − θ̄

E
[
Zψ

∗

T

∣∣FT

]
.

Therefore, the optimal wealth Xφ
T is given by

Xφ
T = Zψ

∗

T + θX̄ = Zψ
∗

T + θ

1 − θ̄
E
[
Zψ

∗

T |FT

]
.

Since the wealth process is linear in terms of the strategy and the solution ψ∗ is unique, it follows
that

φ(t) = ψ∗(t) + θ

1 − θ̄
E [ψ∗(t)|FT ]

componentwise P-almost surely for all t ∈ [0, T ]. The line of arguments implies that there exists
a unique Nash equilibrium given by (5.4) if, and only if, the auxiliary problem (5.3) is uniquely
solvable.

Remark 5.5. The mean field equilibrium (5.4) shows, similar to Remark 3.5, that a larger value of
θ results in a more risky investment behavior of a representative agent. If we substitute θ by a
different, [0, 1]-valued random variable θ̃ with E[θ̃] < 1 and θ̃ > θ P-almost surely, the resulting
Nash equilibrium becomes more risky in the sense that more shares of the risky asset are purchased
or sold short depending on whether the realization of ψ∗

k(t) is positive or negative. ♢
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Finally, we present an application of Theorem 5.4 which describes a mean field counterpart of the
model in Subsection 4.2.1.

Example 5.6. We consider a one-dimensional Black-Scholes financial market with constant drift
µ > 0 and volatility σ > 0. Moreover, let Uδ(x) = − exp

(
−δ−1x

)
, x ∈ R. Then the solution to

the auxiliary problem (5.3) in terms of amounts is known to be given by

πZ = δ · µ
σ2 .

Therefore, the mean field equilibrium to (5.2) in terms of amounts is given by

π = δ
µ

σ2 + θ

1 − θ̄
E
[
δ
µ

σ2

∣∣∣FT

]
=
(
δ + δ̄

θ

1 − θ̄

)
µ

σ2 . ♢





CHAPTER 6

Pareto optima for relative investors

In general, there are two main optimality criteria used in n-person stochastic games: Nash equilibria
and Pareto optimality. Until now, we have only looked for Nash equilibria in the multi-objective
optimization problem (3.3) and the corresponding mean field game. In this section, we search for
Pareto optimal strategies. The criterion is named after Vilfredo Pareto who developed the concept
further in 1896 after it had already been used in 1881 (see Miettinen, 1999, pp. 10-11, and the
references therein). In contrast to a Nash equilibrium, where n agents maximize their objectives
simultaneously, each assuming that the strategies of the other players are fixed, a Pareto optimal
vector of strategies is found if no player can improve her objective without worsening the objective
of another player. Thus, Pareto optima are related to maximizing the common good of all players
as opposed to the more self-centered Nash equilibria.

The literature on Pareto optimal strategies for n-player stochastic games is rather sparse and, to
the best of our knowledge, the problem of optimal investment for competing agents has not yet
been solved using the concept of Pareto optimality. Of course, as the agents are assumed to be
competitive, it is more intuitive to search for Nash equilibria. However, instead of interpreting
Pareto optimality as optimizing the common good, we can have some central planner in mind
that manages the portfolios of n competing agents. Hence, the central planner aims to maximize
the common good of her clients without this behavior contradicting the competitive incentive of
the n agents.

Closest to our work is the article by Branger et al. (2023). They considered n non-competitive
agents aiming to maximize the expected utility of their terminal wealth given some fixed initial
capital. While the solution to such problems for a single investor is well known in many interesting
special cases, Branger et al. (2023) considered the modified problem of collective asset allocation
and searched for Pareto optimal vectors of strategies. They defined a novel type of utility function,
the so-called collective utility function, which is used to find a Pareto optimal vector of strategies
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for the n agents. An adapted version of their collective utility function is used in this chapter.
The collective utility function has the advantage of containing only one state variable, as opposed
to the „classical“ approach of maximizing a weighted sum of the n players’ objectives, which
results in an objective function that depends on all n state variables. The classical approach of
maximizing a weighted sum of the n agents’ objective functions was, e.g., used by Ferrari et al.
(2017) and Guo and Xu (2020) in problems other than portfolio optimization. The paper by
Ferrari et al. (2017) considers the optimal allocation of the initial wealth of n agents between
personal consumption and irreversible contributions to increase the level of some public good. The
paper by Guo and Xu (2020) considers a central planner problem for n players aiming to minimize
the running cost corresponding to some general diffusion state process. We refer to Branger et al.
(2023) for a more detailed literature overview of collective optimal investment and related topics.

We conclude this introduction with a summary of this chapter. The underlying financial market and
the optimization problem are explained in Section 6.1. In Section 6.2, we adapt the scalarization
method introduced by Branger et al. (2023) to competitive utility functions (see Section 3.1 for
the definition of competitive utility functions). In Section 6.3, we determine a Pareto optimum in
terms of optimal terminal wealth. In order to achieve this, we determine the optimal collective
terminal wealth first and then deduce the optimal terminal wealth for the individual agents. In
the final Section 6.4, we compare the Pareto optimum to the Nash equilibrium from Chapter 3.

6.1. Problem formulation

We base our analysis on the semimartingale financial market from Subsection 2.3.1. In summary,
there are d+ 1 assets in which n agents can invest. The assets consist of one riskless bond with
zero interest rate and d risky stocks. The stock price processes (Sk(t))t∈[0,T ], k = 1, . . . , d, are
L2(P)-semimartingales with càdlàg paths. To exclude arbitrage, we require the existence of an
equivalent σ-martingale measure Q. In contrast to Subsection 2.3.1, we make the additional
assumption that Q is the unique equivalent σ-martingale measure. Under this assumption, the
associated density process

ZQ
t = E

[dQ
dP

∣∣∣Ft

]
, t ∈ [0, T ],

is unique as well. Thus, we write Zt := ZQ
t , t ∈ [0, T ], throughout the present chapter. The

assumption that Q is the unique equivalent σ-martingale measure has the important consequence
that each claim X ∈ L2(P) has a unique fair price given by (cf. (2.6))

EQ[X] = E [ZTX] .

Moreover, the existence of a unique equivalent (σ-/local) martingale measure is usually related to
a complete financial market (see Subsection 2.3.2). Although at this point we cannot deduce that
the financial market is complete, we conjecture that this is the case. However, the possible lack of
completeness is not a problem for the later analysis. We refer to Remark 6.10 in which we revisit
the issue of completeness.
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Let us now state the central optimization problem of this chapter. Similar to Chapter 3, we
consider n agents with objectives

max
πi∈A

E
[
Ui

(
Xi,πi

T − θi
n

∑
j ̸=i

Xj,πj

T

)]
, i = 1, . . . , n. (6.1)

The functions Ui : Di → R, defined on Di ∈ {(0,∞),R}, i = 1, . . . , n, are assumed to be Inada
utility functions (see Definition 2.11). Note that we did not have to impose the Inada conditions in
Chapter 3, but it is crucial for the proofs displayed later in the current chapter. The assumption
is not a severe restriction, however, since many classical examples such as the natural logarithm
and the exponential or power utility satisfy the Inada conditions.

There are two main differences between the analysis in Chapter 3 and the current chapter. The
first one is that in Chapter 3 we were interested in finding the optimal strategy πi,∗, while in this
chapter we only search for the optimal terminal wealth. We adapt the solution method proposed
by Branger et al. (2023). They use the martingale approach (see, for example, Korn, 1997, Section
3.4) to solve the problem of finding the optimal collective terminal wealth. Thus, they search for
the optimal terminal wealth first and find the replicating strategy afterwards. If the financial
market is complete, it is always possible to hedge the optimal terminal wealth. However, we do
not make the assumption of a complete financial market.

Thus, the objective of agent i is to solve the static optimization problem corresponding to the
dynamic problem (6.1). The objective of agent i ∈ {1, . . . , n} then reads as

 maxXi Ji(X1, . . . , Xn) := E
[
Ui
(
Xi − θi

n

∑
j ̸=iXj

)]
,

s.t. Xi is FT − measurable, E[ZTXi] ≤ xi0,
(6.2)

where xi0 denotes the initial capital and Xi the terminal wealth of agent i ∈ {1, . . . , n}.

The second major difference to Chapter 3 is that the goal in the current chapter is to find vectors
of Pareto optimal strategies instead of Nash equilibria. We already gave a definition of a Pareto
optimal vector of strategies in Section 2.4. However, as we optimize the terminal wealth Xi instead
of the portfolio strategy, we repeat the definition in terms of terminal wealth.

Definition 6.1 (Miettinen, 1999, Definition 2.2.1). A vector (X∗
1 , . . . , X

∗
n) of admissible states

X∗
i , i = 1, . . . , n, such that there is no admissible vector (X1, . . . , Xn) with

Ji(X1, . . . , Xn) ≥ Ji(X∗
1 , . . . , X

∗
n) for all i = 1, . . . , n

and
Ji(X1, . . . , Xn) > Ji(X∗

1 , . . . , X
∗
n) for at least one i ∈ {1, . . . , n},

is called Pareto optimal. A random variable Xi is considered admissible if it satisfies the conditions
of (6.2). ♦

Let us now describe how to find a Pareto optimum for (6.2). The definition of Pareto optimality
introduces an optimization problem including an n-dimensional objective function which consists
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of the n agents’ expected competitive utilities. In general, the first step in solving such problems
is to scalarize the objective function. A common and fairly intuitive method of scalarization is to
maximize a weighted sum of the n objective functions. More specifically, let β1, . . . , βn ∈ (0, 1)
with

∑n
i=1 βi = 1 be weights assigned to the n agents. Then the scalarized objective function takes

the form
n∑
i=1

βiJi(X1, . . . , Xn).

For any choice of weights β1, . . . , βn, the resulting solution is Pareto optimal (see, e.g., Aubin, 2003,
p. 193). Although this method seems simple at first, using it to search for an analytical solution
to the problem (6.2) results in some serious difficulties. The main disadvantage we discovered was
a system of nonlinear equations emerging in the search for the maximum. Therefore, we use a
different scalarization approach which is carried out in the next section.

6.2. Scalarization of the objective function

In the following, we apply a scalarization method introduced by Branger et al. (2023) to the
competitive utility functions

Ui
(
xi − θix̄

−i
)

for Inada utility functions Ui : Di → R, Di ∈ {(0,∞),R}, and competition weights θi ∈ [0, 1],
i = 1, . . . , n, where x̄−i = n−1∑

j ̸=i xj . The scalarized utility function, denoted by Ũβ, is
determined as the optimal value of the optimization problem

Ũβ(x) = max
x1,...,xn

∑n
i=1 βiUi

(
xi − θix̄

−i) ,
s.t.

∑n
i=1 xi = x, xi − θix̄

−i ∈ Di, i = 1, . . . , n,
(6.3)

where β1, . . . , βn ∈ (0, 1) describe weights, assigned to the n agents, with
∑n
i=1 βi = 1.

Note that it is not necessary that the utility functions are of the same „type“. For example, it
would be possible that agent 1 uses an exponential utility function while agent 2 uses the natural
logarithm. Moreover, they do not need to be defined on the same domain. We just need to assume
that the domain is either the whole real numbers or the strictly positive real numbers, which is a
reasonable requirement in the context of utility maximization.

Now we can state the following lemma which gives the optimal solution to (6.3) and the re-
sulting scalarized objective function Ũβ. It turns out that Ũβ is an Inada utility function (see
Definition 2.11).

Lemma 6.2. For n ∈ N, let Ui : Di → R, i = 1, . . . , n, be Inada utility functions defined on
domains Di ∈ {(0,∞), R}. Let Ii : (0,∞) → Di denote the inverse of the first order derivative U ′

i

of Ui. Further, let θi ∈ [0, 1] and βi ∈ (0, 1), i = 1, . . . , n, be chosen so that
∑n
j=1 βj = 1. Finally,

define a function Ĩ : (0,∞) →
⋃n
j=1 Dj by

Ĩ(y) = 1
1 − θ̂

n∑
j=1

n

n+ θj
Ij

(
ny

βj(n+ θj)(1 − θ̂)

)
,
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where θ̂ =
∑n
j=1

θj

n+θj
. Then, for any x ∈

⋃n
j=1 Dj, the optimization problem (6.3) has a unique

solution x∗
1, . . . , x

∗
n given by

x∗
i = fi(x) := θi

n+ θi
· x+ n

n+ θi
Ii

(
nĨ−1(x)

βi(n+ θi)(1 − θ̂)

)
, i = 1, . . . , n, (6.4)

in terms of the inverse function Ĩ−1 :
⋃n
j=1 Dj → (0,∞) of Ĩ. The functions fi, i = 1, . . . , n, are

bijections from
⋃n
j=1 Dj to

⋃n
j=1 Dj. Finally, for x ∈

⋃n
j=1 Dj, the optimal value of (6.3) is given

by

Ũβ(x) :=
n∑
j=1

βjUj

(
Ij

(
nĨ−1(x)

βj(n+ θj)(1 − θ̂)

))
,

which defines an Inada utility function Ũβ :
⋃n
j=1 Dj → R.

Proof. The optimization problem is solved using the Lagrange dual method. The constraints
xi − θix̄

−i ∈ Di, i = 1, . . . , n, are only relevant if Di = (0,∞). We solve the optimization problem
without the constraints and prove that the optimal solution satisfies them afterwards. Hence, we
consider the optimization problem

max
x1,...,xn

∑n
i=1 βiUi

(
xi − θix̄

−i) ,
s.t.

∑n
i=1 xi = x.

(6.5)

The associated Lagrangian function is given by

L(x1, . . . , xn;λ) =
n∑
i=1

βiUi
(
xi − θix̄

−i
)

− λ

(
n∑
i=1

xi − x

)

for the Lagrange multiplier λ > 0. Note that the objective function is concave and the constraint
is linear. Thus, to find a solution to (6.5), it is sufficient to determine x1, . . . , xn such that
∂
∂xj

L(x1, . . . , xn;λ) = 0 for all j ∈ {1, . . . , n}, and such that
∑n
j=1 xj = x. The first order partial

derivative of L with respect to xj for some j ∈ {1, . . . , n} is given by

∂

∂xj
L(x1, . . . , xn;λ) =

n∑
i=1

βi
∂

∂xj
Ui
(
xi − θix̄

−i
)

− λ

= βjU
′
j

(
xj − θj x̄

−j
)

−
∑
i ̸=j

βiθi
n
U ′
i

(
xi − θix̄

−i
)

− λ
!= 0.

If we set
ui := U ′

i

(
xi − θix̄

−i
)
, û :=

n∑
i=1

βiθi
n
ui,

the resulting system of linear equations can be written as

βi

(
1 + θi

n

)
ui − û = λ, i = 1, . . . , n.



60 Chapter 6. Pareto optima for relative investors

The unique (implicit) solution to this system of linear equations is given by

ui = n(λ+ û)
βi (n+ θi)

. (6.6)

Inserting (6.6) into the definition of û yields

û =
n∑
i=1

βiθi
n
ui = (λ+ û)

n∑
i=1

θi
n+ θi

= θ̂(λ+ û).

Since 0 ≤ θ̂ < 1 (see Lemma 3.3), it follows

û = λθ̂

1 − θ̂
.

Therefore, using (6.6), an explicit representation of ui is given by

ui = n

βi (n+ θi)

(
λ+ θ̂

1 − θ̂
λ

)
= nλ

βi (n+ θi) (1 − θ̂)
.

Thus, using the definition of ui and the inverse Ii of U ′
i ,(

1 + θi
n

)
xi − θi

n
x̂ := xi − θix̄

−i = Ii

(
nλ

βi (n+ θi) (1 − θ̂)

)
,

which yields the following implicit representation of xi

xi = θi
n+ θi

x̂+ n

n+ θi
Ii

(
nλ

βi (n+ θi) (1 − θ̂)

)
, (6.7)

where we defined x̂ :=
∑n
i=1 xi. Inserting (6.7) into the definition of x̂ yields

x̂ =
n∑
i=1

xi = θ̂x̂+
n∑
i=1

n

n+ θi
Ii

(
nλ

βi (n+ θi) (1 − θ̂)

)
.

Since θ̂ < 1 (see Lemma 3.3), it follows

x̂ = 1
1 − θ̂

n∑
i=1

n

n+ θi
Ii

(
nλ

βi (n+ θi) (1 − θ̂)

)
,

and therefore,

xi = θi

(n+ θi) (1 − θ̂)

n∑
j=1

n

n+ θj
Ij

(
nλ

βj (n+ θj) (1 − θ̂)

)
+ n

n+ θi
Ii

(
nλ

βi (n+ θi) (1 − θ̂)

)
.

Finally, the Lagrange multiplier λ needs to be chosen such that the constraint
∑n
i=1 xi = x is
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satisfied. Therefore, we define the function Ĩ : (0,∞) →
⋃n
j=1 Dj by

Ĩ(λ) = 1
1 − θ̂

n∑
j=1

n

n+ θj
Ij

(
nλ

βj (n+ θj) (1 − θ̂)

)
(= x̂).

Since the functions Ii take values in Di ∈ {(0,∞), R}, i = 1, . . . , n, and all constant factors are
strictly positive, the function Ĩ takes values in

⋃n
j=1 Dj . The functions Ii are strictly decreasing

and continuously differentiable. Thus, Ĩ also has these properties. Moreover, Ui satisfies the Inada
conditions, which implies

lim
x↘0

Ii(x) = ∞, lim
x→∞

Ii(x) = inf Di ∈ {0,−∞}

for all i ∈ {1, . . . , n}. Hence, it follows that lim
λ↘0

Ĩ(λ) = ∞.

When λ tends to ∞, there are two possibilities we need to consider. If Di = (0,∞) for all
i ∈ {1, . . . , n}, then each summand in the definition of Ĩ tends to 0 and therefore, Ĩ converges to
0 as λ tends to ∞. If at least one of the utility functions is defined on the whole real numbers, at
least one summand in the definition of Ĩ tends to −∞, while the other summands tend to 0 or to
−∞ as well. Hence, in this case Ĩ converges to −∞ as λ tends to ∞.

In summary, the asymptotic behavior of Ĩ is given as follows

lim
λ↘0

Ĩ(λ) = ∞, lim
λ→∞

Ĩ(λ) = inf
n⋃
j=1

Dj ∈ {0,−∞}.

The previous observations imply that Ĩ is a bijection from (0,∞) to
⋃n
j=1 Dj and therefore, we

can consider the inverse of Ĩ denoted by Ĩ−1 :
⋃n
j=1 Dj → (0,∞). Since Ĩ is strictly decreasing

and continuously differentiable, Ĩ−1 inherits those properties.

Finally, since Ĩ−1 is a bijection from
⋃n
j=1 Dj to (0,∞), we can conclude that there exists a unique

λ∗ ∈ (0,∞) such that Ĩ(λ∗) = x, which is given by λ∗ = Ĩ−1(x). Hence, a candidate for the
optimal solution is given by

xi = θi

(n+ θi) (1 − θ̂)

n∑
j=1

n

n+ θj
Ij

(
nĨ−1(x)

βj (n+ θj) (1 − θ̂)

)
+ n

n+ θi
Ii

(
nĨ−1(x)

βi (n+ θi) (1 − θ̂)

)

= θi
n+ θi

x+ n

n+ θi
Ii

(
nĨ−1(x)

βi (n+ θi) (1 − θ̂)

)
. (6.8)

By construction, the values xi, i = 1, . . . , n, maximize the objective function and satisfy the
constraint

∑n
i=1 xi = x. Therefore, the only thing left to show is that the remaining constraint

xi − θix̄
−i ∈ Di is also satisfied. It follows

xi − θix̄
−i =

(
1 + θi

n

)
xi − θi

n

n∑
j=1

xj =
(

1 + θi
n

)
xi − θi

n
x = Ii

(
nĨ−1(x)

βi (n+ θi) (1 − θ̂)

)
,

where we used (6.8) in the last step. Since Ii takes values in Di, the constraint xi − θix̄
−i ∈ Di is

satisfied.
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Therefore, the optimal solution to the optimization problem is indeed given by

x∗
i = θi

n+ θi
x+ n

n+ θi
Ii

(
nĨ−1(x)

βi (n+ θi) (1 − θ̂)

)
.

The optimal value of the objective function is then given by

Ũβ(x) :=
n∑
i=1

βiUi

(
Ii

(
nĨ−1(x)

βi (n+ θi) (1 − θ̂)

))
,

defining a function Ũβ :
⋃n
i=1 Di → R. In the following, we prove that Ũβ satisfies the properties of

an Inada utility function. To begin with, we determine the first and second order derivative of Ũβ :

Ũ
′
β(x) =

n∑
i=1

βiU ′
i

(
Ii

(
nĨ−1(x)

βi (n+ θi) (1 − θ̂)

))
I

′
i

(
nĨ−1(x)

βi (n+ θi) (1 − θ̂)

)
·

n
(
Ĩ−1

)′

(x)

βi (n+ θi) (1 − θ̂)


= Ĩ−1(x)

(
Ĩ−1

)′

(x)
n∑
i=1

n2

βi (n+ θi)2 (1 − θ̂)2
I

′
i

(
nĨ−1(x)

βi (n+ θi) (1 − θ̂)

)
= Ĩ−1(x).

In the last step, we used the following auxiliary calculation

(
Ĩ−1

)′

(x) = 1
Ĩ ′(Ĩ−1(x)

) =

 d
dy

n∑
i=1

n

(n+ θi) (1 − θ̂)
Ii

(
ny

βi (n+ θi) (1 − θ̂)

)∣∣∣∣∣
y=Ĩ−1(x)

−1

=
(

n∑
i=1

n2

βi (n+ θi)2 (1 − θ̂)2
I

′
i

(
nĨ−1(x)

βi (n+ θi) (1 − θ̂)

))−1

.

Hence, the second order derivative of Ũβ is simply given by

Ũ
′′
β (x) =

(
Ĩ−1

)′

(x) =
(

n∑
i=1

n2

βi (n+ θi)2 (1 − θ̂)2
I

′
i

(
nĨ−1(x)

βi (n+ θi) (1 − θ̂)

))−1

. (6.9)

Since the utility functions Ui were assumed to be twice continuously differentiable, the previous
representations of the first and second order derivative of Ũβ imply that Ũβ is twice continuously
differentiable as well. Additionally, as Ĩ−1 takes values in (0,∞), the first order derivative of Ũβ is
strictly positive and Ũβ is strictly increasing. Moreover, the functions Ii are strictly decreasing by
the strict concavity of Ui and therefore, (6.9) implies that Ũβ is strictly concave.

Finally, we need to examine the asymptotic behavior of Ũ ′
β = Ĩ−1. The Inada conditions of Ui,

i = 1, . . . , n, imply

lim
y↘0

Ĩ(y) =
n∑
i=1

n

(n+ θi) (1 − θ̂)
lim
y↘0

Ii

(
ny

βi (n+ θi) (1 − θ̂)

)
︸ ︷︷ ︸

=∞

= ∞,

lim
y→∞

Ĩ(y) =
n∑
i=1

n

(n+ θi) (1 − θ̂)
lim
y→∞

Ii

(
ny

βi (n+ θi) (1 − θ̂)

)
︸ ︷︷ ︸

=inf Di

= inf
n⋃
i=1

Di. (6.10)
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The last equation (6.10) follows from the assumption Di ∈ {(0,∞),R} and the fact that the
constant factors are strictly positive. Hence, the inverse of Ĩ satisfies

lim
x→∞

Ĩ−1(x) = 0, lim
x→inf

⋃n

i=1 Di

Ĩ−1(x) = ∞.

In summary, it follows that Ũβ is an Inada utility function.

Finally, it remains to show that the functions fi from (6.4) are bijections. The function fi is
strictly increasing in x, since Ii and Ĩ−1 are both strictly decreasing and all constant factors are
strictly positive. Moreover, fi is continuous as a composition of continuous functions. Finally,
using the asymptotic behavior of Ii and Ĩ−1,

lim
x→∞

fi(x) = ∞, lim
x→inf

⋃n

j=1 Dj

fi(x) = inf
n⋃
j=1

Dj .

Hence, fi is a bijection from
⋃n
j=1 Dj onto

⋃n
j=1 Dj for each i ∈ {1, . . . , n}. This concludes our

proof.

The collective competitive utility function Ũβ can be used to find a Pareto optimum (X∗
1 , . . . , X

∗
n),

where X∗
i represents the optimal terminal wealth of agent i. First, the optimal collective wealth

X∗ is determined with respect to some classical portfolio optimization problem under the utility
function Ũβ . Afterwards, choosing X∗

i = fi(X∗), i = 1, . . . , n, gives a Pareto optimum with respect
to the original objective functions E[Ui(Xi − θiX̄

−i)]. To verify that this yields a Pareto optimal
solution to the original problem, let X∗ be the optimal solution to maxX E

[
Ũβ(X)

]
,

s.t. X is FT -measurable, E[ZTX] ≤ x0 =
∑n
i=1 x

i
0.

(6.11)

Lemma 6.2 provides bijections f1, . . . , fn for which the random variables X∗
i := fi(X∗), i = 1, . . . , n,

satisfy

Ũβ(X∗) = max∑n

i=1 Xi=X∗

n∑
i=1

βiUi(X1, . . . , Xn) =
n∑
i=1

βiUi(X∗
1 , . . . , X

∗
n).

The expressions Ui(X1, . . . , Xn) denote the competitive utility functions

Ui(X1, . . . , Xn) := Ui

(
Xi − θi

n

∑
j ̸=i

Xj

)
, i = 1, . . . , n.

Further, assume that there exist admissible X̃1, . . . , X̃n (i.e., X̃j satisfies the constraints of (6.2),
j = 1, . . . , n) such that

E
[
Ui
(
X∗

1 , . . . , X
∗
n

)]
≤ E

[
Ui
(
X̃1, . . . , X̃n

)]
for all i = 1, . . . , n,

E
[
Uj(X∗

1 , . . . , X
∗
n)
]
< E

[
Uj(X̃1, . . . , X̃n)

]
for at least one j ∈ {1, . . . , n}.
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Moreover, define X̃ :=
∑n
i=1 X̃i. Then, using that βi > 0 for all i = 1, . . . , n,

E
[
Ũβ(X∗)

]
=

n∑
i=1

βiE [Ui(X∗
1 , . . . , X

∗
n)]

<
n∑
i=1

βiE
[
Ui(X̃1, . . . , X̃n)

]
= E

[
n∑
i=1

βiUi(X̃1, . . . , X̃n)
]

≤ E
[

max∑n

i=1 Xi=X̃

n∑
i=1

βiUi(X1, . . . , Xn)
]

= E
[
Ũβ(X̃)

]
.

This contradicts the assumption that X∗ is an optimal solution to (6.11). Hence, (X∗
1 , . . . , X

∗
n) is

Pareto optimal.

Remark 6.3. If we replace the constraint
∑n
i=1 xi = x in (6.3) by

∑n
i=1 αixi = x, where αi ∈ (0, 1)

are weights with
∑n
i=1 αi = 1, it follows

Ũβ(x) =
n∑
i=1

βiUi

(
Ii

(
nĨ−1(x)
βi(n+ θi)

(
αi + α̂θ

1 − θ̂

)))
.

The function Ĩ−1 denotes the inverse of Ĩ : (0,∞) →
⋃n
j=1 Dj defined by

Ĩ(y) =
n∑
j=1

n

n+ θj

(
αj + α̂θ

1 − θ̂

)
Ij

(
ny

βj(n+ θj)

(
αj + α̂θ

1 − θ̂

))
,

where α̂θ :=
∑n
j=1

αjθj

n+θj
. The introduction of α1, . . . , αn extends the function Ũβ by n additional

free parameters that can be chosen with respect to some further conditions on the functions fi or
the resulting terminal wealth Xi = fi(X), where X denotes the collective terminal wealth. ♢

Before we use the scalarized objective function Ũβ to find a Pareto optimum for (6.2), let us
determine Ũβ for two examples of utility functions U1, . . . , Un.

Example 6.4. Let us apply Lemma 6.2 to two special cases of Inada utility functions.

a) Let n ∈ N and Ui(x) = log(x), i = 1, . . . , n, with Di = (0,∞). Then the collective utility
function Ũβ : (0,∞) → R from Lemma 6.2 is given by

Ũβ(x) = log(x) +
n∑
i=1

βi log
(
βi

(
1 + θi

n

)
(1 − θ̂)

)
.

b) Let n ∈ N and Ui(x) = − exp(−δ−1
i x) on Di = R for parameters δi > 0, i = 1, . . . , n. Then

the collective utility function Ũβ : R → R from Lemma 6.2 is given by

Ũβ(x) = − δ̂θ

1 − θ̂
· exp

− 1
δ̂θ

n∑
j=1

nδj
n+ θj

log
(

nδj

βj (n+ θj) (1 − θ̂)

) · exp
(

−1 − θ̂

δ̂θ
· x
)
,

where δ̂θ :=
∑n
j=1

nδj

n+θj
. ♢
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Remark 6.5. Branger et al. (2023) introduced the collective utility function as the optimal value
of the optimization problem

Ũβ(X) = max∑n

i=1 Xi=X

n∑
i=1

βiUi(Xi).

They obtained

Ũβ(X) =
n∑
i=1

βiUi

(
Ii
( y
βi

))
,

where y is chosen such that
n∑
i=1

Ii
( y
βi

)
= X.

Thus, up to constants depending only on the preference parameters of the agents, the optimal
value coincides with our result displayed in Lemma 6.2. ♢

6.3. Pareto optimum for the relative performance problem

In the following, the scalarized utility function Ũβ is used to find a Pareto optimum for (6.2).

6.3.1. Maximization of the collective terminal wealth

The first step towards a Pareto optimum for (6.2) is to determine the collective optimal terminal
wealth with respect to the collective competitive utility function Ũβ . The optimal collective wealth
is determined as the optimal solution to maxX E

[
Ũβ(X)

]
,

s.t. X is FT -measurable, E [ZTX] ≤ x0 :=
∑n
j=1 x

j
0.

(6.12)

The following lemma provides the unique optimal solution to (6.12).

Lemma 6.6. Let Ui : Di → R be Inada utility functions on Di ∈ {(0,∞), R}, i = 1, . . . , n, and
let Ũβ be the scalarized objective function from Lemma 6.2. Further, let x0 ∈

⋃n
i=1 Di. Finally,

assume that
E
[∣∣∣∣∣ZT Ii

(
nyZT

βi (n+ θi) (1 − θ̂)

)∣∣∣∣∣
]
< ∞ (6.13)

for all y ∈ (0,∞) and i = 1, . . . , n. Then the unique optimal solution to (6.12) is given by

X∗ = Ĩ (λ∗ZT ) =
n∑
i=1

n

(n+ θi) (1 − θ̂)
Ii

(
nλ∗ZT

βi (n+ θi) (1 − θ̂)

)
,

where λ∗ > 0 is the unique value such that E[ZTX∗] = x0.

Proof. Using a standard result (see, e.g., Kramkov and Schachermayer, 1999) and Lemma 6.2,
which provides that Ũβ is an Inada utility function, the unique optimal solution to (6.12) is given
by

X∗ =
(
Ũ

′
β

)−1
(λZT ).
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The Lagrange multiplier λ > 0 needs to be chosen with respect to the constraint E [ZTX∗] = x0.
Using results from the proof of Lemma 6.2, the first order derivative of Ũβ coincides with the
inverse Ĩ−1 of

Ĩ : (0,∞) →
n⋃
i=1

Di, y 7→
n∑
i=1

n

(n+ θi) (1 − θ̂)
Ii

(
ny

βi (n+ θi) (1 − θ̂)

)
.

Therefore, (Ũβ)−1 = Ĩ and X∗ is given by

X∗ = Ĩ(λZT ) =
n∑
i=1

n

(n+ θi) (1 − θ̂)
Ii

(
nλZT

βi (n+ θi) (1 − θ̂)

)
.

To find the Lagrange multiplier, define a function H on (0,∞) by

H(λ) := E [ZTX∗] =
n∑
i=1

n

(n+ θi) (1 − θ̂)
E
[
ZT · Ii

(
nλZT

βi (n+ θi) (1 − θ̂)

)]
.

Now λ∗ > 0 needs to be chosen such that H(λ∗) = x0. Existence and uniqueness of λ∗ are shown
using the intermediate value theorem. To verify that H is continuous, fix some arbitrary λ > 0
and a sequence (λk)k∈N ⊂ (0,∞) with limk→∞ λk = λ. Then it follows that

lim
k→∞

H(λk) =
n∑
i=1

n

(n+ θi) (1 − θ̂)
lim
k→∞

E
[
ZT · Ii

(
nλkZT

βi (n+ θi) (1 − θ̂)

)]

=
n∑
i=1

n

(n+ θi) (1 − θ̂)
E
[
ZT · Ii

(
nλZT

βi (n+ θi) (1 − θ̂)

)]
(6.14)

= H(λ).

Equation (6.14) holds since each function Ii, i = 1, . . . , n, is continuous and strictly decreasing, in
combination with the dominated convergence theorem and the integrability assumption (6.13) (see
Section A.1 in the appendix for the derivation of an integrable majorant). Thus, H is continuous.

Now we need to examine the asymptotic behavior of H. Using a monotone convergence theorem
for increasing and decreasing sequences of functions which are not necessarily non-negative
(Theorem 11.1 in Schilling, 2005), we obtain

lim
λ↘0

H(λ) = lim
λ↘0

E
[
ZT Ĩ (λZT )

]
= ∞,

since Ĩ is strictly decreasing with limy↘0 Ĩ(y) = ∞ (which was shown in the proof of Lemma 6.2).
If Di = R for at least one i ∈ {1, . . . , n}, we need to decompose the argument of the expectation
into its positive and negative part. Analogously, it follows

lim
λ→∞

H(λ) = lim
λ→∞

E
[
ZT Ĩ (λZT )

]
= inf

n⋃
i=1

Di,

since limy→∞ Ĩ(y) = inf
⋃n
j=1 Dj . Now the intermediate value theorem in combination with the
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strict monotonicity of H implies the existence of a unique value λ∗ ∈ (0,∞) with H(λ∗) = x0.

In summary,

X∗ =
n∑
i=1

n

(n+ θi) (1 − θ̂)
Ii

(
nλ∗ZT

βi(n+ θi)(1 − θ̂)

)

describes the unique optimal solution to (6.12).

Remark 6.7. The integrability assumption (6.13) is, for example, satisfied in the important special
cases of a lognormal state price density in combination with logarithmic, power or exponential
utility. In the logarithmic and power case, this observation follows easily using the lognormal
distribution of ZT . The integrability under exponential utility follows from Lemma A.1 in the
Appendix. ♢

6.3.2. Pareto optimal terminal wealth of the individual investors

The second step in the search for a Pareto optimum is to combine the optimal collective terminal
wealth X∗ from Lemma 6.6 and the bijections fi, i = 1, . . . , n, from Lemma 6.2. However, we
need to make sure that the budget constraint

E [ZT fi(X∗)] = xi0 (6.15)

is satisfied for each agent i ∈ {1, . . . , n}. It turns out that this is only the case if the weights
β1, . . . , βn are chosen correctly. The subsequent lemma provides the unique choice of weights
β1, . . . , βn subject to (6.15).

Lemma 6.8. Assume that the conditions of Lemmas 6.2 and 6.6 are satisfied. Moreover, let
λ∗ > 0 be the Lagrange multiplier chosen in Lemma 6.6, X∗ the associated optimal collective
wealth at time T , and fi, i = 1, . . . , n, the bijections from Lemma 6.2. Then the unique solution
β∗
i , i = 1, . . . , n, to the system of equations

E [ZT fi(X∗)] = xi0, i = 1, . . . , n,
n∑
i=1

βi = 1,

is given by

β∗
i =

hi
(
xi0 − θix̄

−i
0

)
∑n
j=1 hj

(
xj0 − θj x̄

−j
0

) .
The functions hi : Di → (0,∞) are defined as hi = 1

H−1
i

, where H−1
i denotes the inverse of

Hi : (0,∞) → Di, where

Hi(y) = E
[
ZT Ii

(
nyZT

(n+ θi)(1 − θ̂)

)]
, i = 1, . . . , n.

