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A B S T R A C T

Artificial intelligence can revolutionize scientific projects, but scientists face challenges in reusing, integrating,
and deploying cost-effective and high-quality machine learning solutions. Determining suitable algorithms
and parameters is difficult, especially for non-programmer scientists. Some algorithms, like deep learning-
based methods, offer flexibility but require extensive training on annotated data. This poses a hurdle in
labor-intensive tasks like biological image segmentation that relies on expert annotations.

In this paper, we present a data-driven framework designed to assist scientists in selecting, reusing,
and training machine learning solutions for microscopy image segmentation. The framework is based on
establishing a mapping between object morphology features and the optimal segmentation algorithms and
settings for individual objects. This mapping is iteratively refined through a combination of unsupervised
learning and active learning iterations. To expedite convergence, objects are initially clustered based on their
morphology. In each active learning iteration, the most informative and uncertain samples are selected and
queried within a specific cluster. Through a biological case study, we demonstrate that our method enables the
selection and training of segmentation algorithms specific to object types. Additionally, the selective requests
for user input significantly reduce the number of user interactions required for this task.
1. Introduction

For scientists seeking to integrate machine learning (ML) into their
research, a key challenge lies in identifying the most suitable ML
algorithm and associated (hyper-)parameters for their specific research
problem. It is crucial to recognize that there is often no universally
superior ML algorithm or set of algorithm settings. The optimal solution
typically hinges on an empirical examination of the data. Moreover,
many scientists face limitations in ML and programming expertise,
compounding the difficulty of this task. A diverse array of ML solutions
is available, with some, like deep learning (DL), excelling at fully
supervised learning from raw data, handling diverse data variations
through learning from large annotated datasets (Alemi Koohbanani
et al., 2020). However, the costly process of data annotation, reliant
on domain expertise, hinders widespread DL adoption. In contrast, tra-
ditional ML solutions, relying on feature engineering without annotated
data, work with smaller datasets. Yet, configuring parameters for one
data variation may compromise performance for others (Jakhar and
Kaur, 2020).

✩ Editor: Prof. Raffaela Mirandola.
∗ Corresponding author.
E-mail addresses: hamideh.hajiabadi@kit.edu (H. Hajiabadi), christopher.gerking@kit.edu (C. Gerking), lennart.hilbert@kit.edu (L. Hilbert),

koziolek@kit.edu (A. Koziolek).

One domain of science, in which exploration of datasets by use of
ML can aid expert scientists, is object analysis in biological imaging
data. Here, object segmentation from images is an important data anal-
ysis step. The segmentation process involves separating the image into
identifiable regions or objects of interest. The literature already offers
various approaches, including traditional ML or DL-based methods. In
many cases of bioimaging data, annotations are costly or even unattain-
able, so the application of traditional ML algorithms is more suitable for
projects especially when feature engineering does not require complex
procedures or extensive domain knowledge. However, a one-size-fits-
all setting may not be applicable for all object types, making effective
approaches for parameter adjustment a valuable objective.

One approach to train a DL method on a smaller set of annota-
tions is called ‘‘weakly supervised’’ training. This approach enables
expert scientists to interactively provide annotations for a subset of
the dataset, which are then used for model training. Subsequently,
the trained model can be applied to the remaining data. For instance,
vailable online 30 January 2024
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WEKA (Arganda-Carreras et al., 2017), Ilastik (Berg et al., 2019),
and nuClick (Alemi Koohbanani et al., 2020) are interactive, weakly
supervised ML tools used for image pixel classification. They involve
annotation of sample objects via a graphical user interface to facil-
itate training. Users of these tools can iteratively provide feedback,
correcting or adding labels until the model demonstrates satisfactory
performance for application to the entire dataset. Compared to fully
supervised DL segmentation tools, this category of tools reduces the
required training data size. However, these weakly supervised tools still
require expert scientists to give annotations based on visual impressions
and intuition to identify informative objects for training.

Here, we introduce a novel, data-driven framework that reduces the
need for user interaction even further by leveraging active learning.
This framework not only optimizes the training processes but also
assists in the selection of an appropriate segmentation algorithm. By
reducing the effort and required domain expertise to customize segmen-
tation algorithms to different datasets, our framework combines the
ease of use provided by conventional methods with enhanced handling
of objects with high variability. The framework comprises an unsuper-
vised initial step to choose a segmentation algorithm and object-specific
settings, followed by further parameter adjustment based on active
learning. Our primary focus is on segmenting microscopy images, but
our framework is adaptable and can, in principle, be applied also to
other application cases where annotation by domain experts is difficult
or costly. Moreover, the proposed feature engineering method does
not necessitate complicated algorithms or extensive knowledge of the
domain. The contributions of our paper are summarized as follows:

• We propose a framework for image segmentation tasks that en-
ables biologists to use the full potential of existing segmentation
algorithms. This framework can, in principle, be used in every
scientific use case that shares similar characteristics.

• We propose the use of an unsupervised metric that assists in the
initial choice of the segmentation algorithm as well as its initial
settings.

• We assign every segmented object to its respective segmentation
parameters, creating an object-to-parameter map that is updated
throughout the active learning process.

• We conduct a biological case study, in which scientists using the
framework obtain satisfying results with efficacy and efficiency in
a few interactions.

