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Abstract

Graphs and graph-based algorithms are ubiquitous. With their omnipresence, it is important

that these graph-algorithms work correctly. To ensure that those algorithms behave correctly,

they can be formally veri�ed. Deductive program veri�cation is used, to show that a program

ful�lls a formal speci�cation of its behavior for every valid input, which is a non-trivial task.

Also, there is not only one single implementation of graphs. Graphs can be represented by

a variety of data structures that all have their advantages and disadvantages in terms of e.g.

runtime or memory-usage.

It is unclear, where potential bottlenecks might occur during the veri�cation of graph-

algorithms. Throughout these data structures, there are di�erences with respect to their

suitability for deductive program-veri�cation of graph-algorithms. Knowing with which

graph-representations graph-algorithms are easier to verify, provides an additional decision

aid, when selecting an implementation.

In this thesis, we look at one speci�c algorithm: depth-�rst search. DFS is a simple algorithm

for traversing graphs. Many graph algorithms are based on DFS. So, despite its simplicity, the

veri�cation of depth-�rst search is of interest. We specify and verify two di�erent implementa-

tions of depth-�rst search. To do so, we use the formal speci�cation language JML, to specify

Java programs, and the KeY tool for deductive veri�cation. We study each implementation with

four di�erent graph-representations. The considered graph data structures are the adjacency

matrix, adjacency array and adjacency lists as well as a linked data structure using objects

and pointers. As implementation of depth-�rst search, we use the recursive versions, using

recursive method-calls, and the non-recursive version, iterating a loop instead of recursive

calls. We show that the recursive version is veri�ed for all four data structures, while the

non-recursive version is only veri�ed for the adjacency matrix version.

Additionally to the veri�cation of DFS with di�erent data structures, we de�ne the depth-

�rst property of a graph traversal, in order to prove that the algorithm traverses the graph in a

valid order.

Finally, we compare the veri�cation-process of recursive and non-recursive depth-�rst

search, for all four representations. We compare them in terms of di�erent aspects, like the

time e�ort of the veri�cation process or the size of the resulting proof.

In the end, this thesis discusses advantages and disadvantages of the four graph-representations,

during the veri�cation of a graph-algorithm. Additionally, we see how the recursive implemen-

tation of DFS can be easier to verify with KeY, than the non-recursive version. Furthermore,

we give a general de�nition of the depth-�rst property of a graph traversal and a set of rules

to handle bounded sums in KeY.
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Zusammenfassung

Graphen und Graph-basierte Algorithmen sind allgegenwärtig. Aufgrund dieser Allgegenwär-

tigkeit, is es wichtig, dass diese Algorithmen korrekt funktionieren. Um das zu gewährleisten,

können die Graph-Algorithmen formal veri�ziert werden. Deduktive Programm-Veri�kation

wird verwendet, um zu zeigen, dass ein Programm eine formale Spezi�kation seines Verhaltens,

für jede gültige Eingabe erfüllt, was keine triviale Aufgabe ist. Außerdem gibt es nicht nur eine

Implementierung von Graphen. Diese können in einer Vielfalt von Datenstrukturen dargestellt

werden, die alle ihre Vor- und Nachteile; z.B. bezüglich Laufzeit oder Speicherverbrauch haben.

Es ist unklar, wo potentielle Engstellen im Veri�kationsprozess auftauchen werden. Un-

ter diesen Datenstrukturen gibt es besser und schlechter geeignete, wenn es um deduktive

Programmveri�kation von Graph-Algorithmen geht. Mit dem Wissen darüber, welche Daten-

strukturen sich besser eignen um einen Graph-Algorithmus zu veri�zieren, bekommt man

eine zusätzliche Entscheidungshilfe beim Auswählen einer Implementierung.

In dieser Arbeit untersuchen wir dies für einen konkreten Algorithmus: Tiefensuche. Tie-

fensuche ist ein simpler Algorithmus, um einen Graphen zu traversieren. Viele komplexere

Graph-Algorithmen basieren auf Tiefensuche. Somit ist die Veri�kation von Tiefensuche, trotz

seiner Einfachheit, von Interesse. Wir veri�zieren zwei verschiedene Implementierungen von

Tiefensuche in Graphen. Dazu verwenden wir die formale Spezi�kationssprache JML, um

Java-Programme zu spezi�zieren, und das KeY-System für die deduktive Veri�kation. Beide Im-

plementierungen werden wir für vier Graph-Repräsentationen untersuchen. Die verwendeten

Graph-Datenstrukturen sind Adjazenz-Matrizen, -Felder und -Listen, sowie eine verzeigerte

Datenstruktur. Als Implementierung von Tiefensuche, verwenden wir eine rekursive Version,

die rekursive Methodenaufrufe verwendet, und eine nicht-rekursive Version, die statt rekursi-

vem Aufruf einen Stack iteriert. Zusätzlich zu der Veri�kation mit diesen Datenstrukturen,

de�nieren wir die Tiefensuch-Eigenschaft, um zu zeigen, dass der Algorithmus den Graphen

in einer gültigen Reihenfolge traversiert.

Schlussendlich vergleichen wir den Veri�kationsprozess sowohl für rekursive, als auch

für nicht rekursive Tiefensuche, jeweils mit den vier genannten Datenstrukturen. Verglichen

werden sie unter verschiedenen Aspekten, wie der Dauer des Veri�kationsprozesses oder der

Größe des Beweises.

Damit diskutiert diese Arbeit die Vor- und Nachteile der vier Datenstrukturen, während der

Veri�kation eines Graph-Algorithmus. Außerdem zeigt sie, dass die rekursive Implemetierung

mit KeY einfacher zu veri�zieren war als die nicht-rekursive. Außerdem geben wird sowohl

eine allgemeine De�nition der Tiefensuch-Eigenschaft einer Graph-Traversierung gegeben,

als auch ein Satz von Regeln, um in KeY mit Summen umzugehen.
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1 Introduction

These days, graphs and graph-based algorithms are ubiquitous. Graphs appear as social net-

work graphs, syntax trees of formal languages or represent tra�c networks. They support

e�cient calculation of centrality measures, a programs name-spaces or shortest paths between

vertices. Due to their omnipresence, it is important that these graph-algorithms work cor-

rectly. Therefore, these algorithms can be formally veri�ed, so they can be proven to ful�ll

certain properties or standards. Also, there is not only one single implementation of graphs.

Graphs can be represented by a variety of data structures, some of which may be more e�cient

in terms of runtime or memory-usage, while others may be more straightforward to implement.

Depth �rst-search (DFS) is a simple algorithm for traversing graphs whilst marking visited

nodes. Many graph algorithms, e.g., Dijkstra‘s algorithm for �nding shortest paths or Tarjans

algorithm for computing strongly connected components, are based on DFS. So, despite its

simplicity, DFS his of interest.

The goal of this thesis, is to compare the deductive program-veri�cation of graph-algorithms,

using di�erent graph data structures. Deductive program-veri�cation means full functional,

formal veri�cation of a program, based on a formal speci�cation.

To approach this goal, we will present the veri�cation-process of one graph-algorithm on a

set of four chosen data structures. We will use JML (Java Modeling Language) [LPC+08], a

speci�cation language for Java, to specify the implementations and the program veri�cation

system KeY [ABB+16] to verify them. As algorithm, we will look at two implementations

of depth-�rst search (i.e. depth-�rst traversal (DFT)), as it is a simple, yet important graph-

algorithm. The graph-representations that we will consider are adjacency matrix, adjacency

array and adjacency lists as well as a linked data structure using objects and pointers. Addi-

tionally, we give a formal de�nition of the depth-�rst property of a graph traversal, in order to

specify, when an algorithm traverses a Graph in a valid DFT order.

We will compare the suitability of DFT with these four graph-representations in the

veri�cation-process and argue, where certain advantages and disadvantages of these rep-

resentations stem from. To estimate their suitability, we will compare the data structures under

di�erent aspects like the time e�ort of the veri�cation process or size of the resulting proof.

Chapter 2 gives a short summary of graph theory in section 2.1 and introduces the four data

structures that we will consider in section 2.2. Also the two implementations of depth-�rst

traversal, recursive and non-recursive DFT are presented in section 2.3. Additionally it contains

an introduction to JML and KeY in sections 2.4 and 2.5.

Chapters 3 and 4 present the general implementation, speci�cation and veri�cation of

recursive and non-recursive DFT, as well as the speci�c veri�cation-process for each graph-

1



representation. In chapter 5 we will discuss, how the depth-�rst property of a graph traversal

can be speci�ed and veri�ed in detail.

Finally, we will evaluate the time e�ort and proof statistics for each veri�cation-process and

compare the advantages and disadvantages of the four data structures in chapter 6. Chapter 7

contains the conclusion where we will look at the results and give an outlook on potential

future work.

2



2 Theoretical fundamentals, Tools and
Techniques

2.1 Graph Theory

Graphs describe structures, consisting of a set of points V (called vertices) and a set of lines

E between those points (called edges). With a graph, objects can be modeled as vertices and

associations between objects can be modelled as edges. For example, tra�c-networks can be

represented by a graph, by modeling roads as edges and crossroads as vertices.

In an undirected graph G = (V , E), E contains undirected edges e = {u,v}, connecting two

vertices u and v . For an edge e = {u,v}, there is no order of the vertices, which is why it is

called an undirected edge.

Figure 2.1 shows two undirected graphs, each consisting of four vertices: a,b,c and d .

Although both contain the same vertices, the two graphs are not the same, since they contain

di�erent edges.

a

b c

d a

b c

d

Figure 2.1: Two undirected graphs, both consisting of four vertices: a,b,c and d

The right graph in �gure 2.1 can be created, if we take the left graph and remove one edge

(a,b), the edges (a,d) and (c,d) as well as the loop (a,a).

