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Abstract
Anomalies in dynamical systems mostly occur as deviations between measurement and prediction. Current anomaly detection methods in multivariate

time series often require prior clustering, training data, or cannot distinguish local and global anomalies. Furthermore, no generalized metric exists to

evaluate and compare different prediction functions regarding their amount of anomalous behavior. We propose a novel methodology to detect local

and global anomalies in time series data of dynamical systems. For this purpose, a theoretical density distribution is derived assuming that only noise

conceals the time series. If the theoretical and the empirical density distribution yield significantly different entropies, an anomaly is assumed. For a local

anomaly detection, the Mahalanobis distance using the theoretical noise distribution’s covariance is applied to evaluate sequences of predictions and

measurements. In addition, the Wasserstein metric enables a comparison of predictions using the distance between the noise and empirical distribution

as a measure for selecting the best prediction function. The proposed method performs well on nonlinear time series such as logistic growth and

enables a useful selection of a prediction model for satellite orbits. Thus, the proposed method improves anomaly detection in time series and model

selection for nonlinear systems.
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Introduction

When controlling dynamical engineering systems, predictions

are used to form expectations of future system behavior and

enable a more controlled environment. These predictions are

limited by the mathematical model computing the prediction

process. During the operation and observation of a system,

deviations between a measured actual state and a planned

state might trigger a corresponding reaction or a targeted need

for action by engineers. The defined plan value can be deter-

mined via a simulation using a prediction process and is used

as a target value. If the actual state deviates measurably, rele-

vantly, and significantly from a desired plan state, the system

will indicate either a warning or a fault. Thus, the risk of a

shutdown exists, especially in the case of a long-term inability

to correct a deviation. Simulations are hereby a powerful tool

to predict and classify malfunction states in advance, to avert

possible malfunctions during regular operations, or to start

countermeasures in advance. Nevertheless, during the opera-

tion and observation of a system, states might still occur,

which were not predicted in advance and can represent mal-

functions. These would generally be recognized as an anomaly

in the data, defined as a substantial deviation from the norm

(Mehrotra et al., 2017).
From a system planner’s point of view, the anomaly detec-

tion process, as well as the evaluation of the precision of a

prediction, is therefore a comparison of the expected system

state (a planned value) with the actual system state (an actual

value). In this definition, anomalies are not the result of noisy

data, expected malfunctions, or errors using the prediction

models but rather novel deviations not explainable by the

underlying prediction process (Spoor et al., 2022). Therefore,

anomalies in the measured data are the limitations of these

prediction models, if measurement and prediction differ in a

substantial manner from the normal data model (Mehrotra

et al., 2017). Hereby, global anomalies are referred to as sys-

tematic differences between measurements and prediction

within the whole time series and local anomalies are distin-

guishable time frames and spots containing anomalous val-

ues. Local anomalies can be further divided into point outlier,

contextual anomalies, and collective anomalies (Lindemann

et al., 2021). Future challenges in anomaly detection for time

series in Internet of Things application are given by Cook

et al. (2020) as the development of unsupervised methods,

real-time processing, and the generalization of methods.
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We propose a novel methodology for the detection and

evaluation of global and local anomalies in systems with a

discrete measurement and prediction process for multivariate

time series data. The idea is to compare the measured covar-

iance matrix and a theoretically derived covariance matrix for

which is assumed that only noise conceals the measurements.

The comparison is conducted by an entropy measure for find-

ing global anomalies and the application of the Wasserstein

metric is used as a measure to compare the amount of anoma-

lous behavior of different predictions. In addition, a local

anomaly detection is conducted by applying the Mahalanobis

distance using the theoretical noise covariance matrix. This

methodology improves the state-of-the-art of anomaly detec-

tion of multivariate time series by enabling a local as well as

global anomaly detection without prior clustering, training

data, or the use of a correct time series as baseline.

Furthermore, this methodology provides a novel measure for

selecting the best prediction function to improve model selec-

tion for nonlinear systems.
This contribution starts with an overview of the current

literature for anomaly detection in time series data.

Subsequently, the theoretical derivations for the methodology

and the setup of the theoretical noise covariance matrix are

discussed. Based on the derived methodology, a simulation

study using logistic growth as an example of a nonlinear time

series is conducted to prove the capabilities of our proposed

method for a local and global anomaly detection. In addition,

a use case is discussed to compare the amount of anomalous

factors in predictors of satellite orbits using the Wasserstein

metric. Thereafter, our proposed method is discussed and a

conclusion is given.

Literature review

Multiple papers discuss anomaly detection in multivariate and

univariate time series. In the case of a local anomaly detection

in multivariate time series, Blázquez-Garcı́a et al. (2021) dis-

tinguish model-based approaches (either by prediction or esti-

mation), methods using histograms (for point outliers), and

dissimilarity-based approaches. For a global anomaly detec-

tion, Blázquez-Garcı́a et al. (2021) name dissimilarity-based

approaches and dimensionality reduction as techniques.
Since information entropy is used as a metric to estimate

system complexity (Pincus, 1991), local outliers are detected

or anomaly affected areas identified within univariate time

series by using the Shannon entropy (He et al., 2021). With

this approach, no global anomalies can be detected. However,

the Shannon entropy (Germán-Salló, 2018) or the permuta-

tion entropy (Bandt and Pompe, 2002) are proven to be, in

principle, useful measures to detect anomalies within time

series.
Wang et al. (2011) use the correlation of a suspected

anomaly affected signal and a known correct signal without

anomalies so that global anomalies in the suspected signal

are detected. This approach requires an identified second cor-

rect system and no local anomaly detection is conducted.

Similar to the correlation of two signals, autocorrelation in

anomaly detection is widely used (Izakian and Pedrycz,

2013). However, these methods lack the possibility for a

global anomaly detection and are applied for univariate time

series.
Li et al. (2021) use clustering of multivariate time series

and they analyze the data points with a distance measure so
that local outliers are detected. The clustering is conducted

using a Gaussian Mixture Model solved through the usage of

an EM-algorithm, which is enabled by the Mahalanobis dis-
tance. In other methods and applications, the Mahalanobis

distance provides good results, but a prior clustering is neces-

sary (Sperandio Nascimento et al., 2015) or the data sources
are contextually clustered beforehand (Titouna et al., 2019).

In the case of clustering, the covariance matrix of a time series

is estimated using the priorly set up clusters. In some
approaches, the covariance matrix of nonlinear systems is

approximated using simulations and evaluated using the

Mahalanobis distance (Burr et al., 1994).
Concluding, machine learning is another approach. An

advantage of machine learning is that no model assumptions

of the analyzed time series are necessary. However, supervised

approaches from machine learning, for example, a Support
Vector Machine as implemented by Rodriguez et al. (2010),

require labeled data sets. Approaches using unsupervised

neural network architectures, for example, an Autoencoder as
implemented by Audibert et al. (2020), require a prior train-

ing phase and the assumption of a training data set without
or with only very small amount of anomalies. In recent years,

architectures based on long short-term memory (LSTM) are

developed but also require extensive training data and some-
times labeling (Lindemann et al., 2021). LSTMs are also used

for creating predictions which are then evaluated using a local

average with adaptive parameters to detect local anomalies
(Tan et al., 2020).

Theoretical derivation of methodology

Applied measurement and prediction model

Following the proposed system description by Spoor et al.

