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Abstract
A number of studies have investigated the large-scale drivers and upstream pre-
cursors of extreme weather events, making it clear that the earliest warning
signs of extreme events can be remote from the impacted region in both time
and space. Integrating and leveraging our understanding of dynamical precur-
sors provides a new perspective on ensemble forecasting for extreme events,
focused on building storylines of possible event evolution. This then acts as a tool
for raising awareness of the conditions conducive to high-impact weather and
providing early warning of their possible development. However, operational
applications of this developing knowledge base are limited, perhaps for want of a
clear framework for doing so. Here, we present such a framework, supported by
open software tools, designed for identifying large-scale precursors of categori-
cal weather events in an automated fashion and reducing them to scalar indices
suitable for statistical prediction, forecast interpretation, and model validation.
We demonstrate this framework by systematically analysing the precursor circu-
lations of daily rainfall extremes across 18 regional- to national-scale European
domains. We discuss the precursor rainfall dynamics for three disparate regions,
and show our findings are consistent with, and extend, previous work. We pro-
vide an estimate of the predictive utility of these precursors across Europe based
on logistic regression, and show that large-scale precursors can usefully predict
heavy rainfall between two and six days ahead, depending on region and season.
We further show how, for more continental-scale applications, the regionally
specific precursors can be synthesised into a minimal set of indices that drive
heavy precipitation. We then provide comments and guidance for generalisation
and application of our demonstrated approach to new variables, timescales, and
regions.
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1 INTRODUCTION

Understanding the conditioning of extreme weather on
the large-scale flow, both locally and upstream, promises
a path to improved guidance for extreme event forecast-
ing and identifying windows of forecast opportunity.
As examples, high rainfall over North Italy is driven
by Rossby-wave trains with North American origin
(Grazzini & Vitart, 2015), while Atlantic wave breaking
favours Alpine heavy precipitation (Barton et al., 2016;
Martius et al., 2008), and atmospheric regime variability
modulates both alpine serial cyclone clustering (Barton
et al., 2022; Tuel et al., 2022) and European atmospheric
river occurrence (Pasquier et al., 2019). Localised temper-
ature and wind extremes are also often associated with
hemispheric variability, as revealed by recent studies on
compound heatwaves (White et al., 2022), links between
cold spells and storm damage (Messori et al., 2016),
and the well-documented link between sudden strato-
spheric warmings and surface cold extremes, modulated
by the tropospheric flow (Beerli & Grams, 2019). Even
in state-of-the-art forecast systems, skill in predicting
extreme precipitation, for example, rarely extends even a
week ahead (Gascón et al., 2023; Leon, 2023), limiting the
mitigation strategies available to policy makers and indus-
try stakeholders. However, as forecast skill takes longer
to decay at larger spatial scales (Lorenz, 1969), large-scale
“event-prone” precursors—which may take the form of
particular tropospheric circulation patterns or anomalies
in slow-varying earth system modes—can be expected to
be more predictable than the extreme events themselves.
As small-scale processes, long-range teleconnections,
and orography are imperfectly represented in models,
there is no guarantee that a model will always convert
the large-scale conditioning successfully into a surface
extreme. However, if the conditioning of an extreme event
on a large-scale precursor is sufficiently large—that is,
P(event|precursor)∕P(event)≫ 1—then precursors can
be used to offer quantitative improvements in forecast
skill by using forecasts of precursors to infer the surface
extreme statistically.

Qualitatively, a dynamical precursor perspective raises
awareness of the necessary conditions for an extreme
event, rather than focusing on raw model output. This is
useful for building forecast storylines, highlighting impor-
tant dynamical steps during the unfolding—or not—of
an extreme event, a perspective that is already employed
for climate projection (Shepherd et al., 2018). As these
precursors often occur well before the extreme itself and
may be tied to predictability barriers (González-Alemán
et al., 2022; Oertel et al., 2023), such an approach can help
explain “jumpiness” in situations of high forecast uncer-
tainty, increasing end-user trust (Richardson et al., 2020).

Despite these advantages and the demonstrated value
of local flow features in models to predict mesoscale
events (Cafaro et al., 2019; Ferrett et al., 2023), there has
been relatively little operational use of large-scale flow
precursors thus far to improve operational forecasts. One
notable exception is the use of regime approaches (Ferranti
et al., 2015), which have been shown to boost precipita-
tion forecast skill (Mastrantonas et al., 2021). Here, the
approach is typically top-down; regimes are identified
in large-scale fields such as geopotential height and the
impacts on surface weather in each regime are diagnosed
(Grams et al., 2017; van der Wiel et al., 2019). Other
large-scale modes such as the Madden–Julian Oscillation
(MJO), El Niño–Southern Oscillation (ENSO), or strato-
spheric polar vortex are also integrated into statistical
modelling, especially at seasonal lead times, but are less
commonly employed in the extended range. Bottom-up
regime approaches exist, as in Bloomfield et al. (2021),
which look for the dominant flow regimes that explain
the most variability in variables of interest (in Bloomfield
et al., energy generation). Of course, there is no guaran-
tee that any pre-established dominant variability modes
project cleanly upon a generic extreme event. In fact, if
such an event is comparatively rare, as an extreme is by
definition, then any predictability coming from dominant
variability modes must necessarily be highly diffuse and
associated with only minor modifications in occurrence
probability. AghaKouchak et al. (2022), in the context of
drought prediction, advocated for the bottom-up, event-
centric approach of identifying the precursors of specific
event types, rather than “thinking platonically”, that is,
thinking in terms of idealised modes of variability.

In this article, we lay the groundwork needed to make
bottom-up eventcentric precursor analysis a routine tech-
nique in the toolbox of the operational meteorologist, the
applied scientist, or the forecast end user. In Section 2,
we introduce our analysis framework for identifying use-
ful precursors, “Domino”,1 supported by a corresponding
Python implementation, a fully documented application
programming interface (API), and clear worked examples
of different use cases.

In the rest of the article, we apply this new framework
to analyse the precursors of daily rainfall extremes across
Europe. Extreme weather events in Europe are respon-
sible for billions of euros in economic damage and the
loss of hundreds of lives every year (EEA, 2022; Hunt &
Watkiss, 2011), with 40% of these deaths between 1950 and
2006 being a result of flash floods. Such short-timescale
and spatially localised rainfall extremes are particularly
challenging to forecast. Our analysis serves as a demon-
stration of the precursor approach, but also, by providing
the first systematic analysis of national-scale precipitation
drivers, as an end in its own right.
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DORRINGTON et al. 3

In Section 3, we discuss the data and event defini-
tions used, the 18 spatial regions we choose, and our
selection of Domino parameters. In Section 4, we will dis-
cuss the precursor dynamics of three archetypal regions:
North Italy, West Iberia, and North Europe, which cover
Mediterranean, Atlantic, and continental climates respec-
tively, and demonstrate consistency with prior knowledge
as well as noting a number of more novel observations.
In Section 5, we will analyse the large-scale precursor
patterns in wind, geopotential height, and vapour trans-
port derived for all 18 regions, and discuss commonalities
and variations. We will estimate the predictive skill of
these precursors using logistic regression and investigate
regional and seasonal differences. In Section 6, we show
how the regionally specific precursor indices we have
computed can be synthesised for larger scale considera-
tions into a minimal set of European rainfall modes using
partial least-squares regression and use these to charac-
terise regional variations in rainfall dynamics. Finally, in
Section 7, we discuss our conclusions and provide sugges-
tions for the generalisation and extension of this work and

how the framework can best be used for directly applied
work.

