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Abstract
We consider the linear wave equation V(x)utt(x, t)− uxx(x, t) = 0 on [0,∞)×
[0,∞) with initial conditions and a nonlinear Neumann boundary condition
ux(0, t) = ( f(ut(0, t)))t at x= 0. This problem is an exact reduction of a non-
linear Maxwell problem in electrodynamics. In the case where f : R→ R is an
increasing homeomorphism we study global existence, uniqueness and well-
posedness of the initial value problem by the method of characteristics and
fixed point methods. We also prove conservation of energy and momentum
and discuss why there is no wellposedness in the case where f is a decreas-
ing homeomorphism. Finally we show that previously known time-periodic,
spatially localized solutions (breathers) of the wave equation with the nonlin-
ear Neumann boundary condition at x= 0 have enough regularity to solve the
initial value problem with their own initial data.
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1. Introduction and main results

In this paper we study the initial value problem for the following 1+1-dimensional wave
equation with quasilinear boundary condition:

V(x)utt(x, t)− uxx(x, t) = 0, x ∈ [0,∞), t ∈ [0,∞),

ux(0, t) = ( f(ut(0, t)))t, x= 0, t ∈ [0,∞),

u(x, t0) = u0(x),ut(x, t0) = u1(x), x ∈ [0,∞), t= 0.

(1)

This initial value problem has two main features: the wave equation on the half-axis [0,∞)
is linear with a space-dependent speed of propagation and the boundary condition at x= 0 is
a rather singular, quasilinear, 2nd-order in time Neumann-condition. We show wellposedness
on all time intervals [0,T] with T > 0, and preservation of energy and momentum.

Our interest in (1) stems from the fact that it appears in the context of electromagnetics as
an exact reduction of a nonlinear Maxwell system. We recall the Maxwell equations in the
absence of charges and currents

∇·D= 0, ∇×E =−∂tB, D= ε0E+P(E) ,

∇·B= 0, ∇×H= ∂tD, B= µ0H

with the electric fieldE, the electric displacement fieldD, the polarization field P, the magnetic
field B, and the magnetic induction field H. Particular properties of the underlying material
are modelled by the specification of the relations between E,D,P on one hand, and B,H on
the other hand. Here, we assume a magnetically inactive material, i.e. B= µ0H, but on the
electric side we assume a material with a Kerr-type nonlinear behaviour, see [1], section 2.3,
given through

P(E) = ε0χ1 (x)E+ ε0χNL (x)g
(
|E|2

)
E

with x= (x,y,z) ∈ R3 and | · | the Euclidean norm on R3. For simplicity we assume that
χ1,χNL are given scalar valued functions instead of the more general situation where they
are matrix valued. The scalar constants ε0,µ0 are such that c= (ε0µ0)

−1/2 is the speed of light
in vacuum. Local existence, wellposedness and regularity results for the general nonlinear
Maxwell system have been shown on R3 by Kato [2] and on domains by Spitz [3, 4].

In its second order formulation the Maxwell system becomes

0=∇×∇×E+ ∂2t

(
µ0ε0 (1+χ1 (x))E+µ0ε0χNL (x)g

(
|E|2

)
E
)
. (2)

We assume additionally that χ1(x) = χ1(x), χNL(x) = χNL(x) and that E takes the form of a
polarized traveling wave

E(x, t) =
(
0,0,U

(
x,κ−1y− t

))T
. (3)
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Then the quasilinear vectorial wave-type equation (2) turns into the scalar equation

V(x)Utt−Uxx+Γ(x)
(
g
(
U2
)
U
)
tt
= 0 (4)

for U= U(x, t), where V(x) = µ0ε0(1+χ1(x))−κ−2 and Γ(x) = µ0ε0χNL(x). Note that (4)
is an exact reduction of the Maxwell problem, from which all fields can be reconstructed. E.g.
the magnetic induction B can be retrieved from∇×E=−∂tB by time-integration and it will
satisfy ∇·B= 0 provided it does so at time t= 0. By assumption the magnetic field is given
by H= 1

µ0
B and it satisfies ∇×H= ∂tD. It remains to check that the displacement field D

satisfies the Gauss law∇·D= 0 in the absence of external charges. This follows directly from
the constitutive equation D= ε0(1+χ1(x))E+ ε0χNL(x)g(|E|2)E and the assumption of the
polarized form of the electric field in (3).

An extreme case for the potential Γ in front of the nonlinearity arises when Γ(x) = 2δ0(x) is
a multiple of the δ-distribution at 0, see [5, 6]. If additionally V(x) is even andU(x, t) = ut(x, t)
for an even function u(x, t) = u(−x, t), by removing one time derivative (4) becomes{

V(x)utt(x, t)− uxx(x, t) = 0, x ∈ [0,∞), t ∈ [0,∞),

ux(0, t) = ( f(ut(0, t)))t, x= 0, t ∈ [0,∞)
(5)

with f(s) := g(s2)s. Clearly (1) is the initial value problem for (5). This extreme model
describes the concentration of the entire nonlinear behaviour in a waveguide-like structure
where the width of the waveguide has been shrunk to zero and the strength of the nonlinearity
has been sent to infinity. A similar model, where the potential V in front of the linear term is
taken as a multiple of a δ-distribution, has been considered in [7]. Clearly, δ-distributions are
inserted purely for mathematical simplicity, and may be considered as a step towards physic-
ally more realistic models with L∞-potentials.

From the point of view of time-periodic solutions, problem (5) with f(s) =±s3 has been
considered in [6]. Under specific assumptions on the linear potential V the existence of infin-
itely many breathers, i.e. real-valued, time-periodic, spatially localized solutions of (5), was
shown. Typical examples of V were given in classes of piecewise continuous functions hav-
ing jump discontinuities. Under different assumptions on V and Γ, but still including δ-
distributions, problem (5) was considered in [5] and real-valued breathers were constructed.
A series of works considering linear and nonlinear wave equations with Neumman boundary
conditions emerged from [8, 9]. Attention was given to global existence and well-posedness
as well as to blow-up phenomena arising from nonlinear terms in either the boundary condi-
tion or the equation. In [8, 10] decay and global attractors were obtained. We point out that
in contrast to our work these papers consider nonlinear terms at the boundary which are only
of first order in time and have a damping character. This may also be the reason why even
higher-dimensional cases are by now well-understood in this first-order case. Perhaps closest
to our set-up is the paper [11], where a linear wave equation in the domain is coupled to a
linear wave equation at the boundary and the well-posedness is shown to be true exactly in
dimension one—in complete accordance with our set-up.

Our goal is to study the initial value problem (1) from the point of view of wellposedness,
to derive the conservation of momentum and energy, and to verify that known time-periodic
solutions from [6] satisfy (1) with their own initial values. Note that the boundary condition
in (1) becomes ux(0, t) =±3ut(0, t)2utt(0, t) in the model case f(s) =±s3. Hence, (1) is a sin-
gular initial value problem which is not covered by typical theories like, e.g. energy methods
or monotone operators. Instead, our approach will be to prove existence by making use of the
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method of characteristics. Uniqueness, wellposedness, global existence, and the conservation
of energy and momentum will build upon this.

Our basic assumptions on the initial data u0,u1 are:

u0 ∈ C1([0,∞)), u1 ∈ C([0,∞)). (A0)

Here Ck([0,∞)) = Ck([0,∞),R), and in general all function spaces consist of real-valued
functions unless the codomain is explicitly mentioned.Motivated by the results from [6] we are
interested in the case where the coefficient V may have discontinuities. In particular, we con-
sider piecewise C1 functions V. We have chosen the setting (u0,u1) ∈ C1([0,∞))×C([0,∞))
since it perfectly fits to our method which is inspired by the method of characteristics. We
bridge the gap to Sobolev space-based weak solutions (introduced in definition 1.6) by pro-
position 5.2 in section 5.

Let I⊆ R be a closed interval. We call a function φ : I→ R piecewise Ck if there exists a
discrete set D⊆ I such that φ ∈ Ck(I \D) and the limits φ( j)(x−) and φ( j)(x+) exist for all
x ∈ D(φ) and 0⩽ j ⩽ k, although they do not need to coincide. If I is bounded from below
(or above), in addition we require φ( j)(min I+) (or φ( j)(max I−)) to exist for all 0⩽ j ⩽ k.
Let PCk(I) denote the set of piecewise Ck functions on I, and for φ ∈ PC(I) := PC0(I) let us
denote by D(φ) the set of discontinuities of φ.

For the coefficient V and the nonlinear function f we assume

V ∈ PC1([0,∞)),V,V ′ ∈ L∞, inf V> 0, (A1)

inf{|d1 − d2|with d1,d2 ∈ D(V)∪{0} ,d1 6= d2}> 0, (A2)

f : R→ R is an increasing homeomorphism. (A3)

The main theorem of this paper is given next.

Theorem 1.1. Assume (A0)–(A3). Then (1) admits a unique and global C1-solution. Moreover,
(1) is wellposed on every finite time interval [0,T] with T> 0.

In proposition 6.1 our concept of continuous dependence on data is stated precisely. In the
above result the assumption (A3) is crucial. For a decreasing homeomorphism f the result of
theorem 1.1 does not hold, see remark 1.7. Since we have already used the notion of a C1-
solution, we are going to explain it in detail next. As the notion of a C1-solution will also be
used for subdomains of [0,∞)× [0,∞) we first define the notion of an admissible domain.

Definition 1.2 (admissible domain). We call a setΩ⊆ [0,∞)× [0,∞) an admissible domain
if it is of the form

Ω= {(x, t) ∈ [0,∞)× [0,∞) | t⩽ h(x)}

where h≡+∞ or h : [0,∞)→ R is Lipschitz with |hx(x)|⩽
√
V(x) for almost all x. We

denote the relative interior of Ω by

Ω◦ := {(x, t) ∈ [0,∞)× [0,∞) | t< h(x)} .

In order to explain the notion of a C1-solution let us first mention that we cannot expect
that a solution of (1) has everywhere second derivatives utt or uxx. This is essentially due to the
nonlinear boundary condition and the discontinuities of second derivatives which propagate
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away from x= 0. However, if we denote by c(x) := 1√
V(x)

the inverse of the x-dependent wave

speed, then we can factorize the wave operator as

∂2t − c(x)2 ∂2x = (∂t− c(x)∂x)(∂t+ c(x)∂x)+ c(x)cx (x)∂x.

It is then reasonable for a C1-solution to have almost everywhere a mixed second directional
derivative ∂2ν,µ with directions ν = (1,−c(x)) and µ= (1,c(x)). This is the basis for the fol-
lowing definition.

Definition 1.3 (solution). A function u ∈ C1(Ω) on an admissible domain Ω is called a C1-
solution to (1) if the following hold:

(i) For all (x, t) ∈ Ω \ (D(c)∪D(cx)×R) we have (∂t− c(x)∂x)(ut+ c(x)ux)(x, t) =
−c(x)cx(x)ux(x, t).

(ii) ( f(ut(0, t)))t = ux(0, t) for all (0, t) ∈ Ω◦.
(iii) u(x,0) = u0(x) for all (x,0) ∈ Ω, ut(x,0) = u1(x) for all (x,0) ∈ Ω◦.

Problem (1) has a momentum given by

M(u, t) :=
ˆ ∞

0
V(x)ut dx+ f(ut (0, t)) (6)

and an energy given by

E(u, t) := 1
2

ˆ ∞

0

(
V(x)ut (x, t)

2
+ ux (x, t)

2
)
dx+F(ut (0, t)) (7)

where F(s) := sf(s)−
´ s
0 f(σ)dσ. If, e.g. f is continuously differentiable, then F(s) is a prim-

itive of sf ′(s). The conservation of momentum and energy is stated next.

Theorem 1.4. Assume (A0)–(A3) and that u is a C1-solution of (1) with u ′
0(x),u1(x)→ 0 as

x→∞. Then the momentum given by (6) and the energy given by (7) are time-invariant.

Remark 1.5. Note that F(s) =
´ s
0 ( f(s)− f(σ)) dσ tends to+∞ as s→±∞, since by assump-

tion (A3) we have f(s)→±∞ as s→±∞. Therefore, due to theorem 1.4, ux( · , t) and ut( · , t)
are bounded in L2([0,∞)) and ut(0, t) is bounded as well.

Another common notion of solution for (1) is the notion of a weak solution, which we only
give for Ω= [0,∞)2. The fact that a C1-solution to (1) is also a weak solution to (1) holds true
and will be proven in proposition 5.2 in section 5.