(2022), a system state is given by the multivariate description

xi of J real features. This system has a measurement process
g, which transforms the real system state into the measured

system state x̂i with D measurable features. This state is
affected by noise ei so that only state x̂�i is measured. In addi-

tion, for each real operation f transforming the state xi into

state xi+ 1, a prediction f̂ exists, which transforms a measured
system state x̂�i into a predicted system state x̂i+ 1. The mea-

surement and prediction model can be linear as well as non-

linear. Thus, the system description is applicable for most
dynamical systems

x̂�i = g xið Þ+ ei

x̂i+ 1 = f̂ x̂�i
� � ð1Þ

We assume, for most applications, white noise under a nor-

mal distribution and an expected mean of zero

e; N 0,s2
� �

, Cov e, e0ð Þ= 0 ð2Þ

In the case of a variance depending on the feature, the var-
iance in the following derivations can simply be adjusted to
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s(xi)
2. All following equations can be adjusted for colored

noise by applying the changed assumptions. The overall meth-
odology does not change for colored noise.

When modeling a system, a precise knowledge of function

f is targeted. If function f̂ can predict most system states pre-
cisely, the system runs as expected and becomes controllable.
When measuring the efficiency of the function f̂ , the delta

between the expected and measured system state becomes an
important metric

Di+ 1 = x̂�i+ 1 � x̂i+ 1

= g f xið Þð Þ+ ei+ 1 � f̂ g xið Þ+ eið Þ
, x̂�i+ 1 = f̂ x̂�i

� �
+Di+ 1

ð3Þ

Di+ 1 includes three linked information (Spoor et al., 2022).

1) Noise and measurement inaccuracy (ei+ 1, ei)
2) Ignorance of the real features of the system (g)
3) Ignorance of the effects of the real operations (f , f̂ )

To create a precise prediction of future system states, the goal
of an engineer is to select f̂ so that Di+ 1 ! 0. Deviations

between prediction and measurement are the result of the fol-
lowing reasons:

1) Noise in measurements results in distorted predictions
of the system

2) Ignorance of the real J features of the system
3) Ignorance of the effects of the real operation f regarding:

(a) Observable features
(b) Unobservable features

4) Complexity of the model and limitation of the model
due to computational power. Therefore, not all effects
on the observable features are precisely modeled

Reason 4 is an additional explanation to reason 1–3 since
even if reason 1–3 could be solved, limitations due to compu-

tational power still apply and decrease the precision of the
predictions and result in noteworthy discrepancies of the

expected state and the measured state. Therefore, reason 4 is
more of a technical expansion of reason 1–3.

These items describe the reasons for unexpected states
despite extensive simulations and knowledge of the system.

This raises the question of how these influences can be incor-
porated into a model. Most notably the Kalman filter enables

a correction of predictions, which improves the predictions
and state estimations without bias. However, the Kalman fil-

ter offers no applicable metric in measuring and comparing
the performance of two models and evaluating how inaccu-
rate a model is from the real states. Therefore, it becomes an

important task not only to correct the prediction but also to
spot the anomalous behavior of a prediction, that is, in which

cases the prediction is more inaccurate than in other cases
and to define a measure to evaluate the precision or anoma-

lous behavior of the prediction. This evaluation is set up by
viewing the occurring deviations from the prediction as a

distribution and comparing this distribution with sample dis-

tributions only affected by noise and not the ignorance of the

real features and operations.

Derivation of theoretical noise covariance matrix

If the knowledge of the underlying operations f and transfor-

mation of observation g is ignored, the resulting delta after

each transition of states can be described as a statistical pro-

cess of time following an unknown distribution. For good

approximations of the function f , when applying equation

(3), Di+ 1 should become zero. For two immediately following

states i and i+ 1, this process relates to

Di+ 1

Di

� �
;C 0,SDi+ 1,Di
ð Þ ð4Þ

Furthermore, we know the distribution C must be influ-

enced by a normal distribution of white noise with an

unknown covariance matrix

Dif gi2T ;N 0,SNoiseð Þ ð5Þ

The distribution is also influenced by an unknown distri-

bution of the ignorance of function f and observation trans-

formation g

Dif gi2T ;F 0,SIgnorance

� �
ð6Þ

For further analysis, Di+ 1 is written as follows

Di+ 1 = x̂�i+ 1 � x̂i+ 1 = x̂i+ 1 + ei+ 1 � f̂ x̂i + eið Þ ð7Þ

If the prediction function f̂ is perfect for x̂i+ 1 = f̂ (x̂i), then

Di+ 1 only corresponds to the white noise, which is a combi-

nation of ei and ei+ 1. Assuming function f̂ is a smooth func-

tion and infinitely differentiable and the growth is limited by

f̂ 00ł f̂ 0, a Taylor series for the term f̂ (x̂i + ei) is applied

(Spoor et al., 2022) as follows

f̂ x̂i + eið Þ=
P‘

k = 0

ek
i

k! f̂
kð Þ

x̂ið Þ

= f̂ x̂ið Þ+ f̂ 0 x̂ið Þ � ei + f̂ 00 x̂ið Þ � e2
i

2
+ � � �

ð8Þ

Since ei is noise, k ei k�k x̂i k is assumed in the case of

good measurement equipment. The growth of function f is

assumed to be limited by k
P‘

k = 2

ek
i

k! f̂ (k)(x̂i) k�k f̂ 0(x̂i) ei k
(Spoor et al., 2022) and is given as

f̂ x̂i + eið Þ= f̂ x̂ið Þ+ f̂ 0 x̂ið Þ � ei +O f̂
2ð Þ

x̂i + eið Þ
� �

’f̂ x̂ið Þ+ f̂ 0 x̂ið Þ � ei

ð9Þ

Therefore, Di+ 1 simplifies to

Di+ 1 = g f xið Þð Þ+ ei+ 1 � f̂ g xið Þ+ eið Þ
’ x̂i+ 1 � f̂ x̂ið Þ
� �

+ ei+ 1 � f̂ 0 x̂ið Þ � ei

� � ð10Þ

Spoor et al. 3



It should be noted that f̂ 0(x̂i) is the total differential over

all features D

f̂ x̂i + eið Þ’f̂ x̂ið Þ+
XD

d = 1

∂

∂xi, d

f̂ x̂ið Þ � ei, d ð11Þ

The term x̂i+ 1 � f̂ (x̂i)= (g(f (xi)� f̂ (g(xi)))=li+ 1

describes the ignorance of the operations and observation

transformation while the measurement error from noise is

described by the term (ei+ 1 � f̂ 0(x̂i) � ei)= ti+ 1. From this

results

Di+ 1 =li+ 1 + ti+ 1

lif gi2T ; F 0,SIgnorance

� �
tif gi2T ; N 0,SNoiseð Þ

ð12Þ

Both time series are uncorrelated but not independent.