De�nition 1 (Subgraph) A graphG′ = (V ′, E′) is a subgraph ofG = (V , E), if it can be created
by removing edges from E or vertices and all connected edges from G:

G′ ⊆ G ⇔ V ′ ⊆ V ∧ E′ ⊆ {(u,v) ∈ E |u ∈ V ′ ∧v ∈ V ′}

De�nition 2 (Degree) The number of edges connecting a vertexv ∈ V with other verticesu ∈ V
is called the vertex’s degree δ (v):

δ (v) = |{{u,w} ∈ E |v = u ∨v = w}|

3



In undirected graphs, there is no limitation to the number of edges between two vertices.

Furthermore, edges with the same start- and end-vertex, called loops, or isolated vertices with

no edges, are possible.

De�nition 3 (Simple graph) A graphG = (V , E) is called a simple graph i� E contains neither
multiple edges between two vertices nor loops.

In �gure 2.1 the left graph contains a loop at vertex a and multiple edges between a and b,

hence it is not simple. The right graph, instead is simple. Its vertex d is called isolated, since it

has no connected edge.

If its edges have a direction, a graph is called a directed graph.

De�nition 4 (Directed graph) A directed graph G = (V , E) consists of a set of vertices V and
a set of edges E ⊆ V ×V , where the edges e ∈ E are pairs e = (u,v). The pair provides an order of
the vertices, implying the edge’s direction: an edge (u,v) ∈ E starts at vertex u and ends at vertex
v .

Undirected graphs can be modeled as directed graphs, by replacing every undirected edge

{u,v} with two directed edges (u,v) and (v,u) in either direction, as �gure 2.2 shows.

a

b c

d
a

b c

d

Figure 2.2: Undirected graph (left) modeled as directed graph (right)

In directed graphs, the degree of a vertex v can be divided into in- (δ−(v)) and out-degree

(δ+(v)), the number of incoming and the number of outgoing edges.

De�nition 5 (In- and out-degree) For a vertexv in a directed graphG = (V , E), the in-degree
δ−(v) is the number of incoming edges , ending at v :

δ−(v) = |{u ∈ V |(u,v) ∈ E}|

The out-degree δ+(v) of v denotes the number of edges that start at v :

δ+(v) = |{u ∈ V |(v,u) ∈ E}|

When using graphs, we often want to know, whether one vertexv is reachable from another

vertex u, by repeatedly traversing edges (initially starting at u), until the destination v is

reached. If v can be reached, then u and v are connected through a path.

De�nition 6 (Path) A path in a graphG = (V , E) is a sequence p = (v0, . . . ,vm) of vertices, so
that two consecutive vertices vi and vi+1 on the path are connected by an edge (i1, i2). The path
p = (v0, . . . ,vm) starts at vertex v0 and ends at vertex vm.
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Additionally to general graphs, there is a special type of graphs, called trees. Trees are

graphs, where all vertices are reachable from one root, vertex. Also a tree does not contain

cycles, so they can describe hierarchical structures.

De�nition 7 (Tree, root, forest) A graph G = (V , E) is a tree i� there is exactly one vertex
r ∈ V , called the root, with no incoming edges δ−(v) = 0. Also, every other vertex v ∈ V ,v , r ,
has exactly one incoming edge: δ−(v) = 1. Additionally, there must be a path from the root r to
every other vertex v ∈ V .

A graph is a forest, if it consists of multiple, unconnected trees as subgraphs.

De�nition 8 (Ancestor, descendant, parent, child) Let u and v be vertices in a tree T =
(V , E) that are connected through a path p = (u, . . . ,v). Then u is called an ancestor of v and v is
called a descendant of u.
If p is an edge from u to v : p = (u,v) ∈ E, then u is also called parent of v and v is called a

child of u.

Figure 2.3 shows an example tree with root r . It contains an exemplary path from r to w ,

which is colored blue. The vertex t is a descendant of the vertex s and the root r is ancestor of

all other vertices. In the example, the vertex u is the parent of the vertices v and w , which are

the children of u.

r

su

v
w

t

Figure 2.3: Example of a tree with root r
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2.2 Graph Representations

If we want to use a graph in a program, there are several data structures that can be used to

represent it. The two most popular ones are adjacency lists and adjacency matrices. Moreover,

we will consider a compressed versions of an adjacency matrix (the adjacency array) and

a linked data structure, to represent a graph. Each of them has its own advantages and

disadvantages, which are mentioned in sections 2.2.1 to 2.2.4.

1

2 3

4

Figure 2.4: Example of a simple directed graph

The simple, directed graph in �gure 2.4 will serve as example graph in the following

subsections. Each of those sections describes a di�erent graph data structure and provides an

illustration of the example-graph in the corresponding graph-representation.

2.2.1 Adjacency Lists

Adjacency lists consist of an array aV , whose entries each point to a list. The indices of aV
represent the graphs vertices v ∈ V and the list aV [v] holds adjacent vertices to v . With an

adjacency list, it is possible to add edges to the graph in constant time. By accessing the list

aV [v], v’s neighbors can also be retrieved in constant time. [MS08]

Figure 2.5 shows the adjacency list representation of the graph in �gure 2.4. For example, the

edges (3, 2) and (3, 4) are represented by the third list ([2, 4]) which contains the destinations of

those edges that start at 3. Since there are no edges leaving vertex 4, its adjacency list is empty.

aV

2 1 2

3 4

4

Figure 2.5: Adjacency lists representation of graph 2.4

2.2.2 Adjacency Matrix

An adjacency matrix is a |V | × |V | matrix. An entry aij , 0 indicates that vertex i and vertex j
are connected by an edge e = (i, j). Hence the adjacency of two given vertices can be checked
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0 1 1 1

1 0 0 0

0 1 0 1

0 0 0 0

ª®®®¬
Figure 2.6: Adjacency matrix representation of graph 2.4

in constant time. Also, adding or removing edges in the graph can be done in constant time, by

setting an entry aij to 1 or 0. Matrices can be e�cient in terms of memory usage, if the graph

is very dense, which means, the graphs number of edges |E | is near |V |2. In the opposite case

of a sparse graph, a lot of entries are zero: aij = 0. In that case the other three data structures

are more memory-e�cient with a memory usage of O(|V | + |E |). [MS08]

In �gure 2.6 the 1 at row three and column two represents the edge (3, 2). The entries on

the matrix’s primary diagonal are 0, because there are no self loops in the graph.

2.2.3 Adjacency Array

To avoid storing all the 0-entries in sparse adjacency matrices, the data can be compressed

into the adjacency array representation. Here, all the vertices’ adjacency lists are concatenated

and stored into one single array aadj . Therefore, we must be able to determine the start and

end of each vertex’s adjacency list in aadj . That is the purpose of the aV -array: aV [v] = i and

aV [v + 1] = j denotes that v’s outgoing edges end in the vertices aadj[t] where t ∈ [i, j). The

exclusive upper index j of v’s adjacent vertices is the lower index of the adjacency list of the

vertexv + 1. If a vertexw does not have any adjacent vertices, then aV [w] = k equals aV [w + 1]
and the range [k,k) is empty. Since every vertex needs a lower and an upper index, there is

one dummy entry at the end of aV , which holds the upper index of the last vertex. Still, the

dummy entry’s index itself does not represent a vertex. Since all the edges’ destinations are

stored in one array, adding or removing an edge or vertex always leads to recalculation of

both arrays aV and aadj . However, as only two one dimensional arrays are used, the required

memory is reduced to O(|V| + |E|). [MS08]

In the example �gure 2.7, the neighbors of 3 can be found, by reading those entries aadj[i],
where i is in [aV [3],aV [3 + 1]). That results to the entries in [5, 7), which hold the vertices 2

and 4.

aV 1 4 5 7 7

aadj 2 3 4 1 2 4

Figure 2.7: Adjacency array representation of graph 2.4
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2.2.4 Linked Graph Data Structure

The linked graph data structure models vertices as objects. Each vertex-object has a list of

pointers, which all point to adjacent vertices. Additionally, there is a list that keeps track of

the graphs vertices. Similar to the adjacency lists data structure, it is possible to add or remove

edges or get a vertexes neighbors in constant time. This graph-representation has a memory

usage of O(|V| + |E|). As this representation is an object-oriented approach, it is easier to read

and more intuitive for object-oriented users. In �gure 2.8, the vertex-object 3 holds pointers to

the objects 2 and 4, which represent the edges (3, 2) and (3, 4). As there are no edges leaving 4,

that vertex-object does not hold any pointers.

V

1 4

2 3

Figure 2.8: Linked graph representation of graph 2.4
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2.3 Depth-First Search and Depth-First Traversal

Depth-�rst search (DFS) is a graph traversal algorithm. A graph traversal algorithm describes

the process of visiting a graph’s vertices. There are di�erent types of graph traversal algorithms,

which di�er in the order, in which the vertices are visited. Depth-�rst search follows the strategy

of traversing those edges that are leaving the last discovered vertex. When a yet undiscovered

vertex is found, it is marked as visited, before exploring deeper into the graph. In case of

traversing an edge that ends in an already visited vertex, the algorithm backtracks, until a

vertex with not yet explored edges is reached and starts exploring one of them. In this way, the

next visited vertex is always a child of the most recently visited vertex that still has unvisited

children. The algorithm terminates, when all vertices that are reachable from the start-vertex,

are marked as visited. [MS08]

In this thesis, we will work with depth-�rst traversal (DFT). DFT traverses all the graphs

vertices, instead of only those that are reachable from a given vertex. To cover the whole graph,

it is possible to start DFS multiple times, each time at another vertex that is not visited after

the previous DFS.