Definition 1.6 (weak solution). A function u ∈W1,1
loc ([0,∞)× [0,∞)) is called a weak solu-

tion to (1) if f(ut(0, ·)) ∈ L1loc([0,∞)), u( · ,0) = u0, and u satisfies

0=
ˆ ∞

0

ˆ ∞

0
(V(x)utϕt− uxϕx) dxdt+

ˆ ∞

0
f(ut (0, t))ϕt (0, t) dt

+

ˆ ∞

0
V(x)u1 (x)ϕ(x,0) dx+ f(u1 (0))ϕ(0,0)

for all ϕ ∈ C∞
c ([0,∞)× [0,∞)).
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Remark 1.7. Due to assumption (A3) we have only considered increasing functions f. If we
instead allow f : R→ R to be a decreasing homeomorphism, then (1) will not be wellposed in
general and can have multiple solutions. Consider for example the cubic term f(y) =−y3 with
constant potential V = 1 and homogeneous initial data:

utt(x, t)− uxx(x, t) = 0, x ∈ [0,∞), t ∈ [0,∞),

ux(0, t) =−(ut(0, t)3)t, x= 0, t ∈ [0,∞),

u(x, t0) = 0,ut(x, t0) = 0, x ∈ [0,∞), t= 0.

(8)

By direct calculation one can show that the right-traveling wave

up (x, t) =

{(
2
3 (t− x)

) 3
2 , x< t,

0, x⩾ t

is a nontrivial solution to (8). In fact, up is a C1-solution of (∂x+ ∂t)u= 0. But (8) also has the
trivial solution u= 0, or u(x, t) =±up(x, t− τ) for any τ ⩾ 0. However, due to the continuity of
f−1, one can still show existence of solutions to (1) in the case where f grows at least linearly,
cf (A4). This follows from the arguments in sections 3 and 4. Theorem 1.4 also holds when f
is decreasing, but now the quantity F(y) tends to −∞ as y→±∞, so that (7) does not give
rise to estimates on u. Lastly, also in this case C1-solutions to (1) are weak solutions.

In addition to the problem being posed on the positive real half-line x ∈ [0,∞), we can also
consider the same quasilinear problem posed on a bounded domain x ∈ [0,L]where we impose
a homogeneous Dirichlet condition at x=L:

V(x)utt(x, t)− uxx(x, t) = 0, x ∈ [0,L], t ∈ [0,∞),

ux(0, t) = ( f(ut(0, t)))t, t ∈ [0,∞),

u(x,0) = u0(x),ut(x,0) = u1(x), x ∈ [0,L],

u(L, t) = 0, t ∈ [0,∞).

(9)

Both theorems 1.1 and 1.4 remain valid whenmaking the obvious adaptations to this setting.

Theorem 1.8. Assume (A0)–(A3). Then (9) admits a unique and global C1-solution u.
Moreover, the energy given by

E(u, t) := 1
2

ˆ L

0

(
V(x)ut (x, t)

2
+ ux (x, t)

2
)
dx+F(ut (0, t)) .

is time-invariant.

Remark 1.9. For Dirichlet boundary data, momentum is in general not conserved.

The paper is structured as follows. In section 2 we provide a change of variables which turns
the wave operator with variable wave speed in (1) into a constant coefficient operator with
an additional first order term. The well-known constant coefficient operator is useful since it
provides implicit solution formulas which are analysed in section 3. In section 4 we prove the
existence and uniqueness part of theorem 1.1 under an extra assumption on the nonlinearity
f. We use that the wave equation has finite speed of propagation to argue locally. Difficulties
arise at the boundary x= 0 where the nonlinearity comes in to play, and near jumps of V where
wave breaking occurs. We use the method of characteristics and section 3 to obtain a reduced
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problem that is a retarded ordinary differential equation, which can be treated using fixed-point
arguments. Since the ODE at the boundary is nonlinear we use the extra assumption on f to
close the fixed-point argument. In section 5 we prove energy and momentum conservation as
stated in theorem 1.4, and the fact that C1-solutions of (1) in the sense of definition 1.3 are also
weak solutions, cf proposition 5.2. Using the conservation laws, we also obtain a priori bounds
that allow us to remove the extra assumption on f from section 4. The wellposedness part of
theorem 1.1 is shown in section 6 using similar methods as in the existence and uniqueness
parts. Finally, in section 7 we verify that the breather solutions obtained in [6] satisfy (1) with
their own initial values. This is mainly a problem of regularity, as we have to show that these
breathers are of class C1. To achieve this, we follow ideas from [6] and improve upon their
bootstrapping argument. The appendices A and B contain some technical results used in the
proofs of the main results.

2. A change of variables

It will be convenient to normalize the wave speed to 1. To achieve this, we introduce a new
variable z= κ(x) =

´ x
0

1
c(s) ds, and thus a new coordinate system (z, t). Avoiding new notation

we denote the functions V,c,u,u0,u1 transformed into this new coordinate system again by
V,c,u,u0,u1. The relation between the two coordinate systems is given by

∂z
∂x

=
1

c(x)
or c(x)∂x = ∂z or dx= c(x) dz.

From now on until the end of section 5, we will exclusively work with the coordinate system
(z, t). As before we denote the points where c is discontinuous by D(c) and the points where
cz is discontinuous by D(cz).

Formally the initial value problem (1) transforms into
utt(z, t)− uzz(z, t) =− cz(z)

c(z) uz(z, t), z ∈ [0,∞), t ∈ [0,∞),
1

c(0)uz(0, t) = ( f(ut(0, t)))t, t ∈ [0,∞),

u(z,0) = u0(z),ut(z,0) = u1(z), z ∈ [0,∞)

(10)

where we need to take into account that ux = 1
cuz is continuous (and not uz itself) and that the

differential equation does not hold at the discontinuities of c and cz. A detailed definition of
the solution concept is given below in definition 2.3.

We begin by rephrasing definitions 1.2 and 1.3 for the new coordinate system.

Definition 2.1 (admissible domain). We call a setΩ⊆ [0,∞)× [0,∞) an admissible domain
if it is of the form

Ω= {(z, t) ∈ [0,∞)× [0,∞) | t⩽ h(z)}

where h≡+∞ or h : [0,∞)→ R is Lipschitz continuous with Lipschitz constant 1.We denote
its relative interior by

Ω◦ := {(z, t) ∈ [0,∞)× [0,∞) | t< h(z)} .

Next we introduce function spaces that capture the condition of the continuity of 1
cuz.
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Definition 2.2 (x-dependent function spaces). Let the transformation between (x, t) and
(z, t)-coordinates be given by κ̃(x, t) := (κ(x), t) = (z, t). For Ω⊆ [0,∞)× [0,∞) we write

C1
(x,t) (Ω) :=

{
u : Ω→ R | u ◦ κ̃ ∈ C1

(
κ̃−1 (Ω)

)}
where we understand u to be a function of (z, t) variables, and ũ := u ◦ κ̃ is the (x, t)-dependent
version of u, i.e. ũ(x, t) = u(z, t) holds. Note that u ∈ C1

(x,t)(Ω) if and only if u,ut,
1
cuz ∈ C(Ω).

Similarly, for an interval I⊆ [0,∞) we define

C1
x (I) :=

{
v : I→ R | v ◦κ ∈ C1

(
κ−1 (I)

)}
.

where again we understand v to be a function of z.

Definition 2.3 (solution). A function u ∈ C1
(x,t)(Ω) on an admissible domain Ω is called a

C1-solution to (10) if the following hold:

(i) For all (z, t) ∈ Ω \ (D(c)∪D(cz)×R) we have (∂t− ∂z)(ut+ uz)(z, t) =− cz(z)
c(z) uz(z, t).

(ii) f(ut(0, t))t = 1
c(0)uz(0, t) for all (0, t) ∈ Ω◦.

(iii) u(z,0) = u0(z) for all (z,0) ∈ Ω, ut(z,0) = u1(z) for all (z,0) ∈ Ω◦.

Remark 2.4. Note that u : Ω→ R is a C1-solution to (1) in the (x, t)-coordinates if and only if
it is a C1-solution to (10) in the (z, t)-coordinates.

3. Auxiliary results on the linear part

In this section we gather some auxiliary results and estimates on the linear wave equation.
These will prove useful for the study of the nonlinear initial boundary value problem (10). All
results of this section hold under the assumptions (A0)–(A3).

We first note that thewave equation has finite speed of propagation; if we know its behaviour
at time t0 on an interval [z0 − r,z0 + r], then we can defer its accurate behaviour on the space-
time triangle with corners (z0 − r, t0), (z0 + r, t0) and (z0, t0 + r).

Definition 3.1. For (z0, t0) ∈ R2 and r> 0we denote the triangle with corners (z0 − r, t0), (z0 +
r, t0) and (z0, t0 + r) by

∆(z0, t0,r) :=
{
(z, t) ∈ R2 | t⩾ t0, |z− z0|+ |t− t0|⩽ r

}
,

its base projected onto the z-axis is given by Pz∆(z0, t0,r) = [z0 − r,z0 + r] with projection
Pz(z, t) := z. Similarly, we define left and right half triangles

∆− (z0, t0,r) := ∆(z0, t0,r)∩{z⩽ z0} , ∆+ (z0, t0,r) := ∆(z0, t0,r)∩{z⩾ z0}

whose bases are given by

Pz∆− (z0, t0,r) = [z0 − r,z0] , Pz∆− (z0, t0,r) = [z0,z0 + r] .

Recall the solution formula for the one-dimensional wave equation:
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Theorem 3.2. Let (z0, t0) ∈ R2, r> 0, ∆ :=∆(z0, t0,r) and B := Pz∆. Assume that u0 ∈
C1(B), u1 ∈ C(B), and g ∈ L∞(∆) is continuous outside a set L consisting of finitely many
lines of the form {z= const}. Then the function

u(z, t) = 1
2 (u0 (z+ t− t0)+ u0 (z− t+ t0))

+ 1
2

ˆ z+t−t0

z−t+t0

u1 (y) dy+ 1
2

ˆ
∆(z,t0,t−t0)

g(y, τ) d(y, τ)

belongs to C1(∆) and is the unique C1-solution of the problem

{
(∂t− ∂z)(ut+ uz) = g, (z, t) ∈∆,

u(z, t0) = u0 (z) , ut (z, t0) = u1 (z) , z ∈ B

in the following sense: u(·, t0) = u0(·), ut(·, t0) = u1(·) on B and the directional derivative (∂t−
∂z)(ut+ uz) exists and equals g on∆◦ \L.

Remark 3.3. For every C1-solution u of (∂t− ∂z)(ut+ uz) = g on a domain we have that
(∂t+ ∂z)(ut− uz) = (∂t− ∂z)(ut+ uz) wherever g is continuous, cf Schwarz’s theorem in
[12, theorem 9.41]. As a consequence, any of the two factorizations of the wave operator
(∂t− ∂z)(∂t+ ∂z) or (∂t+ ∂z)(∂t− ∂z) can be used and yields the same solution.

By combining the above theorem 3.2 with a fixed point argument, we can treat the initial
value problem for (∂t− ∂z)(ut+ uz) =− cz(z)

c(z) uz on sufficiently small triangles ∆. In order to
have a slightly more general situation available we work with a piecewise continuous function
λ instead of cz

c .

Corollary 3.4. Let (z0, t0) ∈ R2 and∆ :=∆(z0, t0,r), B := Pz∆ for r> 0. Assume u0 ∈ C1(B),
u1 ∈ C(B) and λ ∈ PC(B) such that r‖λ‖∞ < 1. Then

{
(∂t− ∂z)(ut+ uz) =−λ(z)uz, (z, t) ∈∆,

u(z, t0) = u0 (z) ,ut (z, t0) = u1 (z) , z ∈ B
(11)

has a unique solution u ∈ C1(∆) in the sense of theorem 3.2with g=−λuz and L= D(λ)×R.
We denote this solution by Φ(u0,u1) := u.

Remark 3.5. If additionally u0,u1 are odd around z= z0 and λ is odd around z= z0, then the
solution of (11) is odd around z= z0. To see this, notice that under these assumptions the odd
reflection of the solution u of (11) again solves (11) – but with the opposite factorization of
the wave operator. Hence, by remark 3.3 and uniqueness of solutions, u coincides with its odd
reflection.