Proof. To begin with, it is important to understand that the n-dimensional system of equations
given by E [ZT fi(X∗)] = xi0, i = 1, . . . , n, is underdetermined. Assume that E [ZT fi(X∗)] = xi0 is
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satisfied for all i ∈ {1, . . . , n− 1}. Then it follows

n∑
i=1

xi0 = x0 = E [ZTX∗] = E
[
ZT

n∑
i=1

fi(X∗)
]

=
n−1∑
i=1

xi0 + E [ZT fn(X∗)]

and, thus, E [ZT fn(X∗)] = x0 −
∑n−1
i=1 x

i
0 = xn0 . Hence, solving the system of equations given by

E [ZT fi(X∗)] = xi0, i = 1, . . . , n, leaves one free variable which can then be chosen with respect to
the condition

∑n
i=1 βi = 1.

Now let X∗ = Ĩ(λ∗ZT ) be the collective optimal terminal wealth displayed in Lemma 6.6 and, for
i ∈ {1, . . . , n}, let fi be the bijection given in Lemma 6.2, i.e.,

fi(X∗) = θi
n+ θi

X∗ + n

n+ θi
Ii

(
nĨ−1(X∗)

βi (n+ θi) (1 − θ̂)

)

= θi
n+ θi

Ĩ(λ∗ZT ) + n

n+ θi
Ii

(
nλ∗ZT

βi (n+ θi) (1 − θ̂)

)
.

The Lagrange multiplier λ∗ > 0 was chosen in Lemma 6.6 subject to

E
[
ZT Ĩ (λ∗ZT )

]
= x0 =

n∑
i=1

xi0.

Hence, it follows

E [ZT fi(X∗)] = θi
n+ θi

x0 + n

n+ θi
E
[
ZT Ii

(
nλ∗ZT

βi (n+ θi) (1 − θ̂)

)]
!= xi0.

This can equivalently be written as

Hi

(
λ∗

βi

)
:= E

[
ZT Ii

(
nλ∗ZT

βi (n+ θi) (1 − θ̂)

)]
= xi0 − θix̄

−i
0 , (6.16)

where x̄−i
0 = 1

n

∑
j ̸=i x

j
0, i = 1, . . . , n. The proof of Lemma 6.6 provides that the functions Hi are

continuous, strictly decreasing, and satisfy

lim
y↘0

Hi(y) = ∞, lim
y→∞

Hi(y) = inf Di, i = 1, . . . , n.

Hence, Hi has an inverse H−1
i : Di → (0,∞) and we can equivalently rewrite (6.16) as

λ∗

βi
= H−1

i

(
xi0 − θix̄

−i
0
)

(6.17)

for all i ∈ {1, . . . , n}. Note that (6.17) only gives an implicit representation of βi since λ∗ depends
on β1, . . . , βn. Since the system of equations E [ZT fi(X∗)] = xi0, i = 1, . . . , n, is underdetermined,
we find β1, . . . , βn−1 in terms of βn and choose βn = 1 −

∑n−1
i=1 βi afterwards. As (6.17) needs to

hold for each i ∈ {1, . . . , n}, we deduce

βiH
−1
i

(
xi0 − θix̄

−i
0
)

= λ∗ = βnH
−1
n

(
xn0 − θnx̄

−n
0
)
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for all i ∈ {1, . . . , n}. Equivalently, βi is given by

βi = βn
H−1
n

(
xn0 − θnx̄

−n
0
)

H−1
i

(
xi0 − θix̄

−i
0
) , i = 1, . . . , n− 1, (6.18)

in terms of βn. Now the remaining condition
∑n
i=1 βi = 1 implies

βn = 1 −
n−1∑
i=1

βi = 1 − βnH
−1
n

(
xn0 − θnx̄

−n
0
) n−1∑
i=1

1
H−1
i

(
xi0 − θix̄

−i
0
) , i = 1, . . . , n. (6.19)

The functions H−1
i take strictly positive values. Thus, we can rewrite (6.19) as

βn =
(

1 +H−1
n

(
xn0 − θnx̄

−n
0
) n−1∑
i=1

1
H−1
i

(
xi0 − θix̄

−i
0
))−1

=
(
H−1
n

(
xn0 − θnx̄

−n
0
) n∑
i=1

1
H−1
i

(
xi0 − θix̄

−i
0
))−1

=
hn
(
xn0 − θnx̄

−n
0
)∑n

i=1 hi
(
xi0 − θix̄

−i
0
) ,

where we introduced hi := 1
H−1

i

, i = 1, . . . , n. Inserting βn into (6.18) yields

βi = βn
hi
(
xi0 − θix̄

−i
0

)
hn
(
xn0 − θnx̄

−n
0

) =
hi
(
xi0 − θix̄

−i
0

)
∑n
j=1 hj

(
xj0 − θj x̄

−j
0

) . (6.20)

Since βi ∈ (0, 1), i = 1, . . . , n, is obviously satisfied, the unique choice of βi, i = 1, . . . , n, with the
desired properties is given by (6.20).

If the weights βi, i = 1, . . . , n, are chosen with respect to Lemma 6.8, the budget constraints

E [ZT fi(X∗)] = xi0, i = 1, . . . , n,

are satisfied by construction. Hence, the following theorem gives a Pareto optimum for the
multi-objective optimization problem maxXi E

[
Ui
(
Xi − θiX̄

−i
)]
,

s.t. Xi is FT − measurable, E [ZTXi] ≤ xi0,
i = 1, . . . , n.

Theorem 6.9. Assume that the conditions of Lemmas 6.2 and 6.6 are satisfied. Moreover, let
λ∗ > 0 be the unique Lagrange multiplier chosen in the proof of Lemma 6.6 and β∗

i , i = 1, . . . , n,
the weights from Lemma 6.8. Then

X∗
i = n

n+ θi
Ii

(
nλ∗

iZT

(n+ θi) (1 − θ̂)

)
+ θi

(n+ θi) (1 − θ̂)

n∑
j=1

n

n+ θj
Ij

(
nλ∗

jZT

(n+ θj) (1 − θ̂)

)
, (6.21)

i = 1, . . . , n, is a Pareto optimum for (6.2). The constants λ∗
i , i = 1, . . . , n, are given by

λ∗
i = H−1

i

(
xi0 − θix̄

−i
0

)
for the function H−1

i introduced in Lemma 6.8.
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Proof. The assertion is a direct consequence of the statements of Lemmas 6.2, 6.6, and 6.8. For
the introduction of the constants λ∗

i , we used that (6.17) holds for all i ∈ {1, . . . , n}.

Remark 6.10. In Section 6.1, we explained that the search for the optimal terminal wealth instead
of the optimal investment strategy originates from the martingale approach, a commonly used
method to solve portfolio optimization problems (see, for example, Section 3.4 in Korn, 1997,
Kramkov and Schachermayer, 1999, or Subsection 2.3.3). The martingale approach consists of
two subproblems. The first one is the static optimization problem in which the optimal terminal
wealth X∗ is determined. The second one is the representation problem in which a replicating
strategy is determined, i.e., an admissible strategy φ for which X∗ = Xφ

T = x0 + (φ • S)T holds.
By x0 we denote the corresponding initial capital. The martingale approach is usually applied in
complete financial markets because in such markets, it can be guaranteed that the representation
problem is solvable. We do not explicitly assume here that the financial market is complete. Under
the additional assumption of completeness, we could ensure that the representation problem has
a solution. Of course, even without completeness it might be the case that the specific optimal
terminal wealth obtained in Theorem 6.9 is attainable by some admissible strategy. However, we
leave this problem open for future research. ♢

Example 6.11. Let us apply Theorem 6.9 to the two utility functions used in Example 6.4.

a) First, assume that all n agents use the natural logarithm as their utility function. We do not
have to make any further assumptions regarding the underlying financial market. The reason
is that the inverse of the first order derivative of the natural logarithm is given by I(x) = x−1,
so that the expected value E[ZT I(λZT )] = λ−1 can be determined directly without specifying
the distribution of ZT . Thus, Hi(y) = (n+θi)(1−θ̂)

ny = H−1
i (y) and therefore,

λ∗
i = (n+ θi)(1 − θ̂)

n(xi0 − θix̄
−i
0 )

, i = 1, . . . , n.

Inserting Ii(x) = x−1 and λ∗
i into (6.21) yields

X∗
i = xi0

ZT
, i = 1, . . . , n, and X∗ = x0

ZT
.

Hence, the optimal terminal wealth for the individual agents coincides with the optimal
terminal wealth for a single agent (without interaction) using the natural logarithm as her
utility function and the initial capital xi0, i = 1, . . . , n.

b) Now assume that all agents use exponential utility functions of the form Ui(x) = − exp(− 1
δi
x)

for risk tolerance parameters δi > 0, i = 1, . . . , n. Moreover, in order to determine the
Lagrange multipliers λ∗ and λ∗

1, . . . , λ
∗
n explicitly, we need to specify the underlying financial

market. We consider a one-dimensional Black-Scholes market with drift µ ∈ R, volatility
σ > 0, and interest rate r = 0. Hence, the discounted state price density is given by

ZT = exp
(

−µ

σ
WT − µ2

2σ2T

)
,
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where W is a one-dimensional Brownian motion (see, e.g., Eberlein and Kallsen, 2019,
Example 9.17). Theorem 6.9 implies

X∗
i = xi0 +

(
nδi
n+ θi

+ θiδ̂θ

(n+ θi)(1 − θ̂)

)(
µ

σ
WT + µ2

σ2T

)

and

X∗ = x0 + δ̂θ

1 − θ̂

(
µ

σ
WT + µ2

σ2T

)
,

where δ̂θ =
∑n
j=1

nδj

n+θj
. Note that we used the following auxiliary result to determine the

Lagrange multipliers: If X ∼ N (µ, σ2), then E[X · exp(X)] = (µ+ σ2) exp(µ+ σ2/2). The
auxiliary result can be shown through a direct calculation (see Lemma A.1 in the Appendix).

♢

6.4. Comparison with the Nash equilibrium from Section 3.2

In the previous chapters, we searched for Nash equilibria. In general, Nash equilibria are not
Pareto optimal (see, e.g., Carmona, 2016, p. 169). In the underlying situation however, the Nash
equilibrium determined in Chapter 3 coincides with the Pareto optimum given in Theorem 6.9. In
the following, we justify this observation.

Theorem 6.9 displays the optimal terminal wealth of agent i ∈ {1, . . . , n} in the Pareto optimum
as

X∗,P
i = n

n+ θi
Ii

(
nλ∗

iZT

(n+ θi) (1 − θ̂)

)
+ θi

(n+ θi) (1 − θ̂)

n∑
j=1

n

n+ θj
Ij

(
nλ∗

jZT

(n+ θj) (1 − θ̂)

)
,

where λ∗
i = H−1

i

(
xi0 − θix̄

−i
0

)
. The function H−1

i was defined in Lemma 6.8 as the inverse of Hi,
where

Hi(y) = E
[
ZT Ii

(
nyZT

(n+ θi) (1 − θ̂)

)]
, y ∈ (0,∞).

Now we compare X∗,P
i to the optimal terminal wealth X∗,N

i in the Nash equilibrium. Thus,
Theorem 3.2 implies

X∗,N
i = n

n+ θi
Y ∗
i + θi

(n+ θi)(1 − θ̂)

n∑
j=1

n

n+ θj
Y ∗
j ,

where Y ∗
i is the unique optimal solution to

 maxYi E [Ui(Yi)] ,

s.t. Yi is FT − measurable, E [ZTYi] ≤ x̃i0,

for x̃i0 = xi0 − θi
n

∑
j ̸=i x

j
0. Using standard arguments (see Kramkov and Schachermayer, 1999), Y ∗

i

is given by
Y ∗
i = Ii

(
G−1
i (x̃i0)ZT

)
,
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where G−1
i is defined as the inverse of Gi : (0,∞) → R given by

Gi(y) = E [ZT Ii(yZT )] = Hi

(
y

(
1 + θi

n

)
(1 − θ̂)

)
.

Thus,

X∗,N
i = n

n+ θi
Ii
(
G−1
i (x̃i0)ZT

)
+ θi

(n+ θi) (1 − θ̂)

n∑
j=1

n

n+ θj
Ij
(
G−1
j (x̃j0)ZT

)
.

Since1

G−1
i (·) = nH−1

i (·)
(n+ θi) (1 − θ̂)

,

it follows that X∗,N
i = X∗,P

i . Thus, the optimal terminal wealth in the Nash equilibrium and the
Pareto optimum are identical.

1For functions f and g with inverse functions f−1 and g−1, and a constant α ̸= 0 with f(x) = g(αx) for all x, it
follows that f−1 = g−1

α



CHAPTER 7

Nash equilibria for relative investors under
(non)linear price impact

In the classical mathematical finance literature, it is usually assumed that the underlying financial
markets are perfectly elastic, meaning that asset prices are not affected by trades (see, among
others, Merton, 1969, 1975; Black and Scholes, 1973). While this assumption is reasonable for
small investors, there is plenty of empirical evidence for large traders having a significant impact
on asset prices (see, for example, Bouchaud, 2009; Cronqvist and Fahlenbrach, 2009). Thus, there
is a rapidly growing strand of mathematical literature regarding financial markets without perfect
elasticity. Webster (2023) gives a historical overview of the literature on price impact dating back
to the seminal work of Kyle (1985). According to Webster (2023, p. 5), the general economic idea
behind price impact is that „trading of [a] stock cause[s] price moves for the stock that otherwise
would not have happened“. The literature lists several different explanations for the appearance
of price impact. Jarrow (1992, 1994) explains that the reason a large trader (i.e., an investor that
affects prices through her trades) is „large“ might either be significant wealth or that other traders
think she has private information. DeMarzo and Urošević (2006) argue that large investors are
often institutions or companies, but it is also possible for a private individual to be a large trader.
Bouchaud (2009) lists additional reasons for price impact and gives a short review on the different
possibilities for mathematical market models to incorporate price impact. A survey by Gatheral
and Schied (2013) gives a more detailed overview of the various price impact models covered by
the literature. In the following, we explain some features of these models, but our introduction
cannot claim to give an exhaustive overview of the diverse literature on price impact.

As stated by Schöneborn and Schied (2009), the literature on price impact follows two separate
paths. The first is to derive models that describe empirical findings for price impact appropriately.
The second line of research takes exogenously given models and solves classical mathematical
finance problems such as absence of arbitrage, asset pricing, and optimal trading. As we aim to
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find optimal investment strategies for risk-averse agents in a competitive price impact model, our
focus lies solely on the second line of research. For literature on the optimal model choice based
on empirical data, we refer to Schöneborn and Schied (2009) and references therein. Moreover,
Webster (2023) includes empirical data and compares it to different models from the mathematical
literature.

It is important to understand that there are two different types of price impact – temporary and
permanent price impact. Almgren and Chriss (2001) explain how temporary price impact is caused
by a large order being placed, leading to a temporary imbalance in supply. Hence, the asset price
deviates from equilibrium1 for a short period of time and then returns. In contrast, permanent
price impact describes a change in the equilibrium price which lasts over the whole time span
covered by the model. There is a wide variety of articles displaying models which contain both
temporary and permanent price impact (Almgren and Chriss, 2001; Schöneborn and Schied, 2009;
Horst and Naujokat, 2010; Schied and Zhang, 2017, 2019; Schied et al., 2017; Luo and Schied,
2019, to name a few). The model used throughout this chapter includes only permanent price
impact. Nevertheless, let us explain the difference between these two features and the resulting
interpretations.

In general, temporary price impact is unfavorable for the large trader as she has to pay the price
after it has been changed by her order. As Bank and Baum (2004) argue, the large trader „always
has to trade on the bad side“. Hence, in such market models, questions of optimal execution of
an order or optimal liquidation of a fixed position play an important role. Such problems have
been considered by, among others, He and Mamaysky (2005), Schied et al. (2017), Schied and
Zhang (2017, 2019), and Schöneborn and Schied (2009). Moreover, we should also mention the
popular linear price impact model by Obizhaeva and Wang (2013), in which the authors find the
optimal order execution strategy that minimizes execution cost. Finally, in the model of Bank
and Dolinsky (2023), the large trader has additional information on the course of the future stock
price. Specifically, they introduce price impact as a penalty for the large trader in order to exclude
arbitrage strategies arising from the additional information available to the trader.

For permanent price impact, it is generally not possible to tell whether or not the price impact is
beneficial for the large trader. In this case, it depends on a particular feature of the model. If
the market is constructed such that prices change immediately and the large investor trades on
the bad side of the price, permanent price impact admits the same interpretation as temporary
price impact and can be considered a disadvantage for the large trader. This is often the case
if the stock price is affected by the large trader’s order directly through some reaction function
(see, for example, Bank and Baum, 2004; Jarrow, 1992, 1994). In these models, so-called market
manipulation strategies are often of interest. A market manipulation strategy is an arbitrage
strategy with respect to real wealth instead of paper wealth, i.e., the amount of money attained
after liquidating the current position (Jarrow, 1992, 1994). Identifying under what conditions such
strategies do (not) exist is a central topic in the literature on price impact. If prices do not change
immediately, the large trader could use her impact to her own benefit. In such models, finding
criteria for the absence of arbitrage portfolios is of significant importance. Cvitanić and Ma (1996)

1A financial market is in equilibrium if market-clearing is realized. That is, if the supply and demand for assets in
the market coincide (see, e.g., Yan, 2018, p. 47).
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and Cuoco and Cvitanić (1998) defined a market model with indirect price impact, where the
large trader’s orders only affect the model parameters, i.e., the interest rate of the riskless asset,
and the drift and volatility process of the risky stocks. A special case of their model was later
used by Kraft and Kühn (2011). Eksi and Ku (2017) and Ku and Zhang (2018) described similar
models where the large trader only affects the drift process of the risky asset. The model specified
in Section 7.1 provides a special case of the aforementioned models. A different approach to define
an indirect price impact model that reacts slowly to the large trader’s orders was given by Busch
et al. (2013). There, the large trader only affects the regime switching intensity of the risky asset’s
price process. Eksi and Ku (2017) argue that in models where price impact is beneficial for the
large trader, it is counterintuitive to pose questions of optimal order execution. Thus, typical
issues considered in such models are the pricing of asset claims as well as optimal investment and
consumption over a fixed time interval.

Although this feature is not relevant to the analysis in this thesis, let us mention a third type of
price impact, namely, transient price impact. Under transient price impact, the effect of a large
order is strongest immediately after the order has been placed and vanishes over time. Common
ways to model this feature are exponential decay as used by Schied et al. (2017), or a more general
decay kernel as used by Luo and Schied (2019) as well as Schied and Zhang (2019).

Throughout this thesis, we are interested in problems of optimal portfolio choice for strategically
interacting agents. Competition between agents can be seen as an effect of price impact if the
agents are aware of their own as well as the others’ impact on asset prices. Problems of strategically
interacting large traders, often called market impact games, have been considered by Carlin et al.
(2007), Horst and Naujokat (2010), Schöneborn and Schied (2009), Schied et al. (2017), and
Schied and Zhang (2019). In each of these papers, a finite number of agents aims to minimize
liquidation/execution cost in a competitive environment. Risk-averse investors competing to
maximize expected utility of terminal wealth have, for instance, been considered by Curatola
(2019, 2022) and Schied and Zhang (2017). In the aforementioned articles, the authors search for
open-loop Nash equilibria for agents interacting strategically via price impact. In contrast, Micheli
et al. (2021) find closed-loop Nash equilibria for strategic agents who cumulatively affect the price
process of a risky stock. They also elaborate the difference between open-loop and closed-loop
Nash equilibria (see also Section 2.4).

To the best of our knowledge, the existing literature only considers strategic interaction between
competing investors caused by either relative concerns included into the objective function or
by their joint impact on asset prices. In the current chapter, we combine these features in order
to display both the effect of large investments on the stock price (caused by a large number of
small investors) and the investors’ desire to outperform their opponents. Thus, we find the unique
solution to a multi-objective portfolio optimization problem, similar to the one introduced in
Chapter 3, in a financial market where the n agents’ investment affects the stock price dynamics
linearly. Our model provides a generalization of the financial market used by Kraft and Kühn
(2011) by including multiple risky assets instead of just one. First, we determine the unique
constant Nash equilibrium if investors use exponential utility functions. Afterwards, we study
the influence of the parameter α, which measures the sensitivity of the stock price to the agents’
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investment, on the Nash equilibrium and the stock price process. Furthermore, as empirical
data suggests that price impact is not linear, we also consider the nonlinear case. We prove
that, as long as the price impact grows sublinearly, the emerging best response problems are
solvable. If the price impact grows superlinearly, there is no optimal solution to these best response
problems. Finally, we switch from exponential to power utility and introduce a different type of
objective function including the multiplicative relative performance metric (3.2). This criterion
was previously used by Basak and Makarov (2015) and Lacker and Zariphopoulou (2019), among
others. In that case, using the linear price impact model again, we are able to find the unique
constant Nash equilibrium.

7.1. Introduction of the price impact market

Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space and T > 0 a finite time horizon. Further,
let W = (W1, . . . ,Wd) be a d-dimensional Brownian motion. The underlying financial market
contains a riskless bond, which is for simplicity assumed to be identical to 1. Moreover, there are
d stocks. Our goal is to define their price processes as the solution to the following stochastic
differential equation

dSk(t) = Sk(t)
(

(µk(t) + αkπ̄k(t)) dt+
d∑
ℓ=1

σkℓ(t)dWℓ(t)
)
, Sk(0) = 1. (7.1)

The expression π̄k(t) = 1
n

∑n
j=1 π

j
k(t) describes the arithmetic mean of the n agents investment

into the k-th stock at time t ∈ [0, T ].

Before we discuss the requirements we need to impose on the components of (7.1), let us discuss
the structure of the stock price and its interpretations in general. First, we notice that the price
impact of the n agents is homogeneous in the sense that the weight αk

n of the investment into
the k-th stock is the same for each of the n agents. This feature of our model is based on the
idea that the n agents are small if we consider them by themselves. However, as n is supposed
to be large, we can treat the group of n agents like one large agent. Hence, it is reasonable to
assume that the influence of each agent’s investment on the stock price is assigned the same weight.
Moreover, it makes the model mathematically more tractable. Second, we assume that the agents’
investment only affects the drift and not the volatility of the stock price. Cuoco and Cvitanić
(1998) give a detailed explanation of this assumption. To summarize, they base the assumption on
two different factors. On one hand, they argue that market equilibrium conditions affect the stock
price as a whole, and not the drift and volatility processes separately. Hence, one could fix the
volatility matrix and only manipulate the drift in order to clear the market. On the other hand,
they refer to empirical data in which the volatility is independent of the quantities invested into
the asset. A third feature of our model is the affine linear structure of the drift process, which
was also used by Kraft and Kühn (2011). They argue that, additionally to resulting in a more
tractable model, the affine linear structure is a typical outcome of equilibrium models and hence, a
reasonable assumption. Moreover, they explain that the affine linear structure can be interpreted
as a first-order approximation of a more general price impact function.
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Now we proceed with the conditions we need to impose on the processes contained in the stock
price dynamics (7.1). The conditions are taken from Section 1.1 in Karatzas and Shreve (1998).
The drift process µ = (µ1, . . . , µd) is an (Ft)-progressively measurable, d-dimensional stochastic
process satisfying

P
(∫ T

0
∥µ(t)∥dt < ∞

)
= 1. (7.2)

The volatility process σ = (σkℓ)1≤k,ℓ≤d is an Rd×d-valued stochastic process such that σkℓ is
(Ft)-progressively measurable with

P
(∫ T

0
σkℓ(t)2dt < ∞

)
= 1

for all k, ℓ ∈ {1, . . . , d}. Moreover, we assume that σ(t) is regular P-almost surely for all t ∈ [0, T ].
The expression π̄k(t) denotes the arithmetic mean of the investment of n agents into the k-th
stock at time t ∈ [0, T ], i.e.,

π̄k(t) = 1
n

n∑
i=1

πik(t),

where πik(t) describes either the amount or the fraction of wealth agent i invests into the k-th
stock at time t ∈ [0, T ].

Finally, αk ∈ R, k = 1, . . . , d, are constants that describe the impact of the n agents’ investment
into the k-th stock. Hence, we refer to them as price impact parameters. Some authors argue that
αk should take both positive and negative values due to the fact that (large) investors may have
both positive and negative impact on stock returns (see, e.g., Cronqvist and Fahlenbrach, 2009;
Curatola, 2019). On the other hand, Bank and Baum (2004) prove that stock prices need to be
increasing in terms of a large trader’s investment. Otherwise, it would be possible to construct
some „In & Out“ arbitrage strategy. However, such arbitrage strategies arise due to the direct
change in the share price in their model and are therefore not an issue in our case. Moreover,
since the optimization problems considered in the linear price impact market have finite optimal
solutions, our market is free of arbitrage. Hence, we allow for general αk ∈ R, k = 1, . . . , d. The
constants α1, . . . , αn are collected in the diagonal matrix

A := diag (α1, . . . , αd) ,

which will be used later on.

Before we can use the stock price processes (7.1), we need to pose some assumptions on the
investment processes πi, i = 1, . . . , n, of the n investors. The assumptions are again based on the
financial market in Section 1.1 of Karatzas and Shreve (1998). Since the drift in (7.1) needs to
satisfy (7.2), we obtain the condition

P
(∫ T

0
∥µ(t) +Aπ̄t∥dt < ∞

)
= 1.
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However, using the triangle inequality, it suffices2 to request that the strategies πi satisfy

P
(∫ T

0

∥∥πi(t)∥∥2dt < ∞
)

= 1, i = 1, . . . , n,

since µ satisfies (7.2) and A is a deterministic, constant diagonal matrix.

Regarding the investment strategies, Karatzas and Shreve (1998) request, additional to progressive
measurability, the following conditions for a portfolio process π

P
(∫ T

0

∣∣∣π(t)⊤µ(t)
∣∣∣dt < ∞

)
= 1, (7.3)

P
(∫ T

0

∥∥∥σ(t)⊤π(t)
∥∥∥2

dt < ∞
)

= 1. (7.4)

The second assumption (7.4) is the same in our setting, whereas the first assumption (7.3) translates
to

P
(∫ T

0

∣∣∣πi(t)⊤ (µ(t) +Aπ̄t)
∣∣∣ dt < ∞

)
= 1.

Using the triangle and Cauchy-Schwarz inequality, we can request instead that

P
(∫ T

0

∣∣∣µ(t)⊤πi(t)
∣∣∣ dt < ∞

)
= 1,

P
(∫ T

0

∥∥∥πi(t)∥∥∥2
dt < ∞

)
= 1

hold for all i ∈ {1, . . . , n}. To summarize, the sufficient integrability assumptions for a strategy πi

are

P
(∫ T

0

∥∥πi(t)∥∥2 dt < ∞
)

= 1, (7.5)

P
(∫ T

0

∣∣∣µ(t)⊤πi(t)
∣∣∣ dt < ∞

)
= 1, (7.6)

P
(∫ T

0

∥∥∥σ(t)⊤πi(t)
∥∥∥2

dt < ∞
)

= 1. (7.7)

The set A of admissible strategies is, thus, given by

A :=
{
π :π is an Rd-valued, (Ft)t∈[0,T ]-progressively measurable process that satisfies

the integrability conditions (7.5) − (7.7)
}
. (7.8)

Remark 7.1. If µ and σ are constant, the set A is simply given by the set of Rd-valued, progressively
measurable processes π such that P

(∫ T
0 ∥π(t)∥2 dt < ∞

)
= 1. ♢

2Note that it would be sufficient to assume that P(
∫ T

0 ∥πi(t)∥dt < ∞) = 1, but since we need the stronger quadratic
assumption later, we already pose it at this point.
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For admissible strategies πj , j = 1, . . . , n, we denote the wealth process of investor i ∈ {1, . . . , n} by
(Xi,πi

t )t∈[0,T ]. It should be noted that Xi,πi depends on all n strategies π1, . . . , πn. The expression
πjk(t) will be interpreted as either the amount or the fraction of wealth invested by investor j into
stock k at time t ∈ [0, T ]. This depends on the particular example since, for CARA utilities, it
is more convenient to optimize the invested amount, while the invested fraction works better in
combination with CRRA utility functions.

Now let xi0 denote the initial capital of agent i ∈ {1, . . . , n}. If πik(t) describes the amount investor
i invests into stock k at time t, the associated wealth process is given by

Xi,πi

t =xi0 +
d∑

k=1

∫ t

0
πik(s)

(
(µk(s) + αkπ̄k(s)) ds+

d∑
ℓ=1

σkℓ(s)dWℓ(s)
)

=xi0 +
∫ t

0
πi(s)⊤((µ(s) +Aπ̄(s))ds+ σdW (s)

)
, t ∈ [0, T ].

In contrast, if πik(t) describes the fraction of investor i’s wealth invested into stock k at time t,
the wealth process is given by

Xi,πi

t =xi0 exp
(∫ t

0

d∑
k=1

πik(s)
(
µk(s) + αkπ̄k(s) − 1

2

d∑
ℓ,p=1

πip(s)σkℓ(s)σpℓ(s)
)

ds

+
∫ t

0

d∑
k,ℓ=1

πik(s)σkℓ(s)dWℓ(s)
)

= xi0 exp
(∫ t

0
πi(s)⊤

(
µ(s) +Aπ̄(s) − 1

2σ(s)σ(s)⊤πi(s)
)

ds+
∫ t

0
πi(s)⊤σ(s)dW (s)

)
, t ∈ [0, T ].

7.2. Relative performance problem under general utility

As explained at the beginning of this chapter, our goal is to solve a problem similar to (3.3)
in the previously described price impact market. In the following, we describe a method to
find Nash equilibria in terms of invested amounts for objective functions including the additive
relative performance metric. Hence, our goal is to find all Nash equilibria to the multi-objective
optimization problem

supπi∈A E
[
Ui
(
Xi,πi

T − θi
n

∑
j ̸=iX

j,πj

T

)]
,

s.t. Xi,πi

T = xi0 +
∫ T

0
πi(t)⊤ ((µ(t) +Aπ̄(t)) dt+ σ(t)dW (t)) ,

(7.9)

i = 1, . . . , n, where Ui : Di → R describes a general utility function defined on some domain
Di ∈ {(0,∞),R} (see Definition 2.11). Since the difference in the argument of Ui may become
negative, we extend Ui to the whole real line by setting Ui(x) = −∞ if x /∈ Di. Obviously, this
does not change the optimal value in (7.9). Nevertheless, we assume that xi0 − θi

n

∑
j ̸=i x

j
0 ∈ Di for

all i ∈ {1, . . . , n} (see also Remark 3.1).

In order to solve (7.9), we choose some investor i ∈ {1, . . . , n} and assume that the strategies πj ,
j ̸= i, of the other agents are given. Under these conditions, we can rewrite the optimization
problem (7.9) as a classical portfolio optimization problem in a different price impact market.
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Afterwards, Nash equilibria can be determined using the solution to the classical problem. First,
define the process

(
Y i,φi

t

)
t∈[0,T ] by

Y i,φi

t = Xi,πi

t − θi
n

∑
j ̸=i

Xj,πj

t , t ∈ [0, T ], i = 1, . . . , n, (7.10)

where we further defined the strategy φi by

φik(t) = πik(t) − θi
n

∑
j ̸=i

πjk(t), t ∈ [0, T ], k = 1, . . . , d, i = 1, . . . , n.

Note that φi is admissible since the conditions imposed in the definition of A are preserved under
linear combinations of elements in A. Then we can write Y i,φi

T as

Y i,φi

T = Xi,πi

T − θi
n

∑
j ̸=i

Xj,πj

T

= xi0 − θi
n

∑
j ̸=i

xj0︸ ︷︷ ︸
=x̃i

0

+
d∑

k=1

∫ T

0

(
πik(t) − θi

n

∑
j ̸=i

πjk(t)︸ ︷︷ ︸
=φi

k
(t)

)(
(µk(t) + αkπ̄k(t)) dt+

d∑
ℓ=1

σkℓ(t)dWℓ(t)
)

=: x̃i0 +
d∑

k=1

∫ T

0
φik(t)

((
µk(t) + αk

n
φik(t) + αk

n+ θi
n

π̄−i
k (t)

)
dt+

d∑
ℓ=1

σkℓ(t)dWℓ(t)
)

=: x̃i0 +
d∑

k=1

∫ T

0
φik(t)

((
µ̃−i
k (t) + αk

n
φik(t)

)
dt+

d∑
ℓ=1

σkℓ(t)dWℓ(t)
)
,

where we introduced the following notation

π̄−i
k (t) := 1

n

∑
j ̸=i

πjk(t), µ̃−i
k (t) := µk(t) + αk

n+ θi
n

π̄−i
k (t).

Hence, in order to solve the best response problem associated to (7.9), we can solve the single
investor portfolio optimization problem

supφi∈A E
[
Ui
(
Y i,φi

T

)]
,

s.t. Y i,φi

T = x̃i0 +
∫ T

0 φi(t)⊤
((
µ̃−i(t) + 1

nAφ
i(t)

)
dt+ σ(t)dW (t)

)
,

(7.11)

in a different price impact market. Now assume that φi,∗ = φi,∗(µ̃−i) is the unique optimal solution
to (7.11) depending on the drift process µ̃−i. Then the optimal solution to the best response
problem with respect to (7.9) is uniquely determined by

πik = φi,∗k (µ̃−i) + θi
n

∑
j ̸=i

πjk, k = 1, . . . , d, i = 1, . . . , n. (7.12)

Note that we can find a unique Nash equilibrium if, and only if, problem (7.11) and the system of
equations (7.12) are uniquely solvable.
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7.3. Optimization under exponential utility

Given the situation from Sections 7.1 and 7.2, suppose that the n investors use exponential utility
functions of the form

Ui : R → R, x 7→ − exp
(
−δ−1

i x
)

for parameters δi > 0, i = 1, . . . , n. Moreover, let the market parameters σ and µ be constant.

In order to solve the auxiliary problem (7.11), we need to restrict ourselves to constant Nash
equilibria. Hence, for the best response problem of agent i, we assume that the strategies of the
other agents j ̸= i are constant while we still need to allow agent i to consider any admissible
strategy in A (see Remark 2.14). If the optimal strategy of agent i turns out to be constant as
well, we found a constant Nash equilibrium.

Lacker and Zariphopoulou (2019) give a justification of the restriction to constant strategies. They
argue that the assumption is natural in the case of lognormal stock prices in combination with
CARA or CRRA utilities. Indeed, Merton (1969) considered lognormal stock prices and obtained
constant expressions for the optimally invested amount and fraction in the cases of CARA and
CRRA utility, respectively. Thus, constant strategies are somehow expected and the restriction to
such strategies is not too severe.

7.3.1. Unique constant Nash equilibrium

Let us now search for constant Nash equilibria for (7.9). Each agent i aims to solve an optimization
problem of the form

supπi∈A E
[
− exp

(
− 1
δi

(
Xi,πi

T − θi
n

∑
j ̸=iX

j,πj

T

))]
,

s.t. Xi,πi

T = xi0 +
∫ T

0
πi(t)⊤ ((µ+Aπ̄t) dt+ σdW (t)) ,

(7.13)

where δi > 0 and θi ∈ [0, 1] denote the risk tolerance parameter and competition weight of
agent i ∈ {1, . . . , n}, respectively. Then the following theorem displays the unique constant Nash
equilibrium for (7.13).