DFS can be implemented in both a recursive (algorithm 1) and a non-recursive form (algo-

rithm 2). The recursive form marks a newly reached vertex v as visited and then iterates the

adjacent vertices of v , starting the dfs-routine at each of them. If dfs(u) is called for a vertex u
that has already been visited, the routine terminates without doing anything and backtracks

to u’s parent-vertex. The non-recursive form uses an explicit stack, on which it stores vertices.

The non-recursive dfs-routine continues as long as there are vertices on the stack. In each

iteration, it takes the vertex on top of the stack, marks it as visited (if it is not yet) and pushes

all unvisited neighbors of that vertex onto the stack. In this way, the most recently pushed

vertex is visited next. [Lar15, CLR+09]

In both cases, these routines can be started multiple times at vertices that were not reachable

yet and are thus not visited. This ensures that the whole graph is covered, even if it is not

strongly connected. In this way, depth-�rst traversal is performed.

When traversing a graph with DFS, the traversed edges can be divided into four classes:

Edges, used to reach unvisited vertices, are called tree-edges. After DFS has �nished, the

subgraph G′, containing only tree-edges, is a spanning tree of the graph. When performing

DFT, G′ is not a spanning tree but a forest of DFS-trees.

Non-tree-edges, which point from a vertex to one of its descendants in that tree are called

forward-edges. Back-edges are those edges that point from a vertex to one of its ancestors.

Forward- and back-edges always connect two vertices on a path in the DFS-tree. The rest of

the graphs edges are called cross-edges. Neither of a cross-edges incident vertices is ancestor

of the other, so there is no path in the DFS-tree containing both vertices. Figure 2.9 shows the

four edge-types and their notation. [MS08]

Figure 2.10 shows the execution of depth-�rst search, in the example-graph from �gure 2.4,

starting at vertex a. It shows the state of the execution divided into 11 steps, where (1) shows

the outset and (12) the �nal state. Visited vertices are shown in yellow and the vertex, from

where DFS is currently searching, is marked red. Unexplored edges are shown in blue and the
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tree-edge

forward-edge

back-edge

cross-edge

Figure 2.9: Notation of edge-types

edge, that will be traversed in the next step, is painted green. After an edge has been traversed

for the �rst time, it is displayed in its matching classi�cation (see �gure 2.9).

In this way, every selected (green) edge, leading to a yet unvisited vertex, will become a

tree-edge. In the example that are (a,b) in step (2 → 3), (a, c) in step (5 → 6) and (c,d) in

step (7 → 8). When (b,a) is selected in (3), a has already been visited and is ancestor of

b. Thus (b,a) is a back-edge. Also, when (c,b) is selected in (6) or (a,d) in (10), the desti-

nation vertex (b resp. d) has already been visited. Since neither c nor b is ancestor of the

other, (c,b) is a cross-edge. And as a is ancestor of d , (a,d) becomes a forward-edge. In some

states, there are no edges selected, which means that there are no undiscovered outgoing

edges left, and the algorithem will backtrack in the following step along the incoming tree-edge.

a

b c

d

1:

a

b c

d

2:

a

b c

d

3:

a

b c

d

4:

a

b c

d

5:

a

b c

d

6:

a

b c

d

7:

a

b c

d

8:

a

b c

d

9:

a

b c

d

10:

a

b c

d

11:

a

b c

d

12:

Figure 2.10: Exemplary DFS steps starting at a

In order to verify depth-�rst search, we will only consider simple directed graphs, since

undirected graphs can be modeled as directed graphs (see section 2.1). The restriction on

simple graphs is possible, since removing duplicate edges and loops does not change the graphs

reachability properties:
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u

v

Case 1.1

...

u

w

v

Case 1.2

...

v

w

u

Case 2.1

...

w

v
u

Case 2.2

...

Figure 2.11: Cases of edge classi�cation for multiple edges (u,v)

If a graph contains multiple edges e1 = e2 = (u,v) ∈ E, one of them can be a tree-edge and

the rest are forward-edges, or all of them are forward-, back-, or cross-edges. Figure 2.11 shows

the four possible cases of edge classi�cation, assuming multiple edges from u ∈ V to v ∈ V .

The four cases are divided into cases 1.1 and 1.2 where u is visited before v and cases 2.1 and

2.2 where v is visited before u.

In case 1.1 of �gure 2.11 v is visited directly after u, so one of the edges (u,v) is a tree-edge,

the others are forward-edges, since v is a descendant of u. If there is at least one other vertex

w ∈ V visited between u and v , none of the edges (u,v) is a tree edge. Since v is still a

descendant of u, all the (u,v)-edges are forward-edges, as case 1.2 shows. In the contrary case

2.1, when u is a descendant of v , all the (u,v)-edges are back-edges. The last case 2.2 occurs,

if neither u nor v is ancestor of the other vertex. Here the (u,v)-edges are cross-edges. The

case that u is visited before v and (u,v) is a cross-edge can never occur, since DFS would visit

all reachable vertices of u (including v) before backtracking to an ancestor of u.

In each case, removing duplicate edges does not change the DFS-tree (resp. DFT-forest).

Also loops e = (v,v) can never be tree-edges. Removing them together with duplicate edges,

results in a simple graph, which still has the same reachability structure and therefore also the

same DFS-tree.

Furthermore, timestamps can be used to indicate, when a vertex v was visited for the �rst

time (pre-order index: pre(v)) and when it was left via backtrack (post-order index: post(v)).

Figure 2.12 shows the example graph from �gure 2.4 after the DFS traversal and the pre- and

post-order-index of each vertex. Since a is the starting point, it has pre-order-index 1. After

that, b is visited and receives pre-order-index 2. Since b has no unvisited adjacent vertices, the

algorithm backtracks to a and b has now the post-order-index 3. Continuing this procedure

will eventually provide a pre- and post-order-index for each vertex.

a
(1,8)

b
(2,3)

c
(4,7)

d
(5,6)

Figure 2.12: Pre- and post-order indices after a DFS traversal: (pre,post)
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2.4 Java Modeling Language

The Java Modeling Language (JML) is a formal speci�cation language that can be used to

specify Java programs. The speci�cation can be written as Java-comments and is based on

the Java-syntax. JML also provides some new keywords like the universal (\forall) and the

existential quanti�er (\exists), as well as a notation for implication (==>) and equivalence

(<==>), to extend the Java-syntax. With JML, the design by contract concept can be applied

to Java programs. A software component’s interface can be speci�ed in JML, which forms a

contract. Such a contract contains preconditions, which the user of the component has to meet,

and postconditions, which the software component itself has to assure. Thus JML supports

modular speci�cation and veri�cation.

To specify properties of a Java class, we can describe the functionality of its methods. Fur-

thermore class-invariants can be used to describe properties of the class’s �elds.

Class-invariants are constraints to the class’s �elds, which de�ne its legal states. All of the

class-invariants must hold after the class’s constructor �nished. Also every method (except

helper- and private methods) must preserve the invariants of its class. This means that before

and after the execution of such a method, the class’s invariants must hold. The example in

listing 2.1 demands that G has at least one entry, that cnt is a value in [0,G.length] and that

the ord-array has the same length as G. Those three conditions must be assured by the class

constructor. [LPC+08]

public class GraphDFT_recursive {

/*@ public invariant G.length > 0; @*/

private /*@ spec_public @*/ boolean[][] G;

/*@ public invariant 0 <= cnt && cnt <= G.length; @*/

private /*@ spec_public @*/ int cnt;

/*@ public invariant ord.length == G.length; @*/

private /*@ spec_public @*/ int[] ord;

/*...*/

Listing 2.1: Example of class-invariants

To simplify the speci�cation, it is possible to de�ne model-methods, as well as model- and

ghost-�elds. Model- and ghost-�elds are both imaginary �elds that serve only the purpose

of formal veri�cation. Model-�elds are used to abstract from existing �elds and methods, A

model-�eld’s value derives from the values of those �elds and methods it abstracts. Ghost-�elds

instead, do not represent a speci�c �eld and can be assigned any value of its type, by using

set-statements. Model-methods are imaginary methods, used in the speci�cation, but they are

not abstractions of other methods. [LPC+08]

Listing 2.2 shows an example of a model method unvisited(), which returns a location-set

(a set of locations on the heap). The location-set is calculated as union of all locations in the

ord-array that have a value of -1.
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/*@ model \locset unvisited() {

return \infinite_union(int i;

(0 <= i && i < ord.length && ord[i] == -1);

\singleton(ord[i]));

}

@*/

Listing 2.2: Example of a model-method

A method-contract consist of pre- (ensures) and postconditions (requires). A method

is considered to ful�ll its contract, if the postconditions are true after the execution of the

methods body, assuming the preconditions were true upon method-call. When describing

the postcondition, it might be necessary to compare the programs state before and after the

execution. Therefore, the \old keyword provides access to values of �elds before the execution.

Also the \result keyword can be used, to argue about the result, returned by the method. If

a method manipulates some of the class’s �elds, those can be listed in an assignable clause.

Such an assignable-clause states that during the execution of the method all of the listed

�elds may change, while all other �elds remain untouched. [LPC+08]

The example in listing 2.3 shows the method order(int v), which takes an int-value v and

returns the value of the ord-array at the given index v. Its contract consists of one pre- and one

postcondition. When the method is called, the parameter v is required to be in [0,ord.length),
otherwise an IndexOutOfBoundsException would be thrown. The postcondition states that

the value returned by order(int v) equals ord[v]. Also the assignable-clause says that no

�elds are modi�ed in the method-body.

/*@ public normal_behavior

@ requires 0 <= v && v < ord.length;

@ ensures \result == ord[v];

@ assignable \strictly_nothing;

@*/

public int order(int v) {

return ord[v];

}

Listing 2.3: Example of a method-contract

Additionally to describing a methods pre- and postconditions, it is possible to describe the

behavior of loops within the method-body, by using loop-invariants (loop_invariant). For

the loop to ful�ll its speci�cation, the loop-invariants must be preserved by the loop-body.