Proof of corollary 3.4. W.l.o.g. we assume (z0, t0) = (0,0). Let u ∈ C1(∆). Then by
theorem 3.2 u is a solution if and only if

u(z, t) = 1
2 (u0 (z+ t)+ u0 (z− t))+ 1

2

ˆ z+t

z−t
u1 (y) dy− 1

2

ˆ
∆(z,0,t)

λ(y)uz (y, τ) d(y, τ) (12)
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holds for (z, t) ∈∆. Taking the derivative w.r.t. z we obtain

uz (z, t) = 1
2 (u

′
0 (z+ t)+ u ′

0 (z− t))+ 1
2 (u1 (z+ t)− u1 (z− t))

− 1
2

ˆ t

0
λ(z+ t− s)uz (z+ t− s,s) ds+ 1

2

ˆ t

0
λ(z− t+ s)uz (z− t+ s,s) ds. (13)

We consider (13) as a fixed point problem for uz ∈ C(∆). If we denote the right-hand side
of (13) by T(uz)(z, t), then clearly T maps C(∆) into itself. Furthermore, one has

‖T(uz)−T(wz)‖∞

= 1
2 sup
(z,t)∈∆

∣∣∣∣−ˆ t

0
λ(z+ s) · [uz−wz] (z+ s, t− s) ds

+

ˆ t

0
λ(z− s) · [uz−wz] (z− s, t− s) ds

∣∣∣∣
⩽ ‖λ‖∞ r · ‖uz−wz‖∞

so that by Banach’s fixed-point theorem there exists a unique solution uz of (13). With the help
of uz we define u as in (12) and thus get the claimed result.

In the setting of the above proof, we can obtain estimates on the solution u. First, if we set
q := r‖λ‖∞, then by Banach’s fixed-point theorem we have

‖uz− 0‖∞ ⩽ 1
1− q

‖T(0)− 0‖∞ .

Using ‖T(0)‖∞ ⩽ ‖u ′
0‖∞ + ‖u1‖∞, we obtain

‖uz‖∞ ⩽ 1
1− q

(
‖u ′

0‖∞ + ‖u1‖∞
)
.

From

u(z, t) = 1
2 (u0 (z+ t)+ u0 (z− t))+ 1

2

ˆ z+t

z−t
u1 (y) dy− 1

2

ˆ t

0

ˆ z+(t−τ)

z−(t−τ)

λ(y)uz (y, τ) dydτ,

ut (z, t) = 1
2 (u

′
0 (z+ t)− u ′

0 (z− t))+ 1
2 (u1 (z+ t)+ u1 (z− t))

− 1
2

ˆ t

0
λ(z+ s)uz (z+ s, t− s) ds− 1

2

ˆ t

0
λ(z− s)uz (z− s, t− s) ds

we also obtain

‖u‖∞ ⩽ ‖u0‖∞ + r‖u1‖∞ + 1
2 r

2 ‖λ‖∞ ‖uz‖∞ ,

‖ut‖∞ ⩽ ‖u ′
0‖∞ + ‖u1‖∞ + r‖λ‖∞ ‖uz‖∞ .

Combining these estimates, we get the following result.

Corollary 3.6. In the setting of corollary 3.4, the following estimates hold with q := r‖λ‖∞:
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‖u‖∞ ⩽ ‖u0‖∞ +
rq

2(1− q)
‖u ′

0‖∞ +
r
(
1− 1

2q
)

1− q
‖u1‖∞ ,

‖uz‖∞ ⩽ 1
1− q

(
‖u ′

0‖∞ + ‖u1‖∞
)
,

‖ut‖∞ ⩽ 1
1− q

(
‖u ′

0‖∞ + ‖u1‖∞
)
.

In particular, there exists a constant C= C(r,‖λ‖∞) such that the operator-norm of the linear
solution operator Φ : C1(B)×C(B)→ C1(∆), which maps the data (u0,u1) ∈ C1(B)×C(B)
to the solution of (11), satisfies

‖Φ‖⩽ C.

Recall that in definition 2.3 we required uz
c to be continuous. Since cmay have jumps, e.g. at

z0, we also need to treat the jump condition

uz (z0+, t)
c(z0+)

=
uz (z0−, t)
c(z0−)

.

We prepare this in the following lemma by adding to (11) the inhomogeneous Dirichlet con-

dition u(z0, t)
!
= b(t) at the spatial boundary z= z0.

Lemma 3.7. Let (z0, t0) ∈ R2 and ∆+ := ∆+(z0, t0,r), B+ := Pz∆+ for r> 0. Assume u0 ∈
C1(B+), u1 ∈ C(B+),b ∈ C1([t0, t0 + r]) with b(t0) = u0(z0),b ′(t0) = u1(z0) and λ ∈ PC(B+)
such that r‖λ‖∞ < 1. Then the problem

(∂t− ∂z)(ut+ uz) =−λ(z)uz, (z, t) ∈∆◦
+,

u(z0, t) = b(t) , t ∈ [t0, t0 + r] ,

u(z, t0) = u0 (z) ,ut (z, t0) = u1 (z) , z ∈ B+,

(14)

has a unique C1-solution u : ∆+ → R in the sense of theorem 3.2 with g=−λuz and L=
D(λ)×R. We denote this solution by Φ+(b,u0,u1) := u. The assertion also holds for the left
half triangle ∆− := ∆−(z0, t0,r) with corresponding solution operator Φ−.

Proof. Note that the function Gb defined on ∆+ by

Gb (z, t) =

{
b(t0)+ (t− t0)b ′ (t0) , z− z0 > t− t0 ⩾ 0,

b(t+ z0 − z)+ (z− z0)b ′ (t0) , t− t0 ⩾ z− z0 ⩾ 0
(15)

belongs to C1(∆+), solves the homogenous wave equation (∂t− ∂z)(∂t+ ∂z)Gb = 0 on ∆+,
and satisfies Gb(z0, t) = b(t). Setting v := u−Gb, problem (14) can be rewritten as

(∂t− ∂z)(vt+ vz) =−λ(z)
(
vz+Gb

z

)
, (z, t) ∈∆◦

+,

v(z0, t) = 0, t ∈ [t0, t0 + r] ,

v(z, t0) = u0 (z)− b(t0) =: v0 (z) , z ∈ B+,

vt (z, t0) = u1 (z)− b ′ (t0) =: v1 (z) , z ∈ B+.

(16)

6722



Nonlinearity 36 (2023) 6712 S Ohrem et al

Note that v0(z0) = v1(z0) = 0 by assumption. If we extend the functions v0, v1, and λ in an odd
way and Gb in an even way around z= z0, we can consider the problem

(∂t− ∂z)(ṽt+ ṽz) =−λodd (z) ·
(
ṽz+Gb

even,z

)
(z, t) ∈∆◦,

ṽ(z, t0) = v0,odd (z) , z ∈ B,
ṽt (z, t0) = v1,odd (z) , z ∈ B,

(17)

where ∆ :=∆(z0, t0,r) and B := Pz∆. Arguing as in the proof of corollary 3.4, we see that
due to the Banach fixed-point theorem, (17) has a unique solution, which must be odd,
cf remark 3.5. Now, on one hand the solution of (17) solves (after restriction to ∆+) (16)
and, on the other hand, after odd extension around z= z0 every solution of (16) solves (17).
This shows existence and uniqueness for (16) and hence for (14).

Remark 3.8. One can show that there exists a constant C= C(r,‖λ‖∞) such that

Φ± : D (Φ±)⊆ C1 ([t0, t0 + r])×C1 (B±)×C(B±)→ C1 (∆±)

satisfy ‖Φ±‖⩽ C, where the domain D(Φ±) consists of those (b,u0,u1) that satisfy b(t0) =
u0(z0) and b ′(t0) = u1(z0).

When treating the nonlinear problem (1), the operators Φ± play an important role and the
estimate in remark 3.8 will be used. However, we need to investigate the dependency of Φ±
on the datum b more precisely. This will be achieved next in the case where u0 = u1 = 0.

Lemma 3.9 (Estimate onΦ± in the case u0 = u1 = 0). Let∆± and λ be as in lemma 3.7with
q := r‖λ‖∞ < 1. Assume b ∈ C1([t0, t0 + r]) and b(t0) = b ′(t0) = 0. Then for u := Φ±(b,0,0)
one has

|uz (z, t)± b ′ (m)|⩽ α |z− z0| |b ′ (m)|+β

ˆ m

t0

|b ′ (τ)| dτ,

where m :=max{t0, t− |z− z0|} ,α := 2
4−q ‖λ‖∞, and β := 4

(2−q)(4−q) ‖λ‖∞.

Proof. We only give the proof in the ‘+’-case and for (z0, t0) = (0,0). We revisit the proof of
lemma 3.7 where Φ+ is defined. From (13) we know that vz satisfies

vz (z, t) =− 1
2

ˆ t

0
λodd (z+ s) ·

(
Gb

even,z (z+ s, t− s)+ vz (z+ s, t− s)
)
ds

+ 1
2

ˆ t

0
λodd (z− s) ·

(
Gb

even,z (z− s, t− s)+ vz (z− s, t− s)
)
ds.

We denote the term on the right-hand side by T(vz)(z, t) and already know that T is Lipschitz
continuous with constant q< 1. Therefore we may write the solution as vz := lim

n→∞
Tn(0) and

thus have to study v(n)z := Tn(0). The claimed inequality for uz will follow once we have
shown that

|vz (z, t) |⩽ α |z− z0| |b ′ (m)|+β

ˆ m

t0

|b ′ (τ)| dτ.
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Due to vz = lim
n→∞

Tn(0) it is sufficient to show that this estimate holds for all v(n)z . Since v(0)z = 0,

there is nothing left to show for n= 0. Now assume that the estimate has been shown for some
fixed n. Recalling the definition of Gb from (15), we have

Gb
even,z (z, t) =−sign(z)b ′ (max{t− |z| ,0}) .

Notice that Gb
even,z(z, t) vanishes for |z|⩾ t. Therefore, if v(n)z vanishes for |z|⩾ t then also

v(n+1)
z = T(v(n)z ) vanishes on this set. So in the following we may assume |z|< t. We will only
consider z⩾ 0 as z< 0 can be treated similarly. For z⩾ 0 and t> z the expressionm=max{t−
|z| ,0} simplifies tom= t− z. We begin by estimating the terms which are independent of v(n)z :

∣∣∣∣ˆ t

0
λodd (z+ s)Gb

even,z (z+ s, t− s) ds

∣∣∣∣
=

∣∣∣∣−ˆ t

0
λodd (z+ s)b ′ (max{t− z− 2s,0}) ds

∣∣∣∣
⩽ 1

2 ∥λ∥∞

ˆ t−z

0

∣∣b ′ (τ)∣∣ dτ = 1
2 ∥λ∥∞

ˆ m

0

∣∣b ′ (τ)∣∣ dτ,∣∣∣∣ˆ t

0
λodd (z− s)Gb

even,z (z− s, t− s) ds

∣∣∣∣
=

∣∣∣∣−ˆ z

0
λodd (z− s)b ′ (t− z) ds+

ˆ t

z
λodd (z− s)b ′ (max{t+ z− 2s,0}) ds

∣∣∣∣
⩽ ∥λ∥∞ z

∣∣b ′ (t− z)
∣∣+ 1

2 ∥λ∥∞

ˆ t−z

0

∣∣b ′ (τ)∣∣ dτ = ∥λ∥∞ z
∣∣b ′ (m)∣∣+ 1

2 ∥λ∥∞

ˆ m

0

∣∣b ′ (τ)∣∣ dτ.
The remaining two summands are treated by∣∣∣∣ˆ t

0
λodd(z+ s)v(n)z (z+ s, t− s)ds

∣∣∣∣
⩽ ‖λ‖∞

ˆ t

0

(
α(z+ s)|b ′(max{t− z− 2s,0})|+β

ˆ max{t−z−2s,0}

0
|b ′(τ)|dτ

)
ds

= ‖λ‖∞
ˆ t−z

2

0

(
α(z+ s)|b ′(t− z− 2s)|+β

ˆ t−z−2s

0
|b ′(τ)|dτ

)
ds

⩽ ‖λ‖∞
ˆ t−z

2

0

(
α
t+ z
2

|b ′(t− z− 2s)|+β

ˆ t−z

0
|b ′(τ)|dτ

)
ds

= ‖λ‖∞
(
α
t+ z
4

+β
t− z
2

)ˆ m

0
|b ′(τ)|dτ,∣∣∣∣ˆ t

0
λodd(z− s)v(n)z (z− s, t− s)ds

∣∣∣∣
⩽ ‖λ‖∞

ˆ t

0

(
α|z− s||b ′(max{t− s− |z− s|,0})|+β

ˆ max{t−s−|z−s|,0}

0
|b ′(τ)|dτ

)
ds
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= ‖λ‖∞
ˆ z

0

(
α(z− s)|b ′(t− z)|+β

ˆ t−z

0
|b ′(τ)|dτ

)
ds

+ ‖λ‖∞
ˆ z+t

2

z

(
α(s− z)|b ′(t+ z− 2s)|+β

ˆ t+z−2s

0
|b ′(τ)|dτ

)
ds

⩽ ‖λ‖∞
(
α
z2

2
|b ′(m)|+βz

ˆ m

0
|b ′(τ)|dτ

)
+ ‖λ‖∞

(
α
t− z
4

+β
t− z
2

)ˆ m

0
|b ′(τ)|dτ.