Our ongoing work extends our prior investigation into weakly-
supervised machine learning with interactive user input (Hajiabadi
et al., 2022). A detailed list of improvements beyond our previous work
can be found in the concluding part of Section 2.

The rest of the paper is structured as follows. The scientific use case
is explained in detail in Section 2. A brief summary of the segmentation
metrics is provided in Section 3, followed by a demonstration of our
proposed framework in the next section (Section 4). We introduce re-
search questions as well as the evaluation and experiment in Section 5.
We then discuss our results in Section 5.1 and threats to validity in
Section 6. Our conclusions are given in Section 8.

2. Scientific use case

The analysis of objects in biomedical image data usually involves
quantifying multiple properties, for instance, object shape, object lo-
cation, or the intensity of an experimentally applied label. In many
cases, these measurements are based on the segmentation of objects,
meaning the assignment of image pixels (or voxels) as ‘‘object’’ (1) or
‘‘not-object’’ (0) (Wu et al., 2000; Salem et al., 2016). One popular way
to segment microscopy images is through conventional segmentation
methods (Dougherty, 2018; Li et al., 2008) such as thresholding using
algorithms to determine a threshold intensity based on the intensity
distribution within the image. One other category of existing segmen-
tation techniques for microscopy images, known as weakly supervised,
2

Fig. 1. Different object variations. Images are the nuclear mid-plane of a fixed zebrafish
embryo at the sphere stage, which are recorded by STEDD super-resolution microscopy.
Intensity distributions of RNA Polymerase II (Pol II) Serine 5 phosphorylation (Ser5P)
were obtained by STEDD microscopy, while Pol II Ser2P intensity distributions are
obtained by regular confocal microscopy from the same plane. Pol II Ser5P clusters
are marked. Intensity scale from black to white adjusted to the 0.01th and the 99.99th
percentile (Pancholi et al., 2021).

is based on learning from a partially-annotated dataset. The annotation
is mostly provided by the biologists through user-friendly interactive
pipelines (Sommer et al., 2011; Berg et al., 2019; McQuin et al.,
2018; Carpenter et al., 2006). The most recent existing algorithms
use DL to learn from raw data, but they require large annotated
datasets (Apthorpe et al., 2016; Guerrero-Pena et al., 2018; Chen et al.,
2020; Al-Kofahi et al., 2018; Yi et al., 2020).

For biologists, it can be a daunting task to select the appropri-
ate segmentation method and tailor it to the specific data. Although
conventional segmentation methods (which are mostly unsupervised)
perform well in high-quality microscopy images of objects with easily
distinguishable boundaries (Ivashkevich et al., 2011; Cantaloube et al.,
2012), these methods often fall short when analyzing objects with
ambiguous boundaries and varying attributes such as size, intensity,
and morphology (Fig. 1) (Matula et al., 2010; Osterwald et al., 2015).
In contrast, fully supervised DL-based segmentation algorithms are
more flexible in handling data variations as they can adapt to the
input and annotated output. However, creating annotated training
datasets for these algorithms is a costly and time-consuming process
that necessitates the knowledge of experts from the biological domain.
There are also weakly supervised segmentation tools, trained on limited
annotations, which enable biologists to provide interactive annotations
for model training. Examples include WEKA (Arganda-Carreras et al.,
2017) for image pixel classification, Ilastik (Berg et al., 2019) for
cell segmentation, classification, tracking, and counting, as well as
NuClick (Alemi Koohbanani et al., 2020) for microscopy image seg-
mentation. While these tools reduce training data requirements, they
still heavily depend on annotations provided by experts and may not
accurately segment objects due to reliance on visual impressions and
intuition.

This paper presents a pragmatic framework for optimizing the pro-
cess of identifying and customizing ML segmentation solutions on a
per-object basis. To this end, the framework initially explores a range of
unsupervised conventional segmentation methods while accommodat-
ing object diversity. Subsequently, through iterations of active learning
facilitated by interactions with an expert user, we propose the opti-
mization of (hyper-)parameter configurations tailored to each individ-
ual object. This methodology is particularly beneficial in bioimaging,
where manual annotation poses inherent complexities. However, it is
important to minimize the interaction time to encourage the adoption
of this framework in bioimage analysis pipelines. At the core of this
framework lies a data-driven regressor that maps object-morphology
features to the specific segmentation algorithm and settings employed
in the process. This mapping is updated during each active learning
iteration based on user feedback. To expedite the convergence rate,
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the most informative and uncertain samples are selected from various
regions of the feature space for user input queries. To ensure diversity
in the selected samples, an initial clustering function divides the feature
space into subparts.

This work is an extended version of our previous research, in which
we proposed a framework for weakly-supervised ML with interactive
user input (Hajiabadi et al., 2022). Below is a list of improvements
made between the current work and the previous version:

• In our previous work, we updated the settings of all objects in
one cluster similarly during each user interaction. However, in
this updated version, we have introduced a mathematical formu-
lation that describes the mapping between each object and its
associated segmentation setting. This formulation is explained in
detail in Section 4.7 of the paper. As a result of this formulation,
with each user input, all settings are updated through re-training
the regressor. This process involves mapping each data sample
to its associated setting, allowing for dynamic adjustments and
refinement of the segmentation algorithm.