2 DOMINO

The aim of the Domino framework is to identify auto-
matically the predictive precursors of categorical,
meteorological events. Comprehensive documentation
and discussion of the full range of workflow parameters
and customisation options can be found in the Domino
github repository.2

In Section 3, we define concretely the parameters and
analysis used in this article for our proof-of-concept appli-
cation to European extreme rainfall, while in this section
we summarise the general purpose and motivation behind
each analysis step.

The framework, sketched schematically in Figure 1,
is based on two types of input: “events”, defined as a
categorical time series indicating the class of event at
each time step, and “variables”: time series of candidate

F I G U R E 1 A schematic diagram of the Domino workflow. Inputs are shown in green boxes, key analysis steps in white diamonds,
output datasets in blue boxes, and different applications that could make use of output data are indicated by red ovals. See accompanying
main text for full description. Graphics show visual examples of each data type.
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4 DORRINGTON et al.

precursors that may play a role in influencing the event
and may be time series of scalars, vectors, fields, or
higher-dimensional variables. This has similarities to the
“large scale meteorological pattern” approach of Grot-
jahn et al. (2016), which uses nonlocal composites to
improve climate projections of North American heat
extremes. Our overarching goal is to provide a simple
workflow that can replicate, semi-automatically, previous
analyses of extreme event precursors, and convert the
results into a form that can be used for event prediction.
In this way we aim to operationalise current academic
insights and streamline the process of obtaining new
insights.

1. Compute lagged composites. Implemented via the
LaggedAnalyser class, time-lagged composites of the
input variables are calculated with respect to each
event category. Lag-dependent background states
and/or seasonal cycles can be computed and sub-
tracted. Synthetic event time series can be provided
or generated automatically to serve as the basis for
bootstrap significance testing. As such compositing
approaches are a valuable analytical tool used in many
studies of extreme event precursors, long-range tele-
connections, and atmospheric dynamics, we anticipate
that the clean, efficient implementation provided here
will be of interest to many geoscientists.

2. Refine precursor patterns. Implemented via the Pat-
ternFilter class, a number of filters can be applied to
precursor composites of multidimensional variables,
iteratively building a Boolean mask which can be used
to focus on features of interest. The motivation is to
replicate in an automated way the subjective assess-
ment of interesting features a scientist might make
when looking at a composite field. Functions provided
include filters for large-amplitude, spatially extended,
and statistically significant patterns.

3. Generate precursor indices. Implemented via the Index-
Generator class, each precursor pattern can be reduced
to scalar time-series of “precursor activity”, by pro-
jecting anomaly fields onto the masked pattern. Such
indices are the automatically generated, eventcentric
equivalents of, for example, the well-known North
Atlantic Oscillation (NAO), Quasi-Biennial Oscillation
(QBO), or nino3.4 indices, defined as spatial aver-
ages or differences of spatial averages over particular
regions, which provide a valuable scalar summary of
important Earth-system variability. As well as comput-
ing precursor activity indices from scratch, updating
an index using new variable time series and precom-
puted composites is supported, making it easy to cal-
culate online updates of index time series or project
indices into a different dataset, such as in model data.

Although not explored in this work, there is poten-
tial for using these indices to validate the eventcentric
dynamics of models in much the same vein as model
assessments of ENSO (Fredriksen et al., 2020) and the
NAO (Simpson et al., 2020).

4. Evaluate index predictivity. Implemented via the Pre-
dictionTest class, this step provides an estimate of the
predictive power of scalar indices for a categorical
event. Uni- or multivariate combinations of predictor
indices can be specified, as can the statistical model to
use, the cross-validation strategy, and the skill score of
interest. This can be used for feature selection, allow-
ing for a subset of most predictive indices to be taken
forward for additional analysis, or, as in this article,
to compare the predictability of precursors in different
regions and seasons.

5. Reduce index dimensionality. Implemented via the
PLSR_Regression class, a set of scalar indices can
be reduced to a lower-dimensional set via partial
least-squares regression (PLSR), a statistical model
that maximises the covariance between the reduced
modes and a set of target variables. In this way, we can
reduce the dimensionality of our scalar indices in an
event-focused way which is well suited to prediction
problems. This auxiliary functionality is useful in spe-
cific cases where precursors are desired that balance
predictive power over different event types or across
regions, as discussed in Section 6. The output PLSR
modes can then also be passed to PredictionTest, just
as can any other scalar index.

The software implementation is built on top of the
popular Python package xarray (Hoyer & Hamman, 2017),
which provides support for metadata rich, multidimen-
sional array manipulation. Domino makes heavy use of
its DataArray and Dataset classes to store and process
data, which supports conversion both to and from Pandas
Dataframes and iris Cubes, providing cross-compatibility
with a range of data pipelines. Implementations of logis-
tic regression and PLSR are taken from scikit-learn
(Pedregosa et al., 2011). Via xarray, much of the work-
flow supports parallel and lazy computation via Dask
(Rocklin, 2015), allowing large datasets to be processed
quickly.

In this article we focus on the case in which the
events have two classes—for example, the occurrence or
not of extreme rainfall—but all the algorithmic steps of
Domino apply equally to multiclass applications; terciles,
deciles, events of multiple type, and so forth. Here we
only apply Domino to precursors that are 2D continuous
latitude–longitude (lat–lon) fields, but arbitrary dimen-
sioned continuous precursors can be handled, as can cat-
egorical scalar precursors. In the latter case, occurrence
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DORRINGTON et al. 5

F I G U R E 2 18 regions used in this
article to define spatially aggregated
precipitation extremes. Regions are based
on catchment data taken from Lehner
and Grill (2013), with modifications to
account for orographic impacts on the
prevailing circulations.

frequency for each category is computed automatically
instead of a mean composite.

3 DATA AND METHODS

3.1 Data

Both events and precursors are identified in ERA5
reanalysis data (Hersbach et al., 2020) over the 43-year
period 1979–2021. Precipitation data were downloaded as
three-hourly accumulations at 0.25◦ resolution, and then
accumulated to daily data. Four candidate precursor fields
were chosen: 500-hPa geopotential height (Z500), 850-hPa
zonal wind (U850), 300-hPa meridional wind (V300),
and the magnitude of column-integrated vapour trans-
port (IVTmag). These example fields were chosen to cap-
ture the large-scale circulation at a range of tropospheric
heights. Each was downloaded as 1200 instantaneous data
at 1◦ resolution.