Since the time series of x̂i and ei are uncorrelated,

E½f̂ (x̂i)ei�=E½f̂ (x̂i)�E½ei�, and E½x̂i+ 1ei�=E½x̂i+ 1�E½ei� applies

Cov li+ 1, ti+ 1ð Þ= Covðx̂i+ 1 � f̂ x̂ið Þ, ei+ 1 � f̂ 0 x̂ið ÞeiÞ
=Cov x̂i+ 1, ei+ 1ð Þ � Covðx̂i+ 1, f̂ 0 x̂ið ÞeiÞ
� Covðf̂ x̂ið Þ, ei+ 1Þ+Covðf̂ x̂ið Þ, f̂ 0 x̂ið ÞeiÞ
=� Covðx̂i+ 1, f̂

0 x̂ið ÞeiÞ+Covðf̂ x̂ið Þ, f̂ 0 x̂ið ÞeiÞ
=� E½x̂i+ 1 f̂ 0 x̂ið Þei�+E x̂i+ 1½ �E½f̂ 0 x̂ið Þei�
+E½f̂ x̂ið Þf̂ 0 x̂ið Þei� � E½f̂ x̂ið Þ�E½f̂ 0 x̂ið Þei�
=� E½x̂i+ 1 f̂ 0 x̂ið Þ�E ei½ �+E x̂i+ 1½ �E½f̂ 0 x̂ið Þ�E ei½ �
+E½f̂ x̂ið Þf̂ 0 x̂ið Þ�E ei½ � � E½f̂ x̂ið Þ�E½f̂ 0 x̂ið Þ�E ei½ �
= 0

ð13Þ

If we want to calculate the noise term ti of the time series

fDigi2T , we have to calculate SNoise. The covariance SNoise

describes the distribution of the time series in the case of a

perfect prediction function f̂ since in this case Di+ 1 = ti+ 1. The

variance of ei is given as Var(ei)=s2 as assumed in equation

(2). The variance of the measurement noise of ti+ 1 for a specific

feature k is analyzed using ek as the identity vector of k

Var ti+ 1, kð Þ=Var ei+ 1, k �
XD

d = 1

∂

∂xi, d
f̂ x̂ið Þ � ei, d � ek

 !

=Var ei+ 1, kð Þ+Var
XD

d = 1

∂

∂xi, d

f̂ x̂ið Þ � ei, d � ek

 !

� 2 � Cov ei+ 1, k ,
XD

d = 1

∂

∂xi, d
f̂ x̂ið Þ � ei, d � ek

 !

ð14Þ

From Cov(ei+ 1, k , ei, d)= 0 8k, d follows

Var ti+ 1, kð Þ=s2
k +

XD

d = 1

∂

∂xi, d
f̂ x̂ið Þek

� �2

s2
d ð15Þ

The covariance for two different features k and l of the

same measurement i+ 1 is as follows

Cov ti+ 1, k , ti+ 1, lð Þ=Cov

 
ei+ 1, k �

XD

d = 1

∂

∂ xi, d

f̂ x̂ið Þ ei, d ek ,

ei+ 1, l �
XD

d = 1

∂

∂ xid

f̂ x̂ið Þ ei, d el

!

=Cov ei+ 1, k , ei+ 1, lð Þ � Cov

XD

d = 1

∂

∂ xi, d
f̂ x̂ið Þ ei, d ek , ei+ 1, l

 !

� Cov ei+ 1, k ,
XD

d = 1

∂

∂ xi, d

f̂ x̂ið Þ ei, d el

 !

+Cov

 XD

d = 1

∂

∂ xi, d
f̂ x̂ið Þ ei, d ek ,

XD

d = 1

∂

∂ xi, d

f̂ x̂ið Þ ei, d el

!

=
XD

d = 1

XD

d0¼1

∂

∂ xi, d

f̂ x̂ið Þ ek

∂

∂ xi;d 0
f̂ x̂ið Þ el

Cov ei, d , ei;d0
� �

ð16Þ

From Cov(ei, d , ei, d0 )= 0 8d, d0 : d 6¼ d0 follows

Cov ti+ 1, k , ti+ 1, lð Þ=
XD

d = 1

∂

∂xi, d

f̂ x̂ið Þek

� �
∂

∂xi, d

f̂ x̂ið Þel

� �
s2

d

ð17Þ

For the series ftigi2T between a state i and i+ 1 of features
k and l, the covariance is as follows

Cov ti+ 1, k , ti, lð Þ=Cov

 
ei+ 1, k �

XD

d = 1

∂

∂ xi, d

f̂ x̂ið Þ ei, d ek , ei, l

�
XD

d = 1

∂

∂ xi�1, d

f̂ x̂i�1ð Þ ei�1, d el

!

= Cov ei+ 1, k , ei, lð Þ � Cov

XD

d = 1

∂

∂ xi, d

f̂ x̂ið Þ ei, d ek , ei, l

 !

� Cov ei+ 1, k ,
XD

d = 1

∂

∂ xi�1, d
f̂ x̂i�1ð Þ ei�1, d el

 !

+ Cov

 XD

d = 1

∂

∂ xi, d

f̂ x̂ið Þ ei, d ek ,

XD

d = 1

∂

∂ xi�1, d
f̂ x̂i�1ð Þ ei�1, d el

!

ð18Þ

Since in the case of white noise Cov(ei+ 1, k , ei, l)=

Cov(ei+ 1, k , ei�1, l)=Cov(ei, k , ei�1, l)= 0 8k, l applies, the cov-
ariance is as follows
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Cov ti+ 1, k , ti, lð Þ=� Cov
XD

d = 1

∂

∂xi, d

f̂ x̂ið Þei, dek , ei, l

 !

=�
XD

d = 1

∂

∂xi, d
f̂ x̂ið ÞekCov ei, d , ei, lð Þ

ð19Þ

From Cov(ei, d , ei, l)= 0 8l, d : l 6¼ d follows

Cov ti+ 1, k , ti, lð Þ=� ∂

∂xi, l
f̂ x̂ið Þeks2

l ð20Þ

If the state i is known through a measurement x̂�i , it is pos-
sible for a prediction to set x̂i = x̂�i . This term is used to create
a prediction of state i+ 1 using f̂ (x̂i). Therefore, the covar-

iance matrix SNoise becomes computable and we describe the
time series of ti as follows

tif gi2T ; N 0,Sti
ð Þ ð21Þ

The covariance matrix of the time series Sti+ 1
2 R

2D 3

R
2D consists of the sub-matrices Sti, i

,Sti+ 1, i+ 1
,Sti+ 1, i

,Sti, i+ 1
2

R
D 3R

D, that is

Sti+ 1
=

Sti+ 1, i+ 1
Sti+ 1, i

Sti, i+ 1
Sti, i

� �
ð22Þ

Using equations (15), (17), and (20), the diagonal sub-
covariance matrices are constructed as

Sti+ 1, i+ 1
=

s2
1 +

PD
d = 1

∂
∂xi, d

f̂ x̂ið Þe1

� �2

s2
d :::

PD
d = 1

∂
∂xi, d

f̂ x̂ið Þe1

� �
∂

∂ xi, d
f̂ x̂ið ÞeD

� �
s2

d

::: ::: :::PD
d = 1

∂
∂xi, d

f̂ x̂ið Þe1

� �
∂

∂ xi, d
f̂ x̂ið ÞeD

� �
s2

d ::: s2
D +

PD
d = 1

∂
∂xi, d

f̂ x̂ið ÞeD

� �2

s2
d

0
BBB@

1
CCCA ð23Þ

The matrix Sti, i
is computed analogously to Sti+ 1, i+ 1

as

Sti+ 1, i
=Sti, i+ 1

T =

� ∂
∂xi, 1

f̂ x̂ið Þe1s2
1 ::: � ∂

∂xi,D
f̂ x̂ið Þe1s2

D

::: ::: :::
� ∂

∂xi, 1
f̂ x̂ið ÞeDs2

1 ::: � ∂
∂xi,D

f̂ x̂ið ÞeDs2
D

0
B@

1
CA
ð24Þ

It should be noted that for linear systems the covariance

matrix Sti+ 1
(x̂i, x̂i�1) is static, while for nonlinear systems the

covariance becomes dynamic. Therefore, the covariance of

noise is able to describe dynamical systems without limitations
regarding linearity, while also creating valid solutions for lin-

ear cases. In the case of colored instead of white noise, the
derivation of equations (15), (17), and (20) must be adjusted

for the corresponding correlated terms and the adjusted equa-
tions are then used to construct the different sub-covariance

matrices in equations (23) and (24). Thus, the model is compa-
tible with the assumption of colored noise but requires a more

extensive calculation.
This theoretical covariance matrix can be used as a test

measure if the measured Di+ 1 only depends on noise or if the

ignorance of the functions f and g results in differences of
the empirical distribution of the process Di+ 1. An estimation

of the parameter s can be conducted with observations of
sensors under a halting operation x̂i+ 1 = f̂halt(x̂i)=

(ti +Dt, x̂i, 1, :::, x̂i,D�1) since the resulting time series should

primarily be influenced by white noise of the measurement of
each observed feature.