Also the invariants must initially be true, before the loop is started. [LPC+08]

The for-loop in listing 2.4 sets the entries of the ord-array to -1. The loop’s counter variable

t is initially 0 and will then be increased until it reaches ord.length. That results in the

�rst invariant, stating that t must be in [0,ord.length]. The second invariant states that in

each cycle, the �elds [0,t) of ord have already been set to -1. The assignable-clause here

contains the counter-variable t. The assignable-clause states that all entries with an index in

[t,ord.length) of ord may be assigned.
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/*@ loop_invariant 0 <= t && t <= ord.length;

@ loop_invariant (\forall int i; 0 <= i && i < t; ord[i] == -1);

@ decreases ord.length - t;

@ assignable ord[t .. (ord.length - 1)], t;

@*/

for (int t = 0; t < ord.length; t++) {

ord[t] = -1;

}

Listing 2.4: Speci�cation of a for-loop using loop-invariants

When working with loops, it is often necessary to show their termination. To do so, the

decreases keyword can be used. A decreases-clause consists of an int (or long) expression,

which must be decreased by at least 1 after each cycle. Also the expression must not drop

below 0. In listing 2.4, the decreases-clause demands that ord.length - t decreases. Since t

is increased by one each cycle and is at most ord.length, ord.length - t is decreasing and

does not fall below 0. Similar to loops, the termination of recursive methods can be proven,

using a measured_by clause. It also contains an int expression which must strictly decrease

with every recursive call.

There are several tools using the JML annotations, to check whether a program violates its

speci�cation. For example the KeY tool can be used for automated or interactive correctness

proofs.

2.5 KeY

The KeY tool is an interactive theorem prover for Java Dynamic Logic. JavaDL is a dynamic

logic for Java, a modal logic that can argue about programs. KeY takes Java source-code

speci�ed with JML and transforms it into Java Dynamic Logic proof-obligations. These proof-

obligations are a set of JavaDL formulas that need to be proven, in order to show that the

corresponding program is correct. KeY uses a sequent calculus to deduce the correctness of

a given formula. While applying rules to the sequent, a proof-tree is built, whose leafs are

open or closed proof-goals. The proof that is built is a tree, since KeY can apply rules with

more than one premiss, which split the proof in di�erent branches. An open proof-goal is a

sequent, derived from the initial proof-obligation, that still hast to be proven. Both interactive

and automatic veri�cation are supported by KeY. During automatic proofs, built-in heuristics

are used to complete the proof as far as possible. If there are still open goals left, the user can

try to close the proof manually. [ABB+16]

KeY also supports the speci�cation of nested code-blocks with block-contracts as well as an

alternate technique to specify loops, so called loop-contracts (introduced to KeY in [Wac12]

and [Lan18]).

Block-contracts allow to split a methods body into smaller code-blocks, specify their behavior

and then use the contract as if they were method-contracts. The example in listing 2.5 shows

a code-block, in which the values of the two variables x and y are swapped. Like a method-
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contract, the blocks pre- and postconditions can be speci�ed with ensures- and requires-

predicates. To reference a variable’s state just before the block, the \before-keyword can be

used: \before(x). In the example, it is used in the postcondition to state that after the block,

x has the value of y before the block (and vice versa). The \old-keyword still references the

surrounding methods prestate.

/*@ requires x == \old(x)};

@ ensures x == \before(y);

@ ensures y == \before(x);

@ ensures y = \old(x);

@ assignable x, y;

@*/

{

int z = x;

x = y;

y = z;

}

Listing 2.5: Example of a block-contract

Loop-contracts can be used for blocks, which start with a loop. By using a loop-contract,

the loop can be speci�ed with pre- and postconditions. Listing 2.6 shows an example of a

loop-contract. In the while-loop, the entries of an array a are set to 0. The precondition

describes that n is in [0,a.length] and requires a not to be null. These preconditions must

be true before every iteration. The \before-keyword references the state before the current

iteration. Since the loop is seen as a tail-recursive procedure here, the ensures-predicate must

be true after the current and all following iterations. In this way, the shown contract ensures

that all entries of a with an index in [\before(n),a.length) equal 0.

/*@ requires 0 <= n && n <= a.length;

@ requires a != null;

@ ensures (\forall int i; \before(n) <= i && i < a.length; a[i] == 0);

@ assignable a[n..a.length];

@ decreases a.length - n;

@*/

{

while(n < a.length) {

a[n] = 0;

n++;

}

}

Listing 2.6: Example of a loop-contract

Furthermore, KeY supports user-de�ned taclets. Taclets are a formalization of the rules

used in KeY. It allows to de�ne, when a rule is applicable and how KeY should treat the rule

during automatic proofs. The example in listing 2.7, shows the i�henelse-true-taclet. The rule

is applicable on every if -then-else expression, whose guard is true. A taclet also de�nes, what

happens, when the rule is applied. In the example, the if -expression with a true guard, is
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replaced by the expression of the then-case. A KeY-user can write own taclets and apply them

in any other proof, after the taclets are proven to be correct. [RU16]

ifthenelse-true { \find ( \if (true) \then (then) \else (else) )

\replacewith ( then )

};

Listing 2.7: Exemplary taclet treating true if-statements

2.6 Proof-Script-Debugger

The Proof Script Debugger is a tool, which allows editing and executing proof-scripts. With

such a script, the execution of interactive steps on a proof can be automated. For one, a script

may contain script-commands, which perform symbolic-execution, one-single-proofstep or the

auto-mode of KeY. Additionally individual branches in the proof can be selected and speci�c

rules can be applied to selected branches. In this way, interactively applied rules do not have

to be applied again by hand, after a failed proof-attempt. Those are now applied during the

execution of the script. [BGU17]

Listing 2.8 shows an exemplary script-snippet. The symbex-command completes the symbolic-

execution, after which tryclose is performed on every open goal, trying to close it. The

following cases-block allows to match branches, in order to apply rules or commands on

open goals. In the example, there are two branches that can be matched. If the �rst branch

is matched, then ’one single proofstep’ is performed on the sequent. In the second case, the

KeY-rule cut is applied: cut takes a formula and splits the branch into two: one assuming

the formula is correct and one where the formula must be shown to be true. With these

cases-blocks, those branches can be selected, where interactive steps were required in KeY

and the necessary rules can be added to the case of a speci�c branch.

symbex;

forall{tryclose;}

cases {

case match ’Pre (searchC) // if x_2 true // Normal Execution (x_arr != null) //.*’:

onestep;

case match ’#0 // #1 // if x_2 false // Normal Execution (x_arr != null) //.*’:

cut ’1 + anonIn_k > 0’;

default :

}

Listing 2.8: Exemplary proof-script
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3 Recursive Depth-First Traversal

In the following, we present the implementation, speci�cation and veri�cation of recursive

depth-�rst traversal (see section 2.3 and algorithm 1). Since all three topics contain both data

structure independent and data structure speci�c parts, we will �rst look at their similarities in

sections 3.1 to 3.3. Sections 3.4 to 3.7 will discuss the data structure speci�c implementation-,

speci�cation- and veri�cation-processes in detail. The complete source-�les can be found in

listings A.5 to A.10.

3.1 Implementation

The implementation of recursive DFT is based on Program 18.1 and Program 18.2 in [SeSc03].

It combines Program 18.1, which performs depth-�rst search, with an additional for-loop

from 18.2, to achieve depth-�rst traversal. From this code-basis, we can remove the graph

data structure (GraphDS), so we can insert those data structures, we want to compare (see

section 2.2). In the following listings all data structure speci�c types and interactions appear

as Java-comments and serve as placeholders for the actual graph data structure, which will be

inserted in sections 3.4 to 3.7.

public class GraphDFT_recursive {

private /*GraphDS*/ G;

private int cnt;

private int[] ord;

public GraphDFT_recursive(/*GraphDS*/ GIn) {

this.G = GIn;

cnt = 0;

ord = new int[G.size];

for (int t = 0; t < G.size; t++) {

ord[t] = -1;

}

}

/*...*/

Listing 3.1: Class �elds and constructor of the recursive DFT class

Listing 3.1 shows the class’s �elds G, cnt and ord. G is a placeholder for the used graph data

structure. The integer cnt is used as a timer, to determine when a vertex is visited for the �rst

time during DFT. Every time a yet unvisited vertex is visited, the current cnt value is stored in
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the array ord, so at the end of DFT, ord contains the pre-order-indices of all vertices. Here a

vertex is represented by an integer value that is an index of ord, so ord[v] is the pre-order-

index of the vertex v and ord.length equals the number of vertices in G. The constructor sets

G to the given graph GIn and cnt to 0, since no verticecs have been visited yet. The ord array

is created with a size of G.size, which is the number of vertices in G. All of ord’s entries are

set to -1, denoting that all vertices are unvisited.

public void dft() {

for (int k = 0; k < G.size; k++) {

if (ord[k] == -1) {searchC(k);}

}

}

public void searchC(int v) {

ord[v] = cnt++;

/*List*/ adj = /*G.adjacent(v)*/;

for (/*int t : adj*/) {

if (ord[t] == -1) {searchC(t);}

}

}

Listing 3.2: Methods dft and searchC for performing depth-�rst traversal

Listing 3.2 contains the code of the dft- and searchC-method, which perform the actual

depth-�rst traversal. The method searchC (searchC stands for ’search component’) performs

depth-�rst search and searches that component of the graph that is reachable from the given

vertex. The dft-method calls searchC multiple times, which results in depth-�rst traversal.