3.2 Region definition

Spatially averaged daily rainfall was defined as
cosine-latitude weighted averages of precipitation over
each of the 18 European regions shown in Figure 2.
The boundaries for these regions were based on
the HydroSHEDS drainage-basin product (Lehner &
Grill, 2013), which avoids the mixing of hydrologically
distinct areas that would result from a simple box-average
approach. Basins were in some cases merged or split in a
subjective fashion based on meteorological considerations

such as the position of mountain ranges and prevailing
winds, or to merge very small regions. The areas, chosen to
demonstrate the Domino workflow, are not of equal area
or population and so are therefore not optimised for direct
application. Rather, they serve to cover the majority of
Europe collectively in a way that respects the underlying
hydrometeorology, and the analysis of their precursors can
then inform further studies of particular refined regions.

For each season and region, a categorical heavy rainfall
event time series was computed. Events were defined as
daily accumulated rainfall exceeding the region’s seasonal
90th percentile. This relative definition ensures an equal
number of samples in all samples and regions, with the
drawback that in some cases such events will not always
be high-impact. Supplementary Figure S1 shows the exact
threshold for each case and region.

3.3 Precursor computation

The specifics of how precursor patterns and activity indices
were computed are detailed here, and are accompanied
by a schematic (Figure 3). Each of the precursor variables
(Z500, IVTmag, U850, and V300) was restricted to the
extended north Atlantic region [20N–80N,140W–100E]
and deseasonalised at a gridpoint level, by calendar date:
the mean value of each variable on the same day of the year
over the period 1979–2021 was smoothed with a 30-day
rolling mean and subtracted from the daily fields.

For each season and region, lagged mean composites
of the precursor variables were computed at daily lags
from 7 to 0 days before the corresponding heavy rain-
fall event series. As heavy rainfall events were defined as
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6 DORRINGTON et al.

F I G U R E 3 A schematic indicating how lagged composites are transformed into precursor patterns and then into precursor indices,
demonstrated for SON IVTmag precursors two days prior to North Italian extreme rainfall events. The initial lagged composite is masked
based on statistical significance, anomaly amplitude, and spatial extent of unmasked regions, then padded with a five-point 2D convolution.
A dot product between this pattern and the daily IVTmag anomaly field discriminates between days that closely resemble the precursor flow
and those that do not. When applied to all days in the IVTmag dataset, this dot product defines a daily precursor activity index, which is
standardised. The three daily fields used as examples are marked with red dots in the resulting precursor activity time series.

exceedance of the 90th percentile threshold in each case,
this represents composites of 385–395 individual days.

The statistical significance of precursor anomalies was
assessed via a bootstrap approach. To account for autocor-
relation on heavy rainfall days, 400 synthetic event indices
were generated by fitting a Markov chain to the observed
event series and resampling from it. Composites of each
variable were computed with respect to each synthetic
event series, and significance was defined on a gridpoint
basis as a value below/above the 10th lowest/highest boot-
strap composite (two-sided p = 0.05). A Holm–Bonferroni
correction was then applied to each variable and lag sep-
arately (Holm, 1979), to reduce the false-positive rate.
Composites at all time lags were compared with a single
set of bootstrap composites computed at lag 0 for reasons
of computational efficiency. This amounts to assuming
an approximately stationary climate over a 10-day period,
which is reasonable.

Lagged composites are transformed into “precursor
patterns” by applying a number of filters to the Boolean
significance field and then using this to mask the com-
posite. This procedure results in statistically robust spatial
anomaly patterns with large amplitudes, smooth edges,
and without isolated unmasked points. Concretely, in
addition to masking gridpoints with statistically insignif-
icant anomalies, gridpoints with anomalies < 0.25 times
the gridpoint climatological standard deviation were
masked. Groups of unmasked gridpoints that comprise a
connected area of less than 250,000 km2 (i.e., equiva-
lent to 20 1 × 1◦ equatorial gridpoints) were also masked.

Finally, all unmasked gridpoints were convolved with a
five-point lat–lon square: all gridpoints within 2 degrees of
an unmasked gridpoint were unmasked.

These precursor patterns are then used to compute
precursor activity indices, defined as a dot product com-
puted between each deseasonalised variable time series
and each corresponding precursor pattern, and then spa-
tially summed using cosine-latitude weighting. This pro-
duces a scalar precursor activity index, which is always
standardised to 0 mean and standard deviation 1.

3.4 Skill assessment

To characterise the potential predictability of heavy rain-
fall precursor activity indices, we use a logistic regression
approach. Stratifying by season, region, and precursor
variable, in each case our target variable is the correspond-
ing ERA5 Boolean heavy rainfall event index, where we
aim to predict the probability of an event occurring based
on one or more continuous predictors. The schematic
Figure 4 illustrates how this is done. For each time lag, sea-
son, region, and large-scale variable we have one precursor
pattern (Figure 4a). Each index is offset in time according
to its lag, that is, a four-day precursor index calculated
from data for January 1, 2000 will be used to predict for
January 5, 2000. We train a model for each lag l between
7 and 0 by using all precursor indices that have a lead
time ≤ l: thus the seven-day model is a univariate model
using only the lag 7 precursor index, while a one-day
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DORRINGTON et al. 7

F I G U R E 4 A schematic illustrating how the predictive power of precursor activity indices is estimated in a reanalysis framework. (a)
For each time lag, region, season, and variable a precursor pattern is defined. Each pattern corresponds to a time-varying activity index,
which captures the degree to which the current flow resembles the pattern, as shown in the right panel of Figure 3. (b) These indices co-vary
with rainfall to a greater or lesser extent. (c) We fit a logistic regression model with precursor indices for all lags ≥ l for a given season, region,
and variable, in order to predict categorical heavy rainfall occurrence, and quantify skill using the ROC AUC score (box plots show the
distribution of index values during heavy rainfall events or otherwise).

forecast uses all precursors except for the lag 0 precursor.
To cross-validate, each year of data was excluded sequen-
tially, and a logistic regression model was fitted to the
remaining 42 years to determine P(extreme|precursor).
This was then used to predict the occurrence of daily
heavy rainfall events in the excluded year. The probabilis-
tic (receiver-operating-characteristic area-under-curve)
ROC AUC skill score (Hanley & McNeil, 1982) was com-
puted for each cross-validation, and the mean value is
reported (the interquartile range is shown in Supple-
mentary Figures S3 and S4). This provides a much more
realistic estimate of the potential predictability achievable
by a perfect forecast than simply fitting a model to the
entire event time series. We do not account for autocorre-
lation in our categorical rainfall events, by, for example,
keeping only the first day of multiday rainfall events, as
this would reduce sample size by 26% on average across
regions and seasons, and we do not wish to penalise the
correct prediction of such multiday extremes.