Theorem 7.2. Assume that the following assumptions hold

a) σσ⊤ − 2δi
n A is positive-definite for all i ∈ {1, . . . , n},

b) (1 − θ̂)Id −
∑n
j=1

δj

n+θj

(
σσ⊤ − δj

nA
)−1

A is regular,

where θ̂ =
∑n
i=1

θi
n+θi

< 1 (see Lemma 3.3). Then the unique constant Nash equilibrium to (7.13)
is given by

πi,∗ = nδi
n+ θi

(
σσ⊤ − δi

n
A

)−1
µ +

(
δi

n+ θi

(
σσ⊤ − δi

n
A

)−1
A+ θi

n+ θi
Id

)
(7.14)

·
(

(1 − θ̂)Id −
n∑
j=1

δj
n+ θj

(
σσ⊤ − δj

n
A

)−1
A

)−1 n∑
j=1

nδj
n+ θj

(
σσ⊤ − δj

n
A

)−1
µ

for i ∈ {1, . . . , n}.
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Remark 7.3. The first condition of the theorem implies that the matrix σσ⊤ − δi
nA is also positive-

definite since
n

δi
σσ⊤ −A >L

n

2δi
σσ⊤ −A >L 0,

where >L describes the Loewner order for Hermitian matrices (see, for example, Horn and Johnson,
2013, Section 7.7). The first inequality is valid since σ was assumed to be regular and hence, σσ⊤

is positive-definite. The second inequality is equivalent to condition a) from Theorem 7.2. ♢

The following example provides a class of matrices that satisfy the conditions of Theorem 7.2.
Roughly speaking, the conditions of Theorem 7.2 state that the price impact parameters αk cannot
be too large. Similar requirements were, for example, used by Kraft and Kühn (2011).

Example 7.4. In the previous theorem, assume that A = α · Id for some constant α ∈ R. Let
λ1, . . . , λd be the eigenvalues of σσ⊤ which are strictly positive since σσ⊤ is positive-definite. Then
the eigenvalues of the matrix in condition a) of Theorem 7.2 are given by λℓ − 2δi

n α, ℓ = 1, . . . , d
(Bernstein, 2009, Proposition 4.4.5). Hence, condition a) is satisfied if, and only if,

α <
nλmin
2δmax

, (7.15)

where λmin := min{λ1, . . . , λd} and δmax := max{δ1, . . . , δn}. If n is sufficiently large, (7.15) is
satisfied and the matrix in a) is positive-definite.

Now we need to consider condition b) of Theorem 7.2. If α is chosen with respect to (7.15), the
matrix

n∑
j=1

δj
n+ θj

(
σσ⊤ − δj

n
A

)−1

is positive-definite (see Remark 7.3). Hence, its eigenvalues µ1, . . . , µd are strictly positive.
Moreover, using A = α · Id and Proposition 4.4.5 in Bernstein (2009), the eigenvalues of the matrix
in b) are given by

−αµℓ + 1 − θ̂, ℓ = 1, . . . , d.

We can now ensure that the conditions of the theorem are satisfied if we choose α sufficiently
small (with respect to (7.15)) and so that α ̸= 1−θ̂

µℓ
for all ℓ = 1, . . . , d. ♢

Now we proceed with the proof of Theorem 7.2 using the auxiliary problem (7.11).

Proof (Theorem 7.2). We solve the auxiliary problem (7.11) for exponential utility to find a
constant Nash equilibrium for the multi-objective optimization problem (7.13). Therefore, let
i ∈ {1, . . . , n} be arbitrary but fixed and assume that the strategies πj of the investors j ̸= i are
fixed and constant. Then we determine the optimal strategy for investor i, which turns out to
be constant as well. Afterwards, we can solve a system of linear equations to determine a Nash
equilibrium for the original problem.

Since the strategies πj , j ̸= i, are constant, the drift µ̃−i is also constant. The process Y i,φi from
(7.10) is therefore given by

Y i,φi

t = x̃i0 +
∫ t

0
φi(s)⊤

((
µ̃−i + 1

n
Aφi(s)

)
ds+ σdW (s)

)
, t ∈ [0, T ]. (7.16)
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In order to derive an HJB equation, we introduce the value functions

J(t, y;φi) := Et,y
[
− exp

(
− 1
δi
Y i,φi

T

)]
, J(t, y) := sup

φi∈A
J(t, y;φi),

t ∈ [0, T ], y ∈ R. By Et,y we denote the conditional expectation given that Y i,φi

t = y. Since the
parameters of the adapted price impact market are constant, we can use the Bellman principle
(see, for example, Equation (3.20) in Pham, 2009)

J(t, y) = sup
φi∈A

Et,y
[
J
(
t′, Y i,φi

t′

)]
, (7.17)

that holds for each t ∈ [0, T ] and t′ ∈ [t, T ].

Now let t ≤ t′ ≤ T and let Jt, Jy, Jyy denote the first and second order partial derivatives of J in
terms of t and y. We assume here that J ∈ C1,2([0, T ] × R) for the heuristic derivation of the HJB
equation. Using the Itô-Doeblin formula (Theorem 2.1) on the interval [t, t′] in combination with
Lemma 2.2 implies

J
(
t′, Y i,φi

t′

)
= J

(
t, Y i,φi

t

)
+
∫ t′

t
Jt
(
s, Y i,φi

s

)
ds+

∫ t′

t
Jy
(
s, Y i,φi

s

)
dY i,φi

s + 1
2

∫ t′

t
Jyy
(
s, Y i,φi

s

)
d
〈
Y i,φi〉

s

= J
(
t, Y i,φi

t

)
+
∫ t′

t
Jt
(
s, Y i,φi

s

)
ds+

∫ t′

t
Jy
(
s, Y i,φi

s

)
φi(s)⊤

(
µ̃−i + 1

n
Aφi(s)

)
ds

+
∫ t′

t
Jy
(
s, Y i,φi

s

)
φi(s)⊤σdW (s) + 1

2

∫ t′

t
Jyy
(
s, Y i,φi

s

)
φi(s)⊤σσ⊤φi(s) ds. (7.18)

Now we can apply the Bellman principle (7.17), divide by t′ − t, and take the limit t′ → t to obtain
the following HJB equation

0 = Gt + sup
φi∈Rd

{
Gy · (φi)⊤

(
µ̃−i + 1

n
Aφi

)
+ 1

2Gyy · (φi)⊤σσ⊤φi
}
, (7.19)

with terminal condition G(T, y) = − exp
(
− 1
δi
y
)
, y ∈ R. We omitted the arguments of the partial

derivatives of G to simplify notation. In the previous step, we assumed that the stochastic integral
in (7.18) is a martingale and hence, the conditional expectation vanishes. Further, we assumed
that the limit t′ → t and the conditional expectation can be interchanged. These assumptions are
no limitation since we only use them in the heuristic derivation of the HJB equation. Lemma B.1
in the Appendix verifies that a solution to the HJB equation does, in fact, provide a unique optimal
portfolio strategy for (7.11). In the proof of Lemma B.1, it is also shown that the stochastic
integral in (7.18) is a martingale.

Let h(φi) describe the argument inside the supremum, i.e.,

h(φi) = Gy · (φi)⊤µ̃−i + (φi)⊤
( 1
n
GyA+ 1

2Gyyσσ
⊤
)
φi.
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To find the maximizer of h, we determine the gradient. Thus,

∇h(φi) = Gyµ̃
−i + 2

( 1
n
GyA+ 1

2Gyyσσ
⊤
)
φi

!= 0.

Solving the previous equation for φi would yield a possible maximizer of h. However, since we
cannot ensure that the matrix 1

nGyA+ 1
2Gyyσσ

⊤ is regular, we first insert an ansatz for G and
then solve for φi using the assumptions of the theorem. Let

G(t, y) = f(t)Ũ(y) := f(t) ·
(

− exp
(

− 1
δi
y

))
, t ∈ [0, T ], y ∈ R,

for some continuously differentiable function f : [0, T ] → (0,∞) with f(T ) = 1. Then G is
sufficiently differentiable, i.e., G ∈ C1,2([0, T ],R), and the partial derivatives of G with respect to t
and y are given by

Gt(t, y) = f ′(t)Ũ(y), Gy(t, y) = − 1
δi

· f(t)Ũ(y), Gyy(t, y) = 1
δ2
i

· f(t)Ũ(y).

Thus, ∇h simplifies to

∇h(φi) = f(t)Ũ(y)
δ2
i

(
−δiµ̃−i +

(
σσ⊤ − 2δi

n
A

)
φi
)

!= 0,

which we can equivalently rewrite as(
σσ⊤ − 2δi

n
A

)
φi,∗ :=

(
σσ⊤ − 2δi

n
A

)
φi = δiµ̃

−i, (7.20)

since f(t)Ũ(y) ̸= 0 for all (t, y) ∈ [0, T ] × R. Moreover, the Hessian matrix of h is given by

Hh(φi) = f(t)Ũ(y)
δ2
i

(
σσ⊤ − 2δi

n
A

)
,

which is negative-definite since f > 0, Ũ < 0, and σσ⊤ − 2δi
n A is positive-definite by assumption.

Hence, φi,∗ from (7.20) is the unique maximizer of h. Further, we can solve (7.20) for φi since
σσ⊤ − 2δi

n A is regular by assumption.

It remains to show that the ansatz for G solves (7.19). Inserting the ansatz into the definition of
h implies (where we omitted the arguments of f and Ũ to simplify notation)

h(φ) = fŨ

δ2
i

(1
2φ

⊤
(
σσ⊤ − 2δi

n
A

)
φ− δiφ

⊤µ̃−i
)
.

Therefore, h(φi,∗) is given by

h(φi,∗) = −1
2fŨ ·

(
µ̃−i)⊤ (σσ⊤ − 2δi

n
A

)−1
µ̃−i,

where we used that σσ⊤ − 2δi
n A is symmetric. Now we can finally insert the ansatz for G into the
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HJB equation (7.19), which yields

0 = f ′(t)Ũ(y) − 1
2f(t)Ũ(y)

(
µ̃−i)⊤ (σσ⊤ − 2δi

n
A

)−1
µ̃−i

=: Ũ(y)
(
f ′(t) − ρf(t)

)
(7.21)

with terminal condition f(T ) = 1, where ρ = 1
2
(
µ̃−i)⊤ (σσ⊤ − 2δi

n A
)−1

µ̃−i. Since Ũ(y) ̸= 0 for
all y ∈ R, f needs to solve

f ′(t) = ρf(t), t ∈ [0, T ], f(T ) = 1.

The unique solution to this ordinary differential equation is given by

f(t) = e−ρ(T−t), t ∈ [0, T ].

Hence, the function G : [0, T ] × R → R with G(t, y) = − exp
(
− 1
δi
y − ρ(T − t)

)
solves (7.19) and

φi,∗ = δi

(
σσ⊤ − 2δi

n
A

)−1
µ̃−i

is a candidate for the optimal solution to the auxiliary problem. Lemma B.1 in the Appendix
verifies that φi,∗ is, in fact, an optimal solution to the auxiliary problem. Moreover, Lemma B.1
also states that the above solution G and the value function J are equal, which also implies that
the solution φi,∗ is unique (up to modifications).

Now we can reinsert the definition of µ̃−i and φi,∗ to determine the Nash equilibrium. Recall that

µ̃−i = µ+ n+ θi
n2 A

∑
j ̸=i

πj , φi = πi − θi
n

∑
j ̸=i

πj .

Therefore, we obtain the system of linear equations

(
σσ⊤ − 2δi

n
A

)
·
(
πi − θi

n

∑
j ̸=i

πj
)

= δiµ̃
−i = δiµ+ n+ θi

n
· δi
n
A
∑
j ̸=i

πj ,

which can be equivalently rewritten as(
σσ⊤ − 2δi

n
A

)
πi = δiµ+

(
δi
n
A+ θi

n

(
σσ⊤ − δi

n
A

))∑
j ̸=i

πj . (7.22)

In order to solve (7.22), we add
(
δi
nA+ θi

n

(
σσ⊤ − δi

nA
))
πi on both sides to obtain

n+ θi
n

(
σσ⊤ − δi

n
A

)
πi = δiµ+

(
δi
n
A+ θi

n

(
σσ⊤ − δi

n
A

)) n∑
j=1

πj .

Since the matrix σσ⊤ − δi
nA is regular by assumption and the arguments in Remark 7.3, it follows
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that

πi = nδi
n+ θi

(
σσ⊤ − δi

n
A

)−1
µ+ n

n+ θi

(
σσ⊤ − δi

n
A

)−1 (δi
n
A+ θi

n

(
σσ⊤ − δi

n
A

)) n∑
j=1

πj

= nδi
n+ θi

(
σσ⊤ − δi

n
A

)−1
µ+

(
δi

n+ θi

(
σσ⊤ − δi

n
A

)−1
A+ θi

n+ θi
Id

)
n∑
j=1

πj . (7.23)

Taking the sum over all i ∈ {1, . . . , n} on both sides yields

n∑
j=1

πj =
n∑
j=1

nδj
n+ θj

(
σσ⊤ − δj

n
A

)−1
µ+

 n∑
j=1

δj
n+ θj

(
σσ⊤ − δj

n
A

)−1
A+ θ̂ · Id

 n∑
j=1

πj .

This can equivalently be rewritten as(
(1 − θ̂)Id −

n∑
j=1

δj
n+ θj

(
σσ⊤ − δj

n
A

)−1
A

)
n∑
j=1

πj =
n∑
j=1

nδj
n+ θj

(
σσ⊤ − δj

n
A

)−1
µ.

The matrix on the left-hand side is regular by assumption, so we can further deduce

n∑
j=1

πj =
(

(1 − θ̂)Id −
n∑
j=1

δj
n+ θj

(
σσ⊤ − δj

n
A

)−1
A

)−1 n∑
j=1

nδj
n+ θj

(
σσ⊤ − δj

n
A

)−1
µ.

Finally, we insert
∑n
j=1 π

j into (7.23) to obtain the asserted constant Nash equilibrium given by

πi,∗ = nδi
n+ θi

(
σσ⊤ − δi

n
A

)−1
µ+

(
δi

n+ θi

(
σσ⊤ − δi

n
A

)−1
A+ θi

n+ θi
Id

)

·
(

(1 − θ̂)Id −
n∑
j=1

δj
n+ θj

(
σσ⊤ − δj

n
A

)−1
A

)−1 n∑
j=1

nδj
n+ θj

(
σσ⊤ − δj

n
A

)−1
µ.

Remark 7.5. a) In the previous proof, we used condition a) of Theorem 7.2 to ensure that the
local extremum of the function h is, in fact, a maximum. Roughly speaking, condition a)
prevents the price impact of the agents from becoming too large. Otherwise, they might be
able to exploit their price impact by investing an infinite amount into the stock and gaining an
infinite amount of utility. A similar assumption has also been used by Kraft and Kühn (2011).
They explain that without the assumption that the price impact parameter is sufficiently small,
„the demand for stocks is infinite“.

b) If assumption b) in Theorem 7.2 is not satisfied, there is no constant Nash equilibrium (in
most cases) since, in general, the system of linear equations (7.22) is not solvable without
condition b). ♢

Remark 7.6. Inserting A = 0 into the Nash equilibrium (7.14) yields

πi,∗ =

 nδi
n+ θi

+ θi

(n+ θi)(1 − θ̂)

n∑
j=1

nδj
n+ θj

(σσ⊤
)−1

µ,
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which is exactly the solution to the problem without price impact (see Subsection 4.2.1). This
does not come as a surprise since the matrix A contains the coefficients αk, which model the
impact of the arithmetic mean of the n agents’ investment on the price process of the k-th stock,
k = 1, . . . , d. Moreover, if we let A be arbitrary and set θi = 0, we can deduce the optimal solution
to the optimization problem without relative concerns. In this case, interaction is caused solely by
the cumulative price impact. Then

πi,∗ = δi
(
σσ⊤ − δi

n
A
)−1

µ+ δi
n

(
σσ⊤ − δi

n
A
)−1

A

·
(
Id −

n∑
j=1

δj
n

(
σσ⊤ − δj

n
A
)−1

A

)−1 n∑
j=1

δj
(
σσ⊤ − δj

n
A
)−1

µ

describes the unique Nash equilibrium. ♢

We conclude this subsection with a version of Theorem 7.2 for a market with only one stock.

Corollary 7.7. Let d = 1, A = α, and assume that

nσ2 − 2αδj > 0, j = 1, . . . , n,
n∑
j=1

nαδj
(n+ θj)(nσ2 − δjα) ̸= 1 − θ̂.

Then the unique constant Nash equilibrium for (7.13) is given by

πi,∗ = n2δiµ

(n+ θi) (nσ2 − δiα) +
(

θi
n+ θi

+ nαδi
(n+ θi) (nσ2 − δiα)

)
·

∑n
j=1

n2δj

(n+θj)(nσ2−δjα) · µ

1 − θ̂ −
∑n
j=1

nαδj

(n+θj)(nσ2−δjα)

for i ∈ {1, . . . , n}.

7.3.2. Influence of the price impact parameter

The goal of this subsection is to study the influence of the price impact parameter α on the
components of the constant Nash equilibrium and on the stock price. To do this, assume that there
is only one stock (d = 1) with constant and deterministic parameters µ1 ≡ µ > 0, σ11 ≡ σ > 0,
and α1 = α, driven by a one-dimensional Brownian motion.

The first step is to take a closer look at the assumptions of Corollary 7.7. The first assumption
can be written as

α < αmax := nσ2

2δmax
,

where δmax := max{δ1, . . . , δn}. For the second assumption, we define s : (−∞, αmax] → R by

s(α) :=
n∑
j=1

nαδj
(n+ θj) (nσ2 − αδj)

. (7.24)

Then we can deduce that there exists a unique value α0 such that s(α0) = 1 − θ̂. Moreover, we
have α0 ∈ (0, αmax). To verify this observation, we introduce functions fj : (−∞, αmax] → R,
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j = 1, . . . , n, given by
fj(α) := nδj

(n+ θj)(nσ2 − αδj)
.

Note that, for any j ∈ {1, . . . , n}, fj is strictly positive and continuously differentiable in α for
α ∈ (−∞, αmax]. Now we can display the components of the Nash equilibrium from Corollary 7.7
in terms of the functions f1, . . . , fn as

πi,∗ =
(
nfi(α) +

(
θi

n+ θi
+ αfi(α)

)
·
∑n
j=1 nfj(α)

1 − θ̂ − s(α)

)
· µ, (7.25)

and the function s from (7.24) can be written as

s(α) = α
n∑
j=1

fj(α), α ∈ (−∞, αmax].

The functions fj are strictly increasing in terms of α since

∂

∂α
fj(α) = f ′

j(α) =
nδ2

j

(n+ θj)(nσ2 − αδj)2 > 0.

Moreover, the functions α 7→ αfj(α), j = 1, . . . , n, are strictly increasing in α since

∂

∂α
(αfj(α)) = nδj

(n+ θj)(nσ2 − αδj)
+ α ·

nδ2
j

(n+ θj)(nσ2 − αδj)2

= n2σ2δj
(n+ θj)(nσ2 − αδj)2 > 0

holds for any α ≤ αmax. Hence, the function s is strictly increasing in α as well. Moreover,
s(0) = 0 and

s(αmax) + θ̂ =
n∑
j=1

(
nδj

(n+ θj)(2δmax − δj)
+ θj
n+ θj

)

=
n∑
j=1

nδj + θj(2δmax − δj)
(n+ θj)(2δmax − δj)

>
nδmax + θk(2δmax − δmax)

(n+ θk)(2δmax − δmax) = 1, (7.26)

where k ∈ {1, . . . , n} is chosen so that δk = δmax. Hence, s(αmax) > 1 − θ̂. Finally, since s is
continuous on (−∞, αmax], the intermediate value theorem implies that there exists a unique point
α0 ∈ (0, αmax) such that s(α0) = 1 − θ̂.

To summarize, α ∈ R is an admissible price impact parameter if, and only if, α < αmax and
α ̸= α0, where admissible means that α satisfies the conditions of Corollary 7.7. This can now be
used to analyze the influence of the price impact parameter.
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Influence on the Nash equilibrium

First, we consider the influence of the price impact parameter α on the components of the Nash
equilibrium from Corollary 7.7. The representation of πi,∗ in (7.25) implies

(
1 − θ̂ − s(α)

)πi,∗
µ

=nfi(α)
(
1 − θ̂ − s(α)

)
+
(

θi
n+ θi

+ αfi(α)
) n∑
j=1

nfj(α)

=nfi(α)
(
1 − θ̂ − s(α)

)
+ nθi
n+ θi

n∑
j=1

fj(α) + nfi(α)s(α)

=n(1 − θ̂)fi(α) + nθi
n+ θi

n∑
j=1

fj(α) > 0,

since θ̂ ∈ [0, 1) (see Lemma 3.3) and fj(α) > 0 for all α < αmax and all j ∈ {1, . . . , n}. Hence,
since µ > 0, the sign of πi,∗ equals the sign of 1 − θ̂ − s(α). By definition of α0, 1 − θ̂ − s(α) > 0
holds if, and only if, α < α0. Thus, πi,∗ > 0 if, and only if, α < α0. The behavior of πi,∗ at
the discontinuity α0 and the left boundary (α → −∞) can be further specified. If α becomes
increasingly small, πi,∗ tends to zero. To verify this, we consider the asymptotic behavior of the
functions fj , j = 1, . . . , n, and s. It follows

lim
α→−∞

fj(α) = lim
α→−∞

nδj
(n+ θj)(nσ2 − αδj)

= 0,

lim
α→−∞

αfj(α) = lim
α→−∞

nδjα

(n+ θj)(nσ2 − αδj)
= nδj
n+ θj

lim
α→−∞

(
nσ2

α
− δj

)−1

= − n

n+ θj
,

lim
α→−∞

s(α) = −
n∑
j=1

n

n+ θj
. (7.27)

Hence,

lim
α→−∞

πi,∗ = lim
α→−∞

(
nfi(α) +

(
θi

n+ θi
+ αfi(α)

)
·
∑n
j=1 nfj(α)

1 − θ̂ − s(α)

)
· µ = 0.

Moreover, since limα↘α0 1 − θ̂ − s(α) = 0 = limα↗α0 1 − θ̂ − s(α) and πi,∗ > 0 if, and only if,
α < α0, it follows

lim
α↗α0

πi,∗ = ∞, lim
α↘α0

πi,∗ = −∞.

Furthermore, we can consider the monotonicity of πi,∗ in terms of α. The first order derivative of
πi,∗ from (7.25) is given by

∂

∂α

πi,∗

µ
=nf ′

i(α) +
(
fi(α) + αf ′

i(α)
)

·
n
∑n
j=1 fj(α)

1 − θ̂ −
∑n
j=1 αfj(α)

+
(

θi
n+ θi

+ αfi(α)
)

·
n
∑n
j=1 f

′
j(α)

(
1 − θ̂ −

∑n
j=1 αfj(α)

)
+ n

∑n
j=1 fj(α)

(∑n
j=1 fj(α) + αf ′

j(α)
)

(
1 − θ̂ −

∑n
j=1 αfj(α)

)2 ,
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which can be rewritten as

∂

∂α

πi,∗

µ
=
(

1 − θ̂ − α
n∑
j=1

fj(α)
)−2{

n(1 − θ̂)2f ′
i(α) − nα(1 − θ̂)f ′

i(α)
n∑
j=1

fj(α)

+ n(1 − θ̂)fi(α)
n∑
j=1

fj(α) + nα(1 − θ̂)fi(α)
n∑
j=1

f ′
j(α)

+ θi
n+ θi

(
n(1 − θ̂)

n∑
j=1

f ′
j(α) + n

( n∑
j=1

fj(α)
)2
)}

(7.28)

=
(

1 − θ̂ − α
n∑
j=1

fj(α)
)−2{

n(1 − θ̂)f ′
i(α)

(
1 − θ̂ − α

n∑
j=1

fj(α)
)

+ n(1 − θ̂)fi(α)
(

n∑
j=1

fj(α) + α
n∑
j=1

f ′
j(α)

)

+ θi
n+ θi

(
n(1 − θ̂)

n∑
j=1

f ′
j(α) + n

( n∑
j=1

fj(α)
)2
)}

. (7.29)

If α < α0, all summands in (7.29) are strictly positive. If α0 < α < αmax, it follows

fi(α) − αf ′
i(α) = nδi

(n+ θi)(nσ2 − αδi)
− α

nδ2
i

(n+ θi)(nσ2 − αδi)2

= nδi
(n+ θi)(nσ2 − αδi)

· nσ
2 − 2αδi

nσ2 − αδi
> 0

since α < αmax. Hence, we obtain the following for the second and third summand in (7.28)

− nα(1 − θ̂)f ′
i(α)

n∑
j=1

fj(α) + n(1 − θ̂)fi(α)
n∑
j=1

fj(α) = n(1 − θ̂)
n∑
j=1

fj(α)(fi(α) − αf ′
i(α)) > 0.

Since the other summands in (7.28) are strictly positive as well, the derivative of πi,∗ is strictly
positive for α ∈ (α0, αmax) and thus, for all admissible α. Note that, due to the jump located at
α0, πi,∗ is only piecewise strictly increasing in terms of α on (−∞, α0) and (α0, αmax).

The previously derived properties regarding the behavior of πi,∗ in terms of α can also be observed
in Figure 7.3.1. The vertical lines (dotted) show the discontinuity α0 for the different parameter
choices. The gray horizontal line (dashed) marks the value 0 while the orange and blue horizontal
lines (dashed) display the optimal solution to the classical problem of maximizing expected
terminal wealth under exponential utility, without price impact and relative concerns, given by
δ1µσ

−2 (Merton ratio). There are two ways the agents may try to influence the stock price to
their advantage. By buying the stock, they may jointly increase the stock value and thus, raise
their utility, or by jointly short-selling the stock and thus, decrease its value. Our analysis shows
that, in case of a small price impact, the agents go for the first option and, in case of a larger price
impact, they go for the latter option. Of course, this is only true under the exponential utility
where short-selling is no problem. Under an increasingly negative price impact, the investors
engage less in the financial market.
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Figure 7.3.1.: Illustration of π1,∗ from Corollary 7.7 in terms of α ∈ (−0.04, αmax) for n = 12, µ =
0.03, σ = 0.2, αmax = nσ2/8. The parameters for agent 1 are θ1 = 0.3, δ1 ∈ {1, 4},
and the parameters θj and δj , j ≥ 2 are increasing from 0 to 1 with step size 0.1,
and from 0.5 to 2.7 by step size 0.2, respectively.

Influence on the stock price

In the second part of this subsection, we consider the influence of the price impact parameter α
on the stock price. Recall that the dynamics of the stock price are given by

dSt = St
(
(µ+ απ̄)dt+ σdWt

)
, t ∈ [0, T ], S0 = 1.

If we insert the constant Nash equilibrium from (7.25) and use that µ and σ are constants,
Theorem 2.4 implies

S∗
t (α) := St = exp

((
µ+ α ·

∑n
j=1 fj(α)

1 − θ̂ − s(α)
· µ− σ2

2

)
t+ σWt

)
, t ∈ [0, T ]. (7.30)

Since the functions α 7→ αfj(α), j = 1, . . . , n, and s are strictly increasing in terms of α, the stock
price S∗

t is piecewise increasing on (−∞, α0) and (α0, αmax) in terms of α with a jump located at
α0. Moreover, the summand

α
∑n

j=1 fj(α)
1−θ̂−s(α) · µ is strictly positive if, and only if, α ∈ (0, α0). Thus,

S∗
t (α) > S∗

t (0) if, and only if, α ∈ (0, α0). More specifically, we obtain the following ordering for
any choice of α1 < 0, α2 ∈ (0, α0), and α3 ∈ (α0, αmax)

S∗
t (α3) < S∗

t (α1) < S∗
t (0) < S∗

t (α2). (7.31)
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The second and third inequality follow directly from the previous observations. For the first
inequality, we consider the limit of S∗

t as α tends to −∞ and αmax. Obviously, it suffices to
consider the expression s(α)

1−θ̂−s(α) =
α
∑n

j=1 fj(α)
1−θ̂−s(α) . If α tends to αmax, it follows

lim
α→αmax

s(α)
1 − θ̂ − s(α)

=
∑n
j=1

nδj

(n+θj)(2δmax−δj)

1 − θ̂ −
∑n
j=1

nδj

(n+θj)(2δmax−δj)

. (7.32)

Further, recall that s(α) → −
∑n
j=1

n
n+θj

as α → −∞ (see (7.27)). Now consider the function
r : R\{1 − θ̂} → R, x 7→ x

1−θ̂−x
. Then

lim
x→±∞

r(x) = −1

and r is piecewise increasing on (−∞, 1 − θ̂) and (1 − θ̂,∞) with a jump from positive to negative
values located at 1 − θ̂. Hence, r(x) > −1 on (−∞, 1 − θ̂) and r(x) < −1 on (1 − θ̂,∞) and, in
particular,

r(x) > −1 > r(y) for all x < 1 − θ̂ < y. (7.33)

Since −
∑n
j=1

n
n+θj

< 0 < 1 − θ̂ and
∑n
j=1

nδj

(n+θj)(2δmax−δj) > 1 − θ̂ (see (7.26)), (7.27), (7.32) and
(7.33) imply

lim
α→−∞

s(α)
1 − θ̂ − s(α)

= r

(
−

n∑
j=1

n

n+ θj

)

> r

(
n∑
j=1

nδj
(n+ θj)(2δmax − δj)

)
= lim

α→αmax

s(α)
1 − θ̂ − s(α)

.

Since s(α)
1−θ̂−s(α) is piecewise increasing in α on (−∞, α0) and (α0, αmax), the first inequality in

(7.31) follows as well.

The behavior of S∗
T in terms of α can also be observed in Figure 7.3.2. The horizontal dashed

lines represent the stock price S∗
T (0) without price impact for three possible realizations of WT .

The vertical dotted lines mark the values α = 0 and α = α0. The figure shows the monotonicity
of S∗

T in terms of α as well as the ordering discussed in (7.31).

7.3.3. Discussion of nonlinear price impact

At the beginning of Section 7.1, we assumed that the price impact of the n investors is incorporated
into the drift of the stock as a linear function in terms of the arithmetic mean of the investors’
strategies. While the use of the arithmetic mean seems intuitive and reasonable since we assumed
that the single investors are „small“, one could ask whether using a different function than a
linear one would lead to a different optimization problem and hence, also a different optimal
investment. Moreover, Muhle-Karbe et al. (2022) (and references therein) discuss empirical data
which suggests that price impact is not linear but concave in order size. Further, Bouchaud (2009)
argues that the volume dependence of price impact is sublinear and behaves like a power function
with an exponent approximately between 0.1 and 0.3.
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Figure 7.3.2.: Illustration of S∗
T (α) (solid) from (7.30) in terms of α ∈ (−0.02, αmax) for three

different realizations of WT , where T = 10, n = 11, µ = 0.03, σ = 0.2. The
parameters θj and δj , j ∈ {1, . . . , 11}, are increasing from 0 to 1 with step size 0.1,
and from 0.5 to 2.7 by step size 0.2, respectively. The horizontal dashed lines mark
the stock price for α = 0.

In Theorem 7.2 and the subsequent Corollary 7.7, we were able to find an explicit constant Nash
equilibrium to the associated multi-objective portfolio optimization problem using exponential
utility (if the parameters are chosen accordingly). The proof depends strongly on the linearity of
the price impact. Thus, we are not be able to give an explicit solution to the optimization problem
if the price impact is included into the drift via a nonlinear function g. However, we can show
that using a function g that grows superlinearly results in a problem that does not have a finite
optimal solution, whereas a function g that grows sublinearly yields a finite optimal solution. If
g is a linear function, it depends on the parameter choices whether or not there exists a finite
optimal solution (see Corollary 7.7).

In the case of linear price impact, we allowed the price impact parameter α to take both positive
and negative values. However, the considerations in Subsection 7.3.2 showed that the n agents’
investment into the stock becomes negligible for increasingly negative price impact. Hence, in the
nonlinear case, we only consider price impact which is increasing in order size. Therefore, the price
impact is now modeled by a continuous and strictly increasing function g : R → R with g(0) = 0.
Thus, the stock price process is given as the solution to the stochastic differential equation

dSt = St
(

(µ+ g (π̄t)) dt+ σdWt
)
, S0 = 1.
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We have to restrict the problem to constant Nash equilibria again. Therefore, from the perspective
of investor i ∈ {1, . . . , n}, we can rewrite the expression g(π̄t) in the previous stochastic differential
equation as

g(π̄t) = g

( 1
n

n∑
j=1

πjt

)
= g

( 1
n
πit + 1

n

∑
j ̸=i

πj
)

=: g̃(πit),

where g̃(p) := g
(
p
n + 1

n

∑
j ̸=i π

j
)
, p ∈ R. We assume that the strategies πj , j ̸= i, of the other

investors are fixed, constant, and deterministic. Moreover, we require πi ∈ A for the set A
of admissible strategies from (7.8). From the definition of g̃, it follows directly that g̃ is still
continuous and strictly increasing and satisfies g̃

(
−
∑
j ̸=i π

j
)

= 0. The wealth process of investor
i is given by

Xi,πi

t = xi0 +
∫ t

0
πis

((
µ+ g̃(πis)

)
ds+ σdWs

)
, t ∈ [0, T ].

In the following, we prove that the best response problem for
supπi∈A E

[
− exp

(
− 1
δi

(
Xi,πi

T − θi
n

∑
j ̸=iX

j,πj

T

))]
,

s.t. Xi,πi

T = xi0 +
∫ T

0
πit ((µ+ g(π̄t)) dt+ σdWt) ,

i = 1, . . . , n, (7.34)

has a finite optimal solution if g grows sublinearly, and is not solvable if g grows superlinearly.
The following proposition summarizes the first assertion of this subsection which treats the case of
sublinear growth.

Proposition 7.8. Let i ∈ {1, . . . , n} arbitrary but fixed, and πj, j ̸= i, deterministic and constant.
If limx→±∞

g(x)
x = 0, the best response problem for constant Nash equilibria associated to (7.34)

has a finite, constant optimal solution. Moreover, each optimal solution is a global maximum point
of the function h : R → R given by

h(a) =
(
a− θi

n

∑
j ̸=i

πj
)(
µ+ g̃(a)

)
− σ2

2δi

(
a− θi

n

∑
j ̸=i

πj
)2
.

Remark 7.9. A similar observation was made by Eksi and Ku (2017). They showed that their
price impact market does not contain arbitrage strategies if the price impact function is sublinear.
However, they had to restrict their set of admissible strategies to bounded strategies. ♢

Proof. For the moment, we restrict the set of admissible strategies to bounded strategies (πit)t∈[0,T ],

i.e. there exists a constant K > 0 such that |πit| ≤ K P-almost surely for all t ∈ [0, T ]. For constants
πj , j ̸= i, we obtain

− 1
δi

(
Xi,πi

T − θi
n

∑
j ̸=i

Xj,πj

T

)

= − 1
δi

(
xi0 − θi

n

∑
j ̸=i

xj0

)
− 1
δi

(∫ T

0

(
πit − θi

n

∑
j ̸=i

πj
)

(µ+ g̃(πit))dt+ σ

∫ T

0

(
πit − θi

n

∑
j ̸=i

πj
)

dWt

)

− σ2

2δ2
i

∫ T

0

(
πit − θi

n

∑
j ̸=i

πj
)2

dt+ σ2

2δ2
i

∫ T

0

(
πit − θi

n

∑
j ̸=i

πj
)2

dt.
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Now define a new probability measure Q by

dQ
dP = exp

(
− σ2

2δ2
i

∫ T

0

(
πit − θi

n

∑
j ̸=i

πj
)2

dt− σ

δi

∫ T

0

(
πit − θi

n

∑
j ̸=i

πj
)

dWt

)
.

Note that the expression on the right-hand side is a density since (πit)t∈[0,T ] is bounded. Thus, we
can write the objective function of (7.34) as

E
[

− exp
(

− 1
δi

(
Xi,πi

T − θi
n

∑
j ̸=i

Xj,πj

T

))]

= − exp
(

− x̃i0
δi

)
· EQ

[
exp

(
− 1
δi

∫ T

0

(
πit − θi

n

∑
j ̸=i

πj
)

(µ+ g̃(πit)) − σ2

2δi

(
πit − θi

n

∑
j ̸=i

πj
)2

dt
)]

= − exp
(

− x̃i0
δi

)
· EQ

[
exp

(
− 1
δi

∫ T

0
h(πit) dt

)]
,

where we used the abbreviation of x̃i0 = xi0 − θi
n

∑
j ̸=i x

j
0 and the function h from the proposition.

