



### Unlocking Tomorrow's Decarbonization Potential: A Techno-Economic Assessment of Carbon Capture Diffusion in the European Industrial Landscape

Leandra Scharnhorst, Florentin Hollert



#### www.kit.edu

# Agenda



# Motivation

- Research Questions
- Method
- Results
- Conclusion

**Unlocking Tomorrow's Decarbonization Potential:** A Techno-Economic **Assessment of Carbon Capture Diffusion in the European Industrial** Landscape



# **Motivation**

- EU points out significance of decarbonizing Industry in European Green Deal
- Industry accounts for 20 % of EU's emissions
- Net zero → account for process emissions
- carbon capture technologies (CCT) to reach climate mitigation goals
- despite urgency, widespread roll-out of CCS remains slower than anticipated (IEA, 2016)
- significant cost of implementing such large-scale facilities
   → Share costs
  - → Legislative frameworks and policies to support the implementation
- Also unclear, which carbon capture technology is feasible for the respective hard-to-abate industry sector
- Need for a techno-economic assessment of potential future carbon capture technologies in hard-to-abate industry sectors



#### Greenhouse gas emissions by sector (Eurostat, 2023)

Institute for Industrial Production (IIP),

# **Research Objective**



 Extend an industry demand simulation model by competing carbon capture technologies in hard-to-abate sectors
 Implement a discrete choice model

#### **Research Questions/Research Objective**

- What is the **techno-economic potential** of employing **carbon capture technologies** across various emission intensive industry sectors?
- How can a **discrete choice model** be effectively utilized to analyze **competition among carbon capture technologies**?

### Industry demand simulation model Model Structure I





#### **Top-down: industry branches**

5

Input Output

09.02.2024

Motivation – Research Questions – Method – Results – Conclusion

Institute for Industrial Production (IIP),

#### 6 09.02.2024

Motivation – Research Questions – Method – Results – Conclusion

Industry demand simulation model Model Structure II

#### Countries

(EU27 +CH, NO, IS, UK, XK, GE, BG, RO, EU candidate countries)

- Industry Sectors (13)
- Processes (16)
- Process Temperature (3)
- **CST** (6)
- Applications (13)
- Energy carriers (10)
- Decarbonization Measures (134)
- Decarbonization strategies
  - Reduction of material demand
  - Material efficiency
  - Circular economy and industrial waste
  - Energy efficiency
  - Electrification and fuel switch
  - CCU, CCS and biogeneous raw materials





Institute for Industrial Production (IIP).

Chair of Energy Economics

### Methodology – Discrete Choice Model Competing Carbon Capture Technologies I

#### **Technology choice**

$$MS_{j}(t) = \frac{\frac{e^{\frac{-lp * c^{CA}}{c^{CA}}}}{n_{g}^{ccrrg}}}{\sum_{g} \sum_{ccrrg} \frac{e^{\frac{-lp * c^{CA}}{c^{CA}}}}{n_{g}^{ccrrg}}}$$

**Carbon avoidance cost**  $c^{CA}(j) = c^{CC}(j) + c^{down}(j) + c^{tr}(j) + c^{seq}(j)$ 

#### Exchange rate

 $er(t)_j = er_{pr} * MS_j(t)$ 

#### **Measure implementation**

$$MP(t)_{j} = af_{pr} * r(t)_{pr} * m(t-1)_{pr} + (m(t)_{pr} - m(t-1)_{pr}) * er(t)_{j}$$



| $MS_j(t)$             | market share of alternative j in %                                                                                   |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------|--|--|
| c <sup>CA</sup>       | carbon avoidance cost in $\epsilon/t_{CO_2}$                                                                         |  |  |
| $n_g^{CCTG}$          | no. of carbon capture technologies<br>per CCTG (varies per group and<br>process route)                               |  |  |
| CCTG                  | Carbon capture technology group<br>(pre-combustion, post-combustion,<br>oxyfuel combustion, looping<br>technologies) |  |  |
| lp                    | logit parameter                                                                                                      |  |  |
| $c^{CC}(j)$           | carbon capture cost                                                                                                  |  |  |
| c <sup>down</sup> (j) | cost increase due to retrofitting downtime                                                                           |  |  |
| $c^{tr}(j)$           | transportation cost                                                                                                  |  |  |
| $c^{seq}(j)$          | sequestration cost                                                                                                   |  |  |
| $er(t)_j$             | exchange rate per technology j                                                                                       |  |  |
| $MP(t)_{i}$           | production volume from measure                                                                                       |  |  |

Institute for Industrial Production (IIP),

### Methodology – Discrete Choice Model Competing Carbon Capture Technologies II

Captured process emissions:

 $CC_{j}^{p}(t) = m(t)_{j} * emf_{pr}^{p} * cr(j)$ 

#### Carbon avoidance cost of process route:

$$c_{pr}^{ca}(t) = \sum_{j} \left( CC_{j}^{p}(t) + CC_{j}^{f}(t) \right) * c_{j}^{CA}(t)$$