3.5 Partial least-squares regression

Dimensionality reduction is a common task in atmo-
spheric data analysis, with principal component analysis
(PCA) being the most popularly used approach. PCA aims

to find the N-dimensional linear subspace of an initially
M-dimensional dataset, which captures the greatest
degree of variance. PLSR is similar in that it aims to reduce
dimensionality while maximising explained variance,
but now by finding the N-dimensional linear subspace
of an M-dimensional dataset X , which maximises the
cross-covariance with a second L-dimensional dataset Y .
That is, it estimates the low-dimensional projection of X
that is best at predicting the various target variables of Y .
For the mathematical formalism see Abdi (2010) and for
algorithmic implementation see scikit-learn (2023). It is
closely related to canonical correlation analysis, which has
been previously applied to meteorology by, for example,
Maldonado et al. (2013). For our example, we demonstrate
how PLSR can be applied to SON Z500 precursor patterns
for different regions and time lags, to obtain a minimal
set of modes that balances week-ahead heavy rainfall pre-
dictability across Europe. This is described in more detail
in Section 6.

4 DYNAMICS OF RAINFALL
PRECURSORS

Having discussed our approach and methodology in
general terms, we now apply precursor analysis to
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8 DORRINGTON et al.

F I G U R E 5 Precursor patterns 6, 4, 2, and 0 days before heavy rainfall events in (a) West Iberia, (b) North Italy, and (c) North Europe,
as a function of season and computed from ERA5 reanalysis data. Red-to-green shading indicates Z500 anomalies as shown by the colour bar.
Grey contours show full field Z500 for levels with 1e4 spacing between 5.2e5 and 5.7e5 m2 ⋅ s−2. Gold contours show V300 anomalies at
4 m ⋅ s−1 intervals ranging from −16 to 16 m ⋅ s−1, and excluding the 0 contour. Blue–purple shading shows positive IVTmag anomalies at the
50, 80, 110, and 140 kg m ⋅ s−1 levels. Arrows indicate anomalies of the U850 wind, and should be interpreted qualitatively.

European daily heavy rainfall extremes. We begin, in this
section, by analysing the multivariate precursor patterns
for North Italy, West Iberia, and North Europe. Figure 5
shows precursor patterns for the three regions, 6, 4, 2, and
0 days before heavy rainfall events and across seasons. For
each large-scale variable we have a unique precursor pat-
tern for each combination of time lag, season, and region.

Z500 precursors indicate the anomalous trough and ridge
structure associated with events, V300 the upper-level
wave dynamics, U850 the eddy-driven jet, and IVTmag
the role of anomalous moisture transport. Collectively they
therefore capture most of the important midlatitude driv-
ing dynamics and allow a holistic understanding of each
event type.
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DORRINGTON et al. 9

4.1 West Iberia

The “West Iberia” region consists of Portugal and coastal
Northern Spain, as well as the inland basins of the
Douro and Tagus rivers. Precursors extend further back
in time in this region than any other considered, as we
discuss in Section 5. In this mountainous domain, the
majority of rainfall occurs in autumn and winter (Mora
& Vieira, 2020) and, while summer rainfall is less fre-
quent and generally dominated by mesoscale processes,
the majority of June–July–August (JJA) coastal extreme
rainfall events are driven by atmospheric rivers (Ramos
et al., 2018). In March–April–May (MAM), snowmelt is
an important flood driver, which we neglect here. In gen-
eral, heavy daily precipitation in this region is known to
be dominated by the latitudinal shifting of the jet stream
which, when in its southerly state, can guide cyclones
and atmospheric rivers to this area (Ramos et al., 2015)
and is associated with the negative phase of the NAO
(Eiras-Barca et al., 2016; Salgueiro et al., 2013) and cut-off
lows to the west (Eiras-Barca et al., 2018).

This pre-existing knowledge is reaffirmed by the
large-scale West Iberian precursor patterns shown in
Figure 5a. Robust precursors extend back six days in
all seasons, demonstrating a substantial conditioning of
heavy rain events here on the upstream Atlantic state.
In December–January–February (DJF), precursors in the
Z500 and U850 fields indicate southerly jet deflection,
accompanied by a negative-NAO-like geopotential height
anomaly six days before a rainfall event. Both wind and
geopotential anomalies strengthen through to lag 0. This
extended persistence of the precursor flow is consistent
with the persistent, trimodal regime dynamics of the
wintertime Atlantic jet (Parker et al., 2019; Woollings
et al., 2010). From lag 4 onwards, a clear zonally oriented
IVT precursor emerges to the west of Iberia, indicating
increased atmospheric river frequency and the need for
not only a displaced jet but also anomalous moisture
transport to induce an extreme. While the U850 anomaly
is initially confined to the east Atlantic, a secondary
trough forms over the southeast United States from lag
6, inducing its own local U850 anomaly and a diagonally
oriented IVT precursor, which suggests a secondary mois-
ture source flowing from the west to the east Atlantic.
While the early precursors are predominately zonal, large
V300 anomalies emerging from lag 4 onward indicate
the formation of an upper-level trough over the domain,
possibly aided by wave-breaking, as discussed in (Santos
et al., 2018). In September–October–November (SON),
dynamics are similar, but less zonally symmetric, with
clearer upper-level wave features and a more confined
trough and associated deep ridge over the mid-Atlantic.
Here the role of the secondary cyclone is comparatively

more pronounced, perhaps a requirement given the over-
all weaker moisture transport associated with a weaker
low-level jet. In MAM and JJA there are less pronounced
large-scale precursors, but a substantial amount of nonlo-
cal conditioning can still be seen, including low pressure
over the United States, high pressure over Greenland, and
East Atlantic jet anomalies, as well as the high IVT anoma-
lies indicative of increased atmospheric river frequency.
The lag 0 Z500 precursor indicates that cut-off lows are
dominant in summer, while troughs are more common in
autumn, in agreement with Pino et al. (2016), who anal-
ysed the synoptics of the 24 most severe Iberian floods in
the past 150 years. The upstream trough over the Panhan-
dle, visible in U850 and Z500 precursors for SON and DJF
2–4 days prior to heavy precipitation, is also associated
with a recently uncovered pathway: Leeding et al. (2023)
have shown that DJF cold air outbreaks over this same US
region are associated with increased Iberian precipitation
0–5 days later, and that this trough pattern is associated
with further southward jet deflection. Our results suggest
that there may also be a role for this teleconnection in
SON, which has not previously been explored.