Summing up all four estimates, we obtain

2
∣∣∣v(n+1)
z (z, t)

∣∣∣
⩽ 1

2 ‖λ‖∞
ˆ m

0
|b ′ (τ)| dτ

+ ‖λ‖∞ z |b ′ (m)|+ 1
2 ‖λ‖∞

ˆ m

0
|b ′ (τ)| dτ

+ ‖λ‖∞

(
α
t+ z
4

+β
t− z
2

)ˆ m

0
|b ′ (τ)| dτ

+ ‖λ‖∞

(
α
z2

2
|b ′ (m)|+βz

ˆ m

0
|b ′ (τ)| dτ

)
+ ‖λ‖∞

(
α
t− z
4

+β
t− z
2

)ˆ m

0
|b ′ (τ)| dτ

= ‖λ‖∞
(
1+α

z
2

)
z |b ′ (m)|

+ ‖λ‖∞

(
1
2 +

1
2 +α

t+ z
4

+β
t− z
2

+βz+α
t− z
4

+β
t− z
2

)ˆ m

0
|b ′ (τ)|

=: 2C1z |b ′ (m)|+ 2C2

ˆ m

0
|b ′ (τ)| dτ.

It remains to verify C1 ⩽ α and C2 ⩽ β. In fact, using t,z⩽ r, we obtain

2C1 ⩽ ‖λ‖∞ +
q
2
α= 2α,

2C2 ⩽ ‖λ‖∞ +
q
2
α+ qβ = 2α+ qβ = 2β,

where the equalities hold by definition of α and β, respectively.

4. Main part of proof of theorem 1.1

In this section, we will prove the existence and uniqueness part of the main theorem 1.1 under
the additional assumption that f grows at least linearly, i.e. for some a,A> 0 we have

|f(x)|⩾ a |x| −A for x ∈ R. (A4)

The assumption (A4) will be used in lemma 4.3 below as an upper bound on f−1 which helps in
the construction of solutions to (10). In section 5 we show that the argument of f, that is ut(0, t),
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is uniformly bounded on finite time intervals, and thereby eliminate the growth assumptions
on f. The wellposedness part of theorem 1.1 will be completed in section 6.

We will again use that the wave equation has finite speed of propagation so that we may
argue locally. To be more specific, we will work on the following types of triangular domains:

• A jump triangle is a triangle∆=∆(z0,0,r) with base B= Pz∆⊆ (0,∞), where z0 ∈ D(c)
and B intersects D(c) in no other point. These are useful for the study of the jump condition
uz(z+,t)
c(z+) = uz(z−,t)

c(z−) .
• A boundary triangle is a half-triangle ∆+ =∆+(0,0,r) with base B+ = Pz∆+ = [0,r]
where B+ does not intersectD(c). These are used to study the nonlinear Neumann condition
uz
c(0) = ( f(ut))t.

• A plain triangle is a triangle ∆=∆(z0,0,r) with base B= Pz∆⊆ (0,∞) not intersecting
D(c). These are used to cover the remaining space.

In the next three lemmata, we show that (10) is wellposed on all three types of domains.

Lemma 4.1. Let ∆ be a plain triangle with base B. Assume r
∥∥ cz
c

∥∥
∞ < 1. Then (10) has a

unique C1-solution u on∆ and there exists a constant C= C(r,
∥∥ cz
c

∥∥
∞) such that the solution

operator Φ : C1(B)×C(B)→ C1(∆),(u0,u1) 7→ u satisfies ‖Φ‖⩽ C.

Proof. Since ∆ is disjoint from the spatial boundary z= 0, the boundary condition (ii) in
definition 2.3 is trivially satisfied on∆. By corollary 3.4 we have uniqueness of solutions, and
the estimate holds by corollary 3.6.

Lemma 4.2. Let ∆ be a jump triangle with base B. Assume r
∥∥ cz
c

∥∥
∞ < 1. Then (10) has a

unique C1-solution u on∆ and there exists a constant C= C(r,
∥∥ cz
c

∥∥
∞) such that the solution

operator Φ : C1
x(B)×C(B)→ C1

(x,t)(∆),(u0,u1) 7→ u satisfies ‖Φ‖⩽ C.

Proof. As in lemma 4.1, the boundary condition at z= 0 trivially holds. Now let ∆=
∆(z0,0,r). If u : ∆→ R is a solution of (10), then by defining b : [0,r]→ R,b(t) = u(z0, t)
and using lemma 3.7 we have

u(z, t) =

{
Φ+ (b,u0,u1)(z, t) , z⩾ z0,

Φ− (b,u0,u1)(z, t) , z⩽ z0.
(18)

On the other hand, if b ∈ C1([0,r]) with b(0) = u0(z0) and b ′(0) = u1(z0) is given, then the
function u defined by (18) satisfies u,ut ∈ C(∆) as Φ±(b,u0,u1) and Φ±(b,u0,u1)t coincide
with b resp. b′ at the boundary z= z0. Hence, u solves (10) if and only if ux is continuous, i.e.

uz (z0+, t)
c(z0+)

=
uz (z0−, t)
c(z0−)

(19)

holds for all t ∈ [0,r]. Using (18), we can write (19) as

1
c(z0−)

Φ− (b,u0,u1)z (z0, t) =
1

c(z0+)
Φ+ (b,u0,u1)z (z0, t)

or as

b ′ (t) = γ

(
1

c(z0−)

(
b ′ (t)−Φ− (b,u0,u1)z (z0, t)

)
+

1
c(z0+)

(
b ′ (t)+Φ+ (b,u0,u1)z (z0, t)

))
(20)
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with

γ :=

(
1

c(z0−)
+

1
c(z0+)

)−1

.

We denote the right-hand side of (20) by T(b)(t) and show now that Ψ : b 7→ u0(z0)+´ ( ·)
0 T(b)(τ)dτ is a strict contraction in the space X := {b ∈ C1([0,r]) | b(0) = u0(z0)} with
norm ‖b‖X = sup{e−µt |b ′(t)| : t ∈ [0,r]}, where µ> 0 will be chosen later. So let b, b̃ ∈ X and
write b̂ := b− b̃. Next we estimate∣∣∣∣Ψ(b) ′ (t)−Ψ

(
b̃
) ′

(t)

∣∣∣∣
= γ

∣∣∣∣ 1
c(z0−)

(
b̂ ′ (t)−Φ−

(
b̂,0,0

)
z
(z0, t)

)
+

1
c(z0+)

(
b̂ ′ (t)+Φ+

(
b̂,0,0

)
z
(z0, t)

)∣∣∣∣
⩽ γ

(
1

c(z0−)
β

ˆ t

0

∣∣∣b̂ ′ (τ)
∣∣∣ dτ + 1

c(z0+)
β

ˆ t

0

∣∣∣b̂ ′ (τ)
∣∣∣ dτ)

= β

ˆ t

0

∣∣∣b̂ ′ (τ)
∣∣∣ dτ ⩽ β

∥∥∥b̂∥∥∥
X

ˆ t

0
eµτ dτ ⩽ β

µ
eµt
∥∥∥b̂∥∥∥

X
,

where β is the constant from lemma 3.9. If we choose µ > β, then Ψ is a strict contraction
so that b=Ψ(b) has a unique solution by Banach’s fixed-point theorem. Using remark 3.8,
the fixed-point theorem also shows that b linearly and continuously depends on u0 and u1.
Moreover, boundedness of the linear solution operator Φ then follows from (18).

Next we discuss wellposedness on boundary triangles. Unlike for the other types of tri-
angles, now the nonlinear boundary condition of (10) appears, and becomes the main object
of our study.

Lemma 4.3. Let ∆+ be a boundary triangle with base B+. Assume r
∥∥ cz
c

∥∥
∞ < 1. Then (10)

has a unique C1-solution on ∆+.

Let us give a motivation of this result. As in lemma 4.2 it will be convenient to rephrase
the problem as an ordinary differential equation. Again we write b(t) = u(0, t) so that u is a
solution on ∆+ if and only if

u=Φ+ (b,u0,u1) and
df(ut (0, t))

dt
=
uz (0, t)
c(0)

hold. We may rewrite the latter equation as

df(b ′ (t))
dt

=
1

c(0)
Φ+ (b,u0,u1)z (0, t) ,

eliminating u. We rewrite this as an equation in d(t) := f(b ′(t)), where b can be reconstructed
from d via bd(t) := u0(0)+

´ t
0 f

−1(d(τ))dτ . We are left with solving

d ′ (t) =
1

c(0)
Φ+ (bd,u0,u1)z (0, t) , d(0) = f(u1 (0)) . (21)
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We haveΦ+(b,u0,u1)z(0, t) =−b ′(t)+ g(t)where g depends (up to a small error) only on the
initial data u0,u1, hence

d ′ (t) =
1

c(0)
[g(t)− b ′

d (t)] =
1

c(0)

[
g(t)− f−1 (d(t))

]
. (22)

Ignoring the error, (22) would be an ODE with monotone decreasing right-hand side (in d(t)),
which is known to be uniquely solvable. Lemma 3.9 gives us an estimate on this small error and
is the main ingredient in the uniqueness proof, and we use the estimate (A4) and a fixed-point
argument to show existence.

Proof of lemma 4.3. It suffices to show that (21) has a unique solution.
Uniqueness: Assume that d, d̃ are solutions to (21) that coincide up to time t⋆ ⩾ 0, but not

at time tn for some tn ⩾ 0 with tn ↓ t⋆ as n→∞. Define δ(t) :=
∣∣∣f−1(d(t))− f−1(d̃(t))

∣∣∣. For
ε> 0 consider the function

hε (t) := ε(1+ t− t⋆)+
1

c(0)

ˆ t

t⋆

(
−δ (s)+β

ˆ s

t⋆

δ (τ) dτ

)
ds,

where β is the constant from lemma 3.9.

Claim: The inequality
∣∣∣d(t)− d̃(t)

∣∣∣< hε(t) holds for all t⩾ t⋆.

Clearly, the claim holds true for t= t⋆, and thus by continuity for t close to t⋆. Assume the

claim is false. Then there exists someminimal ti > t⋆ such that
∣∣∣d(ti)− d̃(ti)

∣∣∣= hε(ti). W.l.o.g.

assume that d(ti)⩾ d̃(ti). Since d(t)− d̃(t)< hε(t) for t⋆ ⩽ t< ti, we get d ′(ti)− d̃ ′(ti)⩾
h ′
ε(ti) which implies

1
c(0)

Φ+ (bd,0,0)z (0, ti)−
1

c(0)
Φ+

(
bd̃,0,0

)
z
(0, ti)⩾ ε+

1
c(0)

(
−δ (ti)+β

ˆ ti

t⋆

δ (τ) dτ

)
and hence

Φ+

(
bd− bd̃,0,0

)
z
(0, ti)+ δ (ti)> β

ˆ ti

t⋆

δ (τ) dτ ⩾ 0. (23)

On the other hand, setting b := bd− bd̃ we have∣∣Φ+ (b,0,0)z (0, ti)+ b ′ (ti)
∣∣⩽ β

ˆ ti

t⋆

|b ′ (τ)| dτ

due to lemma 3.9. Since b ′(ti) = f−1(d(ti))− f−1(d̃(ti)) and since f−1 is increasing, we see
that b ′(ti) = δ(ti). Combining these facts, we find

∣∣Φ+ (b,0,0)z (0, ti)+ δ (ti)
∣∣⩽ β

ˆ ti

t⋆

δ (τ) dτ

which contradicts (23). So the claim holds.
Letting ε go to 0, we obtain∣∣∣d(t)− d̃(t)

∣∣∣⩽ 1
c(0)

ˆ t

t⋆

(
−δ (s)+β

ˆ s

t⋆

δ (τ) dτ

)
ds
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for any t⩾ t⋆. Fubini implies that the term on the right-hand side is negative for t ∈ (t⋆, t⋆ + 1
β ),

a contradiction.
Existence: Let D,µ > 0. Consider the set

K :=
{
d ∈W1,∞ ([0,r]) : d(t0) = f−1 (u1 (0)) , |d(t)|⩽ Deµt, |d ′ (t)|⩽ Dµeµtfor t ∈ [0,r]

}
,

which is a convex and compact subset of C([0,r]), as well as the operator

T : K→ C([0,r]) , T(d)(t) = f−1 (u1 (0))+
1

c(0)

ˆ t

t0

Φ+ (bd,u0,u1)z (0, τ) dτ.