The searchC method takes an integer, representing a vertex, and marks it as visited, by

storing the current cnt value in ord[v]. That is now the pre-order-index of v. Also the cnt

value is increased by one, since the next vertex to be visited, gets the next higher pre-order-

index. After that, searchC is called recursively for every unvisited, adjacent vertex of v, which

are stored in adj. Thereby, all vertices that are reachable from v, are visited after searchC(v)

has �nished. The retrieval and the type of adj depend on the used data structure, as well as

the iteration of its elements.

The dft-method takes care that all of G’s vertices will be searched. It starts searchC with a

vertex k. If not all vertices are reachable from k, some stay unvisited. Then dft calls searchC

again for one of the remaining unvisited vertices and repeats this until all vertices are visited.

3.2 Specification

The speci�cation of the implementation in section 3.1 contains some data structure speci�c

invariants and pre-/postconditions in method-contracts. Still, there are some parts of the

speci�cation that remain the same, regardless of the used data structure. Those will be

presented in the following, while the data structure speci�c parts are treated in sections 3.4
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to 3.7. Until then, the speci�c speci�cation parts are denoted by comments describing their

purpose.

In this chapter, we will consider the algorithm to be correct, if it performs a graph-traversal

on the whole graph, visiting each vertex exactly once. This speci�cation is su�cient for us, to

compare the used data structures (see chapter 6). A speci�cation of the depth-�rst property is

given in chapter 5.

The class-invariants, shown in listing 3.3, consist of the invariants concerning the used

graph data structure. Additionally, there are invariants to the cnt �eld. Since it is counting the

already visited vertices, it must be in [0,G.size], where G.size denotes the number of vertices

in the graph. The \num_of quanti�er sums up the number of �elds i in ord where ord[i]

, -1, which represent the visited vertices. Thus, this sum always equals cnt. The ord-array

stores the pre-order-index of each vertex. Since pre-order-indices must be disjoint, the fourth

invariant is taking care that the ord-entries of visited vertices are a permutation of the values

[0,cnt). Thus, after the dft-method terminates, every vertex has a unique pre-order-index.

The speci�cation also contains a model-method unvisited() (mentioned in listing 2.2), which

returns those locations in ord that hold -1, representing an unvisited vertex. The vertex that

will be visited next, depends on the graphs structure. So any location could be marked as

visited, which is why there is no index in ord, which separates the visited vertices from the

unvisited ones. Therefore, the model-method uses an in�nite_union to collect those locations.

This model-method can be used to describe which entries in ord are assignable in dft and

searchC.

/*Data structure specific invariants*/

private /*@ spec_public @*/ /*GraphDS*/ G;

/*@ public invariant 0 <= cnt && cnt <= G.size;

@ public invariant (\num_of int i; 0 <= i && i < ord.length; ord[i] != -1) == cnt;

@*/

private /*@ spec_public @*/ int cnt;

/*@ public invariant ord.length == G.size;

@ public invariant (\forall int i; 0 <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@*/

private /*@ spec_public @*/ int[] ord;

/*@ model \locset unvisited() {

return \infinite_union(int i;

(0 <= i && i < ord.length && ord[i] == -1); \singleton(ord[i]));}

@*/

Listing 3.3: Class-invariants of the recursive DFT class

The constructor (see listing 3.1) takes the graph data structure GIn and sets G = GIn and

thus must assure that the input-graph GIn is valid. Therefore, the class’s data structure-speci�c

invariants are required of GIn. Also it ensures that cnt is set to 0 and that all entries of the
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ord-array are set to -1. The speci�cation of the loop, setting the ord-entries, is explained in

listing 2.4.

/*@ public normal_behavior

@ requires //Data structure specific requirement on GIn//

@ ensures G == GIn;

@ ensures (cnt == 0);

@ ensures (\forall int i; 0 <= i && i < G.size; ord[i] == -1);

@*/

public GraphDFT_recursive(boolean[][] GIn) {

/*...*/

}

Listing 3.4: Speci�cation of the constructor

The dft-method, responsible for calling searchC until all vertices are visited, is supposed to

be called when no vertices have been visited. That is assured with the two requires-clauses

in listing 3.5. Also the speci�cation ensures that, after dft has �nished, all vertices have been

visited and the ord-array is a permutation of [0,G.size). The assignable-clause states that

only the ord-array and cnt will be modi�ed.

/*@ public normal_behavior

@ requires cnt == 0;

@ requires (\forall int i; 0 <= i && i < ord.length; ord[i] == -1);

@ ensures (cnt == G.size);

@ ensures (\forall int i; 0 <= i && i < G.size;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ assignable ord[*], cnt;

@*/

public void dft() {

/*...*/

}

Listing 3.5: Method-contract of dft

The speci�cation of the loop in dft (listing 3.6) uses a loop-contract. It requires/ensures

the class-invariants before/after each execution of the loop-body. Also, all vertices in [0,k)
must be visited, where k is the loop’s counter-variable. This is because in iteration k, either

k is already visited or searchC(k) is called, which ensures that k is visited afterwards. After

the loop has �nished, the variable k equals G.size. Also cnt must be greater or equal to k,

since at least those vertices in [0,k) have been visited. By using k = G.size and cnt ≥ k as

well as the class-invariant cnt ≤ G.size, we can show that after the loop cnt equals G.size.

During the loop, cnt and k may be assigned, as well as all unvisited vertices in ord (returned

by unvisited()).
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/*@ loop_contract normal_behavior

@ requires \invariant_for(this);

@ requires 0 <= k && k <= G.size;

@ requires (\forall int i; 0 <= i && i < k; ord[i] != -1);

@ requires cnt >= k;

@ ...

@ ensures (\forall int i; 0 <= i && i < k; ord[i] != -1);

@ ensures cnt >= k;

@ ensures \invariant_for(this);

@ ensures k == G.size;

@ decreases G.size - k;

@ assignable unvisited(), cnt, k;

@*/

{

for (int k = 0; k < G.size; k++) {

if (ord[k] == -1) {searchC(k);}

}

}

Listing 3.6: Loop-contract of dft

The searchC-method in listing 3.7 recursively visits all reachable vertices, starting at the

given vertex v. Thus the given integer must represent a vertex and must be in [0,G.size). Also

v must not be visited yet. The postcondition ensures that cnt is increased by at least one, since

at least v is visited. In order to prove that the ord-array is a permutation of [0,G.size), searchC
has to ensure that (after cnt - \old(cnt) vertices have been visited) all timestamp-values in

[\old(cnt),cnt) were inserted into ord. Since searchC is a recursive method, its termination

has to be shown with a measured_by clause. It states that with each call of searchC cnt is

increased, so G.size - cnt decreases monotonically. Since cnt counts the visited vertices and

is at most G.size, G.size - cnt never drops below 0.

/*@ public normal_behavior

@ requires 0 <= v && v < G.size;

@ requires ord[v] == -1;

@ ...

@ ensures cnt > \old(cnt);

@ ensures ord[v] == \old(cnt);

@ ensures (\forall int i; \old(cnt) <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ measured_by (G.size - cnt);

@ assignable unvisited(), cnt;

@*/

public void searchC(int v) {

/*...*/

}

Listing 3.7: Method-contract of searchC
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The loop inside searchC is also speci�ed by a loop-contract, shown in listing 3.8. Like the

dft-loop it requires and ensures the class-invariants. Furthermore, it requires that adj is a

list of v’s adjacent vertices in G (v ∈ [0,G.size)), which is used, to apply class-invariants on

adj. The contract states as well that v remains visited before and after each iteration. It also

ensures that cnt does not decrease and that only unvisited vertices are given a pre-order-index.

Additionally the termination of searchC has to be shown. Since cnt is increased before the

loop-contract-block and does not change inside it, it is required that G.size is the same before

the method and the block. Also cnt before the method (\old(cnt)) has to be at least 0 and

less than the cnt before the block. With these requirements, \old(G.size - cnt) before the

method is larger than G.size - cnt when entering the block, which is also at least zero, since

cnt’s invariants (see listing 3.3) must be true as well. With that, the loop can be shown to

terminate.

/*@ loop_contract normal_behavior

@ requires \invariant_for(this);

@ requires adj == G.adjacent(v) && 0 <= v && v < G.size;

@ requires ord[v] != -1 ;

@ requires 0 <= \old(cnt) && \old(cnt) < cnt && \old(G.size) == G.size;

@ ...

@ ensures ord[v] != -1 && \before(cnt) <= cnt;

@ ensures \invariant_for(this);

@ ensures (\forall int i; \old(cnt) <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ measured_by G.size - cnt;

@ decreases //adj.length - index//;

@ assignable unvisited(), cnt, t;

@*/

{

for (/*int t : adj*/) {

if (ord[t] == -1) {searchC(t);}

}

}

Listing 3.8: Loop-contract of searchC

3.3 Verification-Process and Interactive-Steps

During the veri�cation-process, we will encounter bounded sums (3.2) arising from the \num-

ber_of-quanti�er in listing 3.3. We will have to use some properties of bounded sums, that are

not yet built into KeY, in order to prove speci�c goals of the DFT-proof. Those properties ap-

peared to be general ones, which might be reused in other proofs, when dealing with bounded

sums. Since the bounded sums derive from a \number_of-quanti�er, either 0 or 1 is added for

each summed index. In the following, we will use the indicator function δphi (see (3.1)), which

resolves to 1 if the formula phi is true and 0 otherwise:
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δphi =

{
1 if phi
0 if ¬phi

(3.1)

In (3.2) i0 and i2 are the lower and upper bound of the sum, not including i2, so the summed

range is [i0, i2).