4.2 North Italy

The North Italian domain suffers from extreme flash
flooding events, which are heavily dependent on the
large-scale flow and Atlantic Rossby-wave activity
(Grazzini et al., 2020a; Grazzini & Vitart, 2015). Highly
mountainous and shielded from direct westerly flows by
the French Alps, southerly winds are needed to bring large
moisture transport into the region, necessitating some
level of upstream wave activity. The precursor patterns
(Figure 5b) reveal a sharp distinction between the nonlocal
conditioning of SON and DJF events, which stretch back
to lag 6, and MAM and JJA events, which only emerge
at lag 2. Despite this, precursor patterns for the nonwin-
ter seasons are qualitatively rather similar, all showing
zonally oriented wave trains with large-scale moisture
transport over Southern Europe. For SON, a pre-existing
weak ridge over the west Atlantic interferes constructively
with the upstream Rossby wave, which becomes clear by
lag 4 and is centred at ∼45N. From here the wave ampli-
fies and shows slow eastward movement. High IVT at lag
2 in the west Atlantic may indicate the increased occur-
rence of extratropical cyclones recurving northeast, which
can amplify wave growth and induce Mediterranean
cyclone development (Grams et al., 2011; Raveh-Rubin &
Flaounas, 2017). The trough to the west of Italy is fully
developed by lag 2, with an associated southern Euro-
pean IVT anomaly. Even in JJA, when convective rainfall
would be expected to dominate, high IVT over North Italy
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10 DORRINGTON et al.

is seen, likely as a result of unstable moist air from the
Mediterranean advecting and rising over steep orography,
as described by (Grazzini et al., 2020b). In DJF, the picture
is quite different, with precursors showing a Greenland
blocking/NAO− precursor pattern emerging, interact-
ing with an upstream wave train, and leading to a more
tripolar high-latitude circulation anomaly up until lag 2.
High geopotential heights around the European trough
indicate a cut-off structure, and there is a sharp decline
in the amplitude of the Greenland blocking anomaly on
the day of the North Italian extreme rainfall. This break-
down of the blocking and associated regime transition
implies elevated levels of wave breaking over western
Europe (Masato et al., 2012), which may aid in deepening
and localising the trough and hence amplifying southerly
moisture transport. For the North Italian case, these Z500,
V300, and IVTmag precursor indices have been shown in
Grazzini et al. (2023) to increase the predictive power of a
hybrid dynamical–statistical prediction model, indicating
a capability not only to reproduce the known dynamics,
but to transform them into a usable source of skill.

4.3 North Europe

The “North Europe” domain consists of the catchments of
the Ems and Weser rivers, as well as the northern portion
of the Rhine and Meuse catchments, including large parts
of Germany, eastern Belgium, and the northern Nether-
lands. In contrast to the other two domains considered in
this section, this domain, which excludes the German Alps
and the Ore mountains to the south and east respectively,
features relatively flat terrain and exhibits a more conti-
nental climate. Although the heavy rainfall threshold is
comparable in all seasons (6 mm⋅day−1), there are notable
seasonal variations in the precursor patterns (Figure 5c).
Without strong orographic constraints or direct coastal
exposure to Atlantic variability, significant precursors only
begin to emerge 4 days before rainfall events during DJF,
and only 2 days before in JJA and MAM. In DJF, an initial
subtropical ridge off the coast of Morocco develops into a
meridional dipole, with low geopotential height over the
North Sea and a intensified central low-level jet 4 days
prior to heavy rainfall. By lag 2 this anomaly strengthens,
with high IVT anomalies coincident with the jet, indicat-
ing an influx of Atlantic moisture into the region. At the
same time, upper-level wave activity becomes prominent,
with some possible indications of upstream forcing from
a weak wave-like geopotential anomaly over the United
States. By the day of the event itself, the V300 field shows
a quadrapole structure supporting strong moisture con-
vergence into the region. The low geopotential heights in
the precursor pattern are more diffuse than for the other

regions considered. As the domain is more isotropic, the
exact placement of weather features over the domain is
less strongly constrained, resulting in a greater “blurring”
of the precursor pattern. Indeed, cyclones impacting this
region are known to evolve along many disparate paths
(Hofstätter et al., 2018). A qualitatively similar, but less
robust, series of precursors is visible for MAM and SON,
with less large-scale conditioning.

Surprisingly, JJA rainfall events have quite extended
and remote precursor patterns, with a similar North
American low appearing 4 days prior, as was seen for
SON West Iberian rainfall events. This is followed by
the formation of a localised low over the UK, displaced
south compared with other seasons with an accompany-
ing upper-level wave visible at 2 days prior, possibly as a
result of downstream development. There is no accom-
panying southerly high geopotential height as in other
seasons, indicating a less zonal flow and a more localised
cut-off. The high-pressure precursor over Italy at 1 day
prior suggests that a Mediterranean source of moisture is
relevant, capturing the footprint of the rare but impactful
“Vb” cyclones (Hofstätter et al., 2018).

We have shown for three disparate European regions
that our automated precursor detection approach is able to
reproduce key insights from previous analyses of regional
extreme precursors, and via its systematic application we
have been able to discuss interseasonal variability fairly
comprehensively, in a way that enables intercomparison
between regions. The purported value of this approach
is that by conversion of precursor patterns into precursor
activity indices we will likewise be able to convert these
dynamical insights into improved event predictability.

In the next section, we will show that by converting
these precursor patterns into precursor activity indices
we can improve event predictability, and zoom out from
detailed consideration of a few case study regions to char-
acterise the predictive power of precursor indices for all
18 European regions. Equivalent plots to Figure 5 for all
regions can be found in the supplementary material.

5 EUROPEAN HEAVY RAINFALL
PRECURSORS AND PREDICTION

In this section we turn our attention to the precursor
activity indices that correspond to each precursor pattern,
and show that they have the potential to improve the pre-
dictability of heavy rainfall events. Without analysing fore-
cast data, which is the subject of future work, we estimate
a lower bound on predictive power by assessing the skill of
logistic regression models based on reanalysis precursor
indices alone for the prediction of heavy rainfall probabil-
ity in each region, as discussed in Section 3.1. Heuristically,
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DORRINGTON et al. 11

we consider a ROC AUC score > 0.6 to indicate some
useful amount of predictive power in a precursor.

By using a multivariate or nonlinear model, it is likely
that considerably higher skill could be reached, while
in a hybrid dynamical–statistical prediction framework
the predictive value will be closely tied to the forecast
model’s ability to identify precursors at extended lead
times, as will be discussed in further detail in Section 7.
In fact, for the specific case of North Italy, a hybrid
dynamical/machine-learning model leveraging these non-
local precursors has already been found to boost skill out
to day 10 (Grazzini et al., 2023).

For now, we proceed by analysing the univariate
logistic-regression-based ROC AUC of precursor indices in
the European regions shown in Figure 2. Figure 6a shows
the precursor skill averaged over seasons (for all seasons
for which a precursor pattern is defined) and showing
each region separately. As previous studies on extreme
event precursors have focused on targeted regions and
are often directed by specialist intuition that precursors
should exist, it is by no means obvious that extremes over
a generic region will or should have predictive long-range
precursors. Through our systematic multiregion analysis,
we are now able to comment on this point. There is sub-
stantial inter-regional spread in precursor skill; approxi-
mately double that of the seasonal spread. Differences are
largest at short lead times, with precursor skill between
regions converging at lags 3–5 and generally falling below
0.6 during this period.