We chooseD :=max
{∣∣f−1(u1(0))

∣∣ ,1}, so thatK is nonempty as it contains the constant func-
tion d≡ f−1(u1(0)). To see that T is continuous, let dn ∈ K with dn → d in C([0,r]) as n→∞.
As f−1 is uniformly continuous on [−Deµr,Deµr], we have f−1 ◦ dn → f−1 ◦ d inC([0,r]), from
which it follows that

bdn = u0 (0)+
ˆ ( ·)

0
f−1 (dn (τ)) dτ

converges to

bd = u0 (0)+
ˆ ( ·)

0
f−1 (d(τ)) dτ.

in C1([0,r]). Due to remark 3.8, the operator Φ+( · ,u0,u1) : C1([0,r])→ C1(∆+) is continu-
ous. Hence T(dn)→ T(d) in C([0,r]) as n→∞.

To check that T maps into K, we need to verify that for any d ∈ K one has∣∣T(d) ′ (t)∣∣⩽ Dµeµt. (24)

Notice that |d(t)|⩽ Deµt follows from (24) by integration. By assumption (A4) on the growth
on f we have

∣∣f−1(y)
∣∣⩽ |y|+A

a , and in particular |b ′
d(t)|=

∣∣f−1(d(t))
∣∣⩽ Deµt+A

a . We use this
inequality, |bd(t)|⩽ |u0(0)|+ t‖b ′

d‖∞ as well as remark 3.8 to estimate∣∣T(d) ′ (t)∣∣= 1
c(0)

∣∣Φ+ (bd,u0,u1)z (0, t)
∣∣

⩽ C
c(0)

(
‖bd‖[0,t],C1 + ‖u0‖C1 + ‖u1‖∞

)
⩽ C
c(0)

(
(1+ t)‖b ′

d‖[0,t],∞ + 2‖u0‖C1 + ‖u1‖∞
)

⩽ C
c(0)

(
(1+ t)

Deµt+A
a

+ 2‖u0‖C1 + ‖u1‖∞

)
⩽ C
c(0)

(
(1+ r)

D+A
a

+ 2‖u0‖C1 + ‖u1‖∞

)
eµt.

Therefore T maps K into itself if we choose

µ :=
C

c(0)D

(
(1+ r)

D+A
a

+ 2‖u0‖C1 + ‖u1‖∞

)
.

Hence existence follows by applying Schauder’s fixed-point theorem.
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Figure 1. Sketch: Covering of [0,∞)× [0,∞) by jump triangles (red) and plain tri-

angles (blue), with rmax :=
∥∥ cz
c

∥∥−1

∞ being the maximum height of triangles. Black
dashed lines indicate jumps of c. Left: |dn+1 − dn|< rmax where covering has height
1
2 |dn+1 − dn|, right: |dn+1 − dn|> rmax where covering has height 1

2 rmax.

Using the existence and uniqueness results on plain, jump, and boundary triangles shown
above, next we prove existence and uniqueness on the whole space [0,∞)× [0,∞) by covering
it with these specific triangles.

Proof of theorem 1.1 with additional assumption (A4). We show existence and uniqueness
of the solution to (1) under the assumption (A4). Wellposedness will be discussed in section 6.

Existence: Denote by C the set containing all jump, boundary and plain triangles where
the heights r have to satisfy r

∥∥ cz
c

∥∥
∞ < 1. As we have just shown in the previous three lem-

mata, (10) admits a unique solution on each ∆ ∈ C. Since C is closed with respect to finite
intersection, we obtain a solution u of (10) on ∪∆∈C∆. With

h := 1
2 min

{∥∥∥cz
c

∥∥∥−1

∞
, |z1 − z2| : z1,z2 ∈ D(c)∪{0} ,z1 6= z2

}
we have [0,∞)× [0,h)⊆ ∪∆∈T∆, see figure 1 for an illustration of this covering property. By
restriction, we therefore obtain a solution u(1) of (1) on [0,∞)× [0, h̃] for any 0< h̃< h. The
same argument, used with initial data u(2)0 (z) := u(1)(z, h̃) and u(2)1 (z) := u(1)t (z, h̃) instead of
u0,u1, yields another solution u(2) on [0,∞)× [0, h̃]. Repeating this, we construct solutions u(k)

on [0,∞)× [0, h̃] with u(k+1)(z,0) = u(k)(z, h̃) and u(k+1)
t (z,0) = u(k)t (z, h̃) for k ∈ N. Finally,

we define the map u : [0,∞)× [0,∞)→ R by u(z,(k− 1)h̃+ τ) = u(k)(z, τ) for τ ∈ [0, h̃],
which solves (1).

Uniqueness: Assume that u, ũ : Ω→ R are two different solutions to (10), where Ω=
{(z, t) | t⩽ h(z)} is an admissible domain. So there exists (z0, t0) ∈ Ωwith u(z0, t0) 6= ũ(z0, t0).
Consider the (possibly cut-off) triangle ∆ :=∆(z0,0, t0)∩{z⩾ 0} and define the set N :=
{(z, t) ∈∆ | u(z, t) 6= ũ(z, t)} and tinf := inf Pt(N), where Pt denotes the projection onto the
second variable. Choose some sequence (zn, tn) ∈ N with tn → tinf and zn → z∞ ∈ [0,∞).

For ε> 0 consider the (possibly cut-off) triangle ∆ε := ∆∩∆(z∞, tinf,ε)∩{z⩾ 0} with
base Bε.
Claim: u(z, tinf) = ũ(z, tinf) and ut(z, tinf) = ũt(z, tinf) hold for all z ∈ Bε.
If tinf = 0, this holds because both u and ũ satisfy the same initial conditions. If tinf > 0,

by assumption we have u(z, t) = ũ(z, t) for z ∈ Bε and t< tinf as (z, t) ∈∆ and therefore also
ut(z, t) = ũt(z, t), so that the claim is obtained by taking the limit t→ tinf.
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If we choose ε small enough, then ∆ε is a jump (if z∞ ∈ D(c)), boundary (if z∞ = 0) or
plain triangle (otherwise). By the previously established uniqueness results on these triangles,
u and ũmust coincide on∆ε. But since tn ⩾ tinf for all n, we have (zn, tn) ∈∆ε for n sufficiently
large, so that u(zn, tn) = ũ(zn, tn). This cannot be since (zn, tn) ∈ N.

Remark 4.4 (Modifications for the bounded domain version). In order to capture the homo-
geneous Dirichlet boundary condition for the bounded domain version of the theorem, we also
need to consider ‘Dirichlet’ triangles ∆− with centre z0 = L. Problem (1) is well-defined on
the domain ∆− assuming r

∥∥ cz
c

∥∥
∞ < 1. In fact the solution on ‘Dirichlet’ triangles is simply

given by u=Φ−(0,u0,u1). We can then proceed as in the above proof to show existence and
uniqueness of solutions, i.e. theorem 1.8. Conservation of energy can be shown as in section 5.

5. Energy, momentum, and completion of theorem 1.1

Using V(x) = 1
c(x)2 , the energy (7) can be written as

E(u, t) := 1
2

ˆ ∞

0

(
V(x)ut (x, t)

2
+ ux (x, t)

2
)
dx+F(ut (0, t))

= 1
2

ˆ ∞

0

(
1

c(z)2
ut (z, t)

2
+

(
uz (z, t)
c(z)

)2
)
· c(z) dz+F(ut (0, t))

= 1
2

ˆ ∞

0

1
c(z)

(
ut (z, t)

2
+ uz (z, t)

2
)
dz+F(ut (0, t))

where F(y) = yf(y)−
´ y
0 f(v)dv. In (z, t)–coordinates the momentum reads

M(u, t) =
ˆ ∞

0

1
c(z)

ut (z, t) dz+ f(ut (0, t)) .

We now show that both quantities are time-invariant.

Proof of theorem 1.4. Let Ω⊆ [0,∞)× [0,∞) be a Lipschitz domain such that c is C1 on Ω.
Recall that (∂t∓ ∂z)(ut± uz)+

cz
c uz = 0. In the following, for a term a(±,∓) which may have

± or ∓ signs, we write
∑±a(±,∓) := a(+,−)+ a(−,+).

Part 1: Energy.With ν being the outer normal at ∂Ω we calculate

0=
∑±

ˆ
Ω

[
(∂t∓ ∂z)(ut± uz)+

cz
c
uz
]
· 1
c
(ut± uz) d(z, t)

=
∑±

ˆ
∂Ω

(ν2 ∓ ν1)
1
c
(ut± uz)

2 dσ

+
∑±

ˆ
Ω

(
cz
c2
uz (ut± uz)−

1
c
(ut± uz) · (∂t∓ ∂z)(ut± uz)∓

cz
c2

(ut± uz)
2
)
d(z, t) .

The sum
∑± over the boundary integrals can be simplified to

∑±
ˆ
∂Ω

(ν2 ∓ ν1)
1
c
(ut± uz)

2 dσ =

ˆ
∂Ω

(
2
c
ν2
(
u2t + u2z

)
− 4
c
ν1utuz

)
dσ.
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The sum
∑± of the integrands in the integral over Ω vanishes as can be seen by the following

calculation using once more the differential equation (∂t∓ ∂z)(ut± uz)+
cz
c uz = 0 :

∑±
(
cz
c2
uz (ut± uz)−

1
c
(ut± uz) · (∂t∓ ∂z)(ut± uz)∓

cz
c2

(ut± uz)
2
)

=
∑±

(
cz
c2
uz (ut± uz)+

1
c
(ut± uz)

cz
c
uz∓

cz
c2

(ut± uz)
2
)

=
cz
c2
∑±(

2uz (ut± uz)∓ (ut± uz)
2
)
= 0.

Hence
ˆ
∂Ω

(
2
c
ν2
(
u2t + u2z

)
− 4
c
ν1utuz

)
dσ = 0. (25)

Since D(c) and D(cz) are discrete sets, we find an increasing sequence 0= a1 < a2 <
a3 < .. . with ak →∞ as k→∞ such that D(c)∪D(cz)⊆ {ak : k ∈ N}.

Now let t1 < t2 ∈ R and K ∈ N. We choose Ω= [ak,ak+1]× [t1, t2] and sum (25) from k= 1
to K. As terms along common boundaries cancel, we obtain

0=
ˆ
∂([0,aK+1]×[t1,t2])

(
2
c
ν2
(
u2t + u2z

)
− 4
c
ν1utuz

)
dσ

or equivalently

1
2

ˆ aK+1

0

(
1
c
u2t +

1
c
u2z

)
dz

∣∣∣∣
t=t2

= 1
2

ˆ aK+1

0

(
1
c
u2t +

1
c
u2z

)
dz

∣∣∣∣
t=t1

−
ˆ t2

t1

1
c
utuz dt

∣∣∣∣
z=aK+1

+

ˆ t2

t1

1
c
utuz dt

∣∣∣∣
z=0

.

The estimates established in corollary 3.6 and the assumptions on the initial conditions u0,u1
show that ut(z, t) and uz(z, t) converge to 0 as z→∞ uniformly on [t1, t2]. In the limit K→∞,
we thus obtain

1
2

ˆ ∞

0

(
1
c
u2t +

1
c
u2z

)
dz

∣∣∣∣
t=t2

= 1
2

ˆ ∞

0

(
1
c
u2t +

1
c
u2z

)
dz

∣∣∣∣
t=t1

+

ˆ t2

t1

1
c
utuz dt

∣∣∣∣
z=0

.

Switching back to (x, t)–coordinates, we infer

ˆ t2

t1

utux dt

∣∣∣∣
x=0

=

ˆ t2

t1

ut (0, t)ux (0, t) dt

=

ˆ t2

t1

ut (0, t) f(ut (0, t))t dt= F(ut (0, t2))−F(ut (0, t1))

where the last equality is due to lemma A.1. This shows the claimed energy conservation:

1
2

ˆ ∞

0

(
V(x)u2t + u2x

)
dx+F(ut (0, t))

∣∣∣∣
t=t2

= 1
2

ˆ ∞

0

(
V(x)u2t + u2x

)
dx+F(ut (0, t))

∣∣∣∣
t=t1

.
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Part 2: Momentum.We calculate

0=
∑±

ˆ
Ω

1
c

[
(∂t± ∂z)(ut∓ uz)+

cz
c
uz
]
d(z, t)

=
∑±

ˆ
∂Ω

(ν2 ± ν1)
1
c
(ut∓ uz) dσ

+
∑±

ˆ
Ω

(
± cz
c2

(ut∓ uz)+
cz
c2
uz
)
d(z, t)

= 2
ˆ
∂Ω

(
ν2

1
c
ut− ν1

1
c
uz

)
dσ. (26)

Again we choose Ω= [ak,ak+1]× [t1, t2], and sum (26) from k= 1 to K. As before all terms
along common boundaries cancel, whence we obtain

ˆ aK+1

0

1
c
ut dz

∣∣∣∣
t=t2

=

ˆ aK+1

0

1
c
ut dz

∣∣∣∣
t=t1

+

ˆ t2

t1

1
c
uz dt

∣∣∣∣
z=aK+1

−
ˆ t2

t1

1
c
uz dt

∣∣∣∣
z=0

.