<i2∑
i=i0

δphi(i) (3.2)

To receive reusable rules, we can de�ne the following new KeY-taclets (see section 2.5):

• bsum_num_of _bounds:
If a bounded sum like (3.2) can be found in the sequent, two statements can be added to

the antecedents of the sequent. On the one hand, the bounded-sum results into a value of

at least 0. On the other hand, it is at most the number of summed indices. With a range

of [i0, i2), the maximum value is i2 − i0. Still, this is only true, if i0 ≤ i2. These properties

are true for every lower and upper bound i0 and i2 as well as for every formula phi:

∀i0 : ∀i2 : ∀phi : (0 ≤
<i2∑
i0

δphi(i) ∧ i0 ≤ i2 →
<i2∑
i0

δphi(i) ≤ i2 − i0) (3.3)

• bsum_num_of _is_max:

If the bounded-sum equals i2 − i0, that means for each i ∈ [i0, i2) a 1 is added, thus phi(i)
must be true for each i . That statement is added to the sequent:

∀i : i0 ≤ i < i2 → phi(i),
∑<i2

i=i0
δphi(i) = i2 − i0 =⇒∑<i2

i=i0
δphi(i) = i2 − i0 =⇒

(3.4)

There is also a taclet bsum_num_of _is_max2 that works the opposite way and adds the

bounded-sum, if for each i ∈ [i0, i2) phi(i) is true.

• bsum_num_of _lt_max:

This taclet can be applied, if a bounded-sum results into a value which is less than

the maximum value (assuming that i0 < i2 and 0 ≤ i0). In that case, there must be an

i ∈ [i0, i2), so that phi(i) is false.

∃i : (i0 ≤ i < i2 ∧ ¬phi(i)), 0 ≤ i0 ∧ i0 < i2,
∑<i2

i=i0
δphi(i) < i2 − i0 =⇒

0 ≤ i0 ∧ i0 < i2,
∑<i2

i=i0
δphi(i) < i2 − i0 =⇒

(3.5)

This taclet also has a counterpart that works the other way: if the mentioned exists-
statement is found, the bounded-sum can be added to the sequent.
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These taclets have been proven to be correct in KeY. The full de�nition of the taclets can be

found in listings A.1 to A.3 in the appendix.

Across all four data structures some goals had to be proven interactively. Some of these

interactive parts remain the same for all of them. Regardless of the used data structure, there

are three major points, where interactive steps are necessary, when proving recursive DFT.

The �rst one appears, when verifying the loop-contract inside the dft-method (see listing 3.6).

In the case that ord[k] , −1 (which means that vertex k has already been visited), searchC

is not called. Thus cnt (which counts the visited vertices) is not increased, while the loop’s

counting variable k is still increased by one. It has to be shown that the loops postcondition

cnt ≥ k + 1 is true. At �rst, we can show with KeY that for all i ∈ [0,k + 1), ord[i] does not

equal −1:

<G.size∑
i=0

δ (ord[i] , −1) = cnt,

∀0 ≤ i < k + 1 : ord[i] , −1 =⇒ cnt ≥ k + 1

(3.6)

In (3.6), we see the current open goal, where the left side of the sequent shows the assumptions

and the right side shows the postcondition we want to prove. It contains the formula, we have

just sown with KeY and the class-invariant (see section 3.2), which states, how cnt equals a

bounded sum. We can apply the aforementioned taclet bsum_num_of _is_max2 (see (3.4)) on

the universal quanti�er in (3.6), which states that the following is true:

(3.6)

(3.4)

=⇒

<k+1∑
i=0

δ (ord[i] , −1) = k + 1 − 0 (3.7)

The sum in (3.6) can be split (bsum_split-rule) at k + 1 into two sums:

(3.6) =⇒

<k+1∑
i=0

δ (ord[i] , −1)︸                  ︷︷                  ︸
(3.7)

= k + 1

+

<G.size∑
i=k+1

δ (ord[i] , −1)︸                    ︷︷                    ︸
(3.3)

≥ 0

(3.6)

= cnt (3.8)

The �rst sum in (3.8) equals k+1 as shown in (3.7) and the second one can be shown to be at

least 0, using the bsum_num_of _bounds-taclet (3.3). Together that concludes in cnt being at

least k + 1.

While proving the loop-contract in dft, we have to show that searchC’s preconditions (see

listing 3.7) are valid, in case ord[k] = −1. In that case searchC will be called with k , which will

start DFS at vertex k , thus there is at least one unvisited vertex. Here, proving that cnt is less

than G.size, requires interactive steps. Since cnt must be less or equal to G.size, we can �rst

24



assume that they are equal and show that it resolves into a contradiction:

cnt = G.size − 0,
<G.size∑
i=0

δ (ord[i] , −1) = cnt

ord[k] = −1,
cnt ≤ G.size, =⇒ cnt < G.size

(3.9)

In (3.9), we see the current open goal with the assumptions on the sequent’s left sine and

precondition we want to prove on its right side. It contains the mentioned assumption and

established class-invariants, which state that cnt equals a bounded sum and that it is at most

G.size. By applying the assumed equality on cnt in the �rst invariant, we can deduce the

following:

(3.9) =⇒

<G.size∑
i=0

δ (ord[i] , −1)
(3.9)

= G.size − 0 (3.10)

As the sum in (3.10) equals the number of summed indices, we can apply the taclet bsum_num_of
_is_max (3.4), which results in the following:

(3.10)

(3.4)

=⇒ ∀i : (0 ≤ i < G.size→ δ (ord[i] , −1)) (3.11)

Still, (3.11) cannot be true, since ord[k] = −1.

These interactive steps are also required when proving searchC’s precondition in searchC’s

inner loop-contract.

The third interactive point appears, when proving the searchC-method-contract. The method

searchC takes the vertex v , from where DFS will start. After v is marked as visited and cnt is

increased by one, the class-invariants must be shown to be valid, since they are required by the

following loop-contract. As cnt and ord are modi�ed, there will be new notations for cnt and

ord in the following: cntb and ordb denote cnt and ord before the execution of searchC’s body,

and cntin and ordin denote cnt’s and ord’s value just before entering the loop-contract-block.

Since v is marked as visited before the loop-contract-block is entered and was unvisited before

the block, ordb[v] is −1 and ordin[v] equals cntb. Also cnt is increased by one, hence cntin
equals cntb + 1.

ordb[v] = −1,
ordin[v] = cntb,
cntin = cntb + 1,

<G.size∑
i=0

δ (ordb[i] , −1) = cntb =⇒
<G.size∑
i=0

δ (ordin[i] , −1) = cntin

(3.12)

In (3.12), the open goal that has to be proven, is shown: the sequent’s left side contains

the goal’s assumptions, while the right side contains the invariant we want to prove. The
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sums in (3.12) must be equal to cnt before (cntb) and after it is increased (cntin), since the

class-invariants (see section 3.2) are true before the method and must still be true before the

block. At �rst, we can split both sums in (3.12) at the index (vertex) v into three parts (KeY’s

bsum_split_in_three-rule):

<v∑
i=0

δ (ordb[i] , −1) + δ (ordb[v] , −1) +
<G.size∑
i=v+1

δ (ordb[i] , −1) = cntb =⇒

<v∑
i=0

δ (ordin[i] , −1) + δ (ordin[v] , −1) +
<G.size∑
i=v+1

δ (ordin[i] , −1) = cntin

(3.13)

The arrays ordb and ordin only di�er at the index v , since the vertex v is unvisited in ordb and

marked as visited in ordin. Thus we can prove that both sums with the range [0,v) in (3.13) are

equal and so are both sums with the range [v + 1,G.size):

<v∑
i=0

δ (ordb[i] , −1) =
<v∑
i=0

δ (ordin[i] , −1) ∧
<G.size∑
i=v+1

δ (ordb[i] , −1) =
<G.size∑
i=v+1

δ (ordin[i] , −1)

(3.14)

With the equal_bsum-rule we can prove that (3.14) is true. By applying both equalities in (3.14)

on (3.13), we can deduce the following:

(3.13)

(3.14)

=⇒ cntb − δ (ordb[v] , −1) + δ (ordin[v] , −1) = cntin (3.15)

Since v is marked as visited before the loop-contract-block is entered and was unvisited before

the block, δ (ordin[v] , −1) is 1 and δ (ordb[v] , −1) is 0. Also cnt is increased by one, hence

cntin equals cntb + 1. With that the (3.16) can be resolved, which is true.

(3.15)

(3.12)

=⇒ cntb − 0 + 1 = cntb + 1 (3.16)

For recursive DFT with adjacency matrix, proof-scripts (see section 2.6) were created, which

contain those rules that had to be applied manually. After executing those scripts, a few goals

were left open. These could then be closed manually in KeY. Still a signi�cant number of

interactions could be omitted: originally 101 interactive steps were used to close these proofs.

Using the scripts, reduced the number to 14 interactive steps.
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3.4 Adjacency Matrix

Adjacency matrices are implemented as two-dimensional boolean-arrays. The array-indices

represent the graphs vertices and G[i][j] describes, whether there is an edge (i, j) in G.

Listing 3.9 shows the properties of the matrix, including that it has to be a square matrix, and

that there is at least one vertex.

/*@ public invariant (\forall int j; 0 <= j && j < G.length;

G[j] != null && G[j].length == G.length);

@ public invariant G.length > 0;

@*/

private /*@ spec_public @*/ boolean[][] G;

Listing 3.9: Implementation and speci�cation of the adjacency matrix

In order for the constructor to establish the class-invariants, these properties are also required

of the constructors input GIn, as shown in listing 3.10.

/*@ public normal_behavior

@ requires (\forall int j; 0 <= j && j < GIn.length; GIn[j].length == GIn.length);

@ requires GIn.length > 0;

@ ...

@*/

public GraphDFT_matr(boolean[][] GIn) {

/*...*/

}

Listing 3.10: Constructor setting the adjacency matrix

Another adjacency matrix speci�c implementation is the retrieval of a vertex’s adjacent

vertices. In searchC the variable adj is assigned G[v], where v is the currently visited vertex.