But now in order to maximize the expectation, we can do this pointwise under the integral which
leads to maximizing the function h. If a tends to ±∞, the function h converges to −∞ since g,
and thus g̃, grows sublinearly. Hence, the maximizing point of h is not at the boundary and the
assumption of bounded strategies is no restriction. Moreover, h is continuous since g̃ is continuous
and hence, h takes its maximum. Thus, an optimal strategy to (7.34) exists and is finite. This
concludes our proof.

Remark 7.10. The structure of the function h in Proposition 7.8 suggests that there are at least
one and at most two global maxima. To verify this, we consider the components of h. The first
factor a− θi

n

∑
j ̸=i π

j is strictly increasing in a for all a ∈ R and strictly positive if, and only if,
a > θi

n

∑
j ̸=i π

j . The second factor µ + g̃(a) is also strictly increasing for all a ∈ R and strictly
positive if, and only if, g̃(a) > −µ. Given the continuity and monotonicity of g̃, there exists a
unique point a′ ∈ [−∞,−

∑
j ̸=i π

j) such that g̃(a) > −µ if, and only if, a > a′. Note that a′ = −∞
is possible since g̃ might be bounded from below by a constant strictly larger than −µ. The last
component of h, given by

− σ2

2δi

(
a− θi

n

∑
j ̸=i

πj
)2
,

is strictly negative for all a ∈ R, strictly increasing for a < θi
n

∑
j ̸=i π

j , and strictly decreasing,
otherwise. A combination of these observations, together with the asymptotic behavior of h,
yields that h can have at most three local extrema, as there are only three points at which the
monotonicity behavior of h might change. More specifically, there is either only one local maximum,
which is also the global maximum of h, or there are two local maxima and one local minimum. ♢

A combination of Corollary 7.7 and Proposition 7.8 yields that, as long as the asymptotic growth
of g is at most linear, there exists an optimal solution to the best response problem. The next
proposition shows that the opposite holds if g grows superlinearly.
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Proposition 7.11. Let i ∈ {1, . . . , n} arbitrary but fixed, and πj, j ̸= i, deterministic and
constant. If limx→±∞

g(x)
x = ∞, the best response problem for constant Nash equilibria associated

to (7.34) does not have an optimal solution.

Proof. To prove that the best response problem for (7.34) does not have a finite optimal solution,
we show that even if we consider only constant strategies for agent i, the optimal value is 0 and
the associated strategy is infinite. If πj is constant for all j ∈ {1, . . . , n}, it follows

Xi,πi

T − θi
n

∑
j ̸=i

Xj,πj

T

=xi0 − θi
n

∑
j ̸=i

xj0 +
(
πi − θi

n

∑
j ̸=i

πj
)

(µ+ g̃(πi))T +
(
πi − θi

n

∑
j ̸=i

πj
)
σWT

=: x̃i0 + µ(πi)T + σ(πi)WT . (7.35)

The random variable in (7.35) has a normal distribution with mean µ(πi) and variance σ(πi)2T .
Therefore, if we apply the exponential utility function to (7.35), we obtain a lognormally distributed
random variable and the expectation can be determined explicitly. Hence, for constant πj ,
j = 1, . . . , n, the value of the objective function in (7.34) is given by (see Johnson et al., 1994, p.
212)

E
[

− exp
(

− 1
δi

(
x̃i0 + µ(πi)T + σ(πi)WT

))]
= − exp

(
− 1
δi
x̃i0

)
· exp

(
− 1
δi

(
µ(πi) − σ(πi)2

2δi

)
T

)
.

Thus, maximizing the objective function of (7.34) with respect to constant strategies πi is equivalent
to maximizing µ(πi) − σ(πi)2

2δi
. Reinserting the definition of µ(πi) and σ(πi) yields

µ(πi) − σ(πi)2

2δi

=πig̃(πi) − σ2

2δi
(πi)2 + πi

(
µ+ σ2θi

nδi

∑
j ̸=i

πj
)

− θi
n
g̃(πi)

∑
j ̸=i

πj − θi
n

∑
j ̸=i

πj
(
µ+ σ2θi

2nδi

∑
j ̸=i

πj
)
,

which converges to ∞ if πi converges to ±∞ using the assumption that g (and thus, g̃) grows
superlinearly. Therefore,

0 ≥ sup
πi∈A

E
[

− exp
(

− 1
δi

(
Xi,πi

T − θi
n

∑
j ̸=i

Xj,πj

T

))]

≥ sup
πi∈A

πi constant

E
[

− exp
(

− 1
δi

(
Xi,πi

T − θi
n

∑
j ̸=i

Xj,πj

T

))]
= 0.

Hence, the optimal value of (7.34) is 0 which implies that the argument inside the exponential
function needs to be infinite. Thus, the problem does not have a finite optimal solution.
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7.4. Optimization under power utility

In the previous two sections, we used the additive relative performance metric to measure the
relative concerns of n agents. For the definition of relative performance metrics, we refer to the
introduction of Chapter 3. Afterwards, we found the unique constant Nash equilibrium in a more
specific setting, where the market parameters were assumed to be constant and the investors used
exponential utility functions. In combination with exponential utility, it was convenient to use
the arithmetic mean in the objective function and to optimize the amount invested into each of
the d stocks. However, when using power utility functions, it is more convenient to optimize the
invested fraction of wealth and use the geometric mean in the objective function (see, among
others, Lacker and Zariphopoulou, 2019). Indeed, it is possible to determine a constant Nash
equilibrium to the resulting portfolio optimization problem explicitly. We refer to the beginning
of Section 7.3 for a justification of the restriction to constant strategies. Another benefit of the
geometric mean (compared to the arithmetic mean) is that we do not need any restrictions on the
competition weight θi, since the argument inside the utility function is strictly positive if, and
only if, the initial capital xi0 of each agent i ∈ {1, . . . , n} is strictly positive.

Let us assume that the agents use power utility functions of the form

Ui : (0,∞) → R, x 7→
(

1 − 1
δi

)−1
x

1− 1
δi = δi

δi − 1x
δi−1

δi ,

for risk tolerance parameters δi > 0, δi ≠ 1, i = 1, . . . , n. The underlying financial market again
consists of one riskless bond, without loss of generality assumed to be identical to 1, and d stocks
with price processes determined by

dSk(t) = Sk(t)
(

(µk + αkπ̄k(t)) dt+
d∑
ℓ=1

σkℓdWℓ(t)
)
, t ∈ [0, T ], Sk(0) = 1, k = 1, . . . , d.

For tractability reasons, we assume that the market parameters µ and σ are constant and
deterministic. The volatility matrix σ is again assumed to be regular and the strategies πj ,
j = 1, . . . , n, are taken from the set A of admissible strategies defined in (7.8).

In contrast to the model presented in Section 7.1, the process (πj(t))t∈[0,T ] = (πj1(t), . . . , πjd(t))t∈[0,T ]

now represents the fractions of agent j’s wealth invested into the d stocks. Nevertheless, π̄
still describes the arithmetic mean of the n investors’ strategies. The wealth process of agent
i ∈ {1, . . . , n} solves the stochastic differential equation

dXi,πi

t = Xi,πi

t

d∑
k=1

πik(t)
(

(µk + αkπ̄k(t)) dt+
d∑
ℓ=1

σkℓdWℓ(t)
)
, Xi,πi

0 = xi0.

An explicit representation of Xi,πi is thus given by (see Theorem 2.4 and Lemma 2.2)

Xi,πi

t = xi0 exp
(∫ t

0
πi(s)⊤

(
µ+Aπ̄(s) − 1

2σσ
⊤πi(s)

)
ds+

∫ t

0
πi(s)⊤σdW (s)

)
, (7.36)
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t ∈ [0, T ]. Hence, the portfolio optimization problem of agent i is given by


maxπi∈A E

[
δi
δi−1

(
Xi,πi

T

(∏
j ̸=iX

j,πj

T

)− θi
n

) δi−1
δi
]
,

s.t. dXi,πi

t = Xi,πi

t πi(t)⊤ ((µ+Aπ̄(t)
)
dt+ σdW (t)

)
, Xi,πi

0 = xi0.

(7.37)

In order to determine a Nash equilibrium explicitly, we need to restrict the problem to constant
Nash equilibria again. Then the unique constant Nash equilibrium is given in the following
theorem.

Theorem 7.12. Assume that the following assumptions hold

a) n+θi
n

(
σσ⊤ − δi

nA
)

− θiδi
n σσ⊤ is regular for all i ∈ {1, . . . , n},

b) σσ⊤ − 2δi
n A is positive-definite for all i ∈ {1, . . . , n},

c) Id −
∑n
j=1

(
n+θj

n

(
σσ⊤ − δj

nA
)

− θjδj

n σσ⊤
)−1 ( δj

n

(
1 − θi

n

)
A− θj

n (δj − 1)σσ⊤
)

is regular.

Then the unique constant Nash equilibrium for (7.37) in terms of invested fractions is given by

πi,∗ = δi

(
n+ θi
n

(
σσ⊤ − δi

n
A

)
− θiδi

n
σσ⊤

)−1
µ

+
(
n+ θi
n

(
σσ⊤ − δi

n
A

)
− θiδi

n
σσ⊤

)−1 (δj
n

(
1 − θi

n

)
A− θj

n
(δj − 1)σσ⊤

)

·

Id −
n∑
j=1

(
n+ θj
n

(
σσ⊤ − δj

n
A

)
− θjδj

n
σσ⊤

)−1 (δj
n

(
1 − θi

n

)
A− θj

n
(δj − 1)σσ⊤

)−1

·
n∑
j=1

δj

(
n+ θj
n

(
σσ⊤ − δj

n
A

)
− θjδj

n
σσ⊤

)−1
µ, i = 1, . . . , n.

Before we display the proof of Theorem 7.12, we provide an example of a class of matrices A that
satisfy the conditions of the theorem. Roughly speaking, the conditions a) – c) of Theorem 7.12
are satisfied if the price impact parameters αk, k = 1, . . . , d, are not too large.

Example 7.13. Let A = αId for some constant α ∈ R. In order to ensure that A satisfies the
conditions of Theorem 7.12, we can find sufficient conditions on α.

Since the volatility matrix σ is regular by assumption, σσ⊤ is positive-definite. Let λ1, . . . , λd

denote the (strictly positive) eigenvalues of σσ⊤. It turns out that the condition

α <
nθj(δj − 1)
δj(n− θj)

λℓ for all ℓ ∈ {1, . . . , d}, j ∈ {1, . . . , n}, (7.38)

is sufficient to ensure that A = αId satisfies the assumptions of Theorem 7.12, given that n is
sufficiently large. The following shows why this is the case.

For j ∈ {1, . . . , n}, the eigenvalues of the matrix

θj(δj − 1)
n

σσ⊤ − δj(n− θj)
n2 A
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(that appears in condition c) of the previous theorem) are given by

θj(δj − 1)
n

λℓ − δj(n− θj)
n2 α, (7.39)

ℓ = 1, . . . , d (see Proposition 4.4.5 in Bernstein, 2009). The expression in (7.39) is strictly positive
if, and only if,

α <
nθj(δj − 1)
δj(n− θj)

λℓ

for all ℓ ∈ {1, . . . , d} and j ∈ {1, . . . , n}, i.e., if the asserted sufficient condition (7.38) is satisfied.

Using Proposition 4.4.5 by Bernstein (2009) again, the eigenvalues of the matrix in assumption b)
are given by

λℓ − 2δj
n
α, ℓ = 1, . . . , d,

for j ∈ {1, . . . , n}. Thus, the eigenvalues are strictly positive if, and only if,

α <
nλℓ
2δj

for all ℓ = 1, . . . , d, j = 1, . . . , n.

If n is chosen large enough, i.e., if n > θj(2δj − 1) for all j ∈ {1, . . . , n}, the following holds

nθj(δj − 1)
δj(n− θj)

<
n

2δj
.

Therefore, condition (7.38) implies that A satisfies condition b) of Theorem 7.12 if n is sufficiently
large. Moreover, the eigenvalues of the matrix in a) are given by

n+ θj(1 − δj)
n

λℓ − δj(n+ θj)
n2 α, ℓ = 1, . . . , d, (7.40)

for j ∈ {1, . . . , n}. The expression in (7.40) is strictly positive if, and only if,

α <
n(n+ θj(1 − δj))

δj(n+ θj)
λℓ

for all ℓ = 1, . . . , d, j = 1, . . . , n. Note that

θj(δj − 1)
n− θj

<
n+ θj(1 − δj)

n+ θj

holds if, and only if, n > θj(2δj − 1), which we already assumed earlier. Hence, the matrix in
a) is positive-definite and thus, regular, if (7.38) holds. Finally, this implies that the matrix in
condition c) of Theorem 7.12, which can be rewritten as

Id +
n∑
j=1

(
n+ θj
n

(
σσ⊤ − δj

n
A

)
− θjδj

n
σσ⊤

)−1 (θj(δj − 1)
n

σσ⊤ − δj(n− θj)
n2 A

)
,

is a sum of positive-definite matrices. Thus, the matrix is positive-definite as well and hence, regular.
Altogether, assumption (7.38) ensures that A = αId satisfies the requirements of Theorem 7.12 as
long as n > θj(2δj − 1) for all j ∈ {1, . . . , n}. This is not a restriction in our case considering that
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n represents a (large) number of agents. It should be noted that condition (7.38) is sufficient, but
not necessary, to ensure that the requirements of Theorem 7.12 are satisfied. Indeed, we chose
(7.38) to ensure that the matrices apparent in the sum in condition c) are positive-definite while
the theorem only requires that the sum of matrices in c) is regular. However, it simplifies the
arguments to consider positive-definite summands instead of regularity for the whole matrix. ♢

Now we proceed with the proof of Theorem 7.12.

Proof (Theorem 7.12). Choose some arbitrary i ∈ {1, . . . , n} and assume that the agents j ̸= i

use constant strategies πj , j ≠ i, which are assumed to be arbitrary but fixed. Now define a
stochastic process (Y −i

t )t∈[0,T ] by Y −i
t =

∏
j ̸=iX

j,πj

t , t ∈ [0, T ]. Using (7.36), it follows

Y −i
t = yi0 exp

(∫ t

0

(∑
j ̸=i

πj
)⊤(

(µ+Aπ̄(s))ds+ σdW (s)
)

− 1
2

∫ t

0

∑
j ̸=i

(πj)⊤σσ⊤πjds
)
,

where yi0 :=
∏
j ̸=i x

j
0. Thus, the argument of the expected utility in (7.37) can be written as follows

Xi,πi

t

(
Y −i
t

)− θi
n

=xi0 (yi0)− θi
n exp

(∫ t

0
πi(s)⊤

(
µ+Aπ̄(s) − 1

2σσ
⊤πi(s)

)
ds+

∫ t

0
πi(s)⊤σdW (s)

− θi
n

{∫ t

0

(∑
j ̸=i

πj
)⊤(

µ+Aπ̄(s)
)
ds+

∫ t

0

(∑
j ̸=i

πj
)⊤
σdW (s) − 1

2

∫ t

0

∑
j ̸=i

(πj)⊤σσ⊤πjds
})

=xi0 exp
(∫ t

0
πi(s)⊤

(
µ+

( 1
n
A− 1

2σσ
⊤
)
πi(s) + 1

n

(
1 − θi

n

)
A
∑
j ̸=i

πj
)

ds+
∫ t

0
πi(s)⊤σdW (s)

)

· (yi0)− θi
n exp

(
− θi
n

{∫ t

0

(∑
j ̸=i

πj
)⊤
(
µ+ 1

n
A
∑
j ̸=i

πj
)

ds+
∫ t

0

(∑
j ̸=i

πj
)⊤
σdW (s)

− 1
2

∫ t

0

∑
j ̸=i

(πj)⊤σσ⊤πjds
})

=: X̃i,πi

t

(
Ỹ −i
t

)− θi
n
,

where the process Ỹ −i does not depend on πi. More specifically, the processes X̃i,πi and Ỹ −i are
the unique solutions to the following stochastic differential equations (using Theorem 2.4 and
Lemma 2.2)

dX̃i,πi

t = X̃i,πi

t πi(t)⊤
((

µ+ 1
n
Aπi(t) + 1

n

(
1 − θi

n

)
A
∑
j ̸=i

πj
)

dt+ σdW (t)
)
,

dỸ −i
t = Ỹ −i

t

((∑
j ̸=i

πj
)⊤
((

µ+ 1
n
A
∑
j ̸=i

πj
)

dt+ σdW (t)
)

+ 1
2

∑
1≤h̸=j≤n
h,j ̸=i

(πh)⊤σσ⊤πjdt
)

with initial values X̃i,πi

0 = xi0 and Ỹ −i
0 = yi0. The introduction of X̃i,πi and Ỹ −i simplifies the

derivation of the HJB equation below. First, we notice that the quadratic (co)variations of X̃i,πi
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and Ỹ −i are given as follows (see Lemma 2.2)

d
〈
X̃i,πi〉

t
=
(
X̃i,πi

t

)2
πi(t)⊤σσ⊤πi(t)dt, d

〈
Ỹ −i〉

t
=
(
Ỹ −i
t

)2 (∑
j ̸=i

πj
)⊤
σσ⊤∑

j ̸=i
πjdt,

d
〈
X̃i,πi

, Ỹ −i〉
t

= X̃i,πi

t Ỹ −i
t πi(t)⊤σσ⊤∑

j ̸=i
πjdt,

for t ∈ [0, T ]. Let us now define the following value functions for t ∈ [0, T ], x, y ∈ (0,∞)

J(t, x, y;πi) := E
[

δi
δi − 1

(
X̃i,πi

T

(
Ỹ −i
T

)− θi
n

) δi−1
δi
∣∣∣∣X̃i,πi

t = x, Ỹ −i
t = y

]

=: Et,x,y
[

δi
δi − 1

(
X̃i,πi

T

(
Ỹ −i
T

)− θi
n

) δi−1
δi

]
,

J(t, x, y) := sup
πi∈A

J(t, x, y;πi).

Then, for any t ≤ t′ ≤ T , the Bellman principle

J(t, x, y) = sup
πi∈A

Et,x,y
[
J
(
t′, X̃i,πi

t′ , Ỹ −i
t′

)]
(7.41)

holds (see, for example, Equation (3.20) by Pham, 2009). For the following heuristic derivation of
the HJB equation, we assume that J ∈ C1,2,2([0, T ] × (0,∞)2). Now we can apply the Itô-Doeblin
formula (Theorem 2.1) for J on the interval [t, t′], in combination with Lemma 2.2, to obtain

J
(
t′, X̃i,πi

t′ , Ỹ −i
t′

)
= J

(
t, X̃i,πi

t , Ỹ −i
t

)
+
∫ t′

t
Jt
(
s, X̃i,πi

s , Ỹ −i
s

)
ds+

∫ t′

t
Jx
(
s, X̃i,πi

s , Ỹ −i
s

)
dX̃i,πi

s

+
∫ t′

t
Jy
(
s, X̃i,πi

s , Ỹ −i
s

)
dỸ −i

s + 1
2

∫ t′

t
Jxx

(
s, X̃i,πi

s , Ỹ −i
s

)
d
〈
X̃i,πi〉

s

+
∫ t′

t
Jxy

(
s, X̃i,πi

s , Ỹ −i
s

)
d
〈
X̃i,πi

, Ỹ −i〉
s

+ 1
2

∫ t′

t
Jyy

(
s, X̃i,πi

s , Ỹ −i
s

)
d
〈
Ỹ −i〉

s
. (7.42)

By Jx we denote the first order partial derivative of J with respect to x. The other partial
derivatives used above are denoted analogously. To simplify notation, the arguments of J and its
derivatives are omitted from now on. Continuing (7.42) yields

. . . = J
(
t, X̃i,πi

t , Ỹ −i
t

)
+
∫ t′

t
Jt ds+

∫ t′

t
JxX̃

i,πi

s πi(s)⊤
(
µ+ 1

n
Aπi(s) + 1

n

(
1 − θi

n

)
A
∑
j ̸=i

πj
)

ds

+
∫ t′

t
JxX̃

i,πi

s πi(s)⊤σdW (s) +
∫ t′

t
JyỸ

−i
s

(∑
j ̸=i

πj
)⊤
σdW (s) (7.43)

+
∫ t′

t
JyỸ

−i
s

((∑
j ̸=i

πj
)⊤(

µ+ 1
n
A
∑
j ̸=i

πj
)

+ 1
2
∑
h̸=j
h,j ̸=i

(πh)⊤σσ⊤πj
)

ds

+ 1
2

∫ t′

t
Jxx

(
X̃i,πi

s

)2
πi(s)⊤σσ⊤πi(s)ds+

∫ t′

t
JxyX̃

i,πi

s Ỹ −i
s πi(s)⊤σσ⊤∑

j ̸=i
πjds

+ 1
2

∫ t′

t
Jyy

(
Ỹ −i
s

)2 ∑
h,j ̸=i

(πh)⊤σσ⊤πjds.
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Now we insert the previous representation of J
(
t′, X̃i,πi

t′ , Ỹ −i
t′
)
, into the Bellman equation (7.41),

divide by t′ − t and take the limit t′ → t, to obtain

0 =Gt + yGy

{(∑
j ̸=i

πj
)⊤(

µ+ 1
n
A
∑
j ̸=i

πj
)

+ 1
2
∑
h̸=j
h,j ̸=i

(πh)⊤σσ⊤πj
}

+ 1
2y

2Gyy
∑
h,j ̸=i

(πh)⊤σσ⊤πj

+ sup
πi∈Rd

xGx · (πi)⊤µ+ 1
n
xGx · (πi)⊤Aπi + xGx

1
n

(
1 − θi

n

)
(πi)⊤A

∑
j ̸=i

πj

+1
2x

2Gxx · (πi)⊤σσ⊤πi + xyGxy · (πi)⊤σσ⊤∑
j ̸=i

πj

 (7.44)

with terminal condition G(T, x, y) =
(
1 − 1

δi

)−1(
xy− θi

n

)1− 1
δi , x, y ∈ (0,∞). Note that we assumed

that the limit t′ → t and the conditional expectation Et,x,y can be interchanged. Further, we
assumed that the stochastic integrals in (7.43) are martingales so that the conditional expectation
vanishes. This is not a restriction as the verification theorem (Lemma B.2 in the Appendix)
ensures that a solution to the HJB equation coincides with the value function and provides a
unique best response πi,∗.

To determine the supremum in the previous equation, we define the expression inside the supremum
as h(πi), i.e.,

h(πi)

= (πi)⊤
(
xGxµ+

(
xGx

1
n

(
1 − θi

n

)
A+ xyGxyσσ

⊤
)∑
j ̸=i

πj
)

+ (πi)⊤
( 1
n
xGxA+ 1

2x
2Gxxσσ

⊤
)
πi

=: (πi)⊤
(
xGxµ+ C2

∑
j ̸=i

πj
)

+ (πi)⊤C1π
i,

where
C1 = 1

n
xGxA+ 1

2x
2Gxxσσ

⊤, C2 = xGx
1
n

(
1 − θi

n

)
A+ xyGxyσσ

⊤.

The gradient of h is then given by

∇h(πi) = xGxµ+ C2
∑
j ̸=i

πj + 2C1π
i != 0.

Moreover, the Hessian matrix of h is given by

Hh(πi) = 2C1.

Hence, a candidate for the maximizer of h is determined by

C1π
i = −1

2xGxµ− 1
2C2

∑
j ̸=i

πj . (7.45)

Since the matrix C1 depends on the unknown function G, we cannot guarantee that C1 is regular.
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Therefore, we insert an ansatz for G first. We choose

G(t, x, y) = f(t) · δi
δi − 1

(
xy− θi

n

) δi−1
δi =: f(t) · Ũ(x, y), x, y ∈ (0,∞),

where f : [0, T ] → (0,∞) is some continuously differentiable function with f(T ) = 1. Then the
terminal condition is obviously satisfied and G ∈ C1,2,2([0, T ], (0,∞)2). Moreover, we can directly
deduce that G(t, x, y) ̸= 0 for all t ∈ [0, T ] and x, y ∈ (0,∞). Let us now find a suitable choice for
f to ensure that G solves the HJB equation (7.44). First, we determine the partial derivatives of
G with respect to t, x, and y:

Gt(t, x, y) = f ′(t)Ũ(x, y), Gxx(t, x, y) = −δi − 1
δ2
i

x−2G(t, x, y),

Gx(t, x, y) = δi − 1
δi

x−1G(t, x, y), Gxy(t, x, y) = −θi
n

(
δi − 1
δi

)2
(xy)−1G(t, x, y),

Gy(t, x, y) = −θi
n

δi − 1
δi

y−1G(t, x, y), Gyy(t, x, y) = θi
n

δi − 1
δi

(
1 + θi

n

δi − 1
δi

)
y−2G(t, x, y).

The matrices C1 and C2 can then be simplified to

C1 = 1
n
xGxA+ 1

2x
2Gxxσσ

⊤ = −1
2
δi − 1
δ2
i

G ·
(
σσ⊤ − 2δi

n
A

)
,

C2 = xGx
1
n

(
1 − θi

n

)
A+ xyGxyσσ

⊤ = δi − 1
δi

G ·
((

1 − θi
n

) 1
n
A− θi

n

δi − 1
δi

σσ⊤
)
.

Hence, C1 is regular using assumption b) as well as G ̸= 0 and δi ̸= 1. Thus, we can insert C1 and
C2 into (7.45) to obtain

πi,∗ = −1
2C

−1
1

xGxµ+ C2
∑
j ̸=i

πj


=
(
σσ⊤ − 2δi

n
A

)−1
δiµ+

(
δi
n

(
1 − θi

n

)
A− θi

n
(δi − 1)σσ⊤

)∑
j ̸=i

πj

 .
Therefore, the candidate πi,∗ for the optimal strategy of investor i appears to be constant as well.
However, we need to verify that G is in fact a solution to the HJB equation (7.44). The first step
is to insert πi,∗ into the function h. This yields (since C1 is symmetric by construction)

h(πi,∗) = (πi,∗)⊤
(
xGxµ+ C2

∑
j ̸=i

πj
)

+ (πi,∗)⊤C1π
i,∗

= − 1
4
(
xGxµ+ C2

∑
j ̸=i

πj
)⊤
C−1

1

(
xGxµ+ C2

∑
j ̸=i

πj
)

= 1
2(δi − 1)G ·

(
µ+

( 1
n

(
1 − θi

n

)
A− θi

n

δi − 1
δi

σσ⊤
)∑
j ̸=i

πj
)⊤(

σσ⊤ − 2δi
n
A
)−1

·
(
µ+

( 1
n

(
1 − θi

n

)
A− θi

n

δi − 1
δi

σσ⊤
)∑
j ̸=i

πj
)

=:ρ1 ·G
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for a constant ρ1 ∈ R, since πj , j ̸= i, are constant by assumption. It also follows that πi,∗ is
indeed a maximizer of h since the Hessian matrix Hh(πi,∗) = 2C1 is negative-definite due to
assumption b) of the theorem and the fact that

−δi − 1
δ2
i

G = − 1
δi
f(t) ·

(
xy− θi

n

) δi−1
δi

< 0

for all x, y ∈ (0,∞), t ∈ [0, T ]. Moreover, we can simplify the first three summands of (7.44) as
follows

Gt = f ′ · Ũ ,

yGy

{(∑
j ̸=i

πj
)⊤(

µ+ 1
n
A
∑
j ̸=i

πj
)

+ 1
2
∑
h̸=j
h,j ̸=i

(πh)⊤σσ⊤πj
}

= ρ2 ·G,

1
2y

2Gyy ·
∑
h,j ̸=i

(πh)⊤σσ⊤πj = ρ3 ·G,

for constants ρ2, ρ3 ∈ R that can be given explicitly but are not of interest for the rest of the proof.
Hence, after inserting the ansatz for G, the HJB equation (7.44) simplifies to (using G = f · Ũ)

0 = f ′Ũ + ρ2fŨ + ρ3fŨ + ρ1fŨ =: Ũ
(
f ′ + ρf

)
(7.46)

for ρ = ρ1 + ρ2 + ρ3. Since Ũ(x, y) ̸= 0 for all x, y ∈ (0,∞), it follows that f needs to solve

f ′(t) = −ρf(t), t ∈ [0, T ], (7.47)

with terminal condition f(T ) = 1. The unique solution to this ordinary differential equation is
given by

f(t) = eρ(T−t) t ∈ [0, T ].

Hence, the ansatz for G does in fact yield a solution to the HJB equation if we choose f as in
(7.47). Therefore, the function G : [0, T ] × (0,∞)2 → R given by

G(t, x, y) = eρ(T−t) δi
δi − 1

(
xy− θi

n

) δi−1
δi

is a solution to the HJB equation. Using Lemma B.2 in the Appendix and (7.45), the unique (up
to modifications) optimal solution of the best response problem is given by πi,∗, where πi,∗ solves(

σσ⊤ − 2δi
n
A

)
πi,∗ =δiµ+

(
δi
n

(
1 − θi

n

)
A− θi

n
(δi − 1)σσ⊤

)∑
j ̸=i

πj . (7.48)

Moreover, Lemma B.2 implies that the solution G and the value function J are equal which also
implies that G is the unique solution to the HJB equation (7.44).

The only task left in order to find the Nash equilibrium is to solve the system of linear equations
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given by (7.48). First, we add
(
δi
n

(
1 − θi

n

)
A− θi

n (δi − 1)σσ⊤
)
πi on both sides to obtain

(
n+ θi
n

(
σσ⊤ − δi

n
A

)
− θiδi

n
σσ⊤

)
πi = δiµ+

(
δi
n

(
1 − θi

n

)
A− θi

n
(δi − 1)σσ⊤

) n∑
j=1

πj .

By assumption a), the matrix on the left-hand side of the previous equation is regular, so it follows
that

πi =δi
(
n+ θi
n

(
σσ⊤ − δi

n
A

)
− θiδi

n
σσ⊤

)−1
µ

+
(
n+ θi
n

(
σσ⊤ − δi

n
A

)
− θiδi

n
σσ⊤

)−1 (δi
n

n− θi
n

A− θi
n

(δi − 1)σσ⊤
) n∑
j=1

πj .

Summing over all i ∈ {1, . . . , n} on both sides of the previous equation implies

n∑
j=1

πj =
n∑
j=1

δj

(
n+ θj
n

(
σσ⊤ − δj

n
A

)
− θjδj

n
σσ⊤

)−1
· µ

+
n∑
j=1

(
n+ θj
n

(
σσ⊤ − δj

n
A

)
− θjδj

n
σσ⊤

)−1 (δj
n

n− θj
n

A− θj
n

(δj − 1)σσ⊤
) n∑
j=1

πj .

By assumption c), the matrix

Id −
n∑
j=1

(
n+ θj
n

(
σσ⊤ − δj

n
A

)
− θjδj

n
σσ⊤

)−1 (δj
n

n− θj
n

A− θj
n

(δj − 1)σσ⊤
)

is regular. Hence, the sum of all πj , j = 1, . . . , n, is given by

n∑
j=1

πj =
(
Id −

n∑
j=1

(
n+ θj
n

(
σσ⊤ − δj

n
A
)

− θjδj
n
σσ⊤

)−1 (δj
n

n− θj
n

A− θj
n

(δj − 1)σσ⊤
))−1

·
n∑
j=1

δj

(
n+ θj
n

(
σσ⊤ − δj

n
A
)

− θjδj
n
σσ⊤

)−1

· µ.

Finally, the unique constant Nash equilibrium is given by

πi,∗ = δi

(
n+ θi
n

(
σσ⊤ − δi

n
A

)
− θiδi

n
σσ⊤

)−1
µ

+
(
n+ θi
n

(
σσ⊤ − δi

n
A

)
− θiδi

n
σσ⊤

)−1 (δi
n

n− θi
n

A− θi
n

(δi − 1)σσ⊤
)

·

Id −
n∑
j=1

(
n+ θj
n

(
σσ⊤ − δj

n
A

)
− θjδj

n
σσ⊤

)−1 (δj
n

n− θj
n

A− θj
n

(δj − 1)σσ⊤
)−1

·
n∑
j=1

δj

(
n+ θj
n

(
σσ⊤ − δj

n
A

)
− θjδj

n
σσ⊤

)−1
· µ.

Similarly to Corollary 7.7, we can deduce the unique constant Nash equilibrium for the case of
only one stock (d = 1).
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Corollary 7.14. Let d = 1, A = α, and assume that the following assumptions hold

a) (n+ θi)
(
nσ2 − δiα

)
− nθiδiσ

2 ̸= 0 for all i ∈ {1, . . . , n},

b) nσ2 − 2δiα > 0 for all i ∈ {1, . . . , n},

c)
∑n
j=1

(n−θj)αδj−nθj(δj−1)σ2

(n+θj)(nσ2−αδj)−nθjδjσ2 ̸= 1.

Then the unique constant Nash equilibrium to (7.37) in terms of invested fractions is given by

πi,∗ = n2δiµ

(n+ θi)(nσ2 − δiα) − nθiδiσ2 + (n− θi)αδi − nθi(δi − 1)σ2

(n+ θi)(nσ2 − δiα) − nθiδiσ2

·
(

1 −
n∑
j=1

(n− θj)αδj − nθj(δj − 1)σ2

(n+ θj)(nσ2 − αδj) − nθjδjσ2

)−1 n∑
j=1

n2δjµ

(n+ θj)(nσ2 − δjα) − nθjδjσ2

for i ∈ {1, . . . , n}.

Subsequent to Corollary 7.7, we analyzed the influence of the price impact parameter α on the
entries of the constant Nash equilibrium in terms of invested amounts under exponential utility.
Due to the more complicated structure of the constant Nash equilibrium in Corollary 7.14, we do
not discuss the influence of α as detailed as in Subsection 7.3.2. However, Corollary 7.14 enables
us to compute the value of a component of the Nash equilibrium for specific parameter choices.
The results are illustrated in Figure 7.4.1.
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α∈ (−0.02,αmax)
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Figure 7.4.1.: Illustration of π1,∗ from Corollary 7.14 in terms of α ∈ (−0.02, αmax) for n = 12,
µ = 0.03, σ = 0.2, and αmax = nσ2/8. Further, θ1 = 0.3, δ1 ∈ {1, 4} and the
parameters θj and δj , j ≥ 2 are increasing from 0 to 1 with step size 0.1, and from
0.5 to 2.7 by step size 0.2, respectively.
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Figure 7.4.1 displays the first component π1,∗ of the constant Nash equilibrium given in Corol-
lary 7.14 in terms of α varying between −0.02 and αmax for the two different risk tolerance
parameters δ1 = 1 and δ1 = 4. The expression αmax is defined analogously to Subsection 7.3.2 as

αmax = nσ2

2δmax
,

where δmax = max{δ1, . . . , δn}. In the example displayed in Figure 7.4.1, we used δmax = 4. The
market parameters are chosen as µ = 0.03 and σ = 0.2. Note that all considered parameter
combinations satisfy the conditions of Corollary 7.14. Similar to Figure 7.3.1, we observe a
discontinuity of π1,∗. In Subsection 7.3.2, we provided a detailed discussion of the existence of a
unique point of discontinuity. Here, we only give a short explanation regarding the discontinuity.
For the specific parameter choices used in the example, conditions a) and b) of Corollary 7.14
are always satisfied. The discontinuity is due to condition c), i.e., for both parameter choices
δ1 ∈ {1, 4}, there exists a unique value α0 ∈ (−∞, αmax) such that the expression in condition c)
is zero. In the figure, the value α0 is highlighted by a vertical dotted line for each of the two
parameter choices δ1 ∈ {1, 4}. Moreover, the blue and orange horizontal dashed lines mark the
Merton ratio δ1µσ

−2, i.e., the unique optimally invested fraction in the associated classical problem
(α = 0, θ1 = 0), for the two different values used for δ1. Finally, we highlighted the value zero on
both axes by a grey line.

Considering the behavior of π1,∗ in terms of α, we notice that π1,∗ is strictly positive for α < α0

and strictly negative for α > α0. Moreover, we observe that for larger price impact (i.e., if the
absolute value of α increases), the agents engage less in the financial market which is represented
by a decrease in the absolute value of π1,∗. Overall, we notice the same behavior of π1,∗ in terms
of α as in the case of exponential utility which we considered in Subsection 7.3.2.