Total monetary savings considering CO<sub>2</sub> certificate costs:

$$s^{tca}(t) = \sum_{j} \left( CC_{j}^{p}(t) + CC_{j}^{f}(t) \right) * \left( c_{j}^{CA}(t) - c^{CO_{2}} \right)$$



- $CC_i^p(t)$  Captured process emissions in t\_CO2
- $c_{pr}^{ca}(t)$  Carbon avoidance cost per process route in  $\in$
- $s^{tca}(t)$  Total savings (incl. CO<sub>2</sub> certificate costs)
- cr(j) Capture rate of CCT
- $m(t)_j$  Production volume of CCT

# **Process Emissions**



| Process<br>Route | Exchange<br>Rate | Application<br>Factor | Reference                               |
|------------------|------------------|-----------------------|-----------------------------------------|
| BF-BOF           | 0.03             | 0.85                  | Lerede et al, 2021                      |
| Methanol SR      | 0.04             | 0.9                   | Assumption based on<br>(Guminski, 2022) |
| Ammonia SR       | 0.04             | 0.9                   | Guminski, 2022                          |
| Cement REF       | 0.1              | 1                     | Guminski, 2022                          |
| Lime REF         | 0.1              | 1                     | Guminski 2022                           |
| Lime PFRK        | 0.1              | 1                     | Assumption based on<br>(Guminski, 2022) |

Process routes and technological specifications

#### Process emissions per production route (own illustration from literature data<sup>1</sup>)

<sup>1</sup>Guminski, 2022; West, 2020; US Environmental Protection Agency, 2009; Mignard et al., 2003; Ecofys, 2009; Alsalman et al., 2021; Kotsay et al. 2019; Simoni et al. 2022



Institute for Industrial Production (IIP),

# **Carbon Capture Technologies**



Cement REF, Lime REF, Lime PFRK

- Monoethanolamine (MEA)
- Oxyfuel
- Chilled Ammonia Process (CAP)
- Membrane-Assisted CO2 Liquefaction (MAL)
- Calcium Looping (CAL)
- Low Emissions Intensity Lime And Cement (LEILAC)

Ammonia SR, Methanol SR

- Indirect Calcination (IndCalc)
- Oxyfuel
- Monoethanolamine (MEA)
- Vacuum Swing Adsorption (VSA)

BF-BOF steel

- Pre-combustion capture with chemical absorption (Pre-chem)
- Pre-combustion capture with chemical adsorption (Pre-adsor)
- Sorption Enhanced Water Gas Shift (SEWGS)
- Post-combustion capture with membranes (Post-memb)

 $\rightarrow$  4 CCTs

Institute for Industrial Production (IIP),

Chair of Energy Economics

 $\rightarrow$  6 CCTs

 $\rightarrow$  4 CCTs

Motivation – Research Questions – Method – Results – Conclusion

### Input Data Cement REF, lime REF and lime PFRK



| ССТ     | Carbon avoidance cost in $\frac{1}{t_{CO_2}}$ | Technology<br>readiness level | Captured CO <sub>2</sub> in % | Reference                                            |
|---------|-----------------------------------------------|-------------------------------|-------------------------------|------------------------------------------------------|
| MEA     | 93                                            | 4                             | 90                            | Gardarsdottier et al. 2019,<br>Subraveti et al. 2021 |
| Oxyfuel | 58.2                                          | 4                             | 90                            | Gardarsdottier et al. 2019,<br>Yan et al. 2020       |
| CAP     | 79                                            | 6                             | 90                            | Gardarsdottier et al. 2019                           |
| MAL     | 96.3                                          | 6                             | 90                            | Gardarsdottier et al. 2019                           |
| CaL     | 68.2                                          | 7                             | 90                            | Gardarsdottier et al. 2019                           |
| Leilac  | 39                                            | 6                             | 95                            | Leilac 2021 (Case A3)                                |

# **Results – Captured Emissions**







#### Captured fuel and process emissions by process route

Institute for Industrial Production (IIP),

Aggregated process emissions and fuel emissions by sector from bottom-up modelled processes

#### **12** 09.02.2024



# **Results – Carbon Capture Technology Diffusion**



Institute for Industrial Production (IIP),

**13** 09.02.2024

Motivation - Research Questions - Method - Results - Conclusion

# Potential monetary savings from the deployment of carbon capture





#### Potential savings in the process routes with carbon capture in billion EUR

Institute for Industrial Production (IIP),

Motivation – Research Questions – Method – Results – Conclusion

# **Conclusion and Outlook**



#### Conclusion

- Non-metallic mineral industry shows highest carbon capture potential (cement, lime)
- Technology readiness significantly influences the diffusion of CCTs
- Rising CO<sub>2</sub> certificate prices make carbon capture technologies a viable option

### Outlook

- Extension of discrete choice model by energy price sensitivity of carbon capture technologies abatement costs and BECCS
- Potential model coupling to consider spatial aspects of transport and sequestration