In order to use class-invariants concerning G[v], to prove properties of the adj-array, the

information of adj = G[v] must also be passed to the loop-contract. G[v] does not actually

contain v’s adjacent vertices, but rather the information for each vertex, whether it is adjacent

to v. Thus, for each vertex t in G, additionally to ord[t] being -1, adj[t] must be true, before

searchC(t) can be called. Thus adj[t] is added to the if-guard inside the searchC-block, as

listing 3.11 shows.
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public void searchC(int v) {

ord[v] = cnt++;

boolean[] adj = G[v];

/*@ loop_contract normal_behavior

@ requires adj == G[v] && 0 <= v && v < G.length;

@ ...

@ decreases adj.length - t;

@*/

{

for (int t = 0; t < adj.length; t++) {

if (adj[t] && ord[t] == -1) {searchC(t);}

}

}

}

Listing 3.11: Retrieval of adjacent vertices with the adjacency matrix

Except those parts that need to be proven interactively across all data structures (see

section 3.3), there are no additional interactions needed. Since these mentioned steps still have

to be applied manually in KeY, we can use the Proof Script Debugger with a proof-script, which

automates most of these steps (see section 3.3).

3.5 Adjacency Array

The adjacency array representation (see section 2.2.3) is a compressed form of an adjacency

matrix. It can be implemented, using two int-arrays G and adjArr instead of a two-dimensional

array-matrix. The array adjArr holds the concatenation of all vertices’ adjacency lists. Because

of the dummy-entry in G, the number of vertices in the graph is not G.length like for the

adjacency matrix, but G.length-1. The speci�cation contains a model-�eld len representing

that number of vertices, which enables a more readable speci�cation. Listing 3.12 also shows

the class-invariants concerning the two mentioned arrays. For one, G’s values are indices to

adjArr and therefore must be in adjArr’s bounds [0,adjArr.length) (this must also be true

for the dummy entry G[len]). Also the referenced sections [G[j],G[j+1]), which contain a

vertex j’s adjacent vertices, must be disjoint for each vertex j. Hence G’s values must grow

monotonically, as the index increases. Also, len must be greater than 0, for the graph should

contain at least one vertex. The invariant of adjArr states that its values must be in [0,len),
since the entries describe the end-vertex of an edge. Furthermore G, adjArr and ord are all

int-arrays. The third class-invariant states that those shall never reference the same array.

This prevents aliasing problems during the veri�cation.
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/*@ public invariant (\forall int j; 0 <= j && j < len;

0 <= G[j] && G[j] < adjArr.length && (G[j] <= G[j+1]));

@ public invariant len > 0;

@ public invariant G != adjArr && adjArr != ord && ord != G;

@ public invariant 0 <= G[len] && G[len] < adjArr.length;

@*/

private /*@ spec_public @*/ int[] G;

/*@ model int len;

@ represents len == G.length - 1;

@*/

/*@ public invariant (\forall int i; 0 <= i && i < adjArr.length;

0 <= adjArr[i] && adjArr[i] < len);

@*/

private /*@ spec_public @*/ int[] adjArr;

Listing 3.12: Implementation and speci�cation of the adjacency array

The speci�cation of the constructor, which takes two int-arrays GIn and adjIn, states

that those must not reference the same array. It also requires the rest of the aforementioned

invariants of GIn and adjIn. Also, due to the dummy entry in G, the ord-array is instantiated

with an array of size G.length - 1, as listing 3.13 shows.

/*@ public normal_behavior

@ requires GIn.length - 1 > 0;

@ ...

@ requires GIn != adjIn;

@ requires 0 <= GIn[GIn.length - 1] && GIn[GIn.length - 1] < adjIn.length;

@*/

public GraphDFT_adjarr(int[] GIn, int[] adjIn) {

this.G = GIn;

this.adjArr = adjIn;

ord = new int[G.length - 1];

Listing 3.13: Constructor setting the adjacency array

Since adjArr contains the adjacent vertices for each vertex, there is no need to retrieve a

list or an array which only contains v’s adjacent neighbors. Instead, the loop’s bounds can be

set to those stored in G[v] and G[v+1] dynamically, so the counting-variable i only iterates v’s

neighbors (see listing 3.14).
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public void searchC(int v) {

/*...*/

for (int t = G[v]; t < G[v+1]; t++) {

if (ord[adjArr[t]] == -1) {searchC(adjArr[t]);}

}

Listing 3.14: Iterating adjacent vertices with the adjacency array

With the loop behaving di�erently, its speci�cation also di�ers form the one used for the

adjacency matrix. For one, t must be in [G[v],G[v+1]) and thus the decreases-clause requires

G[v+1] - t to decrease. Also v must be in [0,len). This is needed, so we can apply class-

invariants concerning G[v] and G[v+1], since those invariants are only true for vertices in

these bounds.

/*@ loop_contract normal_behavior

@ requires G[v] <= t && t <= G[v+1];

@ requires 0 <= v && v < len;

@ ...

@ decreases G[v+1] - t;

@*/

Listing 3.15: Loop-contract of searchC with adjacency array

Apart from those interactive steps that all data structures require, the veri�cation of recursive

DFT with adjacency array needs some more interactive steps. For example proving that the

invariant ∀i : (0 ≤ i < ord.length→ ∃j : (0 ≤ j < ord.length ∧ ord[j] = i)) remains valid after

the dft-method, when using the loop-contract (which ensures the class-invariants). Here it

is su�cient to skolemize the invariant’s instance we want to prove (on the sequent’s right

side), which creates a new skolem-constant i_0: (0 ≤ i_0 < ord.length → ∃j : (0 ≤ j <
ord.length ∧ ord[j] = i_0)). After that, the appearances of i in the established instance of that

invariant (on the sequent’s left side) can be instantiated with i_0 and KeY can close the goal

by itself. These steps are applied at several points throughout the adjacency array proofs,

where this invariant appears. Also proving the assignable-clause in dft’s and searchC’s inner

loop-contract, when using searchC’s method-contract, requires interaction. Both assignable-

clauses contain unvisited(), which returns those locations in the ord-array that hold -1. Here,

the de�nition of unvisited has to be unrolled on both, the sequent’s left and right side. Then,

after skolemizing the resolving existential quanti�ed formula on the left and instantiating the

one on the right, KeY can close the goals.

3.6 Linked Data Structure

The linked data structure models vertices as Vertex-objects that hold a Vertex-array adj of

adjacent vertices (shown in listing 3.16). Additionally each Vertex-object has an int-id val,

which is later used as index of the ord-array. Thus val must be at least 0. The rest of Vertex’s

class-invariants state that no entry of adj may be null and that all entries are pairwise distinct.

The latter ensures that there are no multiple edges e1 = e2 = (u,v) ∈ E. Furthermore, every
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vertex-object appears only once in the adj-array and has a val-id, which is used as index in the

graph-array G later (see listing 3.17). The class is declared �nal, since that allows the Vertex’s

invariants to be unrolled on the sequent’s right side during the veri�cation.

public final class Vertex {

/*@ public invariant val >= 0; @*/

int val;

/*@ public invariant adj != null;

@ public invariant (\forall int i; 0 <= i && i < adj.length; adj[i] != null);

@ public invariant (\forall int i; 0 <= i && i < adj.length;

(\forall int j; 0 <= j && j < adj.length;

(i==j) || (adj[i] != adj[j] && adj[i].val != adj[j].val)));

@*/

Vertex[] adj;

}

Listing 3.16: Implementation and speci�cation of the Vertex-class

The graph, used by the DFT-algorithm, is implemented as an array G of Vertex-objects,

which entails similar class-invariants as the Vertex-class. For example pairwise distinctness

of the stored Vertex-objects is required as well. Additionally, for each i ∈ [0,G.length) the

Vertex at G[i] is supposed to have the val-id i. This also ensures that the val-ids of the graphs

vertices are unique. The speci�cation in listing 3.17 also contains that for each Vertex in G, its

class-invariants must hold.

/*@ public invariant (\forall int i; 0 <= i && i < G.length; G[i].val == i);

@ ...

@ public invariant (\forall int i; 0 <= i && i < G.length;

(\forall int j; 0 <= j && j < G.length;

(i!=j) ==> (G[i] != G[j]) ));

@ public invariant (\forall int i; 0 <= i && i < G.length; \invariant_for(G[i]));

@*/

private /*@ spec_public @*/ Vertex[] G;

Listing 3.17: Implementation and speci�cation of the linked data structure

These invariants are then required of the constructor’s argument GIn (see listing 3.18), like

they are for the other data structures. Especially it requires for each Vertex in GIn that its

class-invariants hold. This is needed, to establish GraphDFT_linked’s invariant, which states

that they hold for each Vertex in G.
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/*@ public normal_behavior

@ requires (\forall int i; 0 <= i && i < GIn.length; GIn[i].val == i);

@ ...

@ requires (\forall int i; 0 <= i && i < GIn.length; \invariant_for(GIn[i]));

@ ...

@*/

public GraphDFT_linked(Vertex[] GIn) {

Listing 3.18: Constructor setting the linked data structure

With a di�erent data structure, the retrieval of a vertex’s adjacent vertices changes as

well. Listing 3.19 shows how the local Vertex-array adj is assigned the current vertex’s array

G[v].adj. The following loop then iterates the Vertex-objects in adj. To get the Vertex’s

index in ord, the adj[t].val-id is used, which corresponds to the Vertex’s position in G.

public void searchC(int v) {

/*...*/

Vertex[] adj = G[v].adj;

for (int t = 0; t < adj.length; t++) {

if (ord[adj[t].val] == -1) {searchC(adj[t].val);}

}

Listing 3.19: Retrieval of adjacent vertices with the linked DS

The loop’s speci�cation is mostly the same as the one for the adjacency matrix. Still, some

requirements are added: for example v must be in [0,G.length) as it does with the adjacency

array data structure (see listing 3.15). The third requirement in listing 3.20 makes sure that the

adj-array equals G[v].adj, which is not known inside the block contract, since adj is created

outside of it. With that, G[v].adj’s properties can be applied to adj, since they are contained

in the class-invariants (which are also required in the loops preconditions).