It is interesting to consider the worst-case scenarios,
that is the regions with the lowest skill for each lead time
and variable. The regions with the least skilful precursors
nevertheless show ROC AUC above 0.7 for day 0 precur-
sors, and maintain non-negligible skill for Z500, U850, and
V300 out to lag 2. These least predictable regions are in
all cases one of CZ and NE_Europe (see Supplementary
Figure S2 for a more detailed presentation), both of which
are isolated from the upstream Atlantic flow. Many regions
show much greater precursor skill and in the best cases
there are indications that even lag 5 precursors have useful
levels of skill.

Summarising another way, Figure 6b shows the ROC
AUC for precursors based on each large-scale predictor
variable, conditional on season and averaged across the 18
regions. For all variables, precursor skill is highest in DJF,
generally followed by SON, with MAM and JJA showing
similar, lower skill, with a total interseasonal spread of
approximately 1 day of predictability. This corresponds to
the known increased importance of large-scale forcing in
DJF and the increased role of convective processes in JJA.
This skill difference may then derive in part from choice
of precursor variables, which emphasises the large-scale
flow. While early experiments including convective avail-
able potential energy (CAPE) and sea-surface temperature
(SST) fields did not reveal skilful precursor patterns, it
is possible that a more detailed consideration of such
thermodynamic variables might reveal better summer-
time precursors. The spread in skill between different

F I G U R E 6 (a–d) Predictive skill of precursor indices, as measured by cross-validated ROC AUC score averaged across seasons for each
of (a) 500-hPa geopotential height (Z500), (b) 850-hPa zonal wind (U850), (c) 300-hPa meridional wind (V300), and (d) the magnitude of
column-integrated vapour transport (IVTmag), with the skill for each region shown by a black line and the mean across both seasons and
regions shown in red. (e–h) ROC AUC now averaged across regions and conditioned on season.
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12 DORRINGTON et al.

cross-validations is shown in supplementary Figures S4
and S5.

IVTmag precursors show the highest skill at short
timescales but decay rapidly, with ROC AUC dropping
below 0.6 at lags 3 and 4 for nonwinter and wintertime pre-
cursors, respectively. Short-lag Z500 precursors are com-
paratively less skilful but maintain predictive power out
to lag 5 on average, which is consistent with the general
large-scale wave-like precursors often seen for Z500, rather
than the more isolated streaks of moisture flux seen in IVT-
mag. V300 and U850 precursors fall in between these two
extremes, although U850 is notably more skilful in DJF, in
keeping with the dominant role of DJF Atlantic trimodal
jet variability (Woollings et al., 2010).

For simplicity, we are working within a categorical
event context here, both to identify our precursor indices
and to test their predictive skill. However, it is interesting
to consider whether the precursor indices are able to assess
the amplitude of an extreme event. This is primarily left to
future work, but in supplementary Figure S5 we show the
value of precursor indices for the most extreme daily rain-
fall total in each region and season, according to ERA5.
There are several notable cases in which these extremes
are associated with index values, usually for IVTmag, > 6

standard deviations above the norm, suggesting that this is
indeed the case.

The role of spatial variability in shaping precursor
skill can be seen more clearly in Figure 7 for Z500 pre-
cursors. Equivalent skill maps for the other large-scale
variables can be found in the supplementary data. In gen-
eral, the Z500 precursor patterns considered represent
either upstream wavetrains or blocking events at long lead
times and localised troughs at shorter lead times. We see
that coastal regions show the longest range precursors,
at lags of 6, both on the Atlantic coast, as for Iberian and
UK regions, and also along the Eastern Mediterranean,
where Italy and the Adriatic coast show early precursors,
especially in DJF. Most regions start to show precursors,
often skilful ones, from day 4 onwards, often associated
with the first indications of local trough formation. More
mountainous domains tend to show higher precursor
skill, a consequence of the greater constraints placed on
the large-scale flow to allow substantial vapour trans-
port into the domain. There is certainly no simple overall
relation between location and precursor skill, however:
even neighbouring regions can have very different pre-
cursor skill and different seasonal variability, even when
they have similar precursor patterns, partly as a result

F I G U R E 7 Z500 precursor ROC AUC for each spatial region, as a function of lag and season.
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DORRINGTON et al. 13

of differing orography and domain size. This motivates
exactly the sort of spatially differentiated approach we
have taken here.

6 SYNTHESISING PRECURSORS
ACROSS REGIONS

In the previous sections we have demonstrated the ability
of automated precursor detection to reveal the dynamical
drivers, and aid the prediction, of extreme events across
a large number of European domains. For many applica-
tions, such a regional perspective is ideal, but there are also
applications for which a broader perspective is useful. For
example, operational centres responsible for an entire con-
tinent (such as the European Centre for Medium-Range
Weather Forecasts (ECMWF) or National Weather Service
(NWS)) might wish to monitor the risk of extreme events
in geographically and administratively distinct regions of
their domain, but without tracking individual precursors
for all regions. Entirely equivalently, a national forecaster
whose domain features great climactic diversity may wish
to apply the precursor approach outlined above to subre-
gions or individual stations, but then also to synthesise
extreme event risk holistically. To address this use case,

we now demonstrate how precursors for different regions
can be synthesised down to a minimal set of indices that
balance predictability in different regions, using PLSR
regression.

Our task is simplified in many cases by the fact that
precursor patterns for extremes in neighbouring regions
can often be very similar. This is demonstrated for lag
2 Z500 precursors in Figure 8, which is representative
of many precursor patterns, suggesting that it should be
possible to reduce the dimensionality of an initially large
number of precursor activity indices. By doing so, we aim
to obtain a few general modes relevant for many regions.
Concretely, in our case we see that seasonal differences
for particular regions are often very pronounced, while
qualitative similarities between regional precursor pat-
terns for a given season are easy to see in Figure 8: the
positive-NAO-like pattern characteristic of DJF precur-
sors in northwest domains and the negative-NAO-like
patterns in Mediterranean domains, JJA southeasterly
wave visible in a large number of regions, and more
zonally propagating wave that dominates SON central
and southern Europe precursors with only slight phase
differences. Further, as can be seen in Figure 5, the
precursor patterns for sequential time lags can also be
very similar.

F I G U R E 8 Lag 2 Z500 anomaly precursor patterns for each region and season. Clear similarities can be seen between many
neighbouring regions.
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14 DORRINGTON et al.

Without carrying out an exhaustive synthesis for all
variables and seasons, we demonstrate how a minimal
set of precursor indices can be produced for Z500 SON
precursors, with a method that can be easily applied to
any other season or variable of interest. Z500 precursors
in SON generally show high predictive power at long
lags, while large-scale SON dynamics are not as compre-
hensively studied as those of DJF, making this a natural
combination to trial our approach on.