Since

ˆ t2

t1

1
c
uz dt

∣∣∣∣
z=0

=

ˆ t2

t1

f(ut (0, t))t dt= f(ut (0, t2))− f(ut (0, t1)) ,

in the limit K→∞ we find the claimed momentum conservation:
ˆ ∞

0

1
c2
ut dx+ f(ut (0, t))

∣∣∣∣
t=t2

=

ˆ ∞

0

1
c2
ut dx+ f(ut (0, t))

∣∣∣∣
t=t1

.

In section 4, we required an extra growth condition (A4) on f in order to prove a first version
of theorem 1.1. We now discuss how to exploit the energy conservation to eliminate this extra
growth assumption and prove theorem 1.1 in full generality.

Lemma 5.1. For t> 0 the estimate

F(ut (0, t))⩽ F(u1 (0))+ 1
2

ˆ κ−1(t)

0

(
V(x)u1 (x)

2
+ u0,x (x)

2
)
dx

holds, where κ(x) =
´ x
0

1
c(s) ds=

´ x
0

√
V(s)ds.

Proof. Fix t1 > 0, let ε> 0 and define modified initial data ũ0, ũ1 : [0,∞)→ R by setting

ũ ′
0 (z) =


u ′
0 (z) , z⩽ t1,
t1+ε−z

ε u ′
0 (t1) , t1 ⩽ z⩽ t1 + ε,

0, z⩾ t1 + ε,

ũ1 (z) =


u1 (z) , z⩽ t1,
t1+ε−z

ε u1 (t1) , t1 ⩽ z⩽ t1 + ε,

0, z⩾ t1 + ε,

and ũ0(0) = u0(0). Denote the solution to (10) corresponding to these initial data by ũ. By
uniqueness of the solution, u(z, t) = ũ(z, t) for |z|+ |t|⩽ t1. In particular, ũt(0, t1) = ut(0, t1).
This yields
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F(ut(0, t1))

= F(ũt(0, t1))⩽ E(ũ, t1) = E(ũ,0)

= F(ũt(0,0))+ 1
2

ˆ ∞

0
(V(x)ũ1(x)

2 + ũ ′
0(x)

2)dx

= F(u1(0))+ 1
2

ˆ κ−1(t1)

0
(V(x)u1(x)

2 + u ′
0(x)

2)dx

+ 1
2

ˆ κ−1(t1+ε)

κ−1(t1)
(V(x)ũ1(x)

2 + ũ ′
0(x)

2)dx.

Letting ε→ 0, the last term goes to 0.

Proof of theorem 1.1 without additional assumption (A4). We show existence and unique-
ness of the solution to (1). Wellposedness will be discussed in section 6. Fix T > 0 and let

C := F(u1 (0))+ 1
2

ˆ κ−1(T)

0

(
V(x)u1 (x)

2
+ u0,x (x)

2
)
dx.

Recall from remark 1.5 that F(y)→∞ as y→±∞. Therefore the set {y : F(y)⩽ C} is con-
tained in the interval [−K,K] for some K> 0. Now consider the cut-off version of f given by

fK (y) =


y−K+ f(K) , y⩾ K,

f(y) , −K⩽ y⩽ K,

y+K+ f(−K) , y⩽−K,

which satisfies the growth condition (A4). As we have shown in section 4, there exists a unique
solution uK of (1) with f replaced by fK. Then, using FK(y) = yfK(y)−

´ y
0 fK(s)ds, lemma 5.1

gives FK(uK,t(0, t))⩽ C for t⩽ T, so that uK,t(0, t) takes values in [−K,K] where the functions
f,F and fk,Fk coincide. Hence uK is the unique solution of the original problem (1) up to
time T.

Next, we verify that C1-solutions to (1) are indeed weak solutions in the sense of
definition 1.6.

Proposition 5.2. A C1-solution to (1) is also a weak solution to (1).

Proof. Let u be a C1-solution to (1). We have to show that

0=
ˆ ∞

0

ˆ ∞

0
(V(x)utϕt− uxϕx) dxdt+

ˆ ∞

0
f(ut (0, t))ϕt (0, t) dt

+

ˆ ∞

0
V(x)u1 (x)ϕ(x,0) dx+ f(u1 (0))ϕ(0,0)

holds for all ϕ ∈ C∞
c ([0,∞)× [0,∞)).

Let Ω⊆ [0,∞)× [0,∞) be a Lipschitz domain such that c is C1 on Ω. Denoting the outer
normal at ∂Ω by ν, we obtain
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0=
ˆ
Ω

[
(∂t− ∂z)(ut+ uz)+

cz
c
uz
]
· 1
c
ϕ d(z, t)

=

ˆ
∂Ω

1
c
(ut+ uz)ϕ · (ν2 − ν1) dσ+

ˆ
Ω

(
cz
c2
uzϕ − (ut+ uz)(∂t− ∂z)

[
1
c
ϕ

])
d(z, t)

=

ˆ
∂Ω

(
1
c
utϕν2 −

1
c
uzϕν1

)
dσ+

ˆ
Ω

(
1
c
uzϕz−

1
c
utϕt

)
d(z, t)

+

ˆ
∂Ω

(
1
c
uzϕν2 −

1
c
utϕν1

)
dσ+

ˆ
Ω

(
ut∂z

[
1
c
ϕ

]
− uz∂t

[
1
c
ϕ

])
d(z, t) .

We next show that the sum of the last two integrals equals zero. First, we calculate

ˆ
∂Ω

(
1
c
uzϕν2 −

1
c
utϕν1

)
dσ+

ˆ
Ω

(
ut∂z

[
1
c
ϕ

]
− uz∂t

[
1
c
ϕ

])
d(z, t)

=

ˆ
∂Ω

(
1
c
uzϕν2 −

1
c
utϕν1 + u∂z

[
1
c
ϕ

]
ν2 − u∂t

[
1
c
ϕ

]
ν1

)
dσ

=

ˆ
∂Ω

(ν2∂z− ν1∂t)

[
1
c
uϕ

]
dσ.

Let γ : [0, l]→ R be a positively oriented parametrization of ∂Ω by arc length. As ν is the outer
normal at ∂Ω, the identity γ ′ = (ν2,−ν1)⊤ holds. Hence,

ˆ
∂Ω

(ν2∂z− ν1∂t)

[
1
c
uϕ

]
dσ =

ˆ
∂Ω

(
ν2
−ν1

)
·∇
[
1
c
uϕ

]
dσ

=

ˆ l

0
γ ′ (s) ·∇

[
1
c
uϕ

]
(γ (s)) ds= 0

as γ is closed. Thus we have shown

0=
ˆ
∂Ω

(
1
c
utϕν2 −

1
c
uzϕν1

)
dσ+

ˆ
Ω

(
1
c
uzϕz−

1
c
utϕt

)
d(z, t) . (27)

As in the proof of theorem 1.4 we choose an increasing sequence 0= a1 < a2 < a3 < .. .
with ak →∞ as k→∞ such that D(c)∪D(cz)⊆ {ak : k ∈ N}. We take Ω= [ak,ak+1]×
[n,n+ 1] in (27) and sum over k ∈ N and n ∈ N0. Using that boundary terms along common
boundaries cancel out, the fact that ϕ has compact support, and (1), we obtain

0=
ˆ
∂[0,∞)2

(
1
c
utϕν2 −

1
c
uzϕν1

)
dσ+

ˆ
[0,∞)2

(
1
c
uzϕz−

1
c
utϕt

)
d(z, t)

=−
ˆ ∞

0

[
1
c
utϕ

]
(z,0)dz+

ˆ ∞

0

[
1
c
uzϕ

]
(0, t)dt+

ˆ ∞

0

ˆ ∞

0

(
1
c
uzϕz−

1
c
utϕt

)
dzdt

=−
ˆ ∞

0
V(x)ut(x,0)ϕ(x,0)dx+

ˆ ∞

0
ux(0, t)ϕ(0, t)dt+

ˆ ∞

0

ˆ ∞

0
(uxϕx−V(x)utϕt) dxdt

=−
ˆ ∞

0
V(x)u1(x)ϕ(x,0)dx+

ˆ ∞

0
( f(ut(0, t)))tϕ(0, t)dt

+

ˆ ∞

0

ˆ ∞

0
(uxϕx−V(x)utϕt) dxdt

6735



Nonlinearity 36 (2023) 6712 S Ohrem et al

=−
ˆ ∞

0
V(x)u1(x)ϕ(x,0)dx−

ˆ ∞

0
f(ut(0, t))ϕt(0, t)dt− f(u1(0))ϕ(0,0)

+

ˆ ∞

0

ˆ ∞

0
(uxϕx−V(x)utϕt) dxdt

which finishes the proof.

6. Wellposedness

The section completes the proof of the wellposedness claim stated in theorem 1.1. To be pre-
cise, (1) is wellposed in the following sense. The spaces C1

(x,t)([0,∞)× [0,T]), C1
x([0,∞)),

and C([0,∞)) are endowed with uniform convergence on compact sets.

Proposition 6.1. Assume that u(n)0 ,u(n)1 are initial data with u(n)0 → u0 in C1
x([0,∞)) and

u(n)1 → u1 in C([0,∞)), and denote by u(n) and u the solutions of (10) corresponding to these
initial data. Then for any T> 0, we have u(n) → u in C1

(x,t)([0,∞)× [0,T]).

Sketch of proof. We proceed similar to the proof of theorem 1.1. Choose some

0< r̄<min

{(
5−

√
17
)∥∥∥cz

c

∥∥∥−1

∞
, |z1 − z2| : z1,z2 ∈ D(c)∪{0} ,z1 6= z2

}
and let β be as in lemma 3.9 with r= r̄ and λ= cz

c . The choice of r̄ implies βr̄<
4(5−

√
17)

(−3+
√
17)(−1+

√
17)

= 1 as well as q := r̄
∥∥ cz
c

∥∥
∞ < 1.

Denote by C the set containing all triangles∆ that are of jump-type or plain-type and such
that their base-radii r are at most r̄. Then by lemma 4.1, 4.2, there exists a constant C> 0 such
that ∥∥∥u(n) − u

∥∥∥
C1
(x,t)(∆)

⩽ Cmax

{∥∥∥u(n)0 − u0
∥∥∥
C1
x([0,∞))

,
∥∥∥u(n)1 − u1

∥∥∥
C([0,∞))

}
holds for each∆ ∈ C.

We also consider a single boundary-type triangle ∆+ with centre z0 = 0 and height r̄.
Writing b(t) := u(0, t), b(n)(t) := u(n)(0, t), d(t) := f(ut(0, t)) as well as d(n)(t) := f(u(n)t (0, t)),
as in the proof of lemma 4.3 we obtain

d ′ (t) =
1

c(0)
Φ+ (b,u0,u1)z (0, t) ,

(
d(n)
) ′

(t) =
1

c(0)
Φ+

(
b(n),u(n)0 ,u(n)1

)
z
(0, t) .