Global anomaly detection via entropy of the density
distribution

For an anomaly detection, the existence of the ignorance

must be tested. It is deduced that an anomaly is present

within the system when the empirical covariance Ŝi signifi-

cantly differs from the pure noise covariance Sti
because in

absence of an error term li, Sli
! 0 also applies. Therefore,

without noise, the relation Ŝi =Sti
applies. As a possible test

for anomalies, the comparison of the empirical covariance

and theoretical computed noise covariance matrices given by
equation (22), via equations (23) and (24), using Box’s M-

Test (Box, 1949) or similar tests (cf. Marques and Coelho,
2018) can be applied. The tested hypothesis is as follows

H0 : Ŝi =Sti
ð25Þ

If this hypothesis is rejected, an unknown covariance
matrix with a density distribution fl(l) 6¼ 0 exists, which

describes the influence on the real operation due to the ignor-
ance of f and g. If the distribution of l does not follow a nor-

mal distribution, Box’s M-test does not apply since it assumes

a normal distribution for the compared covariances’ underly-

ing distributions (Manly and Navarro Alberto, 2017). The

same limitation would occur if the empirical covariance

matrix is compared to the theoretical covariance matrix using

a matrix norm or metric since the empirical covariance matrix

Sli
of a non-statistical and non-normal distributed process

does not accurately reflect the real distribution. Therefore, a

more general comparison is necessary.
If an analysis of a time series with enough data points

(ø D) is conducted, the empirical covariance Ŝi of the time

series fDigi2T is an estimator for the covariance matrix Si. In

general, the Kullback–Leibler divergence (KL-divergence) can

be used to compare distributions using covariance matrices.

However, since the function f̂ (x̂i), which is necessary to com-

pute the covariance matrix Sti
, is assumed to be nonlinear, a

comparison using the KL-divergence cannot be conducted

because the metric requires a static covariance matrix. In

addition, the KL-divergence makes the assumption of a nor-

mal distribution of the time series. Therefore, if the assump-

tion fligi2T ; N (0,SIgnorance) is rejected, an anomaly detection

without underlying assumptions regarding the distributions

fligi2T and fDigi2T is required. In addition, the dynamic char-

acteristic of the covariance matrix Sti
must be considered.
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Thus, the distribution is analyzed using the Shannon entropy
without assumptions regarding the distribution. The entropy

of the distribution is given by

H fDð Þ=�
X

k

fD, k log fD, kð Þ ð26Þ

The cross-entropy between the two density distributions of
fD(D) and ft(t) is defined as follows

H fD, ftð Þ=�
X

k

fD, k log ft, kð Þ ð27Þ

The density distributions are not measured directly, but the
density distributions can be approximated by using a histogram.
If the measured values of pairs of Di+ 1 and Di are ordered
within a histogram using K2D =K 3 � � � 3 K bins, the amount
of values within a bin is countable as hD, k . The method can be
compared to HBOS (Goldstein and Dengel, 2012), where the dif-
ference of two histograms is analyzed regarding bins with high
differences. The entropy calculation changes to

Ĥ fDð Þ=�
X

k2K2D

hD, k log hD, kð Þ ð28Þ

Ĥ fD, ftð Þ=�
X

k2K2D

hD, k log ht, kð Þ ð29Þ

In conclusion, the KL-divergence is adjusted to

D̂KL fD, ftð Þ=
X

k2K2D

hD, k log
hD, k

ht, k

� �
ð30Þ

Since the KL-divergence is not symmetric, both directions
should be calculated and added together for analyzing the
comparison. If both distributions are identical, hD, k’ht, k

) log(hD, k=hk)’0) D̂KL(fD, ft)’0 applies.
As a test value, the comparison of entropies using Ĥ(fD)

Ĥ(ft)
’1

or D̂KL(fD, ft)+ D̂KL(ft, fD)’0 is applied in the hypothesis test
given by equation (25). This test evaluates whether the term
li is not zero and results in a significant difference due to the
ignorance of operations and therefore unknown system beha-
vior should be assumed.

A sample distribution ftigi2T is used for building pure
noise histograms as comparison. Random values are picked
from a multivariate normal distribution using the theoretical
covariance matrix Sti

or the values are simulated using the
function f̂ (x̂i) together with a white noise term.

Evaluation and comparison of predictions via
Wasserstein metric

It is not only important whether a prediction differs from the
measurements so that an unknown system behavior is
assumed, but it is also important to measure how strong the
anomalous behavior and difference between the prediction
and the measurement is. Thus, a metric is necessary to mea-
sure how inaccurate a prediction is. For time series and non-
linear systems, the influence of parameters and the
Wasserstein metric as evaluation criterion of such systems is
studied by Muskulus (2010). The metric is based on the

comparison of both distributions ftigi2T and fDigi2T by their

histograms. The distance between two histogram bins is given by
the Manhattan distance C of the two corresponding bins, which

is the L1 distance. The position of the bin k is a vector of the bin
position (a, b). For the distance between two bins follows.

Cðk; k 0Þ ¼ ja� a0j þ jb� b0j ð31Þ

The Wasserstein metric can be visualized as the optimal trans-
port flow between the two observed distributions. One distribu-

tion acts as ak and the other distribution acts as bk0 demand. The
distributions are normalized so that

P
k ak =

P
k0 bk0 = 1 and

all values of ak and bk0 are positive values. This results in two
measures for the discretized distributions where dx denotes the

Dirac delta distribution as follows

n=
P

k

akdhD, k

y =
P
k0

bk0dht, k0
ð32Þ

Thus, the histogram bins act as sources of entries flowing

toward sinks. Therefore, the amount of values of all bins of
the first distributions are the sources and the values of all bins

of the second distribution are the sinks. This results in source
and sink conditions

P
k0

qk, k0 =akP
k

qk, k0 =bk0
ð33Þ

The first-order Wasserstein distance becomes as follows

W1 n; yð Þ= min
X
k, k0

qk, k0 Cðk; k 0Þ ð34Þ

The value W1 n; yð Þ can be computed within an acceptable
time, if the bins are limited. Alternatively, a two-dimensional
(2D) sliced Wasserstein metric can be used as described by

Bonneel et al. (2015). The Wasserstein metric can then be
used as a measure of distance between the two distributions

and enables a comparison between two predictions f̂1 and f̂2
on which prediction is more suitable to describe the system

and has less anomalous properties. By using the Wasserstein
metric, it is possible to analyze the difference between the

empirical and theoretical distribution without computing the
empirical covariance matrix. This is important since the

empirical covariance matrix does not reflect the non-normal
distributed density distribution of the histograms.