We apply PLSR as discussed in Section 3, searching
for the n orthogonal linear combinations (PLSR modes) of
our predictor indices that explain the most variance in our
event variables. As our predictors, we take SON Z500 pre-
cursor indices spanning from lags 5 to 0 for each of the 18
regions (108 variables total, reduced to 88 after discarding
blank precursor patterns). For the target variables we use
the heavy rainfall event index for each of the 18 regions,
but, as we seek modes that capture precursors at different
lead times, that is, we want to include lag covariance, we
duplicate each event index and offset it in time between 0
and 5 days, producing a corresponding 108-dimensional
event index as our target variable.

Figure 9a shows Z500 anomaly patterns corresponding
to the first eight PLSR modes. As for empirical orthogonal

functions (EOFs), the sign of the anomaly patterns is arbi-
trary, each representing a symmetric mode of variability.
Unlike EOFs of Z500, however, which tend to be domi-
nated by large-scale dipole patterns, the resulting PLSR
modes clearly project onto small-scale flow features that
are important for extreme European precipitation events.
Larger scale trough/ridge patterns are visible in PLSR
modes 1 and 3, zonal wave trains in modes 2, 4, and 5, and
cut-off lows/highs in modes 7 and 8.

In exchange for reducing 88 initial precursors to 8
modes, the interpretation of PLSR mode impact on rainfall
becomes more complex: positive values of any given mode
will increase heavy rainfall occurrence in some regions
and at certain lead times over the following five days and
decrease it in others. Furthermore, as the PLSR indices
are uncorrelated to each other by construction, the covari-
ability of the indices prior to an event carries additional
information. This can be seen in Figure 9b, which shows
the average value of each PLSR index in the days preceding
and following SON heavy rainfall events in each region.
For North Italy as an example, pronounced high or low
values of almost all modes occur in the lead up to a heavy
rainfall event: high modes 1 and 6 combining to approxi-
mate the lag 4 wavetrain precursor seen in Figure 5b, low

F I G U R E 9 (a) Z500 anomaly patterns corresponding to each PLSR mode of SON Z500 precursors across lags 5 to 0. (b) The mean
composite of each PLSR mode relative to occurrence of a SON heavy rainfall event in each region.

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4622 by K
arlsruher Institut F., W

iley O
nline L

ibrary on [02/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



DORRINGTON et al. 15

values of mode 2 indicating the movement of the wave east-
ward by lag 2, and strong amplification of mode 4 as the
wave reaches its final position just to the west of Italy.

The reduced interpretability of the PLSR modes makes
them better suited for use in statistical prediction mod-
els, rather than manual operational monitoring. Indeed,
we find that the predictive power of the PLSR indices
compares favourably with the predictive power of the
regionally specific precursor indices considered previ-
ously. Figure 10a shows the ROC AUC of statistical
predictions of SON regional heavy rainfall using the
same cross-validated logistic regression approach as in
Section 3.4, but, rather than using a single regionally spe-
cific precursor index as our predictor, we use between 1
and 12 PLSR indices as predictors. The difference between
the PLSR-based skill and the skill found for SON Z500
precursors for each region is shown in Figure 10b. In gen-
eral we find that the regional indices are more skilful than
predictions based on< 5 PLSR indices, with little improve-
ment seen from using more than 8 PLSR indices. This
is particularly the case when looking at lag 0 patterns,
where the trough driving rainfall in each region is most
localised and so least well approximated by general modes.
However, overall we see that the degrees of freedom in
our precursors can be reduced by a factor of 10 without
reducing statistical skill. We therefore suggest that PLSR
reduction may be a useful post-processing step for mul-
tidomain applications to simplify workflows and for deep
learning approaches.

7 DISCUSSION AND
CONCLUSION

The “quiet revolution” of steadily improving weather fore-
casts has been achieved through the gradual synthesis and
operational application of improved meteorological under-
standing (Bauer et al., 2015). In this article we have pre-
sented a novel framework, termed “Domino”, for identify-
ing the large-scale precursor patterns of extreme weather
events and reducing those to data-efficient, predictive
scalar activity indices. In doing so we provide a start-
ing point for the operationalisation of research into the
conditioning of extreme events on large-scale dynamics.

7.1 Summary of results

We have tested the “Domino” precursor identification
framework by analysing regional daily heavy precipita-
tion across western and central Europe and across seasons.
Estimating predictive skill using only a simple univariate
regression framework, we have shown that in all cases at

least some degree of usable predictability (ROC AUC> 0.6)
is present in large-scale precursors based on geopotential
height, wind fields, and vapour transport patterns. This
conditioning is in general lowest in JJA, when mesoscale
dynamics are more dominant, and in flatter, more conti-
nental domains. Even in these cases, predictive precursors
are seen three days ahead, while in DJF, where condition-
ing on large scales is strongest, some domains indicate
borderline-useable skill 6 days ahead. We have demon-
strated that the precursor patterns identified are consistent
with the previously known dynamical precursors for three
diverse regions and, by virtue of our systematic approach,
are able to characterise them comprehensively. Finally,
we have demonstrated that many precursor patterns are
similar between different domains; the same large-scale
dynamics favour rainfall in multiple regions. We show
how this can be used to simplify the analytical frame-
work without giving up regional specificity by synthesising
the precursor indices for different regions together into a
lower-dimensional set of predictive modes, using partial
least-squares regression. For the specific case of SON Z500
precursors, we show that a 10 times reduction in dimen-
sionality can be achieved with only a minor decrease in
predictive skill and a more complex physical interpreta-
tion, a trade-off that may be useful for certain applications.
This synthesis is enabled by the use of precursor patterns to
generate scalar precursor indices, and indicates the value
of this novel approach.

7.2 Caveats

Naturally, there are limitations of the Domino framework
which must be discussed. Most obviously, as a bottom-up
data-driven method, the precursor patterns will be sensi-
tive to changes in the event time series, with longer time
series providing more robust results. The convolution filter
applied during pattern computation counteracts this to an
extent, by smoothing the pattern mask. In this article we
have used(300) events for each region, which was found
in early tests to provide qualitatively identical results for
different data subsamples.

Secondly, as the framework is based on lagged com-
posites of potentially predictive variables over all events,
it is not possible to distinguish distinct dynamical path-
ways leading to the same event; instead the precursor
pattern will contain a superposition of both. In the patho-
logical case where two precursor pathways have opposite
circulations they would cancel, producing no significant
composite. This can be mitigated by subsetting the extreme
events if such pathways are suspected a priori (e.g., by split-
ting by season, as done here), or by choice of variables (e.g.,
wave envelope amplitude versus V300 to prevent phase

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4622 by K
arlsruher Institut F., W

iley O
nline L

ibrary on [02/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



16 DORRINGTON et al.

F I G U R E 10 (a) ROC AUC skill score for SON Z500 PLSR modes used to predict SON heavy rainfall via logistic regression and (b) the
difference between PLSR skill and the corresponding SON Z500 precursor activity index skill in each region as a function of region and
number of modes used. In (b), red values indicate that regional indices are more predictive, while blue values indicate that PLSR modes are
more predictive and lag–region combinations with no defined Z500 SON precursor pattern are greyed out.

