KIT | KIT-Bibliothek | Impressum | Datenschutz

Ca$^{2+}$ pre-intercalated bilayered vanadium oxide for high-performance aqueous Mg-ion batteries

Fu, Qiang 1; Wu, Xiaoyu; Luo, Xianlin ORCID iD icon 1; Ding, Ziming ORCID iD icon 2; Indris, Sylvio ORCID iD icon 1; Sarapulova, Angelina 3; Meng, Zhen; Desmau, Morgane; Wang, Zhengqi 3; Hua, Weibo 3; Kübel, Christian ORCID iD icon 2,4; Schwarz, Björn ORCID iD icon 1; Knapp, Michael ORCID iD icon 1; Ehrenberg, Helmut 1; Wei, Yingjin; Dsoke, Sonia ORCID iD icon 1
1 Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
3 Institut für Angewandte Materialien (IAM), Karlsruher Institut für Technologie (KIT)
4 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)

Abstract:

The “oxygen-rich” Ca$^{2+}$ pre-intercalated bilayered vanadium oxide (CaVOnH) was synthesized via hydrothermal method and determined as a monoclinic structure with reasonable lattice parameters. CaVOnH achieves a first discharge capacity of 273 mAh g$^{–1}$ with capacity retention of 91% at 50 mA g$^{-1}$ in 0.8 m Mg(TFSI)$_2$–85%PEG-15%H$_2$O (polyethylene glycol, PEG), but limited rate capability due to the low ionic conductivity of electrolyte. Dimethyl sulfoxide (DMSO) is used as a co-solvent to tune the physical-chemical properties of aqueous Mg-ion electrolyte (AME), resulting in the reorganization of Mg$^{2+}$ solvation and hydrogen bond network. The AME containing DMSO shows improved ionic conductivity, low viscosity, and high Mg$^{2+}$ diffusion coefficient and allows CaVOnH and V$_2$O$_5$_ $to achieve a much-improved rate capability and capacity. Moreover, the reaction mechanism and reversibility of CaVOnH are elucidated by combining in operando and ex situ techniques. The results demonstrate that CaVOnH undergoes 2-phase reaction and solid solution, the variation of oxidation state and the local environment of vanadium, and reversible formation/decomposition of MgF$_2$ cathode electrolyte interface during Mg$^{2+}$ (de)intercalation, where MgF$_2$ originated from the decomposition of TFSI$^−$.


Verlagsausgabe §
DOI: 10.5445/IR/1000168028
Veröffentlicht am 05.02.2024
Originalveröffentlichung
DOI: 10.1016/j.ensm.2024.103212
Scopus
Zitationen: 16
Web of Science
Zitationen: 15
Dimensions
Zitationen: 18
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS)
Helmholtz-Institut Ulm (HIU)
Institut für Nanotechnologie (INT)
Karlsruhe Nano Micro Facility (KNMF)
Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 02.2024
Sprache Englisch
Identifikator ISSN: 2405-8297
KITopen-ID: 1000168028
HGF-Programm 38.02.02 (POF IV, LK 01) Components and Cells
Weitere HGF-Programme 43.35.03 (POF IV, LK 01) Structural and Functional Behavior of Solid State Systems
Erschienen in Energy Storage Materials
Verlag Elsevier
Band 66
Seiten Art.-Nr.: 103212
Vorab online veröffentlicht am 01.02.2024
Nachgewiesen in OpenAlex
Web of Science
Scopus
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page