• Furthermore, we have improved the convergence rate by auto-
matically determining the number of clusters and implementing
three query strategies. These enhancements have led to a re-
duction in user interactions, as demonstrated in Section 4.5 and
Section 4.6 of this paper.

• Additionally, we demonstrate the convergence of the framework
through an additional experiment, as illustrated in Section 5.1 of
this paper.

. Background: Segmentation metrics

Metrics to evaluate image segmentation can be categorized based
n different criteria. One criterion is whether a metric is considered
ubjective or objective (Chen et al., 2018). Subjective metrics are
ased on human visual assessments. These metrics are, by definition,
ot formally defined. To reach a generalizable result, the number of
bservers should be high.

Another criterion is whether the evaluation of a segmentation ap-
roach is analytical or empirical (Zhang, 1996). In empirical evalua-
ions, the accuracy and precision are evaluated on the basis of example
ata in a supervised fashion. An analytical evaluation does not rely
n example data but rather analyzes the theoretical properties of the
egmentation (Wang et al., 2020).

As a third criterion, the evaluation of image segmentation can be su-
ervised (with annotated images) or unsupervised (without annotated
mages). Supervised evaluation benefits from the direct comparison
etween the segmentation results and the reference annotated image.
he evaluation can be based on the per-pixel comparison (True Positive
TP) and True Negative (TN), Matthews Correlation Coefficient (MCC)
nd F-measure,

region-based comparison (Bipartite Graph Matching (BGM) (Taha
nd Hanbury, 2015) and Segmentation Covering (SC) (Dey et al.,
018)) or distance-based evaluation (Hausdorff Distance, directional
amming distance and Mahalanobis distance (Pont-Tuset and Marques,
015)). Unsupervised metrics evaluate the quality of segmentation by
irectly calculating the feature parameters of the segmentation result
ithout using the annotated reference image. These metrics are the

deal kinds of metrics, especially when there is no ground truth. These
nsupervised metrics are mostly based on mathematical indicators
howing the quality of segmentation results, such as Peak signal to
oise ratio (SNR) (Zhang et al., 2008), calculating the inside and
utside contrast of the segmentation area, or measuring the foreground
nd background variances (Zhang et al., 2008).

. The proposed approach

In this section, we propose our framework (Algorithm 1) for data-
riven image segmentation based on active learning. Fig. 2 illustrates
3

the overall view with all steps included in the framework. As can be
seen from the figure, the initial step 1 is to prepare the object set.
Preparation means that the object positions are spotted and a bounding
box around the rigion of interest (ROI) is extracted (Section 4.1). As
the objects are in various shapes, the segmentation settings applied to
various objects are expected to be different. That is why the framework
creates a feature space in step 2 (Section 4.2), thereby being able to
differentiate variation in object shapes.

The assumption is that there is no annotation, which is why we
cannot certainly select the best algorithm and the setting resulting
in the optimal prediction for each object. But through unsupervised
iterations in step 3 (Section 4.3), the framework obtains the initial
estimate of the segmentation algorithm and the setting for each object.
However, this function is only able to approximate the quality. Thus, to
ccurately adjust the segmentation setting associated with each object,
ctive learning iterations afterward proceed in step 5 (Section 4.5).

In active learning, the learning process proceeds by actively query-
ing the users to provide feedback on the presented data. To decide on
which objects should be selected for querying users, the framework
combines three query strategies, which are (i) querying from diverse
clusters, (ii) using the most informative objects, and (iii) using the
most uncertain objects. Whereas the latter two strategies are both
implemented in step 5 (Section 4.5), the cluster determination takes
place in step 6 (Section 4.6). After presenting the selected objects
to the user and receiving the user feedback, the segmentation settings
associated with the presented objects are directly updated in step 7
(Section 4.7).

To enable automatic adjustment of the associated settings with all
other objects (objects that are not queried) according to the user feed-
back, a mathematical formulation expressing the mapping between the
objects and the associated settings is required. To create this mapping
function, the framework fits a regression model on the objects and the
associated settings. The input of the regression model is the represen-
tation of the object set in feature space and the settings associated with
objects is the output. In every active learning iteration, after updating
the settings of the presented objects and their neighbors, the regressor
model is re-trained and all the associated settings are accordingly
updated (Section 4.7). The active learning iterations continue until
convergence.

Algorithm 1 The proposed segmentation framework
INPUT:
Input images
Base unsupervised segmentation algorithms
OUTPUT:
Optimal setting assigned to each object
1: Preparing object dataset according to Section 4.1
2: Initial segmentation and finding the initial estimate of the settings

per object (Section 4.3)
3: Creating the feature space according to Section 4.2
4: Finding different clusters according to Section 4.6
5: Fitting a regression model on the objects and the segmentation

settings associated with the objects (Section 4.7)
6: while repeat until convergence not reached do
7: for every cluster, select two objects (the most informative and

the most uncertain Section 4.5
8: Present the selected objects to the user according to Section 4.5
9: According to the user feedback, directly adjust the

segmentation settings for presented objects (Section 4.7)
10: Re-train the regressor to update the associated settings for all

other objects (Section 4.7)
11: end while

return the associated settings
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Fig. 2. The proposed framework consists of several automated steps. At the beginning, the user uploads the input raw images. With a few interactions, the segmented objects are
given back to the user.
4.1. Object set preparation