# Thank you!





Institute for Industrial Production (IIP),

# **References I**



- IEA, 2016. 20 Years of Carbon Capture and Storage: Accelerating Future Deployment (Organisation for Economic Co-operation and Development (OECD) and International Energy Agency (IEA)).
- Eurostat, 2023. Air emissions accounts for greenhouse gases by NACE Rev. 2 activity quarterly data. URL: <u>https://ec.europa.eu/eurostat/databrowser/view/env\_ac\_aigg\_q/default/table?lang=en</u> (accessed on: 08.01.2024)
- Fleiter et al. 2018. "A methodology for bottom-up modelling of energy transitions in the industry sector: The FORECAST model". In: Energy Strategy Reviews 22 (2018), pp. 237–254. doi: 10.1016/j.esr.2018.09.005.
- Biere et al. 2015. "Modellgestützte Szenario-Analyse der langfristigen Erdgasnachfrageentwicklung der deutschen Industrie". PhD thesis. Fraunhofer ISI, Karlsruhe, Germany
- Guminski, 2022. "CO2 Abatement in the European Industry Sector Evaluation of Scenario-Based Transformation Pathways and Technical Abatement Measures". PhD thesis. School of Engineering and Design, TUM, Munich, Germany,
- West, 2020. Low-Temperature Electrowinning for Steelmaking (ULCOWIN). 2020. url: https://energy.nl/media/data/Ulcowin-Technology-Factsheet\_080920.pdf. Accessed: April 30, 2023.
- US Environmental Protection Agency, 2009
- Mignard et al., 2003. "Methanol synthesis from fluegas CO2 and renewable electricity: a feasibility study". In: International Journalof Hydrogen Energy 28.4, pp. 455–464. doi: 10.1016 / S0360 3199(02)00082-4.
- Ecofys, 2009. Sector report for the glass industry. url: https://climate.ec.europa.eu/system/files/2016-11/bm\_studyproject\_approach\_and\_general\_issues\_en.pdf. Accessed: April 30, 2023
- Kotsay et al. 2019. "Belite cement as an ecological alternative to Portland cement—A review". In: Materials Structures Technology 2, pp. 70–76. doi: 10.31448/mstj.02.01.2019.70-76.
- Simoni et al. 2022. "Decarbonising the lime industry: State-of-the-art". In: Renewable and Sustainable Energy Reviews 168 (2022). doi: 10.1016/j.rser.2022.112765.

<sup>-</sup> Study 1 - Study 2 - Study 3 - Study 4 - Conclusion

# **References II**



- Gardarsdottier et al. 2019. "Comparison of technologies for CO2 capture from cement production—Part 1: Technical evaluation". In: Energies 12.3 (2019), p. 559. doi: 10.3390/en120
- **3**0559.
- Subraveti et al. 2021. "Technoeconomic assessment of optimised vacuum swing adsorption for post-combustion CO2 capture from steammethane reformer flue gas". In: Separation and Purification Technology 256 (2021). doi: 10.1016/j.seppur.2020.117832.
- Yan et al. 2020. "Techno-economic analysis of low-carbon hydrogen production by sorption enhanced steam methane reforming (SE-SMR) processes". In: Energy Conversion and Management 226. doi: 10.1016/j.enconman.2020.113530.
- Leilac 2021 (Case A3) Leilac-Techno-economics report summary. Tech. rep. Berlin: Calix, 2021. URL: https://www.calix.global/wp content/uploads/2021/10/LEILACTechno-economic-Summary-2021.pdf. Accessed: April 30, 2023

<sup>-</sup> Study 1 - Study 2 - Study 3 - Study 4 - Conclusion

# Input Data – Carbon avoidance cost



### **BF-BOF process route:**

| ССТ       | Carbon avoidance cost in $\epsilon/t_{CO_2}$ | Captured CO <sub>2</sub> in % | Reference             |
|-----------|----------------------------------------------|-------------------------------|-----------------------|
| Pre-chem  | 76.91                                        | 50                            | Perpiñán et al., 2023 |
| Pre-adsor | 71.59                                        | 50                            | Perpiñán et al., 2023 |
| SEWGS     | 57.85                                        | 50                            | Perpiñán et al., 2023 |
| Post-memb | 67.26                                        | 50                            | Perpiñán et al., 2023 |

# Input Data - Carbon avoidance cost



#### Ammonia and Methanol SR process route:

| ССТ     | Carbon avoidance<br>cost in €/t <sub>co₂</sub> | Captured CO <sub>2</sub> in % | Reference       |
|---------|------------------------------------------------|-------------------------------|-----------------|
| IndCalc | 43.8                                           | 61.1                          | Yan et al. 2020 |
| Oxyfuel | 68.1                                           | 100                           | Yan et al. 2020 |
| MEA     | 40.9                                           | 54.4                          | Subraveti 2021a |
| VSA     | 50.3                                           | 91.4                          | Subraveti 2021b |

# **CO<sub>2</sub> Certificate Price**







# Limitations: Logit parameter



### Sensitivity analysis of the avoidance cost per process route to varying logit parameters for the year 2040

Institute for Industrial Production (IIP),

Chair of Energy Economics

**26** 09.02.2024

Motivation - Research Questions - Method - Results - Conclusion