Setting b̂(t) := u(n)0 (0)− u0(0)+ t
(
u(n)1 (0)− u1(0)

)
, we find

c(0)

((
d(n)
) ′

(t)− d ′ (t)

)
=Φ+

(
b(n) − b,u(n)0 − u0,u

(n)
1 − u1

)
z
(0, t)

= Φ+

(
b̂,u(n)0 − u0,u

(n)
1 − u1

)
z
(0, t)+Φ+

(
b(n) − b− b̂,0,0

)
z
(0, t)

= Φ+

(
b̂,u(n)0 − u0,u

(n)
1 − u1

)
z
(0, t)

−
[
f−1
(
d(n)(t

)
)− f−1(d(t))−

(
u(n)1 (0)− u1(0)

)]
+ ρ(n, t)
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where lemma 3.9 gives

|ρ(n, t)|⩽ β

ˆ t

0

∣∣∣f−1
(
d(n) (τ)

)
− f−1 (d(τ))− u(n)1 (0)+ u1 (0)

∣∣∣ dτ.
Multiplying with sign

(
d(n)(t)− d(t)

)
and integrating, we obtain

c(0)
∣∣∣d(n)(t)− d(t)

∣∣∣
⩽ c(0)

∣∣∣d(n)(0)− d(0)
∣∣∣

+

ˆ t

0

(∣∣∣Φ+(b̂,u
(n)
0 − u0,u

(n)
1 − u1)z(0,s)

∣∣∣− ∣∣∣f−1(d(n)(s))− f−1(d(s))
∣∣∣

+
∣∣∣u(n)1 (0)− u1(0)

∣∣∣) ds
+β

ˆ t

0

ˆ s

0

∣∣∣f−1(d(n)(τ))− f−1(d(τ))− u(n)1 (0)+ u1(0)
∣∣∣ dτ ds

⩽
ˆ t

0

(∣∣∣Φ+(b̂,u
(n)
0 − u0,u

(n)
1 − u1)z(0,s)

∣∣∣− ∣∣∣f−1(d(n)(s))− f−1(d(s))
∣∣∣

+
∣∣∣u(n)1 (0)− u1(0)

∣∣∣) ds
+β

ˆ r̄

0

ˆ t

0

(∣∣∣f−1(d(n)(τ))− f−1(d(τ))
∣∣∣+ ∣∣∣u(n)1 (0)− u1(0)

∣∣∣) dτ ds
=

ˆ t

0

∣∣∣Φ+(b̂,u
(n)
0 − u0,u

(n)
1 − u1)z(0,s)

∣∣∣ ds+(1+ r̄β)t
∣∣∣u(n)1 (0)− u1(0)

∣∣∣
− (1− r̄β)

ˆ t

0

∣∣∣f−1(d(n)(s))− f−1(d(s))
∣∣∣ ds

⩽
ˆ t

0

∣∣∣Φ+(b̂,u
(n)
0 − u0,u

(n)
1 − u1)z(0,s)

∣∣∣ ds+(1+ r̄β)t
∣∣∣u(n)1 (0)− u1(0)

∣∣∣
⩽ C̃

(
r̄,
∥∥∥cz
c

∥∥∥
∞

)
max

{∥∥∥u(n)0 − u0
∥∥∥
C1
x([0,∞))

,
∥∥∥u(n)1 − u1

∥∥∥
C([0,∞))

}
.

This shows the uniform convergence of d(n) to d on [0, r̄] as n→∞. Since

b(t) = u0 (0)+
ˆ t

0
f−1 (d(τ)) dτ, b(n) (t) = u0 (0)+

ˆ t

0
f−1
(
d(n) (τ)

)
dτ

for t ∈ [0, r̄], it follows that b(n) → b in C1([0, r̄]) as n→∞, and therefore we see that u(n) =
Φ+(b(n),u

(n)
0 ,u(n)1 )→ Φ+(b,u0,u1) = u in C1(∆+).

Combined, we find that that u(n) → u in C1
(x,t)(D) where D := ∪∆∈C∆. Note that [0,∞)×

[0, r̄2 ]⊆D, so in particular u(n) → u in C1
(x,t)([0,∞)× [0, r̄2 ]). Applying this result repeatedly k

times, we see that u(n) → u in C1
(x,t)([0,∞)× [0,k r̄2 ]) where k ∈ N is chosen such that k r̄2 ⩾ T.
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7. Breather solutions and their regularity

One can also consider (1) in the context of breather solutions, where a breather is a time-
periodic and spatially localized function. With time-period denoted by T, the time domain
becomes the torus T := R/TZ and after dropping the initial data, (1) reads{

V(x)utt(x, t)− uxx(x, t) = 0, x ∈ [0,∞), t ∈ T,
ux(0, t) = ( f(ut(0, t)))t, t ∈ T.

(28)

In [6] the case of a cubic boundary term f(y) = 1
2γy

3 (γ ∈ R \ {0}) and a 2π-periodic step
potential V : R→ R given by

V(x) =

{
a, |x|< πθ,

b, θπ < |x|< π,
(A5)

where b> a> 0 and θ ∈ (0,1) was discussed. It was shown that if V satisfies

4
√
aθω ∈ 2N0 + 1 and 4

√
b(1− θ)ω ∈ 2N0 + 1, (A6)

where ω := 2π
T is the frequency, then there exist infinitely many weak breather solutions u

of (28) with time-period T. A weak solution of (28) is defined next.

Definition 7.1. Let f : R→ R be an increasing, odd homeomorphism. A weak solution of (28)
is a function u ∈ H1([0,∞)×T) with u(0, ·) ∈W1,1(T) and f(ut(0, ·)) ∈ L1(T) which satisfies

ˆ
[0,∞)×T

−V(x)utϕt+ uxϕx d(x, t)−
ˆ
T
f(ut(0, t))ϕt(0, t)dt= 0

for all test functions ϕ ∈ C∞
c ([0,∞)×T).

Remark 7.2. We require that the trace u(0, ·) of u at x= 0 has an integrable weak first-order
time derivative in order to give a pointwise meaning to ut(0, t) and, in particular, to define
f(ut(0, t)) pointwise almost everywhere.

In the setting of [6] where f(y) = 1
2γy

3, one requires ut(0, t) ∈ L3(T) and

2
ˆ
[0,∞)×T

−V(x)utϕt+ uxϕx d(x, t)− γ

ˆ
T
ut(0, t)

3ϕt(0, t)dt= 0.

In [6, theorem 4] it was furthermore shown that weak solutions to (28) constructed in [6] lie

in H
5
4−ε(T,L2(0,∞))∩H

1
4−ε(T,H1(0,∞)) for ε> 0. Here, the Bochner spaces Hs(T,X) are

defined by

‖u‖2Hs(T,X) :=
∑
k∈Z

(
1+ k2

)s ‖ûk‖2X <∞.

In this section, we show the following improved regularity result for breather solutions of (28):

Theorem 7.3. Assume (A3), (A5), (A6) that f−1 is r-Hölder continuous with r ∈ (0,1) and
that u is a weak solution to (28). Then u is T

2 -antiperiodic, lies in C
1,r([0,∞)×T) and is a C1-

solution to (1) with its own initial data, i.e. u0(x) = u(x,0) and u1(x) = ut(x,0). In addition,
there exists C> 0 such that |u(x, t)|⩽ Ce−ρx where ρ := log(b)−log(a)

4π .
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Note that in the setting of [6], the assumptions of theorem 7.3 are satisfied with r= 1
3 . In the

following, we are going to prove theorem 7.3 and we will always assume the assumptions of
theorem 7.3. We begin with a discussion of the linear operator V(x)∂2t − ∂2x appearing in (28).

7.1. Fourier decomposition of V(x)∂2
t − ∂2

x

We denote by ek(t) := 1√
T
eikωt the orthonormal Fourier base of L2(T) and decompose u in its

Fourier series with respect to t:

u(x, t) =
∑
k∈Z

ûk (x)ek (t) =: F−1 (û)

with

ûk (x) := Fk (u) :=
ˆ
T
u(x, t)ek (t)dt.

Writing L := V(x)∂2t − ∂2x and Lk :=−∂2x − k2ω2V(x), we see that any solution u of (28)
satisfies

0= Lu

and therefore also

0= FkLu= LkFku= Lkûk (29)

for all k ∈ Z. Since

‖u‖2L2([0,∞)×T) + ‖ux‖2L2([0,∞)×T) =
∑
k∈Z

‖ûk‖2L2(0,∞) + ‖(ûk)x‖2L2(0,∞) ,

each ûk is an H1((0,∞),C)-solution of (29). As V (and therefore also Lk) is given explicitly,
we can characterize the space of solutions of (29) as follows.

Proposition 7.4. If k ∈ Z is even, then the only solution ûk ∈ H1((0,∞),C) to (29) is ûk = 0.
If k is odd, there exists φk ∈ H2((0,∞),R) such that a function ûk ∈ H1((0,∞),C) solves (29)
if and only if ûk = λφk for some λ ∈ C. Furthermore, φk satisfies

φk (0) = 1, φ ′
k (0) = Ck(−1)(k−1)/2

, φk (x+ 4π) =
a
b
φk (x)

for x> 0, where C= C(T,a) ∈ R is a constant independent of k. The function φk is called
fundamental Bloch mode of (29).

A proof of proposition 7.4 for k odd can be found in [6, appendix A2]. The nonexistence
result for even k can be obtained using similar arguments: For k 6= 0 the monodromy matrix
for Lk is the identity matrix so that (29) only has spatially periodic solutions. For k= 0, the
solutions of (29) are affine.

Next we establish a bootstrapping argument that will be used to obtain the C1,r regularity
in theorem 7.3.
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7.2. Bootstrapping argument

Assume that u is a weak solution to (28) in the sense of definition 7.1. By proposition 7.4, all
even Fourier modes of u vanish and there exists a complex sequence α̂k such that

u(x, t) =
∑
k∈Zodd

α̂kφk (x)ek (t) (30)

where Zodd := 2Z+ 1. In particular, u is T
2 -antiperiodic. Since φk(0) = 1, we have α(t) :=∑

k∈Zodd
α̂kek(t) = u(0, t). In addition to α, we also consider the quantity β(t) := f(ut(0, t)).

Thus we have

α= ∂−1
t f−1 (β) . (31)

Let us explain the idea of the proof on a formal level. First, by (30) we can express u, and
terms derived from u, as a function of α. Setting Ψ(α)(t) := ux(0, t), the boundary condition
of (28) can be written as Ψ(α) = f(ut(0, ·))t = β ′ or as

β = ∂−1
t Ψ(α) . (32)

As shown below, the maps β 7→ ∂−1
t f−1(β) = α andα 7→ ∂−1

t Ψ(α) = β are regularity improv-
ing. Bootstrapping this regularity improvement, we show in lemma 7.7 thatα (which by defini-
tion lies inW1,1(T)) and β (which by definition lies in L1(T)), both are in C1,r(T). From there,
using u(0, ·) = α ∈ C1,r(T), ux(0, ·) = β ′ ∈ Cr(T) and that the wave equation is regularity
preserving, we show u ∈ C1,r([0,∞)×T).

Note that u satisfies the boundary condition of (28) in a weak sense, so that ux(0, ·) = β ′

is not clear a priori and will be shown as part of the proof of theorem 7.3. Moreover, since
u lies in H1([0,∞)×T), its derivative ux does not admit traces in general so that Ψ(α) need
not be defined. This is not an issue, because next we establish a (rigorous) identity that we
replace (32) with.

Using definition 7.1 with ϕ(x, t) = ψ(x)ek(t) for k ∈ Zodd, where ψ ∈ C∞
c ([0,∞)) and

ψ(0) = 1, we obtain

0=
ˆ
[0,∞)×T

[
−V(x)utψ(x)e ′k(t)+ uxψ

′(x)ek(t)
]
d(x, t)−

ˆ
T
f(ut(0, t))ψ(0)e ′k(t)dt

=

ˆ ∞

0

[
−V(x)ikωα̂kφk(x)ikωψ(x)+ α̂kφ

′
k(x)ψ

′(x)
]
dx+ ikωβ̂k

=

ˆ ∞

0

[
−α̂kk2ω2V(x)φk(x)ψ(x)− α̂kφ

′ ′
k (x)ψ(x)

]
dx− α̂kφ

′
k(0)ψ(0)+ ikωβ̂k

=−φ ′
k(0)α̂k+ ikωβ̂k,

or

β̂k =
φ ′
k (0)
ikω

α̂k. (33)

Since u(0, ·) is T
2 -antiperiodic, the even Fourier coefficients of α= u(0, ·) vanish, and since f

is odd the even Fourier coefficients of β = f(ut(0, ·)) also vanish. Hence from (33) we obtain

β = F−1

((
φ ′
k (0)
ikω

α̂k

)
k∈Zodd

)
, (34)
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assuming the sequence on the right-hand side lies in F(L1(T)). In the following, we use (34)
instead of the formal equation (32).

We next investigate the properties of the maps defined by (31) and (34), which we con-
sider as maps between the fractional Sobolev–Slobodeckij spacesWs,p(T) or between Hölder
spaces Cs(T). The definition and all employed properties of the spaces Ws,p(T) can be found
in appendix B. In the following we use the suffix ‘anti’ to denote that the space consists of
functions which are T

2 -antiperiodic in time.

Lemma 7.5. The map

β 7→ ∂−1
t f−1 (β)

is well-defined from Ws,p
anti(T) to W

1+rs,p/r
anti (T) for any s ∈ [0,1) and p ∈ [1,∞) as well as from

C0,s
anti(T) to C

1,rs
anti (T) for any s ∈ [0,1].