In this step (step 1 in Fig. 2), the framework locates segmentation
target objects (ROI) and extracts a bounding box surrounding these
objects. Some of the ROIs are marked with red boxes in Fig. 1. Some
simple thresholding algorithms can successfully detect the position of
the target objects, however, depending on the experiments there might
be some other bright subcellular components making directly spotting
the ROI difficult (Fig. 1). Therefore, the framework at first employs a
filter to make the image blurry and then proceeds with a thresholding
technique to only spot the ROIs. Generally, any blurry filter can be
used, however, in our particular application case, a Gaussian blur filter
with a standard deviation of six pixels is applied to each nucleus,
followed by a local thresholding method to roughly spot the ROIs. A
region of size (60 × 60) is then cropped and saved. Some examples of
the objects are illustrated in Fig. 3.

4.2. Feature space representation of objects

Every measurable (mostly numeric) property describing a charac-
teristic of an object is generally called a feature (Sklansky, 1978).
Each segmentation target object can be represented by a vector of
features and the feature space is the space spanned by the feature
vectors (Sklansky, 1978). Objects usually show up with different
morphologies (Pancholi et al., 2021). For example in our particular
application case, some objects appear similar to a dot, and some other
objects are larger and relatively compact but still with clear boundaries.
There are also some larger objects with unfolded shapes where there
is no clear boundary with extensive morphological variety (Fig. 3).
Because of these differences, we expect that different segmentation
algorithms and parameter settings will be optimal for the different types
of objects.

To enable the choice of different algorithms for different types of
objects, the framework first establishes a representation of the overall
object sets into a feature space capable of reflecting morphology
variation (step 2 in Fig. 2). We consider two groups of features, some
are extracted from the intensity histogram of the image and some are
shape-related features.
4

Fig. 3. Detail views of objects. Representative Pol II Ser5P clusters mid-plane obtained
by STEDD super-resolution microscopy from a fixed sphere-stage zebrafish embryo.
Each image is of size 60 × 60 pixels. The images are randomly selected from a dataset
of size 148.

• Intensity histogram-based features: the intensity histogram pro-
vides valuable information about the distribution and variation
of pixel intensities in an image. These features can be useful
for tasks such as object detection. As variations in intensity his-
togram peaks or distributions can indicate the presence of specific
structures or objects of interest in microscopy images.

• Shape-related features: in microscopy images, the shape and mor-
phology of objects can be crucial for analysis and interpretation.
These features can provide insights into the morphology of ob-
jects such as size, area, perimeter, and compactness. They enable
quantification and comparison of shapes, facilitating studies on
morphology variations.

The features space that we consider includes the following features:
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Fig. 4. (A) Two features (area and the first local maximum of the histogram intensity function) are selected and 2D representation of the objects based on the selected features
s illustrated. (B) 2D representation of the object set in the feature space after outlier removal.
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Table 1
Threshold-based segmentation algorithms used in our framework. Thresholding tech-
niques aim to create a binary mask from a grayscale image, which segments objects
from a background.

Algorithm Short description

Isodata A threshold is iteratively found based on the image
histogram

Mean Uses the mean value of pixel intensities as threshold value
Minimum Takes a histogram of the image and smooths it repeatedly

until there are only two local maxima (Prewitt and
Mendelsohn, 1966).

Otsu Based on maximizing the variance between two classes of
pixels which are separated by the threshold (Otsu, 1979).

Triangle A geometric method assumes maxima near one end of the
histogram and searches towards the other end (Zack et al.,
1977).

Yen Based on Yen’s thresholding method (Sezgin and Sankur,
2004)

Li An iterative method based on Li’s Minimum Cross-Entropy
thresholding method (Li and Lee, 1993)

Local Each threshold value for each pixel is the weighted mean of
the local neighborhood minus an offset value.

Median Uses the median value of pixel intensities as threshold value

• Local maxima and their values in the histogram function of the
object.

• Local minima and their values in the histogram function of the
object

• Area of the object, which means the total space taken up by the
2D shape of an object.

• Solidity of the object. A solidity value of 1 signifies a solid object
and a value less than 1 represents an object having an irregular
boundary, or containing holes.

After creating the feature space, all the features in each dimension
are normalized (value between 0 and 1) then our model training is
less sensitive to the scale of features (Fig. 4A). The outliers are next
removed based on the Z-score (Fig. 4B). Z-score of 1 means that the
ata point distance to the mean is equal to 1 variance. Usually for data
hat follows a Gaussian distribution a Z-score ≥ 3 means that the data
oint is an outlier. Above the Z-score of 3 we consider a data point to
e an outlier Fig. 4 provides a 2D representation of the objects in the
eature space before outlier removal and after.

.3. On the initial choice of segmentation algorithm

For the initial segmentation (step 3 in Fig. 2), the framework carries
ut an unsupervised iteration by comparing the results of several
5

segmentation algorithms per object (Table 1). In principle, any segmen-
tation algorithm can be used here. For simplicity, in our application
case, the framework only considers segmentation methods based on
thresholding techniques (Sahoo et al., 1988). As there is not any anno-
tated object enabling accurate evaluation of the resulting quality, we
cannot accurately decide which segmentation algorithm and settings
give the optimal results for each object. Instead, an unsupervised metric
(Section 4.4) is used to approximate the quality of segmentation and
help the framework compare the results and converge to the initial
estimate of the segmentation algorithm and the settings. The obtained
results are then adjusted through the additional training by user input
in the following active learning iterations (Fig. 5).