Local anomaly detection via Mahalanobis distance

If only single data points when measuring Di+ 1 derivate from
the distribution, a local outlier detection is necessary. The theore-

tical covariance matrix of noise can still be used and is adapted
for each delta. The Mahalanobis distance applies as follows

D Di+ 1ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Di+ 1,Dið ÞT Sti+ 1

x̂i, x̂i�1ð Þ�1
Di+ 1,Dið Þ

q
ð35Þ

This distance metric is applicable to all states i and all mea-
sured triplets of x̂i+ 1, x̂i, x̂i�1.
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Since the Mahalanobis distance follows the chi-square dis-

tribution (Fauconnier and Haesbroeck, 2009), the chi-square

distribution with 2D degrees of freedom is applied to test the

measured Di+ 1 for outliers for a chosen significance level a as

Di+ 1,Dið ÞT Sti+ 1
x̂i, x̂i�1ð Þ�1

Di+ 1,Dið Þ. x2
2D, 1�a ð36Þ

Since the covariance matrix is known beforehand and can

be computed in advance to the measurement using the func-

tion f̂ (x̂i), only this concise test has to be conducted for a

valid and useful outlier detection. This enables the method to

compute and evaluate outliers in a real-time detection in time

series with prior known prediction functions.
When counting the amount of detected outliers, the detected

amount is compared to the expected amount of false-positive

detected outliers. Using the significance level a and the properties

of the chi-square distribution, a probability, if the detected

amount is within the expected amount of false-positive outliers,

is calculated. Therefore, a global anomaly score is computed by

the given probability that the counted outliers are statistically sig-

nificant for belonging to a chi-square distribution.

Proposed algorithm

As algorithm for a functional global anomaly detection, the

pseudo code of Algorithm 1 is proposed. The assumption is

that if Ĥ(fD) 6¼ Ĥ(ft), the distribution of measured values does

not follow the pure noise distribution.
As algorithm for a local outlier detection, Algorithm 2 is

proposed. This algorithm can be applied to a time series in

real time since only the function f̂ is required and no further

prior knowledge about the time series is necessary.
In general, the parameters for the algorithms are com-

parably easy to estimate. Regarding the amount of simula-

tions of the pure noise distributions, a sufficient sample size

S should be selected so that the mean of the noise distribu-
tion is meaningful. The size of the histogram bins should be

selected that the bins are large enough that each includes

some data points. If the bins are too small, the entropy com-

putation might not work and might not result in meaningful

values since it assumes at least one data point per bin. The

significance level a of the test should reflect the amount of

knowledge about the system. If the system follows a strict

physical differential equation and is modeled comprehen-

sively, a more strict significance level might be necessary.

For the estimation of the white noise ŝ2 of the sensors, a

measurement during system standstill can be conducted and

evaluated. In this case, it is assumed that ŝ2 =Var(fDigi2N ).

This is applicable since it is assumed that the ignorance of f

and g only conceals the measurement when operations of

the systems are conducted.

Simulation study: Anomaly detection in
logistic growth

Applied global and local anomaly detection

For an analysis with synthetic data, we assume a system with

a system state zi with J = 4 real unknown features and with

D= 3 observable features. For simplicity, we assume the

observed features are direct measures of the real features and

one real feature is completely unknown. One of the observed

features is the linear increasing time of the system. The mea-
surement is also concealed by white noise with a standard

deviation of s= 0:01. For the operation of the system, only

one real operation f is assumed. This operation transforms

Algorithm 1 Unsupervised histogram entropy global anomaly detection

Input:

N measurements of x̂�i
Prediction function f̂ (x̂i)

Parameter:

Noise estimation ŝ2

Set of histogram bins K

Amount of simulations S

Significance level a

Output:

Boolean value A for anomaly existence

1: for i= 1, i+ + do

2: while i ł N � 1 do

3: Compute Di+ 1 ( x̂�i+ 1 � f̂ (x̂i)

4: Compute Sti+ 1
(x̂�i , x̂�i�1)

5: Draw S random variables (ti+ 1, ti)
T ; N (0,Sti+ 1

(x̂�i , x̂
�
i�1))

6: end while

7: end for

8: while k 2 K do

9: while s 2 S do

10: ht, k, s ( amount of (ti+ 1, ti)
T in bin k of simulation s

11: end while

12: hD, k ( amount of (Di+ 1,Di)
T in bin k

13: end while

14: Compute Ĥ(fD)( �
P

k2K2D hD, k log(hD, k) for all hD, k 6¼ 0

15: Compute Ĥ(ft)( � 1
S

PS
s= 1

P
k2K2D ht, k, slog(hD, k, s) for all

ht, k, s 6¼ 0

16: Compute ŝH (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var fĤ(ft)sgs2S

� �q
17: if Ĥ(ft)� t(1�a) � ŝH ł Ĥ(fD)ł Ĥ(ft)+ t(1�a) � ŝH then

18: A( False

19: else

20: A( True

21: end if

Algorithm 2 Unsupervised distance-based local anomaly detection

Input:

Measurements of x̂�i+ 1, x̂
�
i , x̂�i�1

Prediction function f̂ (x̂i)

Parameter:

Noise estimation ŝ2

Significance level a

Output:

Array L containing outlier data points

1: Compute Di+ 1 ( x̂�i+ 1 � f̂ (x̂i)

2: Compute Sti+ 1
(x̂�i , x̂

�
i�1)

3: Compute D(Di+ 1)

4: if D(Di+ 1). x2
2D, 1�a then

5: L( x̂�i+ 1

6: end if
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state i in state i+ 1 within one time unit. The feature x1 and

x2 are logistic growths with r1 = 3 and r2 = 3:5. The feature
x2 is obscured additively by feature y scaled with the signal

strength s. The feature y is a time-dependent sine wave. The
real-time series is as follows

zi+ 1 = f zið Þ=

ti + 1

3 � xi, 1 � 1� xi, 1ð Þ
3:5 � xi, 2 � 1� xi, 2ð Þ+ s � yi

sin(0:7 � ti)

0
BB@

1
CCA ð37Þ

Since only the observed features are known, the prediction

function f̂ (̂zi) is as follows

ẑi+ 1 = f̂ ẑið Þ=
ti + 1

3 � xi, 1 � 1� xi, 1ð Þ
3:5 � xi, 2 � 1� xi, 2ð Þ

0
@

1
A ð38Þ

As soon as zi is observed with the usage of function f̂ , the
next state zi+ 1 is predicted.

The operation f is applied multiple times, and the outcome

of the real unknown values zi, the measured values ẑ�i and pre-
dicted values ẑi are analyzed for a selected amount of execu-

tions. As assumed, the observed features behave within the
prediction as logistic growth. The Di+ 1 between measurement

and expectation are analyzed in Figure 1.
With the knowledge that the additive signal follows a sine

wave function, the signal can sometimes be guessed within
the Di+ 1 of feature x2. However, during multiple tests, the

sine wave is often not clearly visible, even when applying a
Fourier transformation. Thus, we use the proposed method

to systematically prove that the measurement in feature x2 is
obscured by a signal. With knowledge of function f̂ , it is pos-

sible to compute the theoretical white noise covariance matrix
as follows

Sti
=

2 0 0 �1 0 0

0 36x2
i, 1 � 36xi, 1 + 10 0 0 6xi, 1 � 3 0

0 0 49x2
i, 2 � 49xi, 2 + 13:25 0 0 7xi, 2 � 3:5

�1 0 0 2 0 0

0 6xi, 1 � 3 0 0 36x2
i, 1 � 36xi, 1 + 10 0

0 0 7xi, 2 � 3:5 0 0 49x2
i, 2 � 49xi, 2 + 13:25

0
BBBBBB@

1
CCCCCCA

s2 ð39Þ

For the purpose of a better visualization of the relation
between state i and i+ 1 of both observed features, the

empirical density distribution and covariance matrix are split
up into two separate distributions since there is no relation

between feature x1 and x2. If there were a relation, conducting
this split would not be recommended and it would cause lim-

itations in the analysis and anomaly detection. These spilt-up
density distributions are illustrated in Figure 2(a) top left and

bottom right. Since no information is lost by conducting the
analysis with the split-up density distributions, but a better

visualization is achieved to describe the relation between state
i and state i+ 1, we will conduct the further analysis based

on this simplification.
As a second step, the white noise must be estimated.