Proof. If β ∈ C0,s
anti(T), then f−1(β) ∈ C0,rs

anti (T) since f−1 is r-Hölder regular, and thus

∂−1
t f−1(β) ∈ C1,rs

anti (T). If β ∈Ws,p
anti(T), then f−1(β) ∈Wrs,p/r

anti (T) by lemma B.2 and thus

∂−1
t f−1(β) ∈W1+rs,p/r

anti (T).

Lemma 7.6. The map

α 7→ F−1

((
φ ′
k (0)
ikω

α̂k

)
k∈Zodd

)

is well-defined from Ws,p
anti(T) to W

s,p
anti(T) for all s ∈ (0,∞) and p ∈ [1,∞) as well as from

Ck,santi(T) to C
k,s
anti(T) for all k ∈ N0 and s ∈ [0,1].

Proof. We begin by taking a closer look at the Fourier multiplier M̂k :=
ϕ ′
k (0)
ikω which is

defined for k ∈ Zodd and extended by 0 to the whole of Z. By proposition 7.4 we have
φ ′
k(0) = Ck(−1)(k−1)/2 for a real constant C depending only on T and a. From this we obtain

M̂k =− iC
ω
Im(ik)

for all k ∈ Z. Now, M̂k is the Fourier series of

M(t) :=

√
TC
2ω

(
δT/4 (t)− δ−T/4 (t)

)
where δx denotes the Dirac measure at x. In particular,M is a finite measure. For α ∈ L1anti(T)
we calculate

Fk

(
1√
T
M ∗α

)
=

1√
T

ˆ
T

ˆ
T
α(t− s) dM(s)ek (t)dt

=

ˆ
T

ˆ
T
α(t− s)ek (t− s)dtek (s)dM(s) = M̂kα̂k.

so thatF−1
(
k 7→ M̂kα̂k

)
exists and equals 1√

T
M ∗α. To see that 1√

T
M ∗ ( ·)mapsWs,p

anti(T) into

Ws,p
anti(T) and C

k,s
anti(T) into C

k,s
anti(T), let ‖·‖ be ‖·‖Ws,p or ‖·‖Ck,s (or any translation invariant

norm). Then
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∥∥∥∥F−1

((
M̂kα̂k

)
k∈Zodd

)∥∥∥∥= ∥∥∥∥ 1√
T
M ∗α

∥∥∥∥= 1√
T

∥∥∥∥ˆ
T
α( · − s) dM(s)

∥∥∥∥
⩽ 1√

T

ˆ
T
‖α( · − s)‖ d |M|(s) = |M|(T)√

T
‖α‖ .

With the previous two lemmata, we can complete the bootstrapping argument stated next.

Lemma 7.7. If the pair (α,β) satisfies (31) and (34) with α,β ∈ L1anti(T), then α,β ∈ C1,r
anti(T).

Proof. By lemma 7.5 we have α ∈W1,1/r
anti (T), and therefore β ∈W1,1/r

anti (T) by lemma 7.6.

Applying lemmas 7.5 and 7.6 again, we getα,β ∈W1+r−ε,1/r2

anti (T) for any ε> 0. Repeating this

n times, we obtain α,β ∈W1+r−ε,1/r2+n

anti (T). If n ∈ N is large enough, then W1+r−ε,1/r2+n

anti (T)
embeds continuously into C1

anti(T) by lemma B.3, so in particular we have α,β ∈ C1
anti(T).

Now, applying lemmas 7.5 and 7.6 one last time yields α,β ∈ C1,r
anti(T).

Next we prove the main theorem of this section, theorem 7.3.

Proof of theorem 7.3. Note that α ∈W1,1(T),β ∈ L1(T) hold by definition 7.1, and both are
T
2 -antiperiodic as we have seen above. So lemma 7.7 is applicable and yields α,β ∈ C1,r

anti(T).
By d1 := θπ,d2 := (2− θ)π,d3 := (2+ θ)π, . . . we label the discontinuities of V. We start

by showing that u ∈ C1,r
anti([0,d1]×T). To do this, consider

w(x, t) :=
1
2

(
α
(
t+

√
ax
)
+α

(
t−

√
ax
))

+
1

2
√
a

(
β
(
t+

√
ax
)
−β

(
t−

√
ax
))
. (35)

Note that w is T
2 -antiperiodic in time. The kth Fourier coefficient of w is given by

ŵk (x) =
α̂k
2

(
eikω

√
ax+ e−ikω

√
ax
)
+

β̂k
2
√
a

(
eikω

√
ax− e−ikω

√
ax
)

= α̂k cos
(
kω

√
ax
)
+
β̂ki√
a
sin
(
kω

√
ax
)
.

We see that ŵk solves Lkŵk = 0 on [0,d1] and at x= 0 it satisfies

ŵk (0) = α̂k = α̂kφk (0) and ŵ ′
k (0) =

β̂ki√
a
kω

√
a= α̂kφ

′
k (0) ,

where we have used (34). So ŵk(x) = α̂kφk(x) must hold, and from this we obtain

w(x, t) =
∑
k∈Zodd

ŵk (x)ek (t) =
∑
k∈Zodd

α̂kφk (x)ek (t) = u(x, t) .

As w is given by (35), u= w ∈ C1,r
anti([0,d1]×T) follows immediately.
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Now assume that u ∈ C1,r
anti([0,dn]×T) holds for some n ∈ N. We aim to show u ∈

C1,r
anti([0,dn+1]). Denote by v ∈ {a,b} the value of V on (dn,dn+1) and define a function w

by

w(x, t) =
1
2

(
u
(
dn, t+

√
v(x− dn)

)
+ u
(
dn, t−

√
v(x− dn)

))
+

1
2
√
v

ˆ t+
√
v(x−dn)

t−
√
v(x−dn)

ux (dn, τ) dτ (36)

for x ∈ [dn,dn+1] and t ∈ T. Then w ∈ C1,r
anti([dn,dn+1]×T) follows immediately from (36).

Arguing as above, one can show Lkŵk(x) = 0 for all k ∈ Z. Since ŵk(dn) = ûk(dn) = α̂kφk(dn)
and ŵ ′

k(dn) = α̂kφ
′
k(dn), we again get ŵk(x) = α̂kφk(x) and thus w= u on [dn,dn+1]×T.

Next we show the uniform bound |u(x, t)|⩽ Ce−ρx with ρ= log(b)−log(a)
4π . By

proposition 7.4, u satisfies u(x+ 4π, t) = a
bu(x, t) for all x ∈ [0,∞) and t ∈ T. Hence we can

choose

C := max
x∈[0,4π],t∈T

eρx |u(x, t)| .

To show that u is a C1-solution to (1), first from (35) it follows that the directional derivative

(∂t− c(x)∂x)(ut+ c(x)ux)

exists and equals 0 for x ∈ (0,d1) as c(x) = 1√
a here. Similarly, using (36) we obtain

(∂t− c(x)∂x)(ut+ c(x)ux) = 0

for x ∈ (dn,dn+1) as c(x) = 1√
v . Lastly, due to (35) and the definitions of α,β we have

ux (0, t) = wx (0, t) = β ′ (t) = ( f(α ′ (t)))t = ( f(ut (0, t)))t .

for all t ∈ T. This shows that u is a C1-solution to (1) with its own initial data.
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Appendix A

Recall that F ′(s) = sf ′(s) formally holds, so that (F ◦ g) ′(s) = g(s)( f ◦ g) ′(s). Integrating the
second equality from t0 to t1, the resulting identity holds pointwise as we show next.

Lemma A.1. For t0, t1 ∈ R with t0 < t1 and g ∈ C([t0, t1],R) with f ◦ g ∈ C1([t0, t1],R), the
equation

F(g(t1))−F(g(t0)) =
ˆ t1

t0

g(t)
df(g(t))

dt
dt

holds.

Proof. Assume first that f and g are both C1 in which case the definition F(y) = yf(y)−´ y
0 f(s)ds and integration by parts yield the result

ˆ t1

t0

g(t)
df(g(t))

dt
dt= [g(t) f(g(t))]t1t=t0 −

ˆ t1

t0

g ′ (t) f(g(t)) dt

= [g(t) f(g(t))]t1t=t0 −
ˆ g(t1)

g(t0)
f(v) dv= F(g(t1))−F(g(t0)) . (37)

For the general case, choose a sequence of non-negative smooth mollifiers φn : R→ [0,∞)
converging to δ0, each with support in [− 1

n ,
1
n ] and with average

´
Rφn(x)dx= 1. Since f is

strictly increasing, so is fn := φn ∗ f. In particular, fn is bijective and we may define gn :=
( fn)

−1 ◦ f ◦ g so that fn ◦ gn = f ◦ g.
Clearly, fn → f uniformly on compacts. To see that gn → g uniformly on compacts, it suf-

fices to show
∥∥∥( fn)−1 − f−1

∥∥∥
∞

⩽ 1
n for n ∈ N. Note that

fn
(
x− 1

n

)
=

ˆ x

x− 2
n

f(y)φn
(
x− 1

n − y
)
dy⩽

ˆ x

x− 2
n

f(x)φn
(
x− 1

n − y
)
dy= f(x) .

If we choose x := f−1(y) for arbitrary y ∈ R and apply ( fn)
−1 to both sides of the above inequal-

ity, we get f−1(y)− 1
n ⩽ ( fn)

−1
(y). Similarly, f−1(y)+ 1

n ⩾ ( fn)
−1

(y) holds so that the estim-

ate
∥∥∥( fn)−1 − f−1

∥∥∥
∞

⩽ 1
n is shown. Letting Fn(s) := sfn(s)−

´ s
0 fn(σ)dσ, by (37) we have

Fn (gn (t1))−Fn (gn (t0)) =
ˆ t1

t0

gn (t)
dfn (gn (t))

dt
dt=

ˆ t1

t0

gn (t)
df(g(t))

dt
dt.

For n→∞, the desired result follows.

Appendix B. Sobolev–Slobodeckij space

We give a definition of the fractional Sobolev–Slobodeckij space Ws,p(T) on the torus, and
present two results on it.
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Definition B.1. Denote the distance on the torus T by d. Then, for s ∈ (0,1) and p ∈ [1,∞)

define the Sobolev–Slobodeckij space Ws,p(T) :=
{
u ∈ Lp(T) : [u]Ws,p(T) <∞

}
with

[u]pWs,p(T) =

ˆ
T

ˆ
T

|u(t1)− u(t2)|p

d(t1, t2)
1+sp dt1 dt2.

Also let W0,p(T) := Lp(T) and Wk+s,p(T) :=
{
u ∈Wk,p(T) : u(k) ∈Ws,p(T)

}
for k ∈ N, s ∈

[0,1) and p ∈ [1,∞).

Lemma B.2. If g : R→ R is r-Hölder continuous, then the map

Ws,p (T)→Wrs,p/r (T) ,u 7→ g ◦ u

is well-defined for s ∈ [0,1) and p ∈ [1,∞).

Proof. By assumption, there exists C> 0 such that |g(x)− g(y)|⩽ C |x− y|r holds for all
x,y ∈ R. First, let u ∈ Lp(T). Then

∥g(u)∥p/r
Lp/r(T) =

ˆ
T
|g(u(t))|p/r dt⩽ 2p/r−1

ˆ
T

(
|g(u(t))− g(0)|p/r+ |g(0)|p/r

)
dt

⩽ 2p/r−1
ˆ
T

(
Cp/r |u(t)|p+ |g(0)|p/r

)
dt= 2p/r−1

(
Cp/r ∥u∥pLp(T) +T |g(0)|p/r

)
,

so g(u) ∈ Lp/r(T). Now let u ∈Ws,p(T) with s ∈ (0,1). Then

[g(u)]p/r
Wrs,p/r(T) =

ˆ
T

ˆ
T

|g(u(t1))− g(u(t2))|p/r

d(t1, t2)
1+sp dt1 dt2

⩽
ˆ
T

ˆ
T

Cp/r |u(t1)− u(t2)|p

d(t1, t2)
1+sp dt1 dt2 = Cp/r [u]pWs,p(T) .

Lemma B.3. W1+s,p(T) ↪→ C1,s− 1
p (T) for s ∈ (0,1),p ∈ (1,∞) with sp> 1.

Proof. Consider the fractional Sobolev–Slobodeckij space Ws,p([0,T]) which is similarly
defined using the seminorm

[v]pWs,p([0,T]) =

ˆ T

0

ˆ T

0

|v(t1)− v(t2)|p

|t1 − t2|1+sp
dt1 dt2.

We have [u ′]
p
Ws,p([0,T]) ⩽ [u ′]

p
Ws,p(T) <∞, so that u ′ ∈Ws,p([0,T]) and from [13, theorem 8.2]

it follows that u ′ ∈ C(sp−1)/p([0,T]).
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