4.4. Unsupervised metric for estimation of the segmentation quality

For the unsupervised iteration where the framework suggests the
initial estimate of the segmentation algorithm and the setting per
object, an unsupervised metric (step 4 in Fig. 2) is needed to roughly
compare the results of different segmentations. In principle, every
unsupervised metric that can roughly evaluate the segmentation results
can be used here. We particularly use a metric based on two criteria;
cross-entropy (Csiszár et al., 2004) and ‘‘busyness’’.

Cross-Entropy = −
𝑛
∑

𝑖=1
𝑃 (𝑖) × 𝑙𝑜𝑔(𝑄(𝑖∕𝑚))

The variable 𝑖 represents the intensity value of pixels, while 𝑛
and 𝑚 indicate the number of pixels located inside and outside the
segmented line, respectively. 𝑃 (𝑖) and 𝑄(𝑖∕𝑚) are probability distri-
butions associated with the pixel intensity values inside and outside
the segmented line, respectively. The segmentation line should be on
the pixels separating the background signal which is mostly noise from
the object signal. A good segmentation line will result in the maximized
cross-entropy between these two discrete sets (object and background).

The other criterion is busy which is based on the measure of
‘‘busyness’’ (Weszka and Rosenfeld, 1978; Zhang et al., 2008) in the
image, with the assumption that the ideal objects and background are
not strongly textured and have simple compact shapes.

𝐵𝑢𝑠𝑦𝑛𝑒𝑠𝑠 =
∑

|∇2𝐼(𝑥, 𝑦)|

∇2 represents the Laplacian operator, which computes the second
erivative of the image intensity concerning both 𝑥 and 𝑦 coordinates.

𝐼(𝑥, 𝑦) represents the intensity value of the image at coordinates (x,
y). By taking the absolute value of the Laplacian, we are interested
in measuring the overall magnitude of these intensity changes or vari-
ations, which can be indicative of texture or busyness. The sum of
absolute values of a Laplacian is used to measure busyness (Weszka
and Rosenfeld, 1978) and it is meant to be minimized.
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Fig. 5. Different objects annotated with the initial estimate of the segmentation algorithm and the settings, which is obtained by the framework through unsupervised iterations
using an unsupervised metric defined in Section 4.4. Representative Pol II Ser5P clusters mid-plane obtained by STEDD super-resolution microscopy from a fixed sphere-stage
zebrafish embryo. Each image is of size 60 × 60 pixels. The images are randomly selected from a dataset of size 148.
4.5. Active learning iterations and query strategies

The metric described above can just approximate the quality of
segmentation and thus cannot be used for fully-automated training. At
the same time, asking for user input on every object is very cumbersome
and not practical. Thus, we propose the combination of active learning
and weakly supervised training to reduce the number of interactions
by objective selections of samples and querying users. To selectively
choose the samples later presented to the user, the framework needs a
query strategy (step 5 in Fig. 2). In our framework, the three following
query strategies are combined.

• Querying from diverse clusters: To comprehensively explore
the feature space, the framework guarantees that the selected
objects are drawn from various regions of the feature space. This
is achieved by clustering all samples into different groups and
then selecting samples from diverse groups within the feature
space. (Section 4.6 and Fig. 7).

• Querying the most informative objects: We consider samples
having the highest number of neighbors, located within a spec-
ified radius, the most informative sample (Fig. 6B). Usually,
similar objects need similar segmentation algorithms and settings.
By adjusting these informative objects, many other objects are
indirectly adjusted and therefore the active learning iterations
converge faster.

• Querying the most uncertain objects: We consider samples
with the largest distance to the center of the cluster as the most
uncertain samples (Fig. 6C).

In every active learning interaction (each user interaction), we pick
two samples from every cluster, the most informative and the most
uncertain ones, and present them to the user. Fig. 6 shows examples of
selected most informative and most uncertain objects. The framework
then directly adjusted the segmentation settings associated with the
queried objects according to the user feedback. Afterward, the settings
associated with all other objects are also updated through an extra
learning procedure (Section 4.7). A detailed explanation of the update
procedure is included in Section 4.7.

4.6. Automatic determination of the clusters

As described above, our query strategy includes picking samples
from diverse clusters. In this section, we describe how these clusters
are determined (step 6 in Fig. 2) Dividing the feature space into
6

different clusters enables querying from diverse choices of samples.
Every clustering algorithm can be used. However, we used the k-Means
clustering (Likas et al., 2003). To determine the optimal number of
clusters, the framework uses silhouette analysis (Thinsungnoena et al.,
2015; Kodinariya et al., 2013). This measure has a value in the range
of [−1, 1]. Values near +1 indicate that the sample is far away from the
neighboring clusters. A value of 0 indicates that the sample is on or
very close to the decision boundary between two neighboring clusters
and negative values indicate that those samples are assigned to the
wrong cluster. The optimal number of clusters should result in the
highest silhouette values over all samples. After performing a standard
clustering with the optimal number of clusters obtained via silhouette
coefficient (Fig. 7A), the framework also separates the samples which
are considered as being close or close to the borderline (Fig. 7B) as
another cluster.