CHAPTER 8

Relative performance via a VaR-type constraint

In Chapters 3 – 7, we modeled the relative concerns of investors by including a relative performance
metric into their utility function. In this chapter, we take a different approach by adapting a
method introduced by Basak and Shapiro (2001). They incorporated risk constraints into the
classical utility maximization problem. As a risk measure, they chose the value at risk (VaR)
which is a standard criterion to assess risk in the financial industry (see, e.g., Berkelaar et al.,
2002). The value at risk at level 1 − α ∈ (0, 1) of some payoff X describes the „smallest amount of
capital which, if added to X and invested in the risk-free asset, keeps the probability of a negative
outcome below the level 1 − α“. Mathematically speaking, the value at risk at level 1 − α of a
payoff X is defined as

VaR1−α(X) = inf
{
m ∈ R

∣∣P(X +m < 0) ≤ 1 − α
}
.

Thus, VaR1−α(X) describes the lower α–quantile1 of −X (see Föllmer and Schied, 2016, p. 231).
Basak and Shapiro (2001) define the value at risk slightly different by considering the loss of
wealth suffered by some portfolio over a fixed time period. They describe it as the worst loss over
a given time interval under „normal market conditions“. The term „normal market conditions“
refers to the fact that the level 1 − α is usually chosen as a small percentage, for example 5% or
1%. Hence, the loss is bounded from above in a fraction of α of all possible market scenarios and,
for small values of 1 − α, this fraction is close to 1. They specify their definition by explaining the
value at risk at level 1 − α for some wealth process

(
X(t)

)
t∈[0,T ] over the time period [0, T ] as the

real number VaR1−α
(
X(T ) −X(0)

)
for which

P
(
X(0) −X(T ) ≤ VaR1−α

(
X(T ) −X(0)

))
= α.

1Note that α is usually chosen as the level of the value at risk instead of 1 − α. However, it simplifies the notation
for the later analysis to choose 1 − α instead of α as the level of the value at risk.
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If the cumulative distribution function of X(T ) −X(0) is strictly increasing and continuous on its
support, this is simply the α-quantile of −

(
X(T ) −X(0)

)
. Note that if the cumulative distribution

function is strictly increasing, the upper and lower quantiles2 are equal and we simply refer to
them as quantiles. Thus, the definition of Basak and Shapiro (2001) coincides with the standard
definition for the payoff X(T ) − X(0) if the corresponding cumulative distribution function is
strictly increasing and continuous on its support.

Basak and Shapiro (2001) chose the following approach to incorporate risk management concerns
into the standard utility maximization problem. To keep the risk below a certain level, they
bounded the value at risk from above by some endogenously given constant K > 0. Thus, they
considered the constraint

VaR1−α
(
X(T ) −X(0)

)
≤ X(0) −K,

which entails

α = P
(
X(0) −X(T ) ≤ VaR1−α

(
X(T ) −X(0)

))
≤ P(X(T ) ≥ K).

Therefore, by including the additional constraint P(X(T ) ≥ K) ≥ α into the utility maximization
problem, they bounded the risk arising from the portfolio while maximizing the expected utility of
the terminal wealth. In support of the risk management feature of the problem, they explain that
the constraint acts as a partial portfolio insurance which lies somewhere between the benchmark
cases of the classical problem without the constraint (α = 0) and the case of a portfolio insurer
(α = 1).

In order to adapt the model of Basak and Shapiro (2001) to include relative concerns, we replace
the constant K in the optimization problem of agent i by a weighted arithmetic mean of the other
n− 1 agents’ terminal wealth. Thus, we incorporate the constraint

P
(
Xi(T ) ≥

∑
j ̸=i

βjXj(T )
)

≥ αi (8.1)

into the optimization problem of agent i, where αi ∈ [0, 1] and βj ∈ (0, 1) for all i, j ∈ {1, . . . , n}.
By Xj(T ) we denote the terminal wealth of agent j ∈ {1, . . . , n}. Under normal market conditions,
i.e., in a fraction of αi of the possible market scenarios, agent i attains a terminal wealth which is
at least as large as the weighted average of her competitors’ terminal wealth. As opposed to the
optimization problems considered in Chapters 3 – 7, the objective function of agent i is given by
the standard objective, i.e., the expected utility of her terminal wealth only.

The parameters βj in (8.1) are custom to each agent j, but not to agent i, meaning that the weight
assigned to agent j is the same in the optimization of agent i for any i ≠ j. A possible choice is
βj = 1

n−1 , but we allow for more generality at this point. It is, for example, possible to consider
weights in terms of the initial capital invested by the agents so that a larger initial investment
goes along with a larger weight assigned to the corresponding agent. In contrast to the parameters

2For a random variable X and λ ∈ (0, 1), the lower and upper λ-quantiles are q−
X(λ) = inf{x ∈ R |P(X ≤ x) ≥ λ}

and q+
X(λ) = inf{x ∈ R |P(X ≤ x) > λ}, respectively (see, e.g., Föllmer and Schied, 2016).
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βj , j = 1, . . . , n, the level αi ∈ [0, 1] is chosen by agent i herself and has a similar interpretation
as the competition weight θi used in earlier chapters. If αi is chosen close to 1, agent i wants to
insure her terminal wealth against the other agents’ wealth in almost all possible scenarios, while
a value αi close to 0 implies that she does not care as much about her performance with respect
to the others. However, a large choice of αi indicates risk aversion (since the agent bounds her
risk in a larger percentage of cases) whereas a large choice of θi turns out to be more risk-seeking.

To conclude, let us give an overview of the chapter. In Section 8.1, we introduce the underlying
financial market and state the optimization problem for n agents using the VaR-based constraint
(8.1). We present the optimal solution to the best response problem in terms of terminal wealth
in Section 8.2. Due to the complicated structure of the optimal solution, we restrict the set
of strategies to be able to find Nash equilibria. This gives rise to an n-dimensional fixed point
problem. In Section 8.3, we solve the fixed point problem for two agents. Afterwards, the unique
fixed point for a general number of agents is found and discussed in Section 8.4.

8.1. Problem formulation

In order to formalize the optimization problem described above, let us specify the underlying
financial market first. The financial market is the same as the one used in Chapter 6. Nevertheless,
we repeat the basics at this point. We base our analysis on the semimartingale financial market
explained in Subsection 2.3.1. In summary, there are d+ 1 assets in which n agents can invest.
The assets consist of one riskless bond with zero interest rate and d risky stocks. The stock
price processes (Sk(t))t∈[0,T ], k = 1, . . . , d, are L2(P)–semimartingales with càdlàg paths (i.e., the
paths are right continuous with left limits). To exclude arbitrage, we require the existence of
an equivalent σ-martingale measure Q. In contrast to Subsection 2.3.1, we make the additional
assumption that Q is the unique equivalent σ-martingale measure. Under this assumption, the
associated density process

ZQ
t = E

[dQ
dP

∣∣∣Ft

]
, t ∈ [0, T ],

is unique as well. Thus, we write Zt := ZQ
t , t ∈ [0, T ], throughout this chapter. The assumption

that Q is the unique equivalent σ-martingale measure has the important consequence that each
claim X ∈ L2(P) has a unique fair price given by

EQ[X] = E [ZTX] .

Let us now formalize the optimization problem motivated in the introduction to this chapter.
Let βi ∈ (0, 1) and αi ∈ [0, 1] for all i ∈ {1, . . . , n}. The constant βj describes a weight assigned
to the j-th agent’s wealth in the stochastic constraint and αi describes the probability assigned
to the stochastic constraint in the optimization problem of agent i. Each agent i uses an Inada
utility function Ui : (0,∞) → R to measure her preferences (see Definition 2.11). Note that the
requirements on the utility functions are a lot stricter than the ones considered in Chapter 3.
First, Ui is required to satisfy the Inada conditions and second, we only allow for utility functions
defined on the strictly positive real numbers. However, the proofs presented in the current chapter
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rely heavily on both assumptions imposed on U1, . . . , Un. Fortunately, this requirement is not too
restricting as there are commonly used utility functions such as the natural logarithm or power
utility functions that satisfy the conditions. Finally, we assume that each agent i is equipped with
an initial capital xi0 > 0, i = 1, . . . , n.

Following the motivation in the introduction to this chapter, agent i ∈ {1, . . . , n} aims to solve
the optimization problem

maxφi∈A E
[
Ui
(
Xi,φi

T

)]
,

s.t. Xi,φi

T = xi0 + (φi • S)T , P
(
Xi,φi

T ≥
∑
j ̸=i βjX

j,φj

T

)
≥ αi.

Similar to Chapter 6, we only consider the terminal wealth, not the replicating strategy. If the
financial market is additionally assumed to be complete, replicating strategies do exist for every
terminal wealth determined in this chapter. However, we do not consider the replicating strategies
and leave this question open for future research. Thus, we state the optimization problem of agent i
directly in terms of her terminal wealth. Hence, the optimization problem of agent i ∈ {1, . . . , n}
is given as

 maxXi E [Ui(Xi)] ,

s.t. Xi is FT − measurable, E [ZTXi] ≤ xi0, P
(
Xi ≥

∑
j ̸=i βjXj

)
≥ αi,

(8.2)

where Xj denotes the terminal wealth of investor j ∈ {1, . . . , n}.

Remark 8.1. In Chapter 3, we displayed a method to solve portfolio optimization problems for
relative investors who include their relative concerns into their expected utility function via the
additive relative performance metric. Because of the arithmetic mean in the constraint (8.1), it
would be possible to adjust (8.2) to make the method from Chapter 3 applicable. However, in
order to be able to reduce the problem to an auxiliary single-agent problem, we would also have to
adjust the argument in the objective function of (8.2) to match the constraint. Since this does not
fit the motivation presented in the introduction to this chapter, we did not choose this approach.
However, the resulting optimization problem seems more tractable when compared to (8.2). ♢

8.2. Discussion of terminal wealth

Let us consider the optimization problem (8.2) faced by agent i ∈ {1, . . . , n}. In the following, we
state and prove the optimal solution to (8.2) for agent i while the terminal wealth Xj , j ̸= i, of
the other agents is assumed to be fixed. To simplify notation, we introduce the abbreviation

X−i
β :=

∑
j ̸=i

βjXj , i ∈ {1, . . . , n}.

Now the following proposition contains the optimal terminal wealth for agent i in the optimization
problem (8.2).
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Proposition 8.2. Let αj ∈ [0, 1], βj ∈ (0, 1), and xj0 > 0, j = 1, . . . , n. Further, let i ∈ {1, . . . , n}
and assume that Xj, j ̸= i, are fixed and P-almost surely positive. Moreover, assume that Ui :
(0,∞) → R is an Inada utility function and let Ii := (U ′

i)−1. Define the function gi : (0,∞) → R
by

gi(Z) := Ui
(
Ii(Z)

)
− ZIi(Z) + ZX−i

β (8.3)

and define

X∗
i =


Ii
(
λ

(1)
i ZT

)
, λ

(1)
i ZT ≤ U ′

i

(
X−i
β

)
,

X−i
β , U ′

i

(
X−i
β

)
< λ

(1)
i ZT ≤ ξ̄i,

Ii
(
λ

(1)
i ZT

)
, λ

(1)
i ZT > ξ̄i,

(8.4)

where ξ̄i is chosen such that gi(ξ̄i) = λ
(2)
i + Ui

(
X−i
β

)
and ξ̄i > U ′

i

(
X−i
β

)
P-almost surely, and

λ
(1)
i , λ

(2)
i > 0 are chosen with respect to E[ZTX∗

i ] = xi0 and P
(
X∗
i ≥ X−i

β

)
= αi. We assume that

ξ̄i, λ(1)
i , and λ(2)

i exist. Then X∗
i is the optimal solution to (8.2).

Proof. Let i ∈ {1, . . . , n} be arbitrary but fixed and define

L(X, z1, z2) := Ui(X) − z1X + z21
{
X ≥ X−i

β

}
.

For fixed z1, z2 > 0, the function X 7→ L(X, z1, z2) is increasing if, and only if, X ≤ Ii(z1).
Moreover, L(·, z1, z2) is piecewise concave with a jump located at X−i

β . Therefore, the maximizer
is located either at Ii(z1) or at X−i

β . It turns out that

Xi = Ii(z1)1
{
z1 ≤ U ′

i

(
X−i
β

)}
+X−i

β 1

{
U ′
i

(
X−i
β

)
< z1 ≤ ξz

}
+ Ii(z1)1 {z1 > ξz} ,

is the unique maximizer of X 7→ L(X, z1, z2), where ξz is chosen such that gi(ξz) = Ui(X−i
β ) + z2

and ξz > U ′
i(X−i

β ) P-almost surely. At this point, we assume that such a value ξz exists. To
prove this assertion, we use a case distinction with respect to z1. First, let z1 ≤ U ′

i

(
X−i
β

)
and

thus, Ii(z1) ≥ X−i
β . Since the function gi from (8.3) is increasing if, and only if, Z ≥ U ′

i

(
X−i
β

)
, we

obtain

L(Ii(z1), z1, z2) =Ui
(
Ii(z1)

)
− z1I(z1) + z2

= gi(z1) − z1X
−i
β + z2

≥ gi
(
U ′
i

(
X−i
β

))
− z1X

−i
β + z2

=Ui
(
X−i
β

)
− z1X

−i
β + z2 = L

(
X−i
β , z1, z2

)
.

For U ′
i

(
X−i
β

)
< z1 ≤ ξz, it follows

L
(
X−i
β , z1, z2

)
=Ui

(
X−i
β

)
− z1X

−i
β + z2

= gi
(
ξz
)

− z1X
−i
β

≥ gi(z1) − z1X
−i
β (8.5)

=Ui
(
Ii(z1)

)
− z1I(z1) = L(I(z1), z1, z2),
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using the monotonicity of gi and the definition of ξz. Finally, if z1 > ξz, the reverse of (8.5) holds.
Thus, Xi is the unique maximizer of L(·, z1, z2).

To prove that X∗
i from (8.4) is optimal for (8.2), assume that X̃ is another random variable

satisfying the constraints of (8.2). Then it follows

E
[
Ui
(
X∗
i

)]
− E

[
Ui
(
X̃
)]

=E
[
Ui
(
X∗
i

)]
− E

[
Ui
(
X̃
)]

− λ
(1)
i xi0 + λ

(1)
i xi0 + λ

(2)
i αi − λ

(2)
i αi

≥E
[
Ui
(
X∗
i

)
− λ

(1)
i ZTX

∗
i + λ

(2)
i 1

{
X∗
i ≥ X−i

β

} ]
− E

[
Ui
(
X̃
)

− λ
(1)
i ZT X̃ + λ

(2)
i 1

{
X̃ ≥ X−i

β

} ]
=E

[
L
(
X∗
i , λ

(1)
i ZT , λ

(2)
i

)
− L

(
X̃, λ

(1)
i ZT , λ

(2)
i

) ]
≥ 0,

since, by construction and the previous observation, X∗
i satisfies the constraints from (8.2) with

equality and maximizes the function L
(
·, λ(1)

i ZT , λ
(2)
i

)
(pointwise for every ω ∈ Ω). This concludes

our proof since ξ̄i, λ(1)
i , and λ

(2)
i exist by assumption.

The representation (8.4) of the best response for agent i brings some serious difficulties. In general,
existence and uniqueness of the expressions ξ̄i, λ(1)

i , λ(2)
i are not clear. Moreover, we do not

expect to be able to find analytical representations for these expressions, even in special cases like
logarithmic utility. Thus, in order to find Nash equilibria for (8.2), we restrict the set of possible
terminal wealth, although we might lose optimality compared to the more general set of admissible
wealth profiles. Nevertheless, we only consider wealth profiles for agent i ∈ {1, . . . , n} which are of
the form

Xi =


Ii(λiZT ), Ii(λiZT ) ≥ X−i

β , ZT ≤ χαi ,

X−i
β , Ii(λiZT ) < X−i

β , ZT ≤ χαi ,

Ii(λiZT ), ZT > χαi ,

(8.6)

where χαi is the αi-quantile of ZT and X−i
β =

∑
j ̸=i βjXj , i = 1, . . . , n. The random variables Xj ,

j ̸= i, describe the terminal wealth of the (other) agents j ≠ i. The constant λi > 0 is chosen so
that E[ZTX∗

i ] = xi0. Thus, λi is often called Lagrange multiplier. For now, we assume that the
parameters of the model are chosen such that λi exists and is unique. In general, this is the case
if the initial capital is sufficiently large. In Section 8.3 as well as Section C.3 in the appendix,
we give necessary and sufficient conditions for the existence and an explicit representation of the
unique λi in the special case of logarithmic utility and n ∈ {2, 3}. Moreover, it should be noted
that, by construction, Xi satisfies the constraints of (8.2).

Remark 8.3. a) The structure of (8.6) is motivated by the unique optimal terminal wealth found
by Basak and Shapiro (2001). They consider the optimization problem

 maxX E[U(X)],

s.t. E[ZTX] ≤ x0, P(X ≥ K) ≥ α,
(8.7)
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for constants K > 0, x0 > 0, and α ∈ [0, 1], and an Inada utility function U : (0,∞) → R.
They prove that the optimal solution to (8.7) takes the form

X∗ =


I(λZT ), ZT ≤ U ′(K)

λ ,

K, U ′(K)
λ < ZT ≤ χα,

I(λZT ), ZT > χα,

(8.8)

where χα denotes the α-quantile of ZT and I denotes the inverse of the first order derivative
U ′ of U . Moreover, λ > 0 is chosen with respect to the budget equation E[ZTX∗] = x0.

b) Due to the structure of the optimal terminal wealth (8.8), which divides the solution into three
cases depending on the value of the state price density ZT , Basak and Shapiro (2001) call these
three cases good, intermediate, and bad states. The good states are associated to smaller values
of ZT while the bad states correspond to larger values of ZT . However, this interpretation is
not based on the optimal solution to the VaR-based problem (8.7) alone. It can also be justified
in more generality. If, for example, we take a standard Black-Scholes market with one stock,
one riskless bond with zero interest rate, and constant market parameters (see, e.g., Eberlein
and Kallsen, 2019, Examples 9.1 and 9.17), the state price density at time T is given by

ZT = exp
(

− µ

σ
WT − 1

2
µ2

σ2T

)
.

The stock value at time T is given by

ST = exp
((

µ− σ2

2

)
T + σWT

)
,

which can be rewritten as

ST = exp
(

− σ2

µ
log(ZT ) + 1

2
(
µ− σ2

)
T

)
.

Hence, large values of ZT result in small stock values which justifies the association of large
values of ZT with bad market states.

♢

Since we aim to find Nash equilibria in the class of terminal wealth profiles of the form (8.6),
we need to solve the emerging n-dimensional fixed point problem to find explicit representations
of the components X1, . . . , Xn in the Nash equilibrium. The search for and discussion of the
n-dimensional fixed point is the focus of the subsequent Sections 8.3 and 8.4.

8.3. Solution of the fixed point problem for two agents

In this section, we set n = 2 and determine the unique two-dimensional Nash equilibrium in the
class of wealth profiles of the form (8.6). Solving the fixed point problem for general n is quite
complicated, so for illustration we solve it for only two agents at first. Afterwards, Section 8.4
gives the general solution for n agents.
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The following theorem displays the unique solution to the fixed point problem (8.6) for two agents.

Theorem 8.4. Let Ui : (0,∞) → R be Inada utility functions, i = 1, 2. Moreover, for αi ∈ [0, 1],
let χαi describe the αi–quantile of ZT and let βi ∈ (0, 1), i = 1, 2. Define

X∗
1 (λ1, λ2) =


I1(λ1ZT ), I1(λ1ZT ) ≥ β2I2(λ2ZT ), ZT ≤ χα1 ,

β2I2(λ2ZT ), I1(λ1ZT ) < β2I2(λ2ZT ), ZT ≤ χα1 ,

I1(λ1ZT ), ZT > χα1 ,

X∗
2 (λ1, λ2) =


I2(λ2ZT ), I2(λ2ZT ) ≥ β1I1(λ1ZT ), ZT ≤ χα2 ,

β1I1(λ1ZT ), I2(λ2ZT ) < β1I1(λ1ZT ), ZT ≤ χα2 ,

I2(λ2ZT ), ZT > χα2 ,

and assume that the system
E[ZTX∗

i (λ1, λ2)] = xi0, i = 1, 2, (8.9)

has a unique solution (λ∗
1, λ

∗
2) ∈ (0,∞)2. Then X∗

i (λ∗
1, λ

∗
2), i = 1, 2, is the unique Nash equilibrium

for (8.2) in the class of wealth profiles of the form (8.6).

Remark 8.5. a) Since β1, β2 ∈ (0, 1) and I1 and I2 take only strictly positive values, it cannot
happen that I1(λ1ZT ) < β2I2(λ2ZT ) and I2(λ2ZT ) < β1I1(λ1ZT ) hold at the same time. Thus,
we notice that for any valid choice of parameters, utility functions, and for any realization
of ZT , at least one of the random variables X∗

j is given by Ij(λjZT ). Note that, although
the structure is the same, Ij(λjZT ) does not necessarily describe the solution of the classical
problem without the VaR-constraint, since the Lagrange multiplier might be different from the
one in the classical problem. It is also possible that both agents obtain the classical solution in
the Nash equilibrium. This is the case if I1(λ1ZT ) and I2(λ2ZT ) are „close“ in the sense that
β2I2(λ2ZT ) ≤ I1(λ1ZT ) ≤ β−1

1 I2(λ2ZT ). This observation becomes more tangible in the case
where both investors use the natural logarithm as their utility function (see Remark 8.10).

b) The search for a solution of the system (8.9) of equations consists of two steps. First, we need
to determine the expected value to receive a two-dimensional system of equations. Afterwards,
we need to solve the emerging system of equations (which is most likely nonlinear) and make
sure that there exists an admissible solution in the sense that λ∗

i > 0, i = 1, 2. If, for
example, xj0 ≥ β3−jx

3−j
0 , j = 1, 2, we can ensure that for any fixed λj > 0 the equation

E[ZTX∗
3−j(λ1, λ2)] = x3−j

0 has a unique solution λ∗
3−j , depending on λj , using the monotonicity

and continuity in terms of λ3−j and the intermediate value theorem. However, this does not
ensure that the emerging two-dimensional system of equations is (uniquely) solvable. It should
also be noted that this condition is sufficient, but in general not necessary. Lemma 8.8 gives
necessary and sufficient conditions for the parameter choice in the case of logarithmic utility
for both investors. ♢

Before we provide a proof of Theorem 8.4, we apply the result to the case that both agents use
power utility functions. The example gives us more insight into the case distinction in the Nash
equilibrium (X∗

1 , X
∗
2 ).
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Example 8.6. Suppose that both agents use power utility functions with parameters δi > 0, δi ̸= 1,
i.e.,

Ui(x) =
(

1 − 1
δi

)−1
x

1− 1
δi , Ii(x) = x−δi , x > 0, i = 1, 2.

Assume without loss of generality that δ2 > δ1. Then

I1(λ1ZT ) ≥ β2I2(λ2ZT ) ⇐⇒ ZT ≥
(
β2
λδ1

1
λδ2

2

) 1
δ2−δ1

=: z1,

I2(λ2ZT ) ≥ β1I1(λ1ZT ) ⇐⇒ ZT ≤
(
β1
λδ2

2
λδ1

1

) 1
δ1−δ2

=: z2.

Since β1β2 < 1 and λ1, λ2 > 0, we obtain z1 < z2. Hence, we obtain the Nash equilibrium

X∗
1 =β2I2(λ2ZT )1 {ZT < z1 ∧ χα1} + I1(λ1ZT )1 {ZT ≥ z1 ∧ χα1} ,

X∗
2 = I2(λ2ZT )1 {ZT ≤ z2 ∧ χα2} + β1I1(λ1ZT )1 {z2 ∧ χα2 < ZT ≤ χα2}

+ I2(λ2ZT )1 {ZT > χα2} .

Note that δ2 > δ1 has the interpretation of investor 2 being more risk-taking than investor 1. If
δ1 = δ2 = δ, then

I1(λ1ZT ) ≥ β2I2(λ2ZT ) ⇐⇒ λ2 ≥ β
1/δ
2 λ1,

I2(λ2ZT ) ≥ β1I1(λ1ZT ) ⇐⇒ λ1 ≥ β
1/δ
1 λ2,

which shows that the case distinction does not depend on ZT but solely on the parameters chosen
by the investors. Hence, we obtain the following case distinction for the Nash equilibrium (X∗

1 , X
∗
2 ).

a) If λ1 ≥ β
1/δ
1 λ2 and λ2 ≥ β

1/δ
2 λ1, then

X∗
1 = I1(λ1ZT ), X∗

2 = I2(λ2ZT ).

b) If λ2 < β
1/δ
2 λ1, then λ1 > β

1/δ
1 λ2 and

X∗
1 = β2I2(λ2ZT )1 {ZT ≤ χα1} + I1(λ1ZT )1 {ZT > χα1} , X∗

2 = I2(λ2ZT ).

c) If λ1 < β
1/δ
1 λ2, then λ2 > β

1/δ
2 λ1 and

X∗
1 = I1(λ1ZT ), X∗

2 = β1I1(λ1ZT )1 {ZT ≤ χα2} + I2(λ2ZT )1 {ZT > χα2} .

♢

Proof (Theorem 8.4). To simplify notation throughout this proof, we abbreviate Ii = Ii(λiZT )
and X∗

i = X∗
i (λ1, λ2), i = 1, 2. We define functions fi to rewrite Xi, i = 1, 2, from (8.6) as

X1 = f1(X2) := I11 {I1 ≥ β2X2, ZT ≤ χα1} + β2X21 {I1 < β2X2, ZT ≤ χα1} + I11 {ZT > χα1}
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for agent 1 and

X2 = f2(X1) := I21 {I2 ≥ β1X1, ZT ≤ χα2} + β1X11 {I2 < β1X1, ZT ≤ χα2} + I21 {ZT > χα2}

for agent 2. To construct the two-dimensional fixed point for (8.6), we consider the equation

f1
(
f2(X1)

)
= X1 (8.10)

and prove that the unique solution to (8.10) is given by X∗
1 . The analysis of X2 = f2

(
f1(X2)

)
proceeds analogously.

We use a case distinction based on ZT . If ZT > χα1 ∨ χα2 , (8.10) simplifies to X1 = I1 and thus,
the unique solution is given by X1 = I1 in this case. For the case χα1 ∧ χα2 < ZT ≤ χα1 ∨ χα2 , we
consider two subcases. If χα1 < χα2 , then ZT > χα1 and (8.10) again simplifies to X1 = I1. If
χα1 ≥ χα2 , (8.10) reads as

X1 = f1(I2) = I11 {I1 ≥ β2I2} + β2I21 {I1 < β2I2} .

Since the right-hand side is constant in X1, it is the unique solution to (8.10) in that case. Finally,
assume that ZT ≤ χα1 ∧ χα2 . First, let us simplify the components of f1

(
f2(X1)

)
. We obtain

1 {I1 ≥ β2f2(X1)} =1 {I1 ≥ β2I2, I2 ≥ β1X1} + 1 {I1 ≥ β1β2X1, I2 < β1X1}

=1
{
I1 ≥ β2I2, X1 ≤ (β1β2)−1I1

}
for the first indicator,

1 {I1 < β2f2(X1)} =1 {I1 < β2I2, I2 ≥ β1X1} + 1 {I1 < β1β2X1, I2 < β1X1}

=1
{
I1 < β2I2, X1 ≤ β−1

1 I2
}

+ 1

{
X1 > max

{
β−1

1 I2, (β1β2)−1I1
}}

for the second indicator, and thus,

f2(X1)1 {I1 < β2f2(X1)}

= I21
{
I1 < β2I2, X1 ≤ β−1

1 I2
}

+ β1X11
{
X1 > max

{
β−1

1 I2, (β1β2)−1I1
}}

.

Therefore, (8.10) simplifies to

X1 =I11
{
I1 ≥ β2I2, X1 ≤ (β1β2)−1I1

}
+ β2I21

{
I1 < β2I2, X1 ≤ β−1

1 I2
}

+ β1β2X11
{
X1 > max

{
β−1

1 I2, (β1β2)−1I1
}}

. (8.11)

If I1 ≥ β2I2, the unique solution to (8.11) is given by X1 = I1, whereas for I1 < β2I2, the unique
solution is given by X1 = β2I2. This is based on the fact that, in both cases, the right-hand side
of (8.11) is constant for small values of X1 and linear with slope between 0 and 1 for large values
of X1. In both cases, the unique point of intersection with the identity function is located in the
interval where the right-hand side is constant.
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To summarize, the unique solution to (8.10) is given by

X1 = I11 {I1 ≥ β2I2, ZT ≤ χα1} + β2I21 {I1 < β2I2, ZT ≤ χα1} + I11 {ZT > χα1} .

Using similar arguments for X2 yields that (X∗
1 , X

∗
2 ) from the theorem is the unique fixed point

for (8.6).

Remark 8.7. In Section C.2 in the Appendix, the n-dimensional fixed point problem (8.6) is
reduced to an (n− 1)-dimensional fixed point problem. The reduced problem (C.7) can be used
to determine the fixed point for n = 2 instead of the previously displayed direct calculation. It is
also used to solve the fixed point problem explicitly for n = 3 (see Section C.3 in the appendix).
Afterwards, the Lagrange multipliers λ1, λ2 are calculated explicitly if the agents use logarithmic
utility functions and the parameters are chosen correctly. Finally, the explicit representations are
used to generate some numerical results. ♢

Example: Logarithmic Utility

In the following, we consider a special case of Theorem 8.4 where both agents use the natural
logarithm as their utility function. In this setting, we explicitly determine the Lagrange multipliers
mentioned in Theorem 8.4, which allows us to look at some numerical results.

Theorem 8.4 implies that, if both agents use logarithmic utility, the unique fixed point for (8.6) is
given by

X∗
1 =


1

λ1ZT
, λ1β2 ≤ λ2, ZT ≤ χα1 ,

β2
λ2ZT

, λ1β2 > λ2, ZT ≤ χα1 ,

1
λ1ZT

, ZT > χα1 ,

X∗
2 =


1

λ2ZT
, λ2β1 ≤ λ1, ZT ≤ χα2 ,

β1
λ1ZT

, λ2β1 > λ1, ZT ≤ χα2 ,

1
λ2ZT

, ZT > χα2 .

(8.12)

Now we can explicitly determine the Lagrange multipliers λ1 and λ2 with respect to the conditions
E[X∗

i ZT ] = xi0, i = 1, 2, if the parameters are chosen correctly.

Lemma 8.8. Let x1
0 > α1β2x

2
0, x

2
0 > α2β1x

1
0, and let X∗

i = X∗
i (λ1, λ2), i = 1, 2, be given by

(8.12). Then the unique solution λ1, λ2 > 0 to the system

E[X∗
1ZT ] = x1

0, E[X∗
2ZT ] = x2

0,

is given by

λ1 = 1 − α1
x1

0 − α1β2x2
0
1

{
x1

0 < β2x
2
0

}
+ 1
x1

0
1

{
x1

0 ≥ β2x
2
0

}
,

λ2 = 1 − α2
x2

0 − α2β1x1
0
1

{
x2

0 < β1x
1
0

}
+ 1
x2

0
1

{
x2

0 ≥ β1x
1
0

}
.

A proof can be found in Section C.1 in the appendix. Using Lemma 8.8, the unique solution to
the fixed point problem (8.6) can now be given explicitly.
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Proposition 8.9. Let x1
0 > α1β2x

2
0, x

2
0 > α2β1x

1
0, and Ui(x) = log(x), x ∈ (0,∞), i = 1, 2. Then

the unique Nash equilibrium in the class of wealth profiles of the form (8.6) is given as follows.

a) If x1
0 ≥ β2x

2
0 and x2

0 ≥ β1x
1
0, then

X∗
1 = x1

0Z
−1
T , X∗

2 = x2
0Z

−1
T .

b) If x1
0 < β2x

2
0, then x2

0 > β1x
1
0 and

X∗
1 = β2x

2
0Z

−1
T 1 {ZT ≤ χα1} + x1

0 − α1β2x
2
0

1 − α1
Z−1
T 1 {ZT > χα1} , X∗

2 = x2
0Z

−1
T .

c) If x2
0 < β1x

1
0, then x1

0 > β2x
2
0 and

X∗
1 = x1

0Z
−1
T , X∗

2 = β1x
1
0Z

−1
T 1 {ZT ≤ χα2} + x2

0 − α2β1x
1
0

1 − α2
Z−1
T 1 {ZT > χα2} .

The assertion follows directly by inserting the Lagrange multipliers from Lemma 8.8 into (8.12).
Nevertheless, we displayed the proof in Section C.1 in the appendix.

Remark 8.10. Proposition 8.9 reveals an important feature of the Nash equilibrium (X∗
1 , X

∗
2 ).

First, we notice that either X∗
1 or X∗

2 has a discontinuity while the other is given by the solution
to the classical problem. The agent whose wealth in the Nash equilibrium is given by the classical
solution xj0Z

−1
T is always „the better one“ in the sense that her initial capital is significantly larger

than the other investors’ initial capital (xj0 > β−1
j xi0 > xi0, i ̸= j). If the initial investments x1

0 and
x2

0 are close in the sense that β2x
2
0 ≤ x1

0 ≤ x2
0
β1

, then both investors obtain the terminal wealth
xj0Z

−1
T in the fixed point. ♢

Numerical Results

Proposition 8.9 enables us to consider some numerical results. We use the special case of a classical
Black-Scholes model (one stock, constant market parameters) with zero interest rate. Thus, the
discounted state price density ZT is given by (see, e.g., Eberlein and Kallsen, 2019, Examples 9.1
and 9.17)

ZT = exp
(

− µ

σ
WT − 1

2
µ2

σ2T

)
.

Hence, ZT follows a lognormal distribution with parameters ν and τ2, where

ν = −1
2
µ2

σ2T, τ
2 = µ2

σ2T.

The quantiles χα, α ∈ [0, 1], of ZT are given by (see, e.g., Johnson et al., 1994, p. 213)

χα = exp
(
ν + τ · Φ−1(α)

)
,

where Φ−1 describes the quantile function of the standard normal distribution. Throughout our
computations we set µ = 0.03, σ = 0.2, and T = 4. The numerical results are shown below.
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Figure 8.3.1.: X∗
1 and X∗

2 from Proposition 8.9 (solid) in terms of ZT for β1 = 0.5, β2 = 0.9,
α1 = 0.2, α2 = 0.4, x1

0 = 2, x2
0 = 3, µ = 0.03, σ = 0.2, T = 4. The dashed and

dotted lines mark the classical solution x1
0Z

−1
T and (λ1ZT )−1 for λ1 from Lemma 8.8,

respectively. The parameters are chosen such that case b) from Proposition 8.9 is
present.
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(a) x1
0 = 2, x2

0 = 3, β1 = 0.9, β2 = 0.5 (case a).
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(b) x1
0 = 2, x2

0 = 3, β1 = 0.5, β2 = 0.9 (case b).

Figure 8.3.2.: X∗
1 and X∗

2 from Proposition 8.9 in terms of ZT for µ = 0.03, σ = 0.2, T = 4,
α1 = 0.2 and α2 = 0.4.

Figure 8.3.1 gives a first glance at the behavior of the Nash equilibrium (X∗
1 , X

∗
2 ) from Propo-

sition 8.9. It shows X∗
1 and X∗

2 (solid) for the parameter choices β1 = 0.5, β2 = 0.9, α1 = 0.2,
α2 = 0.4, x1

0 = 2, and x2
0 = 3. Note that, due to the choice of parameters, X∗

1 and X∗
2 are

given in part b) of Proposition 8.9. For reference, the figure also displays (λ1ZT )−1 (dotted) in
terms of ZT . It is important to notice that (λ1ZT )−1 is not the solution to the classical problem,
since the Lagrange multiplier λ1 = 1−α1

x1
0−α1β2x2

0
≈ 0.5479 is different from the Lagrange multiplier

λ = (x1
0)−1 = 0.5 in the solution to the classical problem. For comparison, we also included the

classical solution x1
0Z

−1
T (dashed) for agent 1. While X∗

2 is simply given by the solution to the
classical problem, X∗

1 shows a discontinuity at χα1 . For ZT ≤ χα1 („good states“), X∗
1 is given by

β2(λ2ZT )−1 and hence, strictly larger than (λ1ZT )−1. If ZT > χα1 („bad states“), X∗
1 is given by
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(λ1ZT )−1. We observe that X∗
1 is slightly smaller than the classical solution x1

0Z
−1
T if ZT > χα1 ,

but significantly larger if ZT ≤ χα1 .