Therefore, we apply a halting operation as proposed. Within

our time series, it is also applicable to measure the time’s
standard deviation directly since it is not concealed by a

signal and follows a linear relation. The measured standard

deviation of the Di+ 1 of time is ŝt’0:014. As we see in the

theoretical noise covariance matrix, we have to correct the

measured value in the Di+ 1 of time by
ffiffiffi
2
p

. We then receive a

standard deviation of ŝt’0:01, which is exactly as modeled.

Using the white noise, it is possible to generate random vari-

ables using the theoretical covariance matrix and to create a

theoretical density distribution. This density distribution is

illustrated in Figure 2(b). For lower sample sizes, only little

differences are visible to the empirical density distribution.

For a higher amount of samples N , the difference becomes

more obvious.
When analyzing the entropy for the distribution of the

time measurement, no significant differences occur between

the empirical density and the theoretical noise density. This is

expected since there is no signal concealing the time measure-

ment. Since the time is linear, we can cross-check the analysis

with the measured correlation of time between state i and

i+ 1. The measured correlation is r̂ti , ti+ 1
’� 0:474 and there-

fore close to the expected theoretical value of �0:5.
The entropy of the distributions of the features x1 and x2

is evaluated for the empirical density distribution and com-

pared with the mean theoretical density distributions’ entropy

over S = 30 simulations. In this evaluation, N = 100 execu-

tions of function f , a signal strength of s= 0:02, and

K = 9 3 9 histogram bins are applied. This results in an

empirical entropy of Ĥ(fD)x1
=� 144:7 for the first feature

and Ĥ(fD)x2
=� 71:1 for the second feature.

An entropy of H(ft)x1
=� 143:8610:2 for the first feature

and an entropy of H(ft)x2
=� 102:368:9 for the second fea-

ture is computed for the mean over S = 30 theoretical density

distributions of white noise. The empirical entropy of the

system for feature x2 is over z0:99’2:576 standard deviations

different than the theoretical entropy of a white noise distribu-
tion. The feature x1 does not show any significant differences.
Therefore, based on the entropy comparison, an anomaly
within the time series of feature x2 is assumed.

Using Algorithm 2, a local anomaly detection is con-
ducted. Since the sine wave signal is only intense compared to
the noise in the minimum and maximum values, we expect
outliers to occur right after these extreme values. Other data
points in the time series might be more compatible with the
noise assumptions. The detected outliers are marked in Figure
3 using an a= 0:01. Overall, nine outliers are detected within
the data points of the time series of feature x2. Since a= 0:01,
it is assumed that out of 100 measurements, only one is false
positive. The possibility that nine false positives are detected
is p’0%. Thus, by using the local outlier detection, it is rea-
soned that a global anomaly is present in the time series.
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It is visible that some marked outliers occur directly after

the high and low points of the concealing signal feature y.

This is coherent since in these areas the signal s � yi is higher

in relation to the noise. Therefore, the signal is able to influ-

ence the measures of Di+ 1 in the time series more. Outliers

are also detected for comparably low values of Di+ 1. This

has two reasons: the dynamic covariance yields a lower var-

iance for this area of the time series or, since state i and i+ 1

are compared, the occurring difference between Di of state i

and Di+ 1 of state i+ 1 is considered anomalous by the den-

sity distribution of state i and i+ 1.
Using a signal intensity s= 0:02 and N = 100 measure-

ments, it is possible to successfully detect multiple anomalies

within the time series. This proves the applicability of the pro-

posed algorithms for linear and nonlinear time series.

Sensitivity analysis of global anomaly detection via
entropy

If the signal strength s is varied, a comparison of the entropy
of all cross-sections can be conducted. The signal-to-noise

ratio is defined as follows

S=N =
max
i2N

s � yið Þ

ŝx

ð40Þ

Therefore, the significance of the anomaly detection is

validated by the evaluation of the entropy using varying S=N

ratios in Figure 4.
Figure 4 shows that the empirical entropy of feature x2

starts to differ significantly from the theoretical entropy of a

pure noise scenario at S=N’0:75. The entropy of feature x1

and the time measurement are unchanged since no unknown
influences conceal these measurements. This analysis shows

precisely in which feature the unknown influence is detected
and therefore helps to identify the relevant features for an

anomaly cause analysis. This enables an easier problem iden-

tification and correction of the prediction function f̂ (xi). The
algorithm is also capable of detecting unknown influences

with a signal strength lower than the noise in some cases, as

well as identifying the related feature.
For different amounts of executions of the time series N

and varying signal-to-noise ratios S=N , different sensitivities

of the anomaly detection are measured using a constant

a= 0:01. The results are listed in Table 1. In the cases of

Figure 1. Delta between measured and expected values of feature x1

and x2 in a sample run with N= 1000 executions of function f and a

signal strength of s= 0:02.

Figure 2. Theoretical noise density distribution and empirical density distribution of state i and i+ 1 for the exemplary time series with N= 1000

executions of function f and a signal strength of s= 0:02 using K= 19319 bins. (a) Empirical density distribution and (b) noise density distribution.
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small signal-to-noise ratios, even a Fourier transformation

often fails to visually separate the underlying sine wave. The

analysis shows that the proposed algorithm is capable of

detecting global anomalies in the case of small signal-to-noise

ratios. Therefore, the model is recommended in practice in

order to find small anomalous signals in a large sample size

or large signals in a small sample size.

Use case: Evaluation of numeric
predictors for satellite orbits

Orbital mechanics

Since satellites follow an easy to predict path using physical

models, that is, newton mechanics, they also have a predic-

tion and a measurement process, which is necessary for imple-

menting our proposed method. Furthermore, satellites follow

an elliptic path in orbit and are therefore not a linear system.

In order to demonstrate the proposed method, satellite data

already researched by Puente et al. (2021) and provided by

the International Data Analysis Olympiad (IDAO, 2020) are

used. The data are given for the period of January 2014 for

600 satellites. The previous research makes the data set a
good choice for benchmarking and comparison.

First, the physical models need to be set up. The main
information in the data set are the coordinates of the satellites
along the x, y, and z-axis. Since the data are analyzed by
Puente et al. (2021) and also provided in cartesian coordi-
nates, we do not transform them into the more commonly
used polar coordinates. Besides the coordinates, the velocity
along these coordinates is given.