4.7. Tuning the segmentation in each active learning iteration

In this section, the last step (step 7) in Fig. 2 is explained. In every
active learning iteration, the framework first presents some objects
to the user and then the settings associated with the queried objects
are adjusted according to the user feedback. To be able to adjust the
other, unlabeled objects as well, a mathematical formulation of the
mapping between every object and the setting associated with it is
needed. By updating the mathematical formulation, the settings are all
automatically updated too.

To implement this mathematical formulation, the framework uses a
random forest regressor (Ho, 1995) mapping every object to the setting
associated with it. When an object is chosen and presented to the user,
the setting of the presented object is updated. The regressor with the
updated label is then re-trained and this is where the settings associated
with others are also updated.

Once a sample is chosen, it is marked as visited and it will not
be presented to the user again. The process of choosing samples,
presenting them to the user, adjusting the setting, and updating the
regressor is repeated until convergence. The framework is considered as
converged either when the user does not request any further adjustment
or all the samples are marked.

5. Evaluation

In this section, we present a biological case study, which allowed
us to evaluate our framework based on the following three research
questions:
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Fig. 6. Example results of query strategies. (A) Representative 2D visualization of all samples in the feature space. (B) The most informative sample with the largest number
of neighbors specified with red. (C) Uncertain samples with the farthest distance to the mean sample of clusters specified with blue (clusters are explained in Section 4.6). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. (A) Silhouette coefficient for a different number of clusters. The maximum value indicates the optimal number of clusters which in this case the optimal number is 2. (B)
Representative 2D visualized data samples, where only 2 features (Area and local maxima) are selected. Three Different clusters (cluster 1, cluster 2, and borderline) with different
marks based on the optimal number of clusters (2).
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• RQ1: Is the framework, from the end-user perspective, converging
to the desired results?

• RQ2: How satisfying is the quality of the segmentation results
from the end-user perspective?

• RQ3: How effective is our framework in helping end-users with
their segmentation tasks?

We conduct all procedures on a laptop with Intel(R) Core(TM) i7-
665U CPU 1.90 GHz 2.11 GHz processor and 32.0 GB RAM, using the
icrosoft Windows 11 operating system. The code is written in Python

, uses the ‘‘Scikit-learn’’ package, and is publicly released on Hajiabadi
2022a).

.1. Experimental setup

We used input images recorded by STEDD microscopy in a previous
tudy (Pancholi et al., 2021; Hilbert, 2021). The images are maximum-
ntensity projections of cell nuclei in fixed zebrafish embryos, where
ol II Serine 5 phosphorylation was labeled by indirect immunofluores-
ence (Fig. 1). The dataset contained images of 60 nuclei. We extract
n object set based on cropped ROI images of 60 × 60 pixel size, which

are centered on prominent groups of Pol II. We obtained a set of 148
objects that were used for the further application of our framework.

To address the research questions we ask five biologists to use our
script for the adjustment of object segmentation (second scenario in
Fig. 9). In line with variety in object morphologies mentioned in Pan-
choli et al. (2021), a feature space (as introduced in Section 4.2) is built
and objects are categorized in three clusters (Section 4.2, Section 4.6).
Initially, through an unsupervised iteration, segmentation algorithms
7

s

listed in Table 1 are applied to the objects (Section 4.3) and the
preliminary estimate of the segmentation algorithm and the settings
are obtained by optimization of the unsupervised metric introduced
in Section 4.4 (Fig. 5). This whole unsupervised iteration is conducted
without any query from the user.

We then mathematically formulate the mapping function between
objects and the associated settings by training a random forest regressor
on the samples. The input of the regressor is the object feature vectors
and the output is the associated settings. Then through every active
learning iteration, six objects (according to the criteria explained in
Section 4.5) are selected and presented to the user. With the user input,
the settings associated with the presented objects and the neighbors
are directly adjusted. Afterward, the regressor is re-trained using the
updated input and output, and the settings associated with all other
objects are also updated (Section 4.7). The active learning iteration
continues until convergence. We consider the framework as converged
if there is no further adjustment request from the user or all the objects
are marked as visited.

To address the RQ1, we randomly select 10 objects and randomly
lternated the results of the last five iterations to assignments of choices
1..5] to prevent bias in choice. Fig. 8 demonstrates the segmented
esults for some randomly selected objects in the last five iterations. We
rovided the segmented objects to the expert biologists and ask them to,
ased on their visual assessment, sort the segmented images from good
o bad. We also provided a choice if an object in some iterations looks
lmost unchanged. Table 2 reports the evaluation results, indicating
hat in 90% of the cases, the last iteration contains the best results
y visual assessment of the expert. In the 40% and 10% of cases, the
egmented objects look almost unchanged in the last two and three
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Fig. 8. Different objects annotated with the segmentation line obtained by the framework in the last 5 iterations while nth iteration indicates the last iteration. Each image is of
size 60 × 60 pixels, The images are randomly selected from a dataset of size 148.
Table 2
Evaluations results obtained by the experts.

Choice Percentage

The last iteration contains the best results 90%
Segmented objects in the last two iterations remain unchanged 40%
Segmented objects in the last three iterations remain unchanged 10%

iterations respectively. The results indicate that the learning procedure
is converging.