Figure 8.3.2 illustrates cases a) and b) from Proposition 8.9. Due to the symmetry between cases
b) and c), only cases a) and b) are illustrated. For the first set of parameters, the conditions of
case a) in Proposition 8.9 are satisfied so that X∗

i is given by (λiZT )−1, i = 1, 2, for any realization
of ZT . Hence, both X∗

1 and X∗
2 are continuous in ZT . For the second set of parameters, the

conditions of case b) are satisfied. In that case, X∗
2 is again given by (λ2ZT )−1 whereas X∗

1 is
given by β2(λ2ZT )−1 if ZT ≤ χα1 and (λ1ZT )−1 if ZT > χα1 , with a discontinuity located at χα1 .
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Figure 8.3.3.: X∗
1 from Proposition 8.9 in terms of ZT for β1 = 0.1, β2 = 0.9, α2 = 0.4 and different

values of α1, x1
0 = 2, x2

0 = 3, µ = 0.03, σ = 0.2, and T = 4. The parameters are
chosen such that case b) from Proposition 8.9 is present.

Figures 8.3.3 and 8.3.4 illustrate how the choice of the parameters αi and βi, i = 1, 2, affects the
component X∗

1 of the unique fixed point for two agents. All parameter choices used in the two
figures satisfy the conditions of case b) in Proposition 8.9.

Figure 8.3.3 shows two different features of the influence of α1. We notice that the location of
the discontinuity changes with α1, since the discontinuity is located at the quantile χα1 . We also
notice that the value of X∗

1 is decreasing in terms of α1 if ZT > χα1 . Hence, if a larger value of α1

is chosen, more states are insured with respect to agent 2, which outperforms agent 1 in this case.
However, in the states in which there is no insurance with respect to agent 2, the terminal wealth
is smaller for a larger choice of α1. The reason for this observation is the Lagrange multiplier λ1

which is increasing in α1 in case b) of Proposition 8.9. Thus, we observe that a larger choice of
α1 is related to agent 1 being more risk-averse. She wants to insure her wealth against the other
agent’s wealth in a larger fraction of the possible market scenarios. However, she has to „pay
the price“ for this choice with an even smaller terminal wealth in the „bad“ states. This reveals
a general criticism of the value at risk – it only limits the probability of losses above a certain
threshold; the magnitude of such losses is not taken into account (see, e.g., Föllmer and Schied,
2016, p. 231).
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Figure 8.3.4.: X∗
1 (solid) and X∗

2 (dashed) from Proposition 8.9 in terms of ZT for different values
of β2, β1 = 1 − β2, α1 = 0.2, α2 = 0.4, x1

0 = 2, x2
0 = 3, µ = 0.03, σ = 0.2, and T = 4.

The parameters are chosen such that case b) from Proposition 8.9 is present.

Figure 8.3.4 illustrates the influence of the parameter β2 on X∗
1 . Here we chose x1

0 = 2 and x2
0 = 3,

so that, as long as β2 > 2/3, case b) of Proposition 8.9 is present. Note that the parameter β1 has
no effect in this case, since X∗

1 does not depend on β1, nor does the condition which ensures that
case b) is present. Figure 8.3.4 shows that a larger value of β2 results in a larger value of X∗

1 in
the „good states“ (ZT ≤ χα1) and in a smaller value of X∗

1 in the „bad states“.

8.4. Solution of the fixed point problem for n agents

In this section, we show that, if βj ≤ 1
n−1 for all j ∈ {1, . . . , n}, a fixed point for (8.6) is either

unique or all components are equal. Moreover, we prove an important property of the fixed point,
which is similar to the case distinction for three investors given in Table C.1 in the appendix. It
shows that any possible value of the triple (X∗

1 , X
∗
2 , X

∗
3 ) contains some (at least one, at most three)

entries X∗
j that are given by Ij(λjZT ) while the other entries are linear combinations of these

Ij ’s. We provide a similar result for a general number of investors. Finally, if we consider the case
βj = 1

n−1 and αj = α ∈ [0, 1] for all j ∈ {1, . . . , n}, we can give a closed-form representation of the
unique Nash equilibrium in the class of strategies of the form (8.6) (under an additional assumption
which is conjectured to hold for general n and is proven to hold for n ∈ {2, 3}). The solution for
investor i is given as a maximum of 2n−1 terms if ZT ≤ χα, and by Ii(λiZT ) if ZT > χα. We also
state and justify a conjecture on a statement allowing for more general choices of βj , j = 1, . . . , n.

Using (8.6), Xi equals Ii(λiZT ) if ZT > χαi , or if ZT ≤ χαi as well as Ii ≥
∑
j ̸=i βjXj , and∑

j ̸=i βjXj for other values of ZT . Hence, to solve this n-dimensional fixed point problem, we
can distinguish how many of the n investors use the „classical“ solution Ii(λiZT ). Note that we
need to be careful with the expression „classical solution“ since the Lagrange multiplier λi is not
necessarily given as the solution to E[ZT Ii(λiZT )] = xi0 since there might be values of ZT for
which X∗

i is not equal to Ii(λiZT ). Hence, although the structure is the same as in the classical
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solution for some values of ZT , the value might not be equal to the value of the classical solution.

We can use this idea in the following to solve the n-dimensional fixed point problem emerging
from (8.6). But first, we need to introduce some notation. For a finite set S ⊂ R, we denote the
set of k-combinations of pairwise distinct elements from S by

(S
k

)
, i.e.,(

S

k

)
:= {(i1, . . . , ik) | ij ∈ S, j = 1, . . . , k, i1 < i2 < . . . < ik}, k ∈ {0, 1, . . . , |S|},(

S

k

)
:= ∅, k /∈ {0, 1, . . . , |S|}.

If k = 0, the set
(S

0
)

contains only the empty tuple (). A standard combinatorial result then states
that the number of elements in

(S
k

)
equals

(|S|
k

)
if k ∈ {0, . . . , |S|}, where(

|S|
k

)
= |S|!
k!(|S| − k)!

denotes the binomial coefficient (see, e.g., Harris et al., 2008, p. 133). We also use the abbreviation

[L] := {1, 2, . . . , L}, L ∈ N.

We can then define

dL(j1, . . . , jL) := 1 −
L∑
k=2

(k − 1)
∑

(i1,...,ik)∈([L]
k )

k∏
ℓ=1

βjiℓ
(8.13)

and

AL(j1, . . . , jL) :=



1 −βj2 −βj3 . . . −βjL

−βj1 1 −βj3
. . . −βjL

...
. . .

. . . . . .
...

−βj1 . . . −βjL−2 1 −βjL

−βj1 −βj2 . . . −βjL−1 1



for some L ∈ {1, . . . , n}, where A1(j1) := (1). Hence, the entries of AL(j1, . . . , jL) are given by

AL(j1, . . . , jL)[i, k] =

1, i = k,

−βjk , i ̸= k.

The first goal of this section is to prove the following theorem which presents an n-dimensional
analogue of Table C.1.
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Theorem 8.11. Let βj ≤ 1
n−1 for all j ∈ {1, . . . , n} and let the value of ZT be arbitrary but fixed.

If there exists a solution (X1, . . . , Xn) to the fixed point problem (8.6), one of the following two
cases is present. Either the fixed point satisfies Xi = Xj for all i, j ∈ {1, . . . , n} or it is unique with
the following property: If, for some L ∈ {0, . . . , n− 1} and an L-combination (j1, . . . , jL) ∈

([n]
L

)
,

Xjℓ ̸= Ijℓ(λjℓZT ), ℓ ∈ {1, . . . , L}, Xk = Ik(λkZT ), k /∈ {j1, . . . , jL},

then

Xjℓ =

L∏
i=1,i ̸=ℓ

(1 + βji)

dL(j1, . . . , jL)

n∑
k=1

k/∈{j1,...,jL}

βkIk(λkZT )

holds for all ℓ ∈ {1, . . . , L}.

The proof uses Lemmas 8.12 - 8.14 stated below. Their proofs can be found in Section C.4 in the
appendix.

Lemma 8.12. Let L ∈ {1, . . . , n} and (j1, . . . , jL) ∈
([n]
L

)
. If βj ≤ 1

n−1 for all j ∈ {1, . . . , n}, then

dL(j1, . . . , jL) ≥
(

n

n− 1

)L−1 n− L

n− 1 .

Further, dL(j1, . . . , jL) > 0 holds if, and only if, either L ∈ {1, . . . , n − 1} or L = n and∏n
j=1 βj <

(
1

n−1

)n
.

Lemma 8.13. Assume that βj ≤ 1
n−1 for all j ∈ {1, . . . , n}. Then, if either L ∈ {1, . . . , n− 1}, or

L = n and
∏n
j=1 βj <

(
1

n−1

)n
, the matrix AL(j1, . . . , jL) is regular with inverse AL(j1, . . . , jL)−1

given by

AL(j1, . . . , jL)−1[i, k] =



1 −
L−1∑
m=2

(m− 1)
∑

(i1,...,im)∈({j1,...,jL}\{ji}
m )

m∏
ℓ=1

βiℓ

dL(j1, . . . , jL) , i = k,

βjk

L∏
ℓ=1,ℓ ̸=i,k

(1 + βjℓ)

dL(j1, . . . , jL) , i ̸= k,

for any (j1, . . . , jL) ∈
([n]
L

)
. If L = n and βj = 1

n−1 for all j ∈ {1, . . . , n}, then An(1, . . . , n) is not
regular.

Lemma 8.14. Let βj ≤ 1
n−1 for all j ∈ {1, . . . , n}. Further, let either L ∈ {1, . . . , n − 1} or

L = n and
∏n
j=1 βj <

(
1

n−1

)n
. Finally, let (j1, . . . , jL) ∈

([n]
L

)
. Then the sum of the i-th row of

AL(j1, . . . , jL)−1, i ∈ {1, . . . , L}, is given by

L∑
k=1

AL(j1, . . . , jL)−1[i, k] = 1
dL(j1, . . . , jL)

L∏
ℓ=1,ℓ̸=i

(1 + βjℓ).

Using these three lemmas, we can now prove Theorem 8.11.



126 Chapter 8. Relative performance via a VaR-type constraint

Proof (Theorem 8.11). Considering the n-dimensional fixed point problem (8.6), any fixed point
(X1, . . . , Xn) has the property that, for any value of ZT , Xi is given by either Ii(λiZT ) or

∑
j ̸=i βjXj .

To prove the assertion in the theorem, we use a case distinction based on the number M of indices
j ∈ {1, . . . , n} for which Xj = Ij(λjZT ) holds.

First, we need to consider the case that Xi =
∑
j ̸=i βjXj for all i ∈ {1, . . . , n}, i.e., M = 0. This

yields a system of linear equations which can be written as

An(1, . . . , n)(X1, . . . , Xn)⊤ = 0n, (8.14)

where 0n denotes the n-dimensional vector of zeros. If
∏n
j=1 βj <

(
1

n−1

)n
, Lemma 8.13 implies

that An(1, . . . , n) is regular and thus, the unique solution to this system is given by 0n. However,
Xi =

∑
j ̸=i βjXj implies that 0 =

∑
j ̸=i βjXj > Ii(λiZT ), which is a contradiction since Ii takes

only strictly positive values. Now let βj = 1
n−1 for all j ∈ {1, . . . , n}. Then (8.14) reads as

Xi = 1
n− 1

∑
j ̸=i

Xj or, equivalently, Xi = 1
n

n∑
j=1

Xj ,

for all i ∈ {1, . . . , n}. Thus, all components of the fixed point are equal.

Now let M ∈ {1, . . . , n} describe the number of indices j ∈ {1, . . . , n} with Xj = Ij(λjZT ). Further,
let L := n − M ∈ {0, . . . , n − 1} and denote the L-tuple of indices ℓ for which3 Xℓ ̸= Iℓ(λℓZT )
by (j1, . . . , jL). For L = 0, Xj = Ij(λjZT ) holds for all j ∈ {1, . . . , n}. Thus, we consider
L ∈ {1, . . . , n− 1}. Hence, for all ℓ ∈ {1, . . . , L},

Xjℓ =
n∑
i=1
i ̸=jℓ

βiXi =
L∑
p=1
p ̸=ℓ

βjpXjp +
n∑
k=1

k/∈{j1,...,jL}

βkIk(λkZT )

and we obtain the system of linear equations

Xjℓ −
L∑
p=1
p ̸=ℓ

βjpXjp =
n∑
k=1

k/∈{j1,...,jL}

βkIk(λkZT ), ℓ = 1, . . . , L,

which we can also write as

AL(j1, . . . , jL)(Xj1 , . . . , XjL)⊤ =
n∑
k=1

k/∈{j1,...,jL}

βkIk(λkZT ) · 1L, (8.15)

where 1L denotes the L-dimensional vector of ones. Since, for L ∈ {1, . . . , n− 1}, AL(j1, . . . , jL)
is regular with known inverse AL(j1, . . . , jL)−1 (see Lemma 8.13), the unique solution to (8.15) is
given by

(Xj1 , . . . , XjL)⊤ =
n∑
k=1

k/∈{j1,...,jL}

βkIk(λkZT ) ·AL(j1, . . . , jL)−11L.

3Note that, although not relevant for our proof, this does imply that ZT ≤ χαjℓ
for all ℓ ∈ {1, . . . , L}.
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Therefore, the ℓ-th entry of the solution is given by

Xjℓ =
(

n∑
k=1

k/∈{j1,...,jL}

βkIk(λkZT )
)

·
L∑
p=1

AL(j1, . . . , jL)−1[ℓ, p].

Combining Lemma 8.13 and Lemma 8.14 yields

Xjℓ =

L∏
p=1,p ̸=ℓ

(1 + βjp)

dL(j1, . . . , jL) ·
n∑
k=1

k/∈{j1,...,jL}

βkIk(λkZT ).

Since we can use this argumentation for any solution of the fixed point problem, it follows that, if
there exists a fixed point for (8.6), it is unique or all components are equal. Moreover, it satisfies
the asserted property from the theorem.

Remark 8.15. Although the fixed point problem (8.6) contains a case distinction on whether
ZT ≤ χα or ZT > χα, we did not need to separate these two cases in the proof of Theorem 8.11.
We just needed to consider how many and which of the indices j ∈ {1, . . . , n} satisfy Xj = Ij(λjZT ),
which could be due to ZT > χαj or to Ij(λjZT ) >

∑
k ̸=j βkXk. This enables us to state the

theorem without the assumption αi = α for all i ∈ {1, . . . , n}. ♢

Theorem 8.11 shows that if there exists a fixed point for (8.6), it is either unique or all components
of the fixed point are equal. Moreover, in the case where not all components are equal, it can be
expressed implicitly via a case distinction. However, it does not prove the existence of a fixed point
or give an explicit representation. In the following, we provide a closed-form representation of the
unique fixed point (in a slightly more restrictive setting) and thus, the unique Nash equilibrium in
the case that αi = α ∈ [0, 1] and βi = 1

n−1 for all i ∈ {1, . . . , n}. We also state and justify two
conjectures about a more general theorem (see Remarks 8.17 and 8.19). The following theorem
displays the mentioned closed-form representation of the unique fixed point.

Theorem 8.16. Let αj = α ∈ [0, 1] and βj = 1
n−1 for all j ∈ {1, . . . , n}. Then the P-almost surely

unique Nash equilibrium for (8.2) in the class of wealth profiles Xj, j = 1, . . . , n, of the form (8.6)
for which

P
(
Xi = Xj for all i, j ∈ {1, . . . , n}

)
= 0 (8.16)

holds, is given by (X∗
1 , . . . , X

∗
n) for

X∗
i = max

{
{Ii(λiZT )} ∪

n−2⋃
L=0

⋃
(j1,...,jL)∈([n]\{i}

L )

{ ∏L
ℓ=1(1 + βjℓ)

dL+1(i, j1, . . . , jL)

n∑
k=1

k/∈{i,j1,...,jL}

βkIk(λkZT )
}}

· 1 {ZT ≤ χα} + Ii(λiZT )1 {ZT > χα} , (8.17)

i = 1, . . . , n, where we assume that the n-dimensional system E[ZTX∗
i ] = xi0, i = 1, . . . , n, of

equations has a unique solution (λ1, . . . , λn) ∈ (0,∞)n.

Remark 8.17. We conjecture that (8.16) holds for any Nash equilibrium for (8.2) in the class of
wealth profiles of the form (8.6). Thus, we believe that Theorem 8.16 holds without the restriction
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(8.16) to tuples (X1, . . . , Xn) with components that are almost surely not identical. For n ∈ {2, 3},
we can prove that (8.17) is the unique Nash equilibrium in the class of wealth profiles of the
form (8.6) without the additional restriction (8.16) (see Theorem 8.4 and Theorem C.1 in the
appendix). ♢

The proof of Theorem 8.16 uses the following lemma.

Lemma 8.18. Let L ∈ {0, . . . , n − 1} and (j1, . . . , jL+1) ∈
( [n]
L+1

)
. Moreover, let βj ≤ 1

n−1 ,
j = 1, . . . , n. Then

dL+1(j1, . . . , jL, jL+1) = (1 + βjL+1)dL(j1, . . . , jL) − βjL+1

L∏
ℓ=1

(1 + βjℓ).

The proof can be found in Section C.4 in the appendix.

Proof (Theorem 8.16). The conditions of Theorem 8.16 allow us to use the statement of Theo-
rem 8.11. We only need to consider the case ZT ≤ χα, because otherwise we already know that X∗

i

is given by Ii(λiZT ) for all i ∈ {1, . . . , n}. Thus, we assume that ZT ≤ χα throughout this proof.

To prove the claimed representation of X∗
i , i = 1, . . . , n, we have to show that the n-tuple

(X∗
1 , . . . , X

∗
n) solves the fixed point problem (8.6). To keep notation simple, we consider i = 1 and

assume that X∗
j , j = 2, . . . , n, are given by (8.17). Then we need to show that X∗

1 can also be
written in the form of (8.17). For the remainder of this proof, we abbreviate Ij = Ij(λjZT ).

Analogously to the proof of Theorem 8.11, we use a case distinction based on the number
N ∈ {0, . . . , n−1} of indices j ∈ {2, . . . , n} for whichX∗

j = Ij holds. IfN = 0, i.e., ifX∗
j ≠ Ij(λjZT )

for all j ∈ {2, . . . , n}, it follows immediately from assumption (8.16) that X∗
1 = I1(λ1ZT ) P-almost

surely. In fact, the proof of Theorem 8.11 implies that, if X∗
j ≠ Ij(λjZT ) for all j ∈ {1, . . . , n}, it

follows that X∗
i = X∗

j for all i, j ∈ {1, . . . , n}, which is P-almost surely not the case using (8.16).
Thus, we can assume that there are N ∈ {1, . . . , n− 1} indices j ∈ {2, . . . , n} for which X∗

j = Ij

holds. Further, let L = n−1−N ∈ {0, . . . , n−2} and j1, . . . , jL ∈ {2, . . . , n} describe the pairwise
distinct indices for which X∗

jℓ
̸= Ijℓ , ℓ = 1, . . . , L. Then it follows analogously to the proof of

Theorem 8.11 that X∗
1 is given by either I1 or

∏L
ℓ=1(1 + βjℓ)

dL+1(1, j1, . . . , jL)

n∑
k=2

k/∈{j1,...,jL}

βkIk.

Hence, it remains to show that

max
{

{I1} ∪
n−2⋃
M=0

⋃
(m1,...,mM )∈([n]\{1}

M )

{ ∏M
p=1(1 + βmp)

dM+1(1,m1, . . . ,mM )

n∑
r=2

r/∈{m1,...,mM }

βrIr

}}

= max
{
I1,

∏L
ℓ=1(1 + βjℓ)

dL+1(1, j1, . . . , jL)

n∑
k=2

k/∈{j1,...,jL}

βkIk

}
.
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In order to do this, we prove the inequality

∏L
ℓ=1(1 + βjℓ)

dL+1(1, j1, . . . , jL)

n∑
k=2

k/∈{j1,...,jL}

βkIk ≥
∏M
p=1(1 + βmp)

dM+1(1,m1, . . . ,mM )

n∑
r=2

r/∈{m1,...,mM }

βrIr (8.18)

for all M ∈ {0, . . . , n− 2} and (m1, . . . ,mM ) ∈
({2,...,n}

M

)
with (m1, . . . ,mM ) ̸= (j1, . . . , jL). Hence,

let M ∈ {0, . . . , n−2} and (m1, . . . ,mM ) ∈
({2,...,n}

M

)
with (m1, . . . ,mM ) ̸= (j1, . . . , jL) be arbitrary

but fixed.

Using that X∗
j , j = 2, . . . , n, are given by (8.17) and that X∗

k = Ik for k ∈ {2, . . . , n}\{j1, . . . , jL}
yields

Ik ≥
∏K
q=1(1 + βiq )

dK+1(k, i1, . . . , iK)

n∑
s=1

s/∈{k,i1,...,iK}

βsIs (8.19)

for all K ∈ {0, . . . , n − 2}, (i1, . . . , iK) ∈
([n]\{k}

K

)
, and k ∈ {2, . . . , n}\{j1, . . . , jL}. We can use

(8.19) to show (8.18) by choosing K and (i1, . . . , iK) accordingly. The choice of K and (i1, . . . , iK)
is divided into two cases. The reason is that the lower bound (8.19) only holds if the sum on
the right-hand side does not contain the summand βkIk. Hence, we need to distinguish the cases
k ∈ {m1, . . . ,mM} and k /∈ {m1, . . . ,mM}.

First, we consider the indices k contained in {m1, . . . ,mM}\{j1, . . . , jL}. Note that the index set
{m1, . . . ,mM}\{j1, . . . , jL} is non-empty by assumption. For these indices, we can choose K = M

and {i1, . . . , iK} = {1,m1, . . . ,mM}\{k}, and obtain

Ik ≥
∏
p∈{1,m1,...,mM }\{k}(1 + βp)
dM+1(1,m1, . . . ,mM )

n∑
r=1

r/∈{1,m1,...,mM }

βrIr. (8.20)

Now we consider the case k ∈ {2, . . . , n}\{j1, . . . , jL,m1, . . . ,mM}. Then we choose K = M + 1
and {i1, . . . , iK} = {1,m1, . . . ,mM} and obtain

Ik ≥
∏
p∈{1,m1,...,mM }(1 + βp)

dM+2(1,m1, . . . ,mM , k)

n∑
r=1

r/∈{1,m1,...,mM ,k}

βrIr,

which we can equivalently rewrite as(
1 + βk

∏
p∈{1,m1,...,mM }(1 + βp)

dM+2(1,m1, . . . ,mM , k)

)
Ik ≥

∏
p∈{1,m1,...,mM }(1 + βp)

dM+2(1,m1, . . . ,mK , k)

n∑
r=1

r/∈{1,m1,...,mM }

βrIr.

We can rewrite the constant factor on the left-hand side using Lemma 8.18. It follows

1 + βk

∏
p∈{1,m1,...,mM }(1 + βp)

dM+2(1,m1, . . . ,mM , k) =
dM+2(1,m1, . . . ,mM , k) + βk

∏
p∈{1,m1,...,mM }(1 + βp)

dM+2(1,m1, . . . ,mM , k)

= (1 + βk)dM+1(1,m1, . . . ,mM )
dM+2(1,m1, . . . ,mM , k) ,
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which is strictly positive using Lemma 8.12. Hence, we obtain

Ik ≥
∏
p∈{1,m1,...,mM }(1 + βp)

(1 + βk)dM+1(1,m1, . . . ,mM )

n∑
r=1

r/∈{1,m1,...,mM }

βrIr. (8.21)

Now we combine (8.20) and (8.21) to obtain

n∑
k=2

k/∈{j1,...,jL}

βkIk =
∑

k∈{m1,...,mM }
k/∈{j1,...,jL}

βkIk +
n∑
k=2

k/∈{m1,...,mM }
k/∈{j1,...,jL}

βkIk

≥
∑

k∈{m1,...,mM }
k/∈{j1,...,jL}

βk

∏
p∈{1,m1,...,mM }\{k}(1 + βp)
dM+1(1,m1, . . . ,mM )

n∑
r=1

r/∈{1,m1,...,mM }

βrIr

+
n∑
k=2

k/∈{m1,...,mM }
k/∈{j1,...,jL}

βk

∏
p∈{1,m1,...,mM }(1 + βp)

(1 + βk)dM+1(1,m1, . . . ,mM )

n∑
r=1

r/∈{1,m1,...,mM }

βrIr

=
∏
p∈{1,m1,...,mM }(1 + βp)
dM+1(1,m1, . . . ,mM )

n∑
k=2

k/∈{j1,...,jL}

βk
1 + βk

n∑
r=1

r/∈{1,m1,...,mM }

βrIr.

Therefore, we obtain
∏L
ℓ=1(1 + βjℓ)

dL+1(1, j1, . . . , jL)

n∑
k=2

k/∈{j1,...,jL}

βkIk

≥
∏L
ℓ=1(1 + βjℓ)

dL+1(1, j1, . . . , jL)

∏
p∈{1,m1,...,mM }(1 + βp)
dM+1(1,m1, . . . ,mM )

n∑
k=2

k/∈{j1,...,jL}

βk
1 + βk

n∑
r=1

r/∈{1,m1,...,mM }

βrIr

=
∏L
ℓ=1(1 + βjℓ)

dL+1(1, j1, . . . , jL)(1 + β1)
n∑
k=2

k/∈{j1,...,jL}

βk
1 + βk︸ ︷︷ ︸

=:γL,1

·
∏
p∈{m1,...,mM }(1 + βp)

dM+1(1,m1, . . . ,mM )

n∑
r=1

r/∈{1,m1,...,mM }

βrIr. (8.22)

Finally, we need to check if γL,1 ≥ 1 which then concludes our proof. If we use the assumption
βj ≤ 1

n−1 , j = 1, . . . , n, used throughout the current section, we obtain

γL,1 =
∏L
ℓ=1(1 + βjℓ)

dL+1(1, j1, . . . , jL)(1 + β1)
n∑
k=2

k/∈{j1,...,jL}

βk
1 + βk

≤

(
1 + 1

n−1

)L
n−1−L
n−1

(
1 + 1

n−1

)L ·
(

1 + 1
n− 1

)
(n− 1 − L) ·

1
n−1

1 + 1
n−1

= 1.

The lower bound on dL+1(1, j1, . . . , jL) is given in Lemma 8.12. Hence, we can only achieve
γL,1 ≥ 1 (or, to be more precise, γL,1 = 1) if we choose βj = 1

n−1 . Then we can make the final
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step in (8.22)

∏L
ℓ=1(1 + βjℓ)

dL+1(1, j1, . . . , jL)

n∑
k=2

k/∈{j1,...,jL}

βkIk ≥ γL,1 ·
∏
p∈{m1,...,mM }(1 + βp)

dM+1(1,m1, . . . ,mM )

n∑
r=1

r/∈{1,m1,...,mM }

βrIr

=
∏
p∈{m1,...,mM }(1 + βp)

dM+1(1,m1, . . . ,mM )

n∑
r=1

r/∈{1,m1,...,mM }

βrIr,

which concludes our proof.

Remark 8.19. Note that, although we assumed that βj = 1
n−1 for all j ∈ {1, . . . , n}, we displayed

X∗
i in terms of β1, . . . , βn. The reason is that we conjecture that (8.17) holds for general βj ≤ 1

n−1 ,
not just for βj = 1

n−1 . We expect that the lower bounds (8.20) and (8.21) in the proof of
Theorem 8.16 are too small. The lower bound (8.19) holds for any K ∈ {0, . . . , n− 2} and any
(i1, . . . , iK) ∈

([n]\{k}
K

)
. Although the specific choice in the proof enables us to prove (8.17) for

general n, different choices for K ∈ {0, . . . , n− 2} and (i1, . . . , iK) ∈
([n]\{k}

K

)
might result in better

(larger) lower bounds for Ik, k ∈ {2, . . . , n}\{j1, . . . , jL}, and hence, also a better lower bound for
the sum

∑
k βkIk. This might yield the desired lower bound (8.18) under the weaker assumption

βj ≤ 1
n−1 for all j ∈ {1, . . . , n}.

In the case n = 3, we are able to prove the assertion for general βj ≤ 1
2 . In the proof of Table C.1,

we needed to use all 3 = 2n−1 − 1 lower bounds resulting from the representation of X∗
i as a

maximum of four arguments. For general n ∈ N, it is simply not possible to consider 2n−1 − 1
different lower bounds in order to find the best one. However, we strongly believe that it would
give us the desired result for general βj ≤ 1

n−1 . ♢
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APPENDIX A

Additional material for Chapter 6

The following chapter contains supplementary material for Chapter 6. First, we explain the
application of the dominated convergence theorem in the proof of Lemma 6.6 in more depth.
Afterwards, we prove two results regarding the expected value of the product of a normal and a
corresponding lognormal random variable (appearing in Remark 6.7 and Example 6.11).

A.1. Application of the dominated convergence theorem in
Lemma 6.6

In Lemma 6.6, we determined the optimal collective competitive terminal wealth using the collective
competitive utility function Ũβ from Lemma 6.2. In order to argue that there exists a unique
Lagrange multiplier, we needed to apply the dominated convergence theorem. In what follows, we
explain the application of the dominated convergence theorem in more depth. To be more specific,
we justify the following interchange of convergence and expectation

lim
k→∞

E
[
ZT · Ii

(
nλkZT

βi (n+ θi) (1 − θ̂)

)]
= E

[
ZT · Ii

(
nλZT

βi (n+ θi) (1 − θ̂)

)]
,

where (λk)k∈N is a sequence of real numbers with limk→∞ λk = λ.

For simplicity, let Ĩi(x) := Ii

(
nx

βi(n+θi)(1−θ̂)

)
, x ∈ (0,∞). We consider two different cases: First,

assume that Di = (0,∞). Let 0 < ε < λ. Since λk → λ, k → ∞, there exists some k0 = k0(ε)
such that λk ∈ (λ− ε, λ+ ε) for all k ≥ k0. Hence, since Ĩi is strictly decreasing, it follows

ZT Ĩi (λkZT ) ≤ ZT Ĩi ((λ− ε)ZT ) ∀ k ≥ k0.
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Moreover, let λmin := min1≤k<k0 λk. Then

ZT Ĩi (λkZT ) ≤ ZT Ĩi (λminZT ) ∀ k < k0.

In summary, we obtain

ZT Ĩi (λkZT ) ≤ max
{
ZT Ĩi ((λ− ε)ZT ) , ZT Ĩi (λminZT )

}
≤ ZT Ĩi ((λ− ε)ZT ) + ZT Ĩi (λminZT )

for all k ∈ N. By assumption, the right-hand side is integrable and hence, we can apply the
dominated convergence theorem.

Now assume that Di = R. Again, let 0 < ε < λ. Then there exists some k0 = k0(ε) ∈ N such that
λk ∈ (λ− ε, λ+ ε). Hence, using the monotonicity of Ĩi, we have∣∣∣ZT Ĩi(λkZT )

∣∣∣ ≤ max
{∣∣∣ZT Ĩi((λ− ε)ZT )

∣∣∣ , ∣∣∣ZT Ĩi((λ+ ε)ZT )
∣∣∣}

for all k ≥ k0. Moreover, let

λmax = arg max
λ∈{λ1,...,λk0−1}

∣∣∣ZT Ĩi(λkZT )
∣∣∣ .

Then it follows ∣∣∣ZT Ĩi(λkZT )
∣∣∣ ≤

∣∣∣ZT Ĩi(λmaxZT )
∣∣∣ ∀k < k0.

In summary, we obtain∣∣∣ZT Ĩi(λkZT )
∣∣∣

≤ max
{∣∣∣ZT Ĩi((λ− ε)ZT )

∣∣∣ , ∣∣∣ZT Ĩi((λ+ ε)ZT )
∣∣∣ , ∣∣∣ZT Ĩi(λmaxZT )

∣∣∣}
≤
∣∣∣ZT Ĩi((λ− ε)ZT )

∣∣∣+ ∣∣∣ZT Ĩi((λ+ ε)ZT )
∣∣∣+ ∣∣∣ZT Ĩi(λmaxZT )

∣∣∣
for all k ∈ N. By assumption, the right-hand side is integrable and hence, we can apply the
dominated convergence theorem.

A.2. Expectation of a normal and a lognormal random
variable

The following lemma treats the expectation of the product of a normally distributed random
variable and the corresponding lognormally distributed random variable. The results are used in
Remark 6.7 and Example 6.11.

Lemma A.1. Let X ∼ N (µ, σ2) for µ ∈ R, σ > 0. Then

E
[
|X| exp(X)

]
< ∞, E

[
X exp(X)

]
=
(
µ+ σ2

)
exp

(
σ2

2 + µ

)
.
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Proof. A straightforward calculation yields

E[|X| exp(X)] = 1√
2πσ

∫ ∞

−∞
|x| exp(x) exp

(
− (x− µ)2

2σ2

)
dx

= exp
(
µ+ σ2

2

) 1√
2πσ

∫ ∞

−∞
|x| exp

(
− (x− (µ+ σ2))2

2σ2

)
dx

= exp
(
µ+ σ2

2

)
E
[
|X̃|

]
< ∞,

where X̃ ∼ N (µ+ σ2, σ2). The expectation in the last line is finite since |x| ≤ 1
2(x2 + 1) holds for

all x ∈ R and the second moment of a normally distributed random variable is finite.

We can reuse the previous calculation for the second assertion of the lemma. Thus,

E[X exp(X)] = exp
(
µ+ σ2

2

)
E
[
X̃
]

=
(
µ+ σ2

)
exp

(
µ+ σ2

2

)
.





APPENDIX B

Additional material for Chapter 7

In the following, we prove two verification results used in the proofs of Theorems 7.2 and 7.12.

B.1. Supplements for the proof of Theorem 7.2

Throughout this section, we work in the setting of Section 7.3 and use the notation defined there.
Lemma B.1 verifies that the optimal strategy determined in the proof of Theorem 7.2 is, in fact,
the unique optimal solution to the best response problem.

Lemma B.1. Suppose that the assumptions of Theorem 7.2 are satisfied. For some arbitrary but
fixed i ∈ {1, . . . , n}, let

G(t, y) = − exp
(

−ρ(T − t) − 1
δi
y

)
, t ∈ [0, T ], y ∈ R, (B.1)

where ρ is taken from (7.21), and let u∗ = u∗(t, y) be the unique maximizer of

h : Rd → R, φ 7→ G(t, y)
δ2
i

(1
2φ

⊤
(
σσ⊤ − 2δi

n
A

)
φ− δiφ

⊤µ̃−i
)

for (t, y) ∈ [0, T ] × R.