Each satellite has a specific radius r(t)= (x(t), y(t), z(t))T

from Earth (the origin of the coordinate system) at each time.
The velocity along the radius is given as v(t)= (vx(t),
vy(t), vz(t))

T . The gravitational constant G = 6:674 3 10�20

km3
	
ðkg � s2Þ and the mass of earth M = 5:972 3 1024 kg are

treated as parameters. The mass of the satellite and its gravi-
tational force are neglected. Also, Earth is assumed to be a

point mass. The first-order differential equations are given as
follows

_r tð Þ= v tð Þ ð41Þ

_v tð Þ=� GM
r tð Þ
r tð Þk k3

ð42Þ

A common solver for these differential equations is the
Euler method or the Runge–Kutta method of order 4 (RK4).
The RK4 and Euler method use first-order differential equa-
tions. As an additional solver, a LSODA method, a variant
with automatic method selection of the Livermore Solver for
Ordinary Differential Equations (LSODE), as implemented by
Hindmarsh (1983) is used as a very precise predictor of the orbits.

Derivation of applied predictions

The Euler method is the historic way to calculate orbits and

is the simplest of the family of Runge–Kutta methods, but it
therefore has a high error-proneness for computing the orbits.
The prediction of the velocity for step i+ 1 using step i is
given by

vi+ 1 = vi � GM
ri

rik k3
� h ð43Þ

Figure 3. Identified outliers of feature x2 in a sample run with N= 100

executions of function f and a signal strength of s= 0:02.

Figure 4. Mean theoretical and measured entropy for feature x1 and x2

for varying S/N ratios with S= 100 samples and N= 1000 executions of

function f .

Table 1. Sensitivity analysis of the proposed algorithm using varying

sample sizes N and signal-to-noise ratios S=N for a constant a= 0:01.

Sample size N

S=N 30 50 100 300 500 1000

0.2 20% 20% 16% 16% 26% 12%

0.4 20% 22% 18% 18% 30% 28%

0.6 24% 24% 24% 24% 28% 62%

0.8 22% 28% 36% 36% 52% 84%

1.0 18% 22% 32% 68% 82% 98%

1.2 20% 32% 48% 86% 98% 100%

1.4 30% 30% 60% 96% 100% 100%

1.6 34% 48% 92% 100% 100% 100%

1.8 42% 60% 92% 100% 100% 100%

2.0 64% 78% 92% 100% 100% 100%
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The prediction of the radius uses the prediction of the

velocity

ri+ 1 = ri + vi+ 1 � h

= ri + vi � GM
ri

rik k3
� h

 !
� h

= ri + vi � h� GM
ri

rk ki
3
� h2

ð44Þ

The deviations are calculated so that the full theoretical
covariance matrix is constructed. As an example and to keep

the covariance matrix smaller, only the x-coordinate is
checked for anomalies while the error in time is neglected.

Thus, the theoretical covariance matrix Stxi
of the Euler

method for approximating the orbits is as follows

Stxi
=

s2
x +A �B

�B s2
x +A

� �
ð45Þ

with

A= 1+
GM 2x2

i � y2
i � z2

i

� �
h2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
i + y2

i + z2
i

p 5

 !2

s2
x

+
3GMxiyih

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i + y2
i + z2

i

p 5

 !2

s2
y +

3GMxizih
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
i + y2

i + z2
i

p 5

 !2

s2
z + h2s2

vx

ð46Þ

B= 1+
GM 2x2

i
�y2

i
�z2

ið Þh2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i
+ y2

i
+ z2

i

p 5

� �
s2

x ð47Þ

The theoretical covariance matrix of the velocity is given
as follows

Stvxi
=

s2
vx
+C �s2

vx

�s2
vx

s2
vx
+C

� �
ð48Þ

with

C =
GM(2x2

i � y2
i � z2

i )hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i + y2
i + z2

i

p 5

 !2

s2
x

+
GM(2y2

i � x2
i � z2

i )hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i + y2
i + z2

i

p 5

 !2

s2
y

+
GM(2z2

i � x2
i � y2

i )hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i + y2
i + z2

i

p 5

 !2

s2
z +s2

vx

ð49Þ

The theoretical covariance matrix is used to compute the
theoretical noise density distributions, which is compared with

the empirical density distribution in order to spot anomalous

behavior in the x-coordinate.
A more precise method is the Runge–Kutta method of

order 4. Therefore, the RK4 is used in comparison to the

Euler method. The difference between the theoretical noise
density distributions and the measured empirical density dis-

tribution of the Euler method is assumed to be greater than
in the case of the RK4 method, marking the RK4 as a more

viable prediction method. For a defined time step h, the RK4

coefficients for predicting ri+ 1 are given as follows

V1r
ri, við Þ= vi

V2r
ri, við Þ= vi +

h
2

V1v

V3r
ri, við Þ= vi +

h
2

V2v

V4r
ri, við Þ= vi + hV3v

ð50Þ

V1v
ri, við Þ=� GM ri

rk ki
3

V2v
ri, við Þ=� GM

ri +
h
2
V1r

ri +
h
2
V1rk k3

V3v
ri, við Þ=� GM

ri +
h
2
V2r

ri +
h
2
V2rk k3

V4v
ri, við Þ=� GM

ri + hV3r

ri + hV3rk k3

ð51Þ

This results in predictions of the state i+ 1 depending on

only ri and vi as follows

ri+ 1 = ri +
h

6

V1r
ri, við Þ+ 2V2r

ri, við Þ+ 2V3r
ri, við Þ+V4r

ri, við Þð Þ
ð52Þ

vi+ 1 = vi +
h

6

V1v
ri, við Þ+ 2V2v

ri, við Þ+ 2V3v
ri, við Þ+V4v

ri, við Þð Þ
ð53Þ

Either the theoretical covariance matrix of these predic-

tions is computed or the noise is simulated S-times by adding
a random normal-distributed ei;N (0,s2) to ri and vi and

calculating the resulting predictions as a comparison base. In

both cases, an exemplary density distribution is computed

and compared with the empirical density distribution. As an
alternative method for computing more complex numeric pre-

dictions, the deviation of the prediction function for feature j

can be locally estimated using an infinitesimal change Dqij of
feature j as follows

∂

∂qij

f̂ qið Þ’
f̂ qi + ej � Dqij

� �
� f̂ qið Þ

Dqij

ð54Þ

By evaluating the prediction using the numeric solution at

an infinitesimal change, the resulting values are used to con-

struct the theoretical covariance matrix. This estimation is
used for computing the theoretical covariance matrix of the

LSODA predictions.
For real-time applications using Algorithm 2, a full calcu-

lation or estimation of the covariance matrix is necessary,

while for those using Algorithm 1, an amount of sample runs
under noise is sufficient.

Evaluation and comparison of prediction methods for
satellite orbits

The satellite orbits are assumed to be quite anomalous since

the simple two-body problem as presented in equations (41)

and (42) does not include other astronomical objects, that is,
the moon and the sun, as well as man-made satellites and
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other objects within Earth’s orbit. Furthermore, it assumes

that Earth is a point mass and neglects any relativistic effects.