To address RQ2, we need a reference to make the comparison.
To establish a reference for the evaluation of our training results, we
asked one expert biologist with extended knowledge of ML to choose a
segmentation algorithm based on the object set, and manually tune the
settings of the algorithm (first scenario in Fig. 9). This expert had a wide
knowledge of segmentation algorithms and was very familiar with the
application data. The adjustment for this expert took around 130 min.
The results that we obtained from the expert can be considered the
best results that the use of the existing resource can achieve. We
then present 10 randomly selected pairs of reference objects and the
segmented results obtained by our script to the expert biologist to
evaluate the quality of segmentation by visual assessment. A sam-
ple questionnaire presented to the biologists is available at Hajiabadi
(2022b).

Using a human to visually assess the result is a kind of subjec-
tive metric. We provided four choices for each comparison pair: (i)
segmented image A is better, (ii) segmented image B is better, (iii)
8

Table 3
Evaluation results performed by the experts.

Choice Percentage

Results obtained by our framework outperform 80%
Results obtained after expert tuning outperform 0%
Both results look almost similar 10%
It depends on ... 10%

both segmentation results are almost equal and (iv) the evaluation of
segmentation depends on an additional consideration formulated by
the expert. We randomly alternated the assignment to choices A and
B to prevent bias in choice. The evaluation indicates that We provided
four choices for each comparison pair: (i) segmented image A is better,
(ii) segmented image B is better, (iii) both segmentation results are
almost equal and (iv) the evaluation of segmentation depends on
an additional consideration formulated by the expert. We randomly
alternated the assignment to choices A and B to prevent bias in choice.
The evaluation indicates that, in the eyes of an expert, in 90% of cases
the segmentations obtained by our framework are better than or almost
equal to the segmentations obtained after manual tuning by an expert
(Table 3). an expert, in 90% of cases the segmentations obtained by
our framework are better than or almost equal to the segmentations
obtained after manual tuning by an expert (Table 3).

To address the RQ3, we ask five biologists to use our script and
segment objects with our framework assistance (second scenario of
Fig. 9). These five biologists are among the final target groups whom
the framework eventually assists. We then record the time spent and the
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Fig. 9. A subjective metric is used for evaluation. The results obtained by our framework are compared to the results obtained after tuning the algorithm by an expert. This
evaluation is based on a human visual assessment.
Table 4
Number of interactions and the dedicated time required for convergence.

Total number of
interactions

Dedicated time Simplicity
1: not simple
7: maximally simple

Case study 1 5 235 s 7
Case study 2 7 365 s 5
Case study 3 6 250 s 5
Case study 4 4 165 s 7
Case study 5 5 250 s 7

Average 5.4 253 s 6.2

number of interactions required for tuning the script. Every interaction
is one iteration of active learning. In Table 4, We refer to the experi-
ment associated with every biologist as a case study. Table 4 reports the
obtained results, indicating that the framework on average, converges
within 5.4 user interactions. The convergence takes an average of 253 s.
This time includes only the time when the framework is working.
The time that biologists take to decide on which result is better is
not calculated. We then asked the biologists to rate the simplicity of
our framework from 1 (not simple) to 7 (maximally simple) and the
simplicity of our proposed framework was rated high 6.2 out of 7.

6. Threats to validity

The validity of our conclusions could be mainly compromised by
the example application and evaluation setting. We use only exam-
ple data from one type of biological sample, recorded on one type
of microscope. The experiment contains different samples to account
for day-to-day variability in sample quality. However, image charac-
teristics, e.g., intensity distribution and image resolution, can differ
fundamentally between different microscopes. Adding data from other
types of samples and microscopes would strengthen the generalizability
of our findings, thereby representing a threat to external validity.

The biologists working in the same laboratory tested the framework
by tuning segmentation on the object set. Thereby, the segmented
objects obtained by our framework could be biased by the individual
users interacting with it. Accordingly, user interaction is another threat
to external validity, as it is unclear whether different users would
obtain different segmentation results. Bias could be further reduced by
increasing the number of users, and also recruiting users from different
research groups.

The third threat to our experiment design is due to the number
of expert biologists assessing the segmentation quality. We used only
one expert biologist to visually assess the quality of segmentation
results. Accordingly, it is unclear whether our measure of segmentation
quality is a suitable indicator for the satisfaction of end users, as other
9

experts might assess the quality differently. Assessment by a larger
panel of experts would ensure a more unbiased result that increases
the construct validity of our study.

To promote the reliability of our results, we enable the reproduction
or replication of our study by making the underlying artifacts publicly
available. These artifacts include the framework implementation (Ha-
jiabadi, 2022a), the questionaries (Hajiabadi, 2022b), and the dataset
reused from a previous study (Hilbert, 2021).

7. Related work

Our work primarily relates to two categories: (1) interactive ap-
proaches with user-guided parameter selection, and (2) weakly super-
vised segmentation methods. While these two groups can be merged,
we will review them separately.