Then J(t, y) = G(t, y) for all (t, y) ∈ [0, T ] × R and φ∗
t = u∗ (t, Y ∗

t ) is the unique optimal solution
to (7.11), where Y ∗ solves the stochastic differential equation

dYt = u∗(t, Yt)⊤
((

µ̃−i + 1
n
Au∗(t, Yt)

)
dt+ σdW (t)

)
, t ∈ [0, T ], Y0 = x̃i0. (B.2)

Proof. The proof follows arguments of standard verification theorems (see, e.g., Björk, 2004, pp.
280–282; Pham, 2009, pp. 47–49). First, we define an operator T to rewrite the HJB equation
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(7.19) as follows

0 = sup
φ∈Rd

{
Ft + Fyφ

⊤
(
µ̃−i + 1

n
Aφ

)
+ 1

2Fyyφ
⊤σσ⊤φ

}
=: sup

φ∈Rd

T F (t, y, φ), (B.3)

where F ∈ C1,2([0, T ] × R), t ∈ [0, T ], and y ∈ R. Now we apply the Itô-Doeblin formula
(Theorem 2.1) to the function G from (B.1) and the process Y i,φ from (7.16), where φ ∈ A, over
the time interval [t, T ] for some t ∈ [0, T ]. It follows

G
(
T, Y i,φ

T

)
=G

(
t, Y i,φ

t

)
+
∫ T

t
Gt
(
s, Y i,φ

s

)
ds+

∫ T

t
Gy
(
s, Y i,φ

s

)
dY i,φ

s + 1
2

∫ T

t
Gyy

(
s, Y i,φ

s

)
d⟨Y i,φ⟩s

=G
(
t, Y i,φ

t

)
+
∫ T

t
Gt
(
s, Y i,φ

s

)
ds+

∫ T

t
Gy
(
s, Y i,φ

s

)
φ(s)⊤

(
µ̃−i + 1

n
Aφ(s)

)
ds

+
∫ T

t
Gy
(
s, Y i,φ

s

)
φ(s)⊤σdW (s) + 1

2

∫ T

t
Gyy

(
s, Y i,φ

s

)
φ(s)⊤σσ⊤φ(s)ds

=G
(
t, Y i,φ

t

)
+
∫ T

t
T G

(
s, Y i,φ

s , φ(s)
)
ds+

∫ T

t
Gy
(
s, Y i,φ

s

)
φ(s)⊤σdW (s). (B.4)

By Gt, Gy, and Gyy, we denote the respective partial derivatives of G with respect to t and y.
Further, we applied Lemma 2.2 to determine the quadratic variation of Y i,φ. Let us now assume
that the process ∫ t

0
Gy
(
s, Y i,φ

s

)
φ(s)⊤σdW (s), t ∈ [0, T ], (B.5)

is a martingale for any admissible φ. Then we can apply the conditional expectation Et,y for some
y ∈ R to both sides of (B.4), using that G(T, y) = −e− 1

δi
y, to obtain

Et,y
[
− exp

(
− 1
δi
Y i,φ
T

)]
=G(t, y) + Et,y

[∫ T

t
T G

(
s, Y i,φ

s , φ(s)
)
ds+

∫ T

t
Gy
(
s, Y i,φ

s

)
φ(s)⊤σdW (s)

]

≤G(t, y) + Et,y
[∫ T

t
Gy
(
s, Y i,φ

s

)
φ(s)⊤σdW (s)

]
(B.6)

=G(t, y). (B.7)

The last step (B.7) holds due to the assumption that (B.5) is a martingale. Moreover, (B.6) follows
since G is a solution to the HJB equation and hence, T G(s, Y i,φ

s , φ(s)) ≤ 0 for all s ∈ [0, T ] and
any admissible φ. Then it follows by the definition of the value function J

J(t, y) = sup
φ∈A

Et,y
[
− exp

(
− 1
δi
Y i,φ
T

)]
≤ G(t, y) (B.8)

for all (t, y) ∈ [0, T ] × R. Moreover, since u∗ = u∗(t, y) maximizes h and thus, T G(t, y, ·), we
obtain equality in (B.6) for φ∗(s) = u∗(s, Y ∗

s ), where Y ∗ solves the stochastic differential equation
(B.2). Thus, we also obtain equality in (B.8). Hence, φ∗(s) = u∗(s, Y ∗

s ) is an optimal solution
to (7.11). Moreover, the solution G to the HJB equation is equal to the almost surely uniquely
defined value function J and thus, G is the unique solution to the HJB equation. To see that φ∗
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is the unique (up to modifications) optimal solution to (7.13), we note that any optimal strategy
satisfies the Bellman optimality principle. Since we already found the (unique) value function,
this implies that optimal strategies are precisely given by the extremal points in (B.3). Thus, the
optimal strategy is unique due to the strict concavity of the expression inside the supremum.

Hence, it only remains to show that the process (B.5) is a martingale. For now, we assume that
φ is bounded, i.e., there exists a constant K > 0 such that ∥φ(t)∥ ≤ K P-almost surely for all
t ∈ [0, T ]. In order to show that (B.5) is a martingale, it suffices to prove that the integrand is
square integrable, i.e., that

E
[∫ T

0

∥∥∥Gy(t, Y i,φ
t

)
φ(t)⊤σ

∥∥∥2
dt
]
< ∞.

This is a general result arising in the construction of the Itô integral with respect to a Brownian
motion. It can, for example, be found in Theorem 4.3.1 in Shreve (2004). Moreover, since we
assumed that φ is bounded and σ is deterministic and constant, it is enough to show that

E
[∫ T

0
Gy
(
t, Y i,φ

t

)2dt
]

=
∫ T

0
E
[
Gy
(
t, Y i,φ

t

)2] dt < ∞, (B.9)

where we used Fubini’s theorem in the first equality. Using the representation

Y i,φ
t = x̃i0 +

∫ t

0
φ(s)⊤

(
µ̃−i + 1

n
Aφ(s)

)
ds+

∫ t

0
φ(s)⊤σdW (s),

we can calculate the expectation in (B.9)

E
[
Gy
(
t, Y i,φ

t

)2]
=E

[
1
δ2
i

exp
(

−2ρ(T − t) − 2
δi
Y i,φ
t

)]

= 1
δ2
i

e−2ρ(T−t)− 2
δi
x̃i

0E
[
exp

(
− 2
δi

∫ t

0
φ(s)⊤

(
µ̃−i + 1

n
Aφ(s)

)
ds− 2

δi

∫ t

0
φ(s)⊤σdW (s)

)]
=: 1
δ2
i

e−2ρ(T−t)− 2
δi
x̃i

0EQ̃

[
exp

(
− 2
δi

∫ t

0
φ(s)⊤

(
µ̃−i + 1

n
Aφ(s) − 1

δi
σσ⊤φ(s)

)
ds
)]

(B.10)

≤ 1
δ2
i

e−2ρ(T−t)− 2
δi
x̃i

0 · exp(C · t). (B.11)

In (B.10), we introduced an equivalent probability measure Q̃ ∼ P with density

dQ̃
dP = exp

(
− 2
δi

∫ t

0
φ(s)⊤σdW (s) − 2

δ2
i

∫ t

0
φ(s)⊤σσ⊤φ(s)ds

)
.

Since φ was assumed to be bounded, this is in fact a density. In the last step (B.11), we used
the assumption that φ is bounded again and thus, the integrand is bounded by some constant
C > 0. Now we can deduce further that the integral in (B.9) is finite and thus, (B.5) is in fact a
martingale.

Since the strategy we derived in the proof of Theorem 7.2 is constant and not at the boundary of
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the interval the strategy φ was restricted to in the beginning, the dominated convergence theorem
for stochastic processes (Theorem 32 in Protter, 2005, p.176) yields that the assumption that φ is
bounded is not a restriction (see also Korn and Desmettre, 2014, p.294; Pham, 2009, pp.47–48).
This concludes our proof.

B.2. Supplements for the proof of Theorem 7.12

We use notation taken from Section 7.4 throughout this section. The lemma below verifies that the
optimal strategy determined in the proof of Theorem 7.12 is, in fact, the unique optimal solution
to the best response problem (7.37) for constant Nash equilibria.

Lemma B.2. Assume that the assumptions of Theorem 7.12 are satisfied. For some arbitrary but
fixed i ∈ {1, . . . , n}, let πj, j ̸= i, be deterministic and constant, and

G(t, x, y) = δi
δi − 1eρ(T−t)

(
xy− θi

n

) δi−1
δi

, t ∈ [0, T ], x, y ∈ (0,∞), (B.12)

where ρ ∈ R is taken from (7.46), and let u∗ = u∗(t, x, y) be the unique maximizer of h : Rd → R,

h(π) = δi − 1
δ2
i

G(t, x, y) · π⊤
{
δiµ+

(
δi
n

(
1 − θi

n

)
A− θi

n
(δi − 1)σσ⊤

)∑
j ̸=i

πj − 1
2

(
σσ⊤ − 2δi

n
A

)
π

}

for (t, x, y) ∈ [0, T ] × (0,∞) × (0,∞).

Then J(t, x, y) = G(t, x, y) for all (t, x, y) ∈ [0, T ] × (0,∞) × (0,∞) and π∗
t = u∗

(
t, X̃∗

t , Ỹ
−i
t

)
is

the unique optimal solution to (7.37), where X∗ solves the stochastic differential equation

dXt = Xtu
∗(t,Xt, Ỹ

−i
t )⊤

((
µ+ 1

n
Au∗(t,Xt, Ỹ

−i
t ) + 1

n

(
1 − θi

n

)
A
∑
j ̸=i

πj
)

dt+ σdW (t)
)

(B.13)

for t ∈ [0, T ] and X0 = xi0.

Proof. The proof follows arguments of standard verification theorems (see, e.g., Björk, 2004, pp.
280–282; Pham, 2009, pp. 47–49). First, we define an operator T by

T F (t, x, y, π)

=Ft + yFy

(∑
j ̸=i

(πj)⊤
(
µ+ 1

n
A
∑
j ̸=i

πj
)

+ 1
2
∑
h̸=j
h,j ̸=i

(πh)⊤σσ⊤πj
)

+ 1
2y

2Fyy
∑
h,j ̸=i

(πh)⊤σσ⊤πj

+ xFxπ
⊤µ+ π⊤

(
1
n
xFxA+ 1

2x
2Fxxσσ

⊤
)
π + π⊤

(
1
n

(
1 − θi

n

)
xFxA+ xyFxyσσ

⊤
)∑
j ̸=i

πj ,

where π ∈ Rd, t ∈ [0, T ], x, y ∈ (0,∞), and F ∈ C1,2,2([0, T ] × (0,∞)2). Note that the arguments
of F were omitted to simplify notation. Then the HJB equation (7.44) can be written as

0 = sup
π∈Rd

T F (t, x, y, π) (B.14)
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with terminal condition F (T, x, y) = Ũ(x, y) := δi
δi−1

(
xy− θi

n

) δi−1
δi .

Now we consider the function G given in (B.12) and apply the Itô-Doeblin formula (Theorem 2.1)
to G, X̃i,π, and Ỹ −i, where π ∈ A, over the interval [t, T ] for some t ∈ [0, T ]. It follows

G
(
T, X̃i,π

T , Ỹ −i
T

)
=G

(
t, X̃i,π

t , Ỹ −i
t

)
+
∫ T

t
Gtds+

∫ T

t
GxdX̃i,π

s +
∫ T

t
GydỸ −i

s

+ 1
2

∫ T

t
Gxxd⟨X̃i,π⟩s +

∫ T

t
Gxyd⟨X̃i,π, Ỹ −i⟩s + 1

2

∫ T

t
Gyyd⟨Ỹ −i⟩s

=G
(
t, X̃i,π

t , Ỹ −i
t

)
+
∫ T

t
T G

(
s, X̃i,π

s , Ỹ −i
s , π(s)

)
ds+

∫ T

t

(
GxX̃

i,π
s π(s)⊤σ +GyỸ

−i
s

∑
j ̸=i

(πj)⊤σ
)
dW (s).

By Gt, we denote the first order partial derivative of G with respect to t. The other partial
derivatives with respect to t, x, and y are denoted similarly. Let us now assume that the process(∫ t

0

(
Gx
(
s, X̃i,π

s , Ỹ −i
s

)
X̃i,π
s π(s)⊤σ +Gy

(
s, X̃i,π

s , Ỹ −i
s

)
Ỹ −i
s

∑
j ̸=i

(πj)⊤σ

)
dW (s)

)
t∈[0,T ]

(B.15)

is a martingale for any admissible π. Then we can apply the conditional expectation Et,x,y on
both sides of the above representation of G

(
T, X̃i,π

T , Ỹ −i
T

)
to obtain

Et,x,y
[

δi
δi − 1

(
X̃i,π
T

(
Ỹ −i
T

)− θi
n

) δi−1
δi

]
=Et,x,y

[
G
(
t, X̃i,π

t , Ỹ −i
t

)
+
∫ T

t
T G

(
s, X̃i,π

s , Ỹ −i
s , π(s)

)
ds
]

≤G(t, x, y). (B.16)

On the left-hand side, we used that G(T, x, y) = δi
δi−1

(
xy− θi

n
) δi−1

δi for all x, y ∈ (0,∞). In the first
equality, we used the assumption that (B.15) is a martingale which implies that the conditional
expectation of the stochastic integral vanishes. Further, the inequality in the second step follows
since G solves the HJB equation and thus, the supremum of T G(t, x, y, π) over all π ∈ Rd is equal
to 0. Therefore, it follows by the definition of the value function J that

J(t, x, y) = sup
π∈A

Et,x,y
[

δi
δi − 1

(
X̃i,π
T

(
Ỹ −i
T

)− θi
n

) δi−1
δi

]
≤ G(t, x, y), (B.17)

i.e., the first assertion of the lemma holds.

Now let u∗ = u∗(t, x, y) be the maximizer of the function h given in the lemma. Noticing that
the operator T , applied to G and evaluated at t, x, y, and π, can be written as a sum of h(π) and
some expression independent of π (that takes the form C ·G(t, x, y) for some constant C ∈ R),
we can deduce that using π = u∗ gives equality in (B.16) and thus, equality in (B.17). Hence,
π∗
t = u∗(t,X∗

t , Ỹ
−i
t

)
is an optimal control for the best response problem for (7.37) and G is equal

to the value function J . By X∗, we denote the solution to the stochastic differential equation
(B.13) given in the lemma. To verify the uniqueness of π∗, note that any optimal control satisfies
the Bellman optimality principle. Thus, the optimal strategies are precisely the extremal points of
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the supremum in (B.14). Since the function inside the supremum has a unique maximizer (which
we have shown in the proof of Theorem 7.12), π∗ is the unique (up to modifications) optimal
solution to the best response problem associated to (7.37).

The last step remaining in this proof is to show that the process (B.15) is in fact a martingale.
For the moment, assume that π is bounded, i.e., that there exists a constant K > 0 such that
∥π(t)∥ ≤ K P-almost surely for all t ∈ [0, T ]. First, we notice that it suffices to prove that both
summands in (B.15) are martingales to prove that the sum itself is a martingale. According to
Theorem 4.3.1 in Shreve (2004), it suffices to show that the integrand is square integrable, i.e.,
that

E
[ ∫ T

0

∥∥∥Gx(t, X̃i,π
t , Ỹ −i

t

)
X̃i,π
t π(t)⊤σ

∥∥∥2
dt
]
< ∞,

to prove that the first summand defines a martingale. Further, since σ is deterministic and
constant and π is assumed to be bounded, it only remains to show that

E
[ ∫ T

0

(
Gx
(
t, X̃i,π

t , Ỹ −i
t

)
X̃i,π
t

)2
dt
]

=
∫ T

0
E
[(
Gx
(
t, X̃i,π

t , Ỹ −i
t

)
X̃i,π
t

)2]
dt < ∞. (B.18)

We used Fubini’s theorem to interchange integral and expectation in the previous line. Using
x ·Gx(t, x, y) = eρ(T−t)(xy− θi

n
) δi−1

δi for any t ∈ [0, T ], x, y ∈ (0,∞), and recalling that

X̃i,π
t =xi0 exp

(∫ t

0
π(s)⊤

(
µ+

( 1
n
A− 1

2σσ
⊤
)
π(s) + 1

n

(
1 − θi

n

)
A
∑
j ̸=i

πj
)
ds+

∫ t

0
π(s)⊤σdW (s)

)
,

Ỹ −i
t =yi0 exp

(∫ t

0

(∑
j ̸=i

πj
)⊤(

µ+ 1
n
A
∑
j ̸=i

πj
)
ds+

∫ t

0

(∑
j ̸=i

πj
)⊤
σdW (s)− 1

2

∫ t

0

∑
j ̸=i

(πj)⊤σσ⊤πjds
)
,

we obtain the following bound for the expectation in (B.18)

e−2ρ(T−t)
(
xi0(yi0)− θi

n

)− 2(δi−1)
δi E

[(
Gx
(
t, X̃i,π

t , Ỹ −i
t

)
X̃i,π
t

)2]

=E
[
exp

(
2(δi − 1)

δi

{∫ t

0
π(s)⊤

(
µ+

( 1
n
A− 1

2σσ
⊤
)
π(s) + 1

n

(
1 − θi

n

)
A
∑
j ̸=i

πj
)
ds+

∫ t

0
π(s)⊤σdW (s)

}

−2θi(δi − 1)
nδi

{∫ t

0

((∑
j ̸=i

πj
)⊤(

µ+ 1
n
A
∑
j ̸=i

πj
)

− 1
2
∑
j ̸=i

(πj)⊤σσ⊤πj
)

ds+
∫ t

0

(∑
j ̸=i

πj
)⊤
σdW (s)

})]

= exp
(

− 2θi(δi − 1)
nδi

((∑
j ̸=i

πj
)⊤(

µ+ 1
n
A
∑
j ̸=i

πj
)

− 1
2
∑
j ̸=i

(πj)⊤σσ⊤πj
)
t

)

·E
[
exp

(
2(δi − 1)

δi

{∫ t

0
π(s)⊤

(
µ+

( 1
n
A− 1

2σσ
⊤
)
π(s) + 1

n

(
1 − θi

n

)
A
∑
j ̸=i

πj
)
ds+

∫ t

0
π(s)⊤σdW (s)

}

− 2θi(δi − 1)
nδi

∫ t

0

(∑
j ̸=i

πj
)⊤
σdW (s)

)]

=: exp(C · t)EQ̃

[
exp

(
2(δi − 1)

δi

∫ t

0
π(s)⊤

(
µ+

( 1
n
A− 1

2σσ
⊤
)
π(s) + 1

n

(
1 − θi

n

)
A
∑
j ̸=i

πj
)

ds
)
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· exp
(

2(δi − 1)2

δ2
i

∫ t

0

(
π(s) − θi

n

∑
j ̸=i

πj
)⊤
σσ⊤

(
π(s) − θi

n

∑
j ̸=i

πj
)
ds
)]

(B.19)

≤ exp
(
C̃ · t

)
. (B.20)

In (B.19), we abbreviated the constant in the first exponential factor by C and introduced an
equivalent probability measure Q̃ ∼ P with density

dQ̃
dP = exp

(
2(δi − 1)

δi

∫ t

0

(
π(s) − θi

n

∑
j ̸=i

πj
)⊤
σdW (s)

− 2(δi − 1)2

δ2
i

∫ t

0

(
π(s) − θi

n

∑
j ̸=i

πj
)⊤
σσ⊤

(
π(s) − θi

n

∑
j ̸=i

πj
)
ds
)
. (B.21)

Note that, since π was assumed to be bounded, (B.21) is indeed a density. Moreover, in (B.20) we
used that π is bounded and that the other expressions appearing in the integral are constant. Thus,
the integrand can be bounded by a constant. In combination with the constant C introduced in
(B.19), we obtain the bound (B.20). Thus, the integral in (B.18) is finite and the first summand of
(B.15) is a martingale. Proving that the second summand in (B.15) is also a martingale proceeds
analogously since

y ·Gy(t, x, y) = −θi
n

eρ(T−t)
(
xy− θi

n

) δi−1
δi

for all t ∈ [0, T ] and x, y ∈ (0,∞). Thus, up to a constant, the expectation

E
[ ∫ T

0

(
Gy
(
t, X̃i,π

t , Ỹ −i
t

)
Ỹ −i
t

)2
dt
]

coincides with (B.18) and is, thus, finite. Finally, let us recall that the candidate optimal strategy
determined in the proof of Theorem 7.12 is constant and not at the boundary of the restriction
interval. Hence, the dominated convergence theorem for stochastic integrals (Theorem 32 in
Protter, 2005, p.176) yields that the assumption that π is bounded is not a restriction (see also
Korn and Desmettre (2014), p.294; Pham, 2009, pp.47–48). This concludes the proof.





APPENDIX C

Additional material for Chapter 8

The following chapter contains additional material for Chapter 8. Section C.1 comprises proofs of
Lemma 8.8 and Proposition 8.9, which provide an explicit representation of the Nash equilibrium
in terms of terminal wealth of two agents using logarithmic utility. In Section C.2, we explain how
the n–dimensional fixed point problem (8.6) can be reduced to an (n− 1)–dimensional fixed point
problem. This technique is used in Section C.3 to solve the fixed point problem for three agents.
Afterwards, we apply the result for three agents to the special case of logarithmic utility. At the
end of Section C.3, we illustrate the Nash equilibrium for three agents under logarithmic utility
for varying values of the state price density ZT and for different parameter choices. The fourth
and last section of this chapter contains the proofs of four lemmas used to prove Theorem 8.11
and Theorem 8.16.

C.1. Proofs of Lemma 8.8 and Proposition 8.9

First, we display the proof of Lemma 8.8, in which the Lagrange multipliers from (8.12) are
determined explicitly if both agents use the natural logarithm as their utility function.

Proof (Lemma 8.8). The proof consists of two steps. In the first step, we compute the expected
values E[X∗

i ZT ], i = 1, 2. Afterwards, we solve a two-dimensional system of nonlinear equations
to determine the Lagrange multipliers λ1 and λ2.

Let us determine the expected value E[ZTX∗
1 ]. It follows

X∗
1ZT =

( 1
λ1
1 {λ1β2 ≤ λ2} + β2

λ2
1 {λ1β2 > λ2}

)
1 {ZT ≤ χα1} + 1

λ1
1 {ZT > χα1} .
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Hence, since χα1 denotes the α1-quantile of ZT ,

E[X∗
1ZT ] = α1

( 1
λ1
1 {λ1β2 ≤ λ2} + β2

λ2
1 {λ1β2 > λ2}

)
+ 1
λ1

(1 − α1)

=: α1 (γ11 {γ1 ≥ β2γ2} + β2γ21 {γ1 < β2γ2}) + (1 − α1)γ1

=: f1(γ1, γ2),

where we defined γi := λ−1
i , i = 1, 2, to simplify notation. Analogously, we obtain

E[X∗
2ZT ] =α2 (γ21 {γ2 ≥ β1γ1} + β1γ11 {γ2 < β1γ1}) + (1 − α2)γ2

=: f2(γ1, γ2).

Now it remains to solve the system of equations

f1(γ1, γ2) = x1
0, f2(γ1, γ2) = x2

0.

Clearly, f1(γ1, γ2) can be rewritten as

f1(γ1, γ2) = γ11 {γ1 ≥ β2γ2} + (α1β2γ2 + (1 − α1)γ1)1 {γ1 < β2γ2} != x1
0.

For fixed γ2, the unique solution γ1 to this equation is given by (using a case distinction based on
whether or not x1

0 ≥ β2γ2 and the sketch of f1 below)

γ1 = x1
01
{
x1

0 ≥ β2γ2
}

+ x1
0 − α1β2γ2

1 − α1
1

{
x1

0 < β2γ2
}
. (C.1)

γ1

f1(γ1,γ2)

x1
0

β2γ2

β2γ2

γ1=x1
0

α1β2γ2

(a) x1
0 ≥ β2γ2

γ1

f1(γ1,γ2)

x1
0

β2γ2

β2γ2

γ1=
x1

0−α1β2γ2
1−α1

α1β2γ2

(b) x1
0 < β2γ2

Since the representation (C.1) of γ1 depends on γ2, we insert γ1 into the equation f2(γ1, γ2) = x2
0

to find an explicit solution for γ2, which can then be inserted into (C.1) to determine an explicit
solution for γ1 as well. First, we rewrite f2(γ1, γ2) as

f2(γ1, γ2) = γ21 {γ2 ≥ β1γ1} + (α2β1γ1 + (1 − α2)γ2)1 {γ2 < β1γ1} .

Now it remains to find an explicit representation for γ1. Using (C.1), it follows

{γ2 ≥ β1γ1} =
({
γ2 ≥ β1x

1
0

}
∩
{
x1

0 ≥ β2γ2
})

∪
({
γ2 ≥ β1

x1
0 − α1β2γ2

1 − α1

}
∩
{
x1

0 < β2γ2
})
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=
{
β1β2x

1
0 ≤ β2γ2 ≤ x1

0

}
∪
{
β2γ2 > x1

0

}
(C.2)

=
{
γ2 ≥ β1x

1
0

}
.

(C.2) holds since

γ2 ≥ β1
x1

0 − α1β2γ2
1 − α1

⇐⇒ γ2 ≥ β1
1 − α1(1 − β1β2)x

1
0

and

β1β2 < 1 ⇐⇒ (1 − α1)β1β2 < 1 − α1

⇐⇒ β1β2 < 1 − α1(1 − β1β2)

⇐⇒ β1
1 − α1(1 − β1β2) <

1
β2
.

Since x1
0
β2
> x1

0 > β1x
1
0, γ1 given in (C.1) takes the value x1

0 if γ2 < β1x
1
0. Therefore,

f2(γ1, γ2) = γ21
{
γ2 ≥ β1x

1
0

}
+ (α2β1x

1
0 + (1 − α2)γ2)1

{
γ2 < β1x

1
0

} != x2
0.

The previous equation has the following unique solution (using a case distinction on whether or
not x2

0 ≥ β1x
1
0 and the sketch of f2 below)

γ2 = x2
01
{
x2

0 ≥ β1x
1
0

}
+ x2

0 − α2β1x
1
0

1 − α2
1

{
x2

0 < β1x
1
0

}
, (C.3)

which is positive due to the assumption x2
0 > α2β1x

1
0 of the lemma.

γ2

f2(γ1,γ2)

x2
0

β1x1
0

β1x1
0

γ2=x2
0

α2β1x1
0

(a) x2
0 ≥ β1x

1
0

γ2

f2(γ1,γ2)

x2
0

β1x1
0

β1x1
0

γ2=
x2

0−α2β1x1
0

1−α2
α2β1x1

0

(b) x2
0 < β1x

1
0

Using (C.3), it follows

{x1
0 ≥ β2γ2} =

({
x1

0 ≥ β2x
2
0

}
∩
{
x2

0 ≥ β1x
1
0

})
∪
({

x1
0 ≥ β2

x2
0 − α2β1x

1
0

1 − α2

}
∩
{
x2

0 < β1x
1
0

})
=
{
β1β2x

2
0 ≤ β1x

1
0 ≤ x2

0

}
∪
{
x2

0 < β1x
1
0

}
(C.4)

=
{
x1

0 ≥ β2x
2
0

}
. (C.5)

(C.4) follows analogously to (C.2). Moreover, since x2
0
β1

> x2
0 > β2x

2
0, γ2 takes the value x2

0 if
x1

0 < β2x
2
0. Now we can insert (C.3) into (C.1) and apply (C.5) to find an explicit representation



158 Appendix C. Additional material for Chapter 8

of γ1. It follows

γ1 = x1
01
{
x1

0 ≥ β2x
2
0

}
+ x1

0 − α1β2x
2
0

1 − α1
1

{
x1

0 < β2x
2
0

}
.

Note that the assumption x1
0 > α1β2x

2
0 of the lemma implies γ1 > 0. Using the definition of

γi = λ−1
i , i = 1, 2, concludes our proof.

With the Lagrange multipliers from the previous proof, we can now give an explicit representation
of the fixed point for two agents using the natural logarithm as their utility functions. Thus, the
proof of Proposition 8.9 proceeds as follows.

Proof (Proposition 8.9). a) If x1
0 ≥ β2x

2
0 and x2

0 ≥ β1x
1
0, using Lemma 8.8, the Lagrange multipli-

ers are given by
λ1 = 1

x1
0
, λ2 = 1

x2
0
.

Hence, it follows that
λ1β2 ≤ λ2, λ2β1 ≤ λ1.

Therefore, (8.12) implies

X∗
1 = 1

λ1ZT
= x1

0Z
−1
T , X∗

2 = 1
λ2ZT

= x2
0Z

−1
T .

b) If x1
0 < β2x

2
0, it follows

x2
0 >

x1
0
β2

> x1
0 > β1x

1
0

and thus,
λ1 = 1 − α1

x1
0 − α1β2x2

0
, λ2 = 1

x2
0
.

This implies
β2λ1 > λ2, β1λ2 ≤ λ1

and therefore, using (8.12),

X∗
1 = β2

λ2ZT
1 {ZT ≤ χα1} + 1

λ1ZT
1 {ZT > χα1}

= β2x
2
0Z

−1
T 1 {ZT ≤ χα1} + x1

0 − α1β2x
2
0

1 − α1
Z−1
T 1 {ZT > χα1} ,

X∗
2 = 1

λ2ZT
= x2

0Z
−1
T .

c) The proof in case c) follows, due to symmetry, analogously to case b).

C.2. Dimensional reduction of the fixed point problem

In the following, we demonstrate how to reduce the n-dimensional fixed point problem (8.6) to
an (n − 1)-dimensional fixed point problem with a similar structure. We use the abbreviation
Ii = Ii(λiZT ), i = 1, . . . , n, throughout this section.
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We can write the fixed point problem (8.6) as

Xi =
(
Ii1

{
Ii ≥ X−i

β

}
+X−i

β 1

{
Ii < X−i

β

})
1 {ZT ≤ χαi} + Ii1 {ZT > χαi} (C.6)

= max
{
Ii, X

−i
β

}
1 {ZT ≤ χαi} + Ii1 {ZT > χαi} ,

i = 1, . . . , n, where we defined

X−j1,...,jk
β :=

n∑
j=1

j /∈{j1,...,jk}

βjXj , 0 ≤ k ≤ n, jℓ ∈ {1, . . . , n}, 1 ≤ ℓ ≤ k.

In the following, we insert Xn into Xi for all 1 ≤ i ≤ n− 1 to reduce the n-dimensional fixed point
problem given by (C.6) to an (n − 1)-dimensional fixed point problem. If we are able to solve
the reduced problem, we can easily determine Xn by inserting the solution X1, . . . , Xn−1 to the
reduced problem.

Without loss of generality, we assume that α1 ≤ α2 ≤ . . . ≤ αn. Moreover, let 1 ≤ i ≤ n− 1. First,
we insert Xn into the first indicator function in (C.6) to obtain

1

{
Ii ≥ X−i

β

}
=1
{
Ii ≥ X−i,n

β +βn
(
In1

{
In ≥ X−n

β

}
+X−n

β 1

{
In < X−n

β

})
1 {ZT ≤ χαn}+βnIn1 {ZT > χαn}

}

=1 {ZT ≤ χαn}
(
1

{
Ii ≥ X−i,n

β + βnIn
}
1

{
In ≥ X−n

β

}
+1

{
Ii ≥ X−i,n

β +βnX−n
β

}
1

{
In < X−n

β

})
+ 1 {ZT > χαn}1

{
Ii ≥ X−i,n

β + βnIn
}
.

The second indicator function can be simplified analogously. Since we assumed that α1, . . . , αn

are in ascending order, it follows

1

{
Ii ≥ X−i

β

}
· 1 {ZT ≤ χαi}

=1 {ZT ≤ χαi}
(
1

{
Ii ≥ X−i,n

β +βnIn
}
1

{
In ≥ X−n

β

}
+1

{
Ii ≥ X−i,n

β +βnX−n
β

}
1

{
In < X−n

β

})
.

Now we insert Xn into the summand X−i
β 1

{
Ii < X−i

β

}
1 {ZT ≤ χαi} of (C.6) to obtain

X−i
β 1

{
Ii < X−i

β

}
1 {ZT ≤ χαi}

=1 {ZT ≤ χαi}
(
X−i,n
β +

(
βnIn1

{
In ≥ X−n

β

}
+ βnX

−n
β 1

{
In < X−n

β

}))

·
(
1

{
Ii < X−i,n

β + βnIn
}
1

{
In ≥ X−n

β

}
+ 1

{
Ii < X−i,n

β + βnX
−n
β

}
1

{
In < X−n

β

})

=1 {ZT ≤ χαi}
((
X−i,n
β + βnIn

)
1

{
Ii < X−i,n

β + βnIn
}
1

{
In ≥ X−n

β

}

+
(
X−i,n
β + βnX

−n
β

)
1

{
Ii < X−i,n

β + βnX
−n
β

}
1

{
In < X−n

β

})
.
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Finally, we obtain the following implicit representation of Xi in terms of only Xℓ, 1 ≤ ℓ ≤ n− 1:

Xi =
(
1

{
In ≥ X−n

β

}(
Ii1

{
Ii ≥ X−i,n

β + βnIn
}

+
(
X−i,n
β + βnIn

)
1

{
Ii < X−i,n

β + βnIn
})

+ 1

{
In < X−n

β

}(
Ii1

{
Ii ≥ X−i,n

β + βnX
−n
β

}
+
(
X−i,n
β +βnX−n

β

)
1

{
Ii < X−i,n

β +βnX−n
β

}))
· 1 {ZT ≤ χαi} + Ii · 1 {ZT > χαi} .

In order to find an explicit representation of Xi, we define the right-hand side of the previous
representation as fi(Xi) and solve the one-dimensional fixed point problem fi(Xi) = Xi. First, we
rewrite the indicator functions in the definition of fi in terms of Xi to receive

fi(Xi) =1 {ZT ≤ χαi} ·
(
1

{
Xi ≤ 1

βi

(
In −X−i,n

β

)}(
Ii1

{
Ii ≥ X−i,n

β + βnIn
}

+
(
X−i,n
β + βnIn

)
1

{
Ii < X−i,n

β + βnIn
})

+ 1

{
Xi >

1
βi

(
In −X−i,n

β

)}(
Ii1

{
Xi ≤ 1

βiβn

(
Ii − (1 + βn)X−i,n

β

)}

+
(
βiβnXi + (1 + βn)X−i,n

β

)
1

{
Xi >

1
βiβn

(
Ii − (1 + βn)X−i,n

β

)}))
+ Ii · 1 {ZT > χαi} .

In the following, the fixed point, which turns out to be unique, is determined via case distinction.
If ZT > χαi , the unique fixed point is apparently given by Xi = Ii. Hence, we assume ZT ≤ χαi

for the remainder of the fixed point search.

Case 1: Ii ≥ X−i,n
β + βnIn

In this case we have
1

βiβn

(
Ii − (1 + βn)X−i,n

β

)
≥ 1
βi

(
In −X−i,n

β

)
and therefore, we need to determine Xi such that

Xi =Ii1
{
Xi ≤ 1

βiβn

(
Ii − (1 + βn)X−i,n

β

)}
+
(
βiβnXi + (1 + βn)X−i,n

β

)
1

{
Xi >

1
βiβn

(
Ii − (1 + βn)X−i,n

β

)}
= max

{
Ii, βiβnXi + (1 + βn)X−i,n

β

}
.

Since the right-hand side is continuous in Xi, constant for Xi ≤ 1
βiβn

(
Ii − (1 + βn)X−i,n

β

)
and

linear with positive slope smaller than 1 otherwise, the unique fixed point is given by

Xi =

Ii, Ii ≤ 1
βiβn

(
Ii − (1 + βn)X−i,n

β

)
,

1+βn

1−βiβn
X−i,n
β , Ii >

1
βiβn

(
Ii − (1 + βn)X−i,n

β

)
.
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Case 2: Ii < X−i,n
β + βnIn

Then it follows that
1

βiβn

(
Ii − (1 + βn)X−i,n

β

)
<

1
βi

(
In −X−i,n

β

)
and the fixed point is given as the solution to the following equation

Xi =
(
X−i,n
β + βnIn

)
1

{
Xi ≤ 1

βi

(
In −X−i,n

β

)}
+
(
βiβnXi + (1 + βn)X−i,n

β

)
1

{
Xi >

1
βi

(
In −X−i,n

β

)}
.

The right-hand side is continuous in Xi, constant for Xi ≤ 1
βi

(
In −X−i,n

β

)
and linear with positive

slope smaller than 1 otherwise. Hence, the unique fixed point is given by

Xi =

X
−i,n
β + βnIn, X−i,n

β + βnIn ≤ 1
βi

(
In −X−i,n

β

)
,

1+βn

1−βiβn
X−i,n
β , X−i,n

β + βnIn >
1
βi

(
In −X−i,n

β

)
.