Since it is expected that the proposed method will find anoma-

lies quite easily and that these anomalies can even be spotted

by a visual comparison of the delta values without further

analysis, the evaluation is rather a comparison of the precision

of the Euler method prediction, the RK4 prediction, and the

prediction using LSODA. This is achieved by applying the

Wasserstein metric between the empirical and theoretical (or

by equation (54) estimated) density distributions for each pre-

diction and comparing the resulting distances. It is assumed

that the Euler method performs worst and the LSODA pre-

diction best. Also, the more stable the orbit is, the better the

predictors are.
Two satellite orbits with ID 1 and ID 2 are analyzed in

detail. The orbit of satellite 1 is quite unstable and is subject

to strong other effects besides Earth’s gravity and satellite 2 is

stable in its orbit around Earth. A visualization of the first 30

and last 30 orbits after the measurements in January is given

in Figure 5(a) and (b). It is easily visible that the orbits of sat-

ellite 1 are very different after the time frame, while the orbits

of satellite 2 are still overlapping.
Equation (45) is used for the calculation of the noise cov-

ariance matrix in the case of the Euler method. Equation (54)

is applied for the estimation of the noise covariance matrix of

the RK4 method and LSODA. For a better visualization,

only the prediction of the x-coordinate is discussed. However,

an analysis of the other coordinates is also applicable and

produces the same results and derivations. The variance is

estimated for the position coordinates as sx’0:3 km and for

the velocity as svx
’5 3 10�5 km=s. The estimation of the var-

iance takes the precision of the given data as well as the mean

derivation of the predictions into account.

Even for the stable satellite orbit 2, the deviations between

measurement and predictions are important and visible

without further analysis within the data only by observation

of the empirical density plots. The difference between pre-

dictions and measurements of RK4 and LSODA are within

the same magnitude as the noise of the theoretical covar-

iance matrix. The difference between predictions and mea-

surements of the Euler method are, as assumed, multiple

times the magnitude of the noise. The evaluation is plotted

using the density distribution histograms. The histograms

for satellite ID 2 are given exemplary for the RK4 in

Figure 6. The empirical density distribution again highlights

the necessity of using histogram bins and the Wasserstein

metric since the covariance matrix would not fully encom-

pass the complexity of the distribution.
By applying the proposed anomaly detection, all predic-

tion methods would be classified as anomalous. Since it is not

relevant in this case whether an anomaly is present but rather

which prediction method is a better predictor, the Wasserstein

metric is applied using the implementation by Flamary et al.

(2021) with the sliced 2D Wasserstein metric by Bonneel et al.

(2015) to determine which prediction is the most precise. The

results are given in Table 2.
The results of the metric are as expected, with the excep-

tion that the Euler predictor performs more precisely in the

unstable orbit of satellite 1 than in the stable orbit. This might

be the result of the worse performance of the Euler method in

orbits with high eccentricity since satellite 2 has a less round

shape with a higher eccentricity. For the LSODA and RK4,

the predictor performs better for the stable orbit. In addition,

the analysis suggests that the LSODA performs better than

the RK4 method, while the Euler method performs signifi-

cantly worse than the other methods. This result is no surprise

Figure 5. Orbits of satellites with ID 1 and 2 using cartesian coordinates in kilometers of the first and last 30 observations. Earth is at point (0, 0,

0). (a) Satellite orbit of satellite ID 1 and (b) satellite orbit of satellite ID 2.
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since the Euler method is a Runge–Kutta Method of order 1

and therefore lacks the precision of a higher order method.

Also, the RK4 is considered a less precise method than the

more advanced LSODA predictors, which is reflected by our

results. A reason for the worse performance of the RK4 are

some very high outliers of the x-coordinate at the vertex

points. To summarize, the Wasserstein metric enables a mea-

sure to evaluate predictors of an applied model.

Discussion

The use case and simulation study show the capabilities of

our proposed methodology. However, some limitations exist.

First, the expected function f̂ of the operation must be a

smooth function or always differentiable. This would not be

the case for a sawtooth signal. In non-differentiable regions

of the function, problems would arise in determining the theo-

retical covariance matrix of the measurement noise. However,

the method would still be applicable in differential regions.
Second, the measurement noise must not be so large that

the true operation is completely obscured. In this case, the

model would be insufficient to obtain information about the

true operation. The focus in the application would then be to

first eliminate the measurement noise or to increase the num-

ber of samples.

Third, the runtime scales linearly with the number of sam-

ples N , but with smaller S=N ratios the required samples

become larger by a factor of 10S=R. Therefore, a large sample

size might be needed for very small signals, which increases

the runtime. In general, a larger sample size improves the

quality of the analysis.
Fourth, a prediction function f̂ is necessary. If there is no

model-based prediction function, the model can be applied

analogously to any type of prediction function and combined

with any forecasting or prediction processes, for example,

AR(1) processes. Thereby, prediction processes can also be

applied in nonlinear contexts. If the model size is extended

from an AR(1) process to several past influences with an

AR(q) process, the analyzed pairs x̂i+ 1, x̂i increase linearly to

the model size M to x̂i+M , :::, x̂i. The computation of the cov-

ariance matrix is analogous.
As a main difference to other methods, this contribution

focuses on the prediction function as the subject of interest

for anomaly detection and thus, error correction. Therefore,

our proposed method emphasizes the validation of a system

model using a measurement and prediction process. This

model can be based on physical properties and derived differ-

ential equations but also on, for example, autoregressive mod-

els. It is not discussed nor are the cases differentiated within

our method, whether the cause for differences between predic-

tion and measurement is explained by inaccurate predictions

or external factors creating an anomaly.
The procedure is able to precisely detect unexpected influ-

ences in the operations of a system and to assign them to the

corresponding features and operation. No assumptions have

to be made about the underlying distribution, and the neces-

sary parameters are relatively easy to estimate in order to

initialize the model. In addition, the approach is unsupervised

and does not require any prior analysis of the results or a

labeling of data points. However, the methodology assumes

modeling and thus knowledge of the normal or expected sys-

tem state. A further advantage is that the covariance matrix is

Figure 6. Theoretical noise density distribution and empirical density distribution of the x-coordinate between measurement i and i+ 1 of satellite

ID 2 for the RK4 method. (a) Empirical density distribution and (b) noise density distribution.

Table 2. Evaluation of the satellite orbit predictions of ID 1 and 2 using

the 2D sliced Wasserstein metric by Bonneel et al. (2015).

Applied prediction method

Object Euler method RK4 method LSODA

Satellite ID 1 832 6 25 5.25 6 0.03 1.003 6 0.002

Satellite ID 2 1796 6 71 5.07 6 0.03 0.711 6 0.006
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computed analytically and no estimation with a prior cluster-

ing is necessary. This improves the real-time detection of out-

liers in time series with prior known prediction functions since

the Mahalanobis distance is a well-researched and tested mea-

sure for outlier detection. In comparison to other models, this

enables a global and local anomaly detection and a model

identification process.

Conclusion

This work contributes to performing predictive anomaly

detection more efficiently since the analysis is conducted with-

out a clustering or other estimations, except a prior knowl-

edge of the prediction function. Moreover, a contribution

could be made especially for anomaly detection in nonlinear

systems for which many of the conventional methods of pre-

diction formation and anomaly detection have limitations.

Furthermore, the systematic evaluation of prediction func-

tions is an important task for practitioners setting up and

controlling complex dynamical systems. Therefore, a main

contribution of our approach is that it provides a useful mea-

sure to compare prediction functions using the Wasserstein

metric, enabled by the analytically derived covariance matrix

and the distribution of deltas via a histogram.
Through the knowledge of the unexpected states in a sys-

tem and the affected features, a system engineer is subse-

quently able to transfer the unexpected states into a

prediction formation to perform better simulations. Thus, the

proposed anomaly detection and prediction evaluation

improve the prediction formation in dynamical and nonlinear

systems. Further research regarding possible applications

within engineering and a benchmarking of the performance in

different use cases compared to other models and algorithms

for time series needs to be conducted. In addition, we want to

analyze the possibility of using the information about the

existence of an outlier or a global anomaly in the time series

in order to develop a methodology to systematically improve

the prediction function and, therefore, improve the capability

of a system engineer to run simulations.
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