It is almost a decade since interaction object segmentation first
emerged. The early approaches are mostly formulated as energy min-
imization tasks on a graph. An image is first represented as an undi-
rected graph, which can be defined by a joint probability 𝑝. The goal
is to assign a label to each pixel (0 represents the background and 1
for the objects) in a way that the probability 𝑝 is minimized (Bai and
Sapiro, 2009; Boykov and Jolly, 2001; Gulshan et al., 2010; Cagnoni
et al., 1999). There have been some other interactive segmentation
works that require users to annotate the edges (extreme-left, extreme-
right, extreme-top, and extreme-bottom) of objects. The connection
lines between edges represent the boundary line. Training on the
annotated objects, the method can hopefully later detect the boundaries
of unseen objects (Kwatra et al., 2003; Papadopoulos et al., 2017).
The region inside the boundaries is considered as foreground (object)
and the outside area is labeled as background. There are several major
challenges regarding the transfer of these methods in the biological
subcellular segmentation tasks. Firstly, some subcellular components
cannot be inherently represented by edges and secondly, the whole
region inside the boundaries sometimes is not the object, for example,
objects with the shape of doughnuts.

Recently, DL methods have been extensively used in interactive
segmentation tasks (Xu et al., 2016; Wang et al., 2019). Some deep
learning tasks are based on detecting the four edges, where for a part of
the dataset, users annotate the edges, and the network is later trained to
detect the edges for unseen input (Maninis et al., 2018). There are some
other weakly-supervised DL methods for image segmentation (Castre-
jon et al., 2017; Ling et al., 2019), where users should provide bounding
boxes for a part of the dataset, and a network is learned to detect
the bounding box for the rest of the dataset. These approaches are
sometimes combined with reinforcement learning which asks users to
mark the foreground. These approaches have been successfully used
in CT/MRI image segmentation, where the organ appears in similar
shapes in all images. In some studies (Caselles et al., 1997; Acuna et al.,
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2019), the user inputs (bounding box annotations) have been combined
with the graph convolutional networks (GCN). In the training phase,
the manually annotated data is used and the GCN learns to represent
an object with a polygon around it. To refine the trained model, the
predicted polygon can be further adjusted by the user interaction.

Some researchers are investigating different conditions and propos-
ing methods that leverage weak supervision for image segmentation
tasks, such as image-level labels and self-attention mechanisms, to
generate pseudo-instance-level annotations (Nishimura et al., 2021).
These approaches effectively address the challenges of limited an-
notations and enable accurate instance segmentation. For example,
Box2Mask (Chibane et al., 2022) is a method for weakly supervised
3D semantic instance segmentation using bounding boxes. The pro-
posed approach leverages bounding box annotations to generate in-
stance masks in a weakly supervised manner. It achieves accurate
segmentation results by incorporating a 3D Mask-RCNN model and a
self-supervised learning framework, demonstrating the effectiveness of
weak supervision for 3D instance segmentation tasks (Chibane et al.,
2022). Another study, Snorkel (Ratner et al., 2017), leverages heuris-
tics, rules, and other noisy sources to generate training labels, bypassing
the need for hand-labeled data. The framework incorporates a gen-
erative model that estimates the accuracies of the labeling functions,
allowing for the creation of large training datasets quickly and effi-
ciently. Segment Anything Model (SAM) (Chen et al., 2023) enhances
pseudo labels for weakly supervised semantic segmentation. SAM uti-
lizes multiple cues, including object boundaries and spatial consistency,
to refine and improve the quality of pseudo labels. Experimental results
demonstrate that SAM effectively boosts the performance of weakly
supervised semantic segmentation methods, achieving more accurate
and precise segmentations in various settings.

However, there is a general limitation in the use of methods based
on DL, which is the requirement of annotated images. While some
researchers aim to reduce the amount of annotated data needed, the
process of creating training annotations manually is time-consuming
and requires domain expertise. The same limitation arises when a
network needs to be re-trained for new datasets, which typically also
requires additional annotation by experts (Hesamian et al., 2019).
There are specific challenges associated with transferring these ap-
proaches to biological image segmentation, especially when dealing
with a large number of objects within a single image. For instance, it
can be practically infeasible to annotate the bounding boxes or edges
of all the objects in an image that contains, for example, 200 cells.
Another limitation of biological image segmentation is the high degree
of variability in object shapes. In particular, when the object of interest
appears in complex shapes with unclear edges and boundaries, which is
a common occurrence in biological subcellular components (Jahanifar
et al., 2019). After reviewing the literature, we have come to realize
that an effective approach for biological segmentation minimizes user
interaction while allowing for easy customization with unseen data.

8. Conclusion

Detecting the different components that constitute a biological cell
is a crucial task in the analysis of biomedical images. While there are
automated approaches available for object detection, applying these
algorithms to unknown datasets presents a significant challenge in
practical applications. The primary hurdle lies in the requirement
for annotated objects, which typically necessitates the involvement of
domain specialists, making it a labor-intensive process. In this paper,
we propose a framework that facilitates the customization of the seg-
mentation algorithm for specific object types, even in the presence of
unseen data, with minimal user interactions. This framework relies on
a mapping function that correlates object morphology features with
specific algorithm settings. We applied this framework to a biological
case study and validated its performance and simplicity through the
aforementioned study.
10
In future work, we plan to investigate the impact of object morphol-
ogy feature space on the subsequent steps of our framework. We aim
to enhance the representation of object sets within the feature space
by incorporating an interactive approach rather than relying solely on
unsupervised methods.
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