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4622 by K
arlsruher Institut F., W

iley O
nline L

ibrary on [02/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



DORRINGTON et al. 17

cancellation). Another option is to compare the variance
of the composite with the climatological value, an analy-
sis supported by Domino, but which has not been included
in this work for simplicity. A related point is the implicit
stationarity assumption at play. Nonstationary dynamics
can essentially be understood as multiple pathways occur-
ring preferentially during different time periods. Applying
Domino to rolling time windows of the event time series
could reveal such underlying nonstationarity.

7.3 Extension

In this section, we present methodological advice for
extending the work done in this article to different events,
regions and timescales.

In this article we have provided a relatively straight-
forward proof-of-concept application; there are mul-
tiple refinements that could be made for real-world
flood-prediction applications. Firstly, events could be
defined using rain-gauge data or local high-resolution
gridded rainfall datasets in place of the ERA5 precipita-
tion used here. Spatial averaging can be avoided entirely
to provide extra information on local extremes: precursor
indices could be computed for each rain gauge or grid-
point independently, and then synthesised via the PLSR
approach described above. For a consideration of true
flood risk instead of simply high precipitation risk, hydro-
logical discharge data could be used to define events. In
this case, including land-surface precursor variables such
as soil saturation and snow accumulation is likely to be of
value.

Extending beyond the logistic regression used here,
the scalar precursor indices are well suited for input
into more advanced statistical and machine-learning
models, already providing a low-dimensional summary
of the flow. While raw data sometimes prove just as
effective as physically refined data for deep-learning
applications, at the least, precursor analysis can assist
variable selection by highlighting the nonlocal regions
and timescales that are relevant for a particular event.
In this case, it may be useful to lower the predic-
tive threshold used to define a “useful” precursor,
in order to include more marginal or conditional
sources of skill.

Relatedly, the predictability of events we report here
should not be understood as inherent, but contingent
on the precursor variables we have chosen. For sum-
mer rainfall, predictive thermodynamic precursors may
exist for some regions, based on variables such as CAPE,
static stability, and T2m, although the predictability of
such processes is inherently much more limited than the
large-scale dynamics we focus on here.

Generalisation to different regions is trivial, sim-
ply requiring different event data. However, relevant
precursor variables will of course be quite different in trop-
ical or subtropical regions, where the thermodynamic vari-
ables mentioned above may contribute more significantly,
and in strongly continental climates, where land-surface
variable are likely more relevant. As a coastal, midlatitude
region, the variables considered here may extend most
straightforwardly to the west-coast United States Grotjahn
et al. (2016), perhaps also with the addition of Pacific SSTs.

It is similarly easy to move beyond rainfall extremes;
wind extremes or extreme waves are both impactful on
daily timescales and could be treated in much the same
way as rainfall. For longer timescale events such as heat-
waves, or even relevant nonextremes such as predicting
monthly rainfall terciles, the main methodological differ-
ences are a result of reduced sample size. When computing
the pattern mask, a reduced amplitude mask and increased
convolution filter may increase sensitivity to weak sources
of seasonal-to-subseasonal predictability while helping to
maintain robust patterns. Variables such as sea-ice extent,
SSTs, and stratospheric wind are natural candidates for
such a study.

Finally, beyond prediction, automated precursor anal-
ysis has value for both the fundamental study of dynamics
and model validation purposes. Just as circulation regimes
are used to explore the dynamics of surface teleconnec-
tions (Domeisen et al., 2020), investigate sources of model
bias (Wandel, 2023), and judge the performance of climate
models (Dorrington et al., 2022), “event-prone regimes”
and corresponding indices could be used to summarise the
representation of different dynamical processes in models.
Conversely, events could be defined in terms of dynamical
features—such as sudden stratospheric warmings, regime
transitions, or wave-breaking events—and their precursor
and “postcursor” indices can be used to help understand
the variability between events by, for example, clustering
in the space of indices.

7.4 A path to operationalisation

Our motivating hypothesis is that the predictive precur-
sors we identify have potential operational use. Given
the timescale of our precursors (i.e., 2–6 days ahead)
and the quality of modern numerical weather prediction
systems, a purely statistical prediction based on precur-
sors will not outperform dynamical forecasts directly
(although this may be different if applied on S2S or sea-
sonal timescales). Instead quantitative value may come
from hybrid forecasting: using the dynamical forecast to
predict precursor patterns at extended-range lead times
and then inferring rainfall probability even further ahead
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from the precursors. A complete roadmap for real-world
application is as follows.

• Define an event time series based on high-quality obser-
vational data.

• Compute reanalysis precursors for this event class in
large-scale variables and fit a statistical relation between
precursors and events.

• Project precursors onto ensemble forecast data and use
those to produce probabilistic hybrid predictions of
event occurrence.

• Compare direct and precursor-based forecast skill to
assess whether quantitative skill improvements are
seen.

We consider quantitative skill improvements to be
highly plausible, due to weak wave propagation and coarse
representation of orography and near-surface processes in
models, and Grazzini et al. (2023) have recently shown the
assumption to hold for the North Italy region. Even qual-
itatively, precursors hold narrative value for forecasters,
helping them to understand the range of possibilities and
unfolding storylines in a forecast ensemble and so boost-
ing their awareness of plausible weather beyond the limits
of formalised skill. In a sense, analysing the unfurling pre-
conditions to extreme events can serve to precondition the
forecaster, allowing them to interpret and act on proba-
ble extreme events more quickly as they emerge at shorter
lead times. In our own continuing work, we aim to enact
this roadmap fully for extreme rainfall, and to develop an
early-warning system for extreme events that summarises
and digests the behaviour of large forecast ensembles.

AUTHOR CONTRIBUTIONS
Joshua Dorrington: conceptualization; data cura-
tion; investigation; methodology; resources; software;
validation; visualization; writing – original draft;
writing – review and editing. Christian Grams: concep-
tualization; funding acquisition; project administration;
supervision; writing – review and editing. Federico
Grazzini: conceptualization; writing – review and editing.
Linus Magnusson: conceptualization; writing – review
and editing. Frederic Vitart: conceptualization;
writing – review and editing.

DATA AVAILABILITY STATEMENT
ERA5 data used in this study are freely available from the
Copernicus Data Store. Software tools required to dupli-
cate or extend this work are available as part of the Domino
package at https://github.com/joshdorrington/domino.

A compressed folder of further supplementary figures is
available at https://doi.org/10.5281/zenodo.8087482.

ACKNOWLEDGMENT
Open Access funding enabled and organized by Projekt
DEAL.

ENDNOTES

1For the curious, the name “Domino” was inspired by the imagery
of a row of dominoes falling in causal sequence, which serves as a
(admittedly optimistically deterministic) metaphor for the sequence
of meteorological developments that increase the likelihood of a
weather event of interest.

2https://github.com/joshdorrington/domino.
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