In summary, the unique fixed point is given by

Xi =1 {ZT ≤ χαi}
(
1

{
Ii ≥ X−i,n

β + βnIn
}(

Ii1

{
Ii ≥ 1 + βn

1 − βiβn
X−i,n
β

}

+ 1 + βn
1 − βiβn

X−i,n
β 1

{
Ii <

1 + βn
1 − βiβn

X−i,n
β

})
+ 1

{
Ii < X−i,n

β + βnIn
}((

X−i,n
β + βnIn

)
1

{
In ≥ 1 + βi

1 − βiβn
X−i,n
β

}

+ 1 + βn
1 − βiβn

X−i,n
β 1

{
In <

1 + βi
1 − βiβn

X−i,n
β

}))
+ Ii1 {ZT > χαi}

=
(

max
{
Ii,

1 + βn
1 − βiβn

X−i,n
β

}
1

{
Ii ≥ X−i,n

β + βnIn
}

+ max
{
X−i,n
β + βnIn,

1 + βn
1 − βiβn

X−i,n
β

}
1

{
Ii < X−i,n

β + βnIn
})

1 {ZT ≤ χαi}

+ Ii1 {ZT > χαi}

= max
{
Ii,

1 + βn
1 − βiβn

X−i,n
β , X−i,n

β + βnIn

}
1 {ZT ≤ χαi} + Ii1 {ZT > χαi} .

Finally, the original n-dimensional fixed point problem can now be solved using the (n − 1)-
dimensional fixed point problem

Xi = max
{
Ii,

1 + βn
1 − βiβn

X−i,n
β , X−i,n

β + βnIn

}
1 {ZT ≤ χαi} + Ii1 {ZT > χαi} , (C.7)

i = 1, . . . , n− 1.
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C.3. Solution of the fixed point problem for three agents

The following theorem gives the unique solution to the fixed point problem (8.6) for three agents.

Theorem C.1. Let n = 3, αi = α ∈ [0, 1], and βi ∈
(
0, 1

2
]

for all i ∈ {1, 2, 3}. Moreover, let
Ui : (0,∞) → R be Inada utility functions and define Ii := Ii(λiZT ) for notational convenience.
Finally, define

X∗
i (λ1, λ2, λ3) = max

{
Ii,

1 + βk
1 − βiβk

βjIj ,
1 + βj

1 − βiβj
βkIk, βjIj + βkIk

}
1 {ZT ≤ χα} + Ii1 {ZT > χα}

for pairwise distinct i, j, k ∈ {1, 2, 3}, and assume that the system

E[ZTX∗
i (λ1, λ2, λ3)] = xi0, i = 1, 2, 3,

has a unique solution (λ∗
1, λ

∗
2, λ

∗
3) ∈ (0,∞)3. Then the unique Nash equilibrium in the class of

wealth profiles of the form (8.6) is given by X∗
i (λ∗

1, λ
∗
2, λ

∗
3), i = 1, 2, 3.

Remark C.2. Similar to Remark 8.5, we can ensure that, for fixed λj > 0, j ≠ i, the equation
E[ZTX∗

i ] = xi0 has a unique solution λ∗
i > 0 in terms of λj , j ̸= i, if we assume that xi0 ≥

∑
j ̸=i βjx

j
0

for all i = 1, 2, 3. Again, this assumption is sufficient, but not necessary, and does also not ensure
that the emerging three-dimensional system of equations is (uniquely) solvable. ♢

Proof. First, we rewrite the wealth profile from (8.6) of agent i as

Xi = max
{
Ii, X

−i
β

}
1 {ZT ≤ χα} + Ii1 {ZT > χα} , i = 1, 2, 3.

The three-dimensional fixed point problem from (8.6) can be reduced to a two-dimensional problem
using the reduced problem (C.7). Hence, we need to solve the following two-dimensional fixed
point problem

X1 = max
{
I1,

1 + β3
1 − β1β3

β2X2, β2X2 + β3I3

}
1 {ZT ≤ χα} + I11 {ZT > χα} ,

X2 = max
{
I2,

1 + β3
1 − β2β3

β1X1, β1X1 + β3I3

}
1 {ZT ≤ χα} + I21 {ZT > χα} .

Inserting X2 into X1 yields for ZT ≤ χα

X1 = max
{
I1,

1 + β3
1 − β1β3

β2I2,
(1 + β3)2

(1 − β1β3)(1 − β2β3)β1β2X1,

1 + β3
1 − β1β3

β1β2X1 + 1 + β3
1 − β1β3

β2β3I3, β2I2 + β3I3,
1 + β3

1 − β2β3
β1β2X1 + β3I3,

β1β2X1 + β3(1 + β2)I3

}

=: max
{
m1, g1(X1), g2(X1), g3(X1), g4(X1)

}
, (C.8)
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where we defined

m1 := max
{
I1,

1 + β3
1 − β1β3

β2I2, β2I2 + β3I3

}
,

g1(X1) := (1 + β3)2

(1 − β1β3)(1 − β2β3)β1β2X1, g3(X1) := 1 + β3
1 − β2β3

β1β2X1 + β3I3,

g2(X1) := 1 + β3
1 − β1β3

β1β2X1 + 1 + β3
1 − β1β3

β2β3I3, g4(X1) := β1β2X1 + β3(1 + β2)I3.

Now we compare g2(X1) and g3(X1). The constant term of g2(X1) is smaller than the constant
term of g3(X1), since

1 + β3
1 − β1β3

β2 ≤ 1

using the assumption βi ∈ (0, 1/2] for all i ∈ {1, 2, 3}. Moreover, if we assume that β1 ≤ β2,
g2(X1) is smaller than g3(X1) (pointwise for any X1 > 0) and can therefore be neglected inside
the maximum. Note that we could make this conclusion because X1 is strictly positive due to the
above representation as the maximum of I1 (which is strictly positive by assumption) and some
other expressions. Hence, we now need to solve the following one-dimensional fixed point problem

X1 = max
{
m1,

(1 + β3)2

(1 − β1β3)(1 − β2β3)β1β2X1,
1 + β3

1 − β2β3
β1β2X1 + β3I3, β1β2X1 + β3(1 + β2)I3

}

= max
{
m1, g1(X1), g3(X1), g4(X1)

}
. (C.9)

The second argument g1(X1) inside the maximum cannot yield the fixed point because the
intersection with the identity is located at 0. Thus, we consider g3(X1) and g4(X1). The value of
g4 at zero is strictly larger than the value of g3, while the slope of g3 is larger than the slope of
g4. Thus, we need to analyze whether the point of intersection of g3 and g4, denoted by z3,4, is
smaller or larger than the intersection z4,id of g4 and the identity function.

Simple calculations imply

z3,4 = 1 − β2β3
β1(1 + β2)I3, z4,id = β3(1 + β2)

1 − β1β2
I3.

Hence, z4,id ≤ z3,4 (using the assumption 0 < βi ≤ 1/2 for all i ∈ {1, 2, 3}) and therefore, the fixed
point is given by the maximum of m1 and z4,id, i.e.,

X1 = max
{
m1,

β3(1 + β2)
1 − β1β2

I3

}
1 {ZT ≤ χα} + I11 {ZT > χα} . (C.10)

Now assume that β1 > β2. Hence, we cannot omit g2(X1) in the maximum in (C.8). Let us now
argue that adding g2(X1) to the maximum (C.9) does not change the fixed point. In order to do
this, we compare the intersection of g2 and the identity, which is denoted by z2,id, with z4,id. The
intersection of g2 and the identity is given by

z2,id := β2β3(1 + β3)
1 − β1β2 − β1β3 − β1β2β3

I3.
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A straightforward calculation using βi ≤ 1/2 for all i ∈ {1, 2, 3} yields z2,id ≤ z4,id. Hence, the
term g2(X1) does not influence the fixed point and X1 from (C.10) is the unique solution to the
fixed point problem.

To summarize, the first component of the fixed point for (8.6) takes the form

X1 = max
{
I1,

1 + β3
1 − β1β3

β2I2,
1 + β2

1 − β1β2
β3I3, β2I2 + β3I3

}
.

Now the assertion follows due to the symmetry of the original fixed point problem.

Theorem C.1 shows a very compact representation of the unique Nash equilibrium in the class of
wealth profiles of the form (8.6) for three agents. However, it does hide some structural properties
of the triple (X∗

1 , X
∗
2 , X

∗
3 ). Table C.1 shows all possible combinations of the wealth profiles for

agents 1, 2, and 3, given that ZT ≤ χα.

X∗
1 X∗

2 X∗
3

a) I1(λ1ZT ) I2(λ2ZT ) I3(λ3ZT )

b) β2I2(λ2ZT ) + β3I3(λ3ZT ) I2(λ2ZT ) I3(λ3ZT )

c) I1(λ1ZT ) β1I1(λ1ZT ) + β3I3(λ3ZT ) I3(λ3ZT )

d) I1(λ1ZT ) I2(λ2ZT ) β1I1(λ1ZT ) + β2I2(λ2ZT )

e) I1(λ1ZT ) 1+β3
1−β2β3

β1I1(λ1ZT ) 1+β2
1−β2β3

β1I1(λ1ZT )

f) 1+β3
1−β1β3

β2I2(λ2ZT ) I2(λ2ZT ) 1+β1
1−β1β3

β2I2(λ2ZT )

g) 1+β2
1−β1β2

β3I3(λ3ZT ) 1+β1
1−β1β2

β3I3(λ3ZT ) I3(λ3ZT )

Table C.1.: Possible values of the triple (X∗
1 , X

∗
2 , X

∗
3 ) from Theorem C.1 for ZT ≤ χα.

We can divide the behavior of (X∗
1 , X

∗
2 , X

∗
3 ) into three different cases. First, it is possible that all

three investors perform equally well in the sense that their terminal wealth in the Nash equilibrium
is given by the solution Ii(λiZT ), i = 1, 2, 3, to the standard utility maximization problem (case a)).
Moreover, it is also possible that two of the three investors perform equally well while the third
investor performs worse, so that her wealth in the Nash equilibrium consists of a linear combination
of the other two agent’s wealth (cases b)-d)). Finally, if one investor outperforms the other two
agents, their terminal wealth is a multiple of the classical solution for the „winning“ investor
(cases e)-g)).

The previous observations become more clearly visible at the end of this section where we consider
the special case of logarithmic utility functions. The numerical results presented there also show
that the initial capital of the investors mainly determines which of the three cases is present.

Proof (Table C.1). In the following, we prove that Table C.1 contains every possible combination
of values of X∗

1 , X∗
2 , and X∗

3 from Theorem C.1. Again, we abbreviate Ii = Ii(λiZT ), i = 1, 2, 3.
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First, it is obviously possible that X∗
1 = I1, X∗

2 = I2, and X∗
3 = I3 occur simultaneously (case a)).

Next, assume that X∗
1 = β2I2 + β3I3. Then

I3 ≥ 1
β3

( 1 + β3
1 − β1β3

β2I2 − β2I2

)
= 1 + β1

1 − β1β3
β2I2, (C.11)

I2 ≥ 1
β2

( 1 + β2
1 − β1β2

β3I3 − β3I3

)
= 1 + β1

1 − β1β2
β3I3, (C.12)

since β2I2 + β3I3 ≥ 1+β3
1−β1β3

β2I2 ∨ 1+β2
1−β1β2

β3I3. Further, we obtain

β1I1 + β2I2 ≤ β1(β2I2 + β3I3) + β2I2 = β2(1 + β1)I2 + β1β3I3

≤ β2(1 + β1)1 − β1β3
1 + β1

1
β2
I3 + β1β3I3 = I3, (C.13)

where we used β2I2 + β3I3 ≥ I1 in the first and (C.11) in the second inequality. Analogously, we
can deduce

β1I1 + β3I3 ≤ I2 (C.14)

using β2I2 + β3I3 ≥ I1 and (C.12). Finally, it follows,

I3 ≥ β1I1 + β2I2 ≥ β1I1 + β2(β1I1 + β3I3) = β1(1 + β2)I1 + β2β3I3,

using (C.13) in the first and (C.14) in the second inequality. This implies further that

I3 ≥ 1 + β2
1 − β2β3

β1I1.

Analogously,
I2 ≥ 1 + β3

1 − β2β3
β1I1.

In summary, X∗
1 = β2I2 + β3I3 implies X∗

2 = I2 and X∗
3 = I3.

Using very similar arguments, we can deduce the following implications

X∗
2 = β1I1 + β3I3 =⇒ X∗

1 = I1, X
∗
3 = I3,

X∗
3 = β1I1 + β2I2 =⇒ X∗

1 = I1, X
∗
2 = I2.

So far, we justified lines a)-d) of Table C.1. Now assume that X∗
1 = 1+β3

1−β1β3
β2I2. Then it follows

β1I1 + β2I2 ≤ 1 + β3
1 − β1β3

β1β2I2 + β2I2 = 1 + β1
1 − β1β3

β2I2,

since I1 ≤ 1+β3
1−β1β3

β2I2, using the representation of X∗
1 in Theorem C.1 and the assumption

X∗
1 = 1+β3

1−β1β3
β2I2. Moreover, we obtain

1 + β2
1 − β2β3

β1I1 ≤ 1 + β2
1 − β2β3

· 1 + β3
1 − β1β3

β1β2I2 ≤ 1 + β1
1 − β1β3

β2I2.

Again, we used Theorem C.1 and the assumption on X∗
1 for the first inequality. The second
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inequality is valid since
(1 + β2)(1 + β3)

1 − β2β3
β1 ≤ 3β1 ≤ 1 + β1,

which holds due to the assumption βj ≤ 1
2 , j = 1, 2, 3. Finally, 1+β3

1−β1β3
β2I2 ≥ β2I2 + β3I3 implies

I3 ≤ 1
β3

( 1 + β3
1 − β1β3

β2I2 − β2I2

)
= 1 + β1

1 − β1β3
β2I2. (C.15)

Thus, X∗
3 = 1+β1

1−β1β3
β2I2 holds. For X∗

2 , we obtain

I2 ≥ 1 + β1
1 − β1β3

β2︸ ︷︷ ︸
≤1

I2 ≥ I3 ≥ 1 + β1
1 − β1β2

β3︸ ︷︷ ︸
≤1

I3

from the assumption βj ≤ 1/2 for all j ∈ {1, 2, 3}, and the previous representation of X∗
3 .

Analogously,

I2 ≥ 1 + β3
1 − β2β3

β1I1.

Finally, using (C.15) and I1 ≤ 1+β3
1−β1β3

β2I2 = X∗
1 ,

I2 ≥ β1I2 + β3I2 ≥ β1 · 1 − β1β3
1 + β3

1
β2︸ ︷︷ ︸

≥1

I1 + β3 · 1 − β1β3
1 + β1

1
β2︸ ︷︷ ︸

≥1

I3 ≥ β1I1 + β3I3.

Therefore, it follows that X∗
2 = I2.

Using similar arguments, we can also prove the following implications

X∗
1 = 1 + β2

1 − β1β2
β3I3 =⇒ X∗

2 = 1 + β1
1 − β1β2

β3I3, X
∗
3 = I3,

X∗
2 = 1 + β3

1 − β2β3
β1I1 =⇒ X∗

1 = I1, X
∗
3 = 1 + β2

1 − β2β3
β1I1,

X∗
2 = 1 + β1

1 − β1β2
β3I3 =⇒ X∗

1 = 1 + β2
1 − β1β2

β3I3, X
∗
3 = I3,

X∗
3 = 1 + β2

1 − β2β3
β1I1 =⇒ X∗

1 = I1, X
∗
2 = 1 + β3

1 − β2β3
β1I1,

X∗
3 = 1 + β1

1 − β1β3
β2I2 =⇒ X∗

1 = 1 + β3
1 − β1β3

β2I2, X
∗
2 = I2.

Hence, lines e)-g) in Table C.1 are valid as well. The line of arguments also implies that lines a)-g)
of Table C.1 contain all possible combinations of X∗

1 , X∗
2 , and X∗

3 .

Example: Logarithmic utility

If all investors use the natural logarithm as their utility function, we can determine the unique
Lagrange multipliers λi, i = 1, 2, 3, mentioned in Theorem C.1 explicitly. Using the cases a)-g)
introduced in Table C.1, we obtain the following values of X∗

i , i = 1, 2, 3.
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Proposition C.3. Let n = 3 and assume that Ui(x) = log(x), x > 0, i = 1, 2, 3. Further, let
αi = α ∈ [0, 1] and βi ∈ (0, 1/2], i = 1, 2, 3, and let

xi0 > αmax
{
βjx

j
0 + βkx

k
0,

1 + βj
1 − βiβj

xk0,
1 + βk

1 − βiβk
βjx

j
0

}

for all pairwise distinct i, j, k ∈ {1, 2, 3}. Then the triples (X∗
1 , X

∗
2 , X

∗
3 ) displayed in Table C.1

take the following form

a) X∗
i = xi

0
ZT
, i = 1, 2, 3,

b)-d) X∗
i = βjx

j
0+βkx

k
0

ZT
1 {ZT ≤ χα} + xi

0−α(βjx
j
0+βkx

k
0)

(1−α)ZT
1 {ZT > χα} , X∗

j = xj
0

ZT
, X∗

k = xk
0

ZT
for pair-

wise distinct i, j, k ∈ {1, 2, 3},

e)-g) X∗
i = 1+βj

1−βiβj
βkx

k
0Z

−1
T 1 {ZT ≤ χα} + 1

1−α

(
xi0 − α

1+βj

1−βiβj
βkx

k
0

)
Z−1
T 1 {ZT > χα} ,

X∗
j = 1+βi

1−βiβj
βkx

k
0Z

−1
T 1 {ZT ≤ χα} + 1

1−α

(
xj0 − α 1+βi

1−βiβj
βkx

k
0

)
Z−1
T 1 {ZT > χα} ,

Xk = xk
0

ZT
for pairwise distinct i, j, k ∈ {1, 2, 3}.

Proof. Since Ui(x) = log(x), Ii(x) = x−1 holds for all i ∈ {1, 2, 3} and x > 0. In the following,
we determine the Lagrange multipliers λi, i = 1, 2, 3, in the cases a)-g) displayed in Table C.1.
As already stated in Theorem C.1, λi is determined via the budget constraint E[X∗

i ZT ] = xi0,
i = 1, 2, 3.

a) In case a), the wealth profile of agent i is given by X∗
i = (λiZT )−1 for all i ∈ {1, 2, 3}, i.e., by

the solution to the classical problem without the VaR-constraint. Hence,

E[X∗
i ZT ] = 1

λi

!= xi0

and thus, λi = (xi0)−1, i = 1, 2, 3.

b) In case b), we obtain X∗
1 = ( β2

λ2ZT
+ β3
λ3ZT

)1 {ZT ≤ χα}+(λ1ZT )−1
1 {ZT > χα}, X∗

2 = (λ2ZT )−1,
X∗

3 = (λ3ZT )−1. Analogously to a), we obtain λ2 = (x2
0)−1, λ3 = (x3

0)−1. Hence, it follows

E[X∗
1ZT ] = (β2x

2
0 + β3x

3
0)E[1 {ZT ≤ χα}] + 1

λ1
E[1 {ZT > χα}]

= α(β2x
2
0 + β3x

3
0) + 1 − α

λ1
= x1

0,

which implies λ1 = 1−α
x1

0−α(β2x2
0+β3x3

0) . Note that we used that χα denotes the α-quantile of ZT .

c) Analogously to case b), we obtain λ1 = (x1
0)−1, λ2 = 1−α

x2
0−α(β1x1

0+β3x3
0) , and λ3 = (x3

0)−1.

d) Analogously to case b), we obtain λ1 = (x1
0)−1, λ2 = (x2

0)−1, and λ3 = 1−α
x3

0−α(β1x1
0+β2x2

0) .

e) In case e), we have X∗
1 = (λ1ZT )−1, so that λ1 = (x1

0)−1 follows. Moreover, X∗
2 and X∗

3 are
given by

X∗
2 = 1 + β3

1 − β2β3

β1x
1
0

ZT
1 {ZT ≤ χα} + 1

λ2ZT
1 {ZT > χα} ,
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X∗
3 = 1 + β2

1 − β2β3

β1x
1
0

ZT
1 {ZT ≤ χα} + 1

λ3ZT
1 {ZT > χα} ,

and therefore

E[X∗
2ZT ] = α

1 + β3
1 − β2β3

β1x
1
0 + 1 − α

λ2

!= x2
0,

E[X∗
3ZT ] = α

1 + β2
1 − β2β3

β1x
1
0 + 1 − α

λ3

!= x3
0,

which imply that

λ2 = 1 − α

x2
0 − α 1+β3

1−β2β3
β1x1

0
, λ3 = 1 − α

x3
0 − α 1+β2

1−β2β3
β1x1

0
.

f) Analogously to case e), we obtain λ2 = (x2
0)−1 and

λ1 = 1 − α

x1
0 − α 1+β3

1−β1β3
β2x2

0
, λ3 = 1 − α

x3
0 − α 1+β1

1−β1β3
β2x2

0
.

g) Analogously to case e), we obtain λ3 = (x3
0)−1 and

λ1 = 1 − α

x1
0 − α 1+β2

1−β1β2
β3x3

0
, λ2 = 1 − α

x2
0 − α 1+β1

1−β1β2
β3x3

0
.

Finally, inserting λ∗
i into X∗

i from Table C.1 for all i ∈ {1, 2, 3} yields the asserted representation
of the triple (X∗

1 , X
∗
2 , X

∗
3 ).

Illustration of Proposition C.3

The following figures show an application of Proposition C.3. The displayed results are based on
a classical Black-Scholes market with one stock, drift µ = 0.03, and volatility σ = 0.2, and one
riskless bond with zero interest rate. Moreover, we chose α = 0.5 and T = 4 (similar to the setting
used in Section 8.3).

Figures C.3.1 - C.3.3 display X∗
i , i = 1, 2, 3, for varying values of the state price density ZT .

Figure C.3.1 shows case a) of Table C.1 in which the parameters of the problem are chosen so
that the terminal wealth in the Nash equilibrium is the classical solution for all three agents. In
Figure C.3.2, the parameters are chosen so that case b) is present. The figure displays, as expected,
that agents 2 and 3 use the classical solution while agent 1 uses a linear combination of X∗

2 and
X∗

3 for small values of ZT (i.e., ZT ≤ χα) and the „classical solution“ I1(λ1ZT ) for large values of
ZT . Again, we have to be careful with the term „classical solution“ since the Lagrange multiplier
λ1 is not the same as in the classical problem due to the discontinuity at χα. The last of the three
figures, Figure C.3.3, shows case e) in which the parameters of the problem are chosen so that
agent 1 uses the classical solution while the other two agents use a multiple of the first agents
optimal wealth for small values of ZT and their „classical solution“ Ii(λiZT ), i = 2, 3, for large
values of ZT .
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Figure C.3.4 shows the behavior of X∗
1 in terms of ZT for different choices of β2, while β1 and

β3 are fixed. For the smallest value of β2, i.e., β2 = 0.2, case a) is present and we can observe
that X∗

1 is simply given by the solution to the classical problem. For the other three values of β2,
case f) of Table C.1 is present, which explains the discontinuity of X∗

1 at ZT = χα. As the value
of β2 increases, we can observe that the value of X∗

1 increases for small values of ZT (ZT ≤ χα)
and decreases for large values of ZT (ZT > χα).

0.2 0.4 0.6 0.8 1.0
ZT

5

10

15

20

25

30 X *
1

X *
2

X *
3

Figure C.3.1.: X∗
i , i = 1, 2, 3, from Proposition C.3 in terms of ZT for α = 0.5, β1 = 0.4, β2 =

0.3, β3 = 0.4, x1
0 = 3, x2

0 = 2.5, x3
0 = 3. The parameter choice implies that case a)

of Table C.1 is present. The market parameters are d = 1, r = 0, µ = 0.03, σ =
0.2, T = 4.
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Figure C.3.2.: X∗
i , i = 1, 2, 3, from Proposition C.3 in terms of ZT for α = 0.5, β1 = 0.2, β2 =

0.2, β3 = 0.4, x1
0 = 1, x2

0 = 4, x3
0 = 5. The parameter choice implies that case b)

of Table C.1 is present. The market parameters are d = 1, r = 0, µ = 0.03, σ =
0.2, T = 4.
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X *
3

Figure C.3.3.: X∗
i , i = 1, 2, 3, from Proposition C.3 in terms of ZT for α = 0.5, β1 = 0.4, β2 =

0.2, β3 = 0.4, x1
0 = 5, x2

0 = 1, x3
0 = 2. The parameter choice implies that case e)

of Table C.1 is present. The market parameters are d = 1, r = 0, µ = 0.03, σ =
0.2, T = 4.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
ZT

0
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X
* 1
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β2=0.35
β2=0.4
β2=0.45

0.95 1.00
0.0

2.5

5.0

7.5

10.0

Figure C.3.4.: X∗
1 from Proposition C.3 in terms of ZT , for different choices of β2, while α =

0.5, β1 = 0.3, β3 = 0.5, x1
0 = 4, x2

0 = 8, x3
0 = 3. For β2 = 0.2, case a) from Table

C.1 is present; the other parameters imply that case f) is present. The market
parameters are d = 1, r = 0, µ = 0.03, σ = 0.2, T = 4.

C.4. Proofs of lemmas from Section 8.4

In the following, we provide the proofs of Lemmas 8.12 - 8.14, as well as Lemma 8.18, that were
left out of Section 8.4. The lemmas are used to find and characterize the unique fixed point for
(8.6) for general n ∈ N.
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Proof (Lemma 8.12). Let L ∈ {1, . . . , n} and (j1, . . . , jL) ∈
([n]
L

)
. Using dL(j1, . . . , jL) defined in

(8.13) and the Binomial theorem (Harris et al., 2008, p. 139) yields

dL(j1, . . . , jL) = 1 −
L∑
k=2

(k − 1)
∑

(i1,...,ik)∈([L]
k )

k∏
ℓ=1

βjiℓ

≥ 1 −
L∑
k=2

(k − 1)
∑

(i1,...,ik)∈([L]
k )

( 1
n− 1

)k
(C.16)

= 1 −
L∑
k=2

k

(
L

k

)( 1
n− 1

)k
+

L∑
k=2

(
L

k

)( 1
n− 1

)k

= 1 − L

n− 1

L−1∑
k=1

(
L− 1
k

)( 1
n− 1

)k
+

L∑
k=2

(
L

k

)( 1
n− 1

)k
= 1 − L

n− 1

(
1 + 1

n− 1

)L−1
+ L

n− 1 +
(

1 + 1
n− 1

)L
− 1 − L

n− 1

=
(

n

n− 1

)L−1 n− L

n− 1 . (C.17)

If L = n and βj = 1
n−1 for all j ∈ {1, . . . , n}, we obtain equality in (C.16) and the expression in

the last line (C.17) is equal to 0. Otherwise, we obtain either a strict inequality in (C.16) or a
strictly positive lower bound in (C.17). This concludes our proof.

Proof (Lemma 8.13). First, let L = n and βj = 1
n−1 for all j ∈ {1, . . . , n}. Then the entries on the

diagonal of An(1, . . . , n) are equal to 1 while all other entries are equal to − 1
n−1 . Thus, the rows

of An(1, . . . , n) sum up to the n-dimensional vector 0n of zeros and An(1, . . . , n) is not regular.

Now assume that either L ∈ {1, . . . , n−1}, or L = n and
∏n
j=1 βj <

(
1

n−1

)n
. Let (j1, . . . , jL) ∈

([n]
L

)
be arbitrary but fixed. Throughout this proof, we denote AL(j1, . . . , jL) by A and the claimed
inverse by A−1. Moreover, we set B := A−1A and dL := dL(j1, . . . , jL). Note that Lemma 8.12
implies dL > 0. We show that A−1 is the left inverse of A. The proof that it is also the right
inverse of A proceeds analogously. First, we consider the elements on the diagonal of B. Let
i ∈ {1, . . . , L}. Then

B[i, i] =
L∑
k=1

A−1[i, k]A[k, i]

= 1
dL

(
1 −

L−1∑
k=2

(k − 1)
∑

(i1,...,ik)∈({j1,...,jL}\{ji}
k )

k∏
ℓ=1

βiℓ +
L∑
k=1
k ̸=i

βjk

L∏
ℓ=1
ℓ̸=i,k

(1 + βjℓ) · (−βji)
)

= 1
dL

(
1 −

L−1∑
k=2

(k − 1)
∑

(i1,...,ik)∈({j1,...,jL}\{ji}
k )

k∏
ℓ=1

βiℓ

− βji

L∑
k=1
k ̸=i

βjk

L−2∑
m=0

∑
(i1,...,im)∈({j1,...,jL}\{ji,jk}

m )

m∏
ℓ=1

βiℓ

)
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= 1
dL

(
1 −

L−1∑
k=2

(k − 1)
∑

(i1,...,ik)∈({j1,...,jL}\{ji}
k )

k∏
ℓ=1

βiℓ

− βji

L∑
m=2

(m− 1)
∑

(i1,...,im−1)∈({j1,...,jL}\{ji}
m−1 )

m−1∏
ℓ=1

βiℓ

)

= 1
dL

(
1 −

L∑
k=2

(k − 1)
∑

(i1,...,ik)∈({j1,...,jL}
k )

ji /∈(i1,...,ik)

k∏
ℓ=1

βiℓ −
L∑

m=2
(m− 1)

∑
(i1,...,im)∈({j1,...,jL}

m )
ji∈(i1,...,im)

m−1∏
ℓ=1

βiℓ

)

= 1
dL

(
1 −

L∑
k=2

(k − 1)
∑

(i1,...,ik)∈({j1,...,jL}
k )

k∏
ℓ=1

βiℓ

)
= 1.

Now let i, k ∈ {1, . . . , L}, i ̸= k. Then

B[i, k] =
L∑
p=1

A−1[i, p] ·A[p, k]

= 1
dL

((
1 −

L−1∑
m=2

(m− 1)
∑

(i1,...,im)∈({j1,...,jL}\{ji}
m )

m∏
ℓ=1

βiℓ

)
· (−βjk) + βjk

L∏
ℓ=1
ℓ̸=i,k

(1 + βjℓ) · 1

+
L∑
p=1
p ̸=i,k

βjp

L∏
ℓ=1
ℓ̸=i,p

(1 + βjp) · (−βjk)
)

= −βjk
dL

(
1 −

L−1∑
m=2

(m− 1)
∑

(i1,...,im)∈({j1,...,jL}\{ji}
m )

m∏
ℓ=1

βiℓ −
L∏
ℓ=1
ℓ ̸=i,k

(1 + βjℓ) +
L∑
p=1
p ̸=i,k

βjp

L∏
ℓ=1
ℓ̸=i,p

(1 + βjp)
)

= −βjk
dL

(
L∑
p=1
p ̸=i,k

βjp

L−2∑
m=0

∑
(i1,...,im)∈({j1,...,jL}\{ji,jp}

m )

m∏
ℓ=1

βiℓ −
L−1∑
m=2

(m− 1)
∑

(i1,...,im)∈({j1,...,jL}\{ji}
m )

m∏
ℓ=1

βiℓ

−
L−2∑
m=1

∑
(i1,...,im)∈({j1,...,jL}\{ji,jk}

m )

m∏
ℓ=1

βiℓ

)

= −βjk
dL

(
L∑
p=1
p ̸=i,k

βjp

L−2∑
m=0

∑
(i1,...,im)∈({j1,...,jL}\{ji,jp}

m )

m∏
ℓ=1

βiℓ −
L−1∑
m=2

(m− 1)
∑

(i1,...,im)∈({j1,...,jL}\{ji}
m )

m∏
ℓ=1

βiℓ

−
L−1∑
m=1

∑
(i1,...,im)∈({j1,...,jL}\{ji}

m )

m∏
ℓ=1

βiℓ +
L−2∑
m=0

βjk
∑

(i1,...,im)∈({j1,...,jL}\{ji,jk}
m )

m∏
ℓ=1

βiℓ

)

= −βjk
dL

(
L∑
p=1
p ̸=i

βjp

L−2∑
m=0

∑
(i1,...,im)∈({j1,...,jL}\{ji,jp}

m )

m∏
ℓ=1

βiℓ −
L−1∑
m=1

m
∑

(i1,...,im)∈({j1,...,jL}\{ji}
m )

m∏
ℓ=1

βiℓ

)

= −βjk
dL

(
L−1∑
m=1

m
∑

(i1,...,im)∈({j1,...,jL}\{ji}
m )

m∏
ℓ=1

βiℓ −
L−1∑
m=1

m
∑

(i1,...,im)∈({j1,...,jL}\{ji}
m )

m∏
ℓ=1

βiℓ

)
= 0.

Hence, B equals the identity matrix in RL×L.



C.4. Proofs of lemmas from Section 8.4 173

Proof (Lemma 8.14). Let L ∈ {1, . . . , n − 1} or L = n and
∏n
j=1 βj <

(
1

n−1

)n
. Further, let

(j1, . . . , jL) ∈
([n]
L

)
be arbitrary but fixed. Throughout this proof, we denote AL(j1, . . . , jL)−1 by

A−1 and dL(j1, . . . , jL) by dL. Let i ∈ {1, . . . , L}. Then, using Lemma 8.13,

dL ·
L∑
k=1

A−1[i, k] = 1 −
L−1∑
m=2

(m− 1)
∑

(i1,...,im)∈({j1,...,jL}\{ji}
m )

m∏
ℓ=1

βiℓ +
L∑
k=1
k ̸=i

βjk

L∏
ℓ=1
ℓ̸=i,k

(1 + βjℓ)

= 1 −
L−1∑
m=2

(m− 1)
∑

(i1,...,im)∈({j1,...,jL}\{ji}
m )

m∏
ℓ=1

βiℓ +
L∑
k=1
k ̸=i

βjk

L−2∑
m=0

∑
(i1,...,im)∈({j1,...,jL}\{ji,jk}

m )

m∏
ℓ=1

βiℓ

= 1 −
L−1∑
m=2

(m− 1)
∑

(i1,...,im)∈({j1,...,jL}\{ji}
m )

m∏
ℓ=1

βiℓ +
L−1∑
m=1

m
∑

(i1,...,im)∈({j1,...,jL}\{ji}
m )

m∏
ℓ=1

βiℓ

= 1 +
L−1∑
m=1

∑
(i1,...,im)∈({j1,...,jL}\{ji}

m )

m∏
ℓ=1

βiℓ

=
L∏
ℓ=1
ℓ ̸=i

(1 + βjℓ).

Proof (Lemma 8.18). Let L ∈ {1, . . . , n − 1} and (j1, . . . , jL+1) ∈
( [n]
L+1

)
. Then, by definition of

dL+1(j1, . . . , jL+1),

dL+1(j1, . . . , jL+1) = 1 −
L+1∑
k=2

(k − 1)
∑

(i1,...,ik)∈([L+1]
k )

k∏
ℓ=1

βjiℓ

= 1 − βjL+1

L+1∑
k=2

(k − 1)
∑

(i1,...,ik−1)∈( [L]
k−1)

k−1∏
ℓ=1

βjiℓ
−

L∑
k=2

(k − 1)
∑

(i1,...,ik)∈([L]
k )

k∏
ℓ=1

βjiℓ

= dL(j1, . . . , jL) − βjL+1

L+1∑
k=2

(k − 1)
∑

(i1,...,ik−1)∈( [L]
k−1)

k−1∏
ℓ=1

βjiℓ

= dL(j1, . . . , jL) − βjL+1

L∑
k=1

k
∑

(i1,...,ik)∈([L]
k )

k∏
ℓ=1

βjiℓ

= dL(j1, . . . , jL) − βjL+1

L∑
k=2

(k − 1)
∑

(i1,...,ik)∈([L]
k )

k∏
ℓ=1

βjiℓ
− βjL+1

L∑
k=1

∑
(i1,...,ik)∈([L]

k )

k∏
ℓ=1

βjiℓ

= dL(j1, . . . , jL) − βjL+1

L∑
k=2

(k − 1)
∑

(i1,...,ik)∈([L]
k )

k∏
ℓ=1

βjiℓ
+ βjL+1 − βjL+1

L∏
ℓ=1

(1 + βjk)

= (1 + βjL+1)dL(j1, . . . , jL) − βjL+1

L∏
ℓ=1

(1 + βjk).
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