/*@ loop_contract normal_behavior

@ requires \invariant_for(this);

@ requires 0 <= v && v < G.length;

@ requires adj == G[v].adj;

@ ...

@*/

Listing 3.20: Speci�cation of searchC’s loop-contract with the linked DS

The veri�cation of this DFT version requires interactive assistance for proving the assignable-

clause in dft’s inner loop-contract, like the adjacency array proof does (see section 3.5). Apart

from that, each time the class’s invariants must be proven to hold, there is one of them that

requires some interactions. That invariant is the third one in listing 3.17, which states that the

class-invariants of all Vertex-objects in G are ful�lled. The sequent contains an instance of this

invariant on both its left and right side, which both correspond to di�erent heap-states. Still

these di�erent heaps do not vary with respect to the graph data structure, since that always

remains untouched. After skolemizing the right instance and instantiating the left one with the

newly created skolem-constant, the class-invariants of Vertex can be unrolled. The di�erent
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invariants of Vertex can then be split into separate branches, which KeY can close by itself,

except one invariant, which contains two nested universal-quanti�ers. That branch can be

closed by skolemizing and instantiating those quanti�ers manually.

3.7 Adjacency Lists

The last version of recursive DFT uses adjacency lists as graph data structure. Here the graph is

implemented as an array containing List-objects, which hold indices of adjacent vertices. The

invariants in listing 3.21 make sure that the Lists’s elements are values in [0,G.length). Also

each list may not be longer than the graphs number of vertices G.length and its invariants

must be true. As list we use a List-interface provided by KeY’s examples
1
, which is simpli�ed

for our needs, so it only allows int-values (see listing A.10). This interface provides a size-

method which returns the number of elements in the List and a get(int i)-method, which

returns the element at the given position of the List. Since the elements of a lists, are stored

at arbitrary locations on the heap, the last invariant makes sure that they do not alias with

the DFT-class’s �elds. The footprint of a List, is a collection of its elements locations. While

performing DFT, the cnt-�eld and ord’s entries are manipulated. Hence the last invariant

states that the footprint of each list is disjoint to the location of cnt as well as to the locations

of ord’s entries. This is needed to prove that assigning cnt or ord’s entries does not change

the graphs structure.

/*@ public invariant (\forall int j; 0 <= j && j < G.length;

G[j] != null && G[j].size() <= G.length);

@ public invariant G.length > 0;

@ public invariant (\forall int i; 0 <= i && i < G.length;

(\forall int j; 0 <= j && j < G[i].size();

0 <= G[i].get(j) && G[i].get(j) < G.length));

@ public invariant (\forall int i; 0 <= i && i < G.length; \invariant_for(G[i]));

@ public invariant (\forall int i; 0 <= i && i < G.length;

\disjoint(G[i].footprint,\singleton(cnt))

&& (\forall int j; 0 <= j && j < ord.length;

\disjoint(G[i].footprint,\singleton(ord[j])) ));

@*/

private /*@ spec_public @*/ List[] G;

Listing 3.21: Implementation and speci�cation of adjacency lists

Listing 3.22 shows how the adjacent vertices of the current vertex v are obtained: here the

list adj is simply assigned the list in G[v]. This resembles the way it was retrieved with the

linked data structure (see section 3.6), where adj is assigned the array stored in the Vertex

G[v]. Thus their invariants are similar as well, except for the access to an adjacent vertex in

the list or its length, which is now accomplished with get() and size(). Here, adj must equal

G[v], so the properties concerning that list, which are contained in the class-invariants, can be

used for adj in the block as well.

1
Dynamic Frames/List with Sequences/List.java
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/*@ loop_contract normal_behavior

@ requires adj == G[v];

@ requires 0 <= v && v < G.length;

@ ...

@*/

public void searchC(int v) {

ord[v] = cnt++;

List adj = G[v];

for (int t = 0; t < adj.size(); t++) {

if (ord[adj.get(t)] == -1) {searchC(adj.get(t));}

}

Listing 3.22: Retrieval of adjacent vertices with adjacency lists

The veri�cation of recursive DFT with adjacency lists requires interactions at several points.

Similar to the veri�cation with the adjacency array (see section 3.5), proving the assignable-

clauses in searchC’s and dft’s loop-contract, when using searchC’s method contract, requires

interactive steps. Also similar are the interactions needed for the invariant ∀i : (0 ≤ i <
ord.length → ∃j : (0 ≤ j < ord.length ∧ ord[j] = i)). Furthermore, proving that adj.get(t)

is in the range of [0,G.length) in searchC’s loop-contract requires interactive help. The

second invariant in listing 3.21 states that all entries j in all lists i in G, are in that range.

By instantiating i with v (since the precondition provides adj = G[v]) and j with t , 0 ≤
G[v].get(t) ∧G[v].get(t) < G.length can be deduced. Also, unrolling the queries .get() and

.size() required some attention, when proving their preconditions to be true.
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4 Non-Recursive Depth-First Traversal

In this chapter we will discuss the implementation, speci�cation and veri�cation of the non-

recursive form of DFT. We will look at these processes for all four data structures, as we did

with the recursive form in chapter 3. This provides another proof-example, to compare the

data structures (see section 6.4). Also, we can compare the recursive and non-recursive form

of DFT, regardless of the used data structure (see section 6.3). In the following, we will �rst

discuss the data structure independent parts of the implementation (section 4.1), speci�cation

(section 4.2) and veri�cation (section 4.3). The speci�cs of each data structure are presented in

sections 4.4 to 4.7. The complete source-�les can be found in listings A.11 to A.14.

4.1 Implementation

The implementation of non-recursive DFT is based on the pseudo-code in [Lar15]. For the

recursive and the non-recursive form of DFT to be comparable, we will add the cnt-�eld and the

ord-array, as well as the code to store the time-stamp in the ord-array, when a vertex is visited.

In this way, both DFT-forms produce an array containing the pre-order-index of each vertex.

The following listings show the data structure independent implementation of non-recursive

DFT, thus all appearances of a speci�c data structure are replaced by a Java-comment. These

placeholders are later replaced by one of the compared data structures (see section 2.2).

public class GraphDFT_nonrec {

/*GraphDS*/ G;

int cnt;

int[] ord;

int stackPtr;

int[] stack;

Listing 4.1: Class �elds of the non-recursive DFT class

The non-recursive form of DFT uses an explicit stack, on which visited but not yet back-

tracked vertices are stored. As listing 4.1 shows, the stack is implemented as a stack-array

of su�cient size, accompanied by a stackPtr-integer, which points to the �rst empty �eld in

the stack-array. Originally an external Stack class was used. However, already a minimum

example of pushing and popping one int onto and o� the stack rose many di�culties. Since

we want to compare the graph data structures and not the stack data structure, we will use

the easier implementation using an array. As in the recursive implementation (see listing 3.1),

the cnt-�eld serves as time-stamp, which will be increased every time a new vertex is visited.

Also the ord-array reappears, to store these time-stamps. Here again, the entry ord[v] = -1

implies that the vertex v has not been visited.
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public GraphDFT_nonrec(/*GraphDS*/ GIn) {

G = GIn;

cnt = 0;

ord = new int[G.size];

stackPtr = 0;

stack = new int[G.size * G.size];

for(int i = 0; i < ord.length; i++) {

ord[i] = -1;

}

for(int k = 0; k < stack.length; k++) {

stack[k] = -1;

}

}

Listing 4.2: Constructor of the non-recursive DFT class

The mentioned �elds are set in the constructor (see listing 4.2). Since there are no vertices

visited at �rst, cnt is initially set to 0 and all entries in ord are set to -1. Also the stack is empty

at �rst, so the stackPtr points to the �eld with index 0 in the stack-array and all stack-entries

are set to -1. The stack-array’s size is the number of vertices in G squared, which is a rough

upper bound to the maximum of vertices that will be on the stack at the same time. Why this

size is su�cient, will be discussed later in this section.

public void dft() {

for(int k = 0; k < G.size; k++) {

if (ord[k] == -1){searchC(k);}

}

}

Listing 4.3: The dft-method of the non-recursive DFT class

The implementation of the dft-method does not di�er from the recursive one (see listing 3.2).

Here as well, it takes care that all vertices will be searched and calls searchC for each vertex

that has not been visited during the previous call.

The non-recursive implementation of the searchC-method contains the core di�erence to

the recursive implementation. Here searchC does not call itself recursively, but uses the stack

instead.
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public void searchC(int v) {

stack[stackPtr++] = v;

while(stackPtr != 0) {

int u = stack[--stackPtr];

stack[stackPtr] = -1;

if (ord[u] == -1) {

ord[u] = cnt++;

/*List*/ adj = /*G.adjacent(u)*/;

for(/*int t : adj*/) {

if (ord[t] == -1) {

stack[stackPtr++] = t;

}

}

}

}

}

Listing 4.4: The searchC-method of the non-recursive DFT class

As shown in listing 4.3, searchC takes an integer v, which is the vertex, where depth-�rst search

will start. So v is put on the stack (which should be empty before that) and the stackPtr is

increased by one, so it points to the �rst empty �eld in the stack-array. After that a while-loop

starts, which will repeat its body until the stack is empty, which is the case if stackPtr equals

0. In each iteration, the vertex on top of the stack is removed from it and stored as local

varable u. In case u has already been visited, the loop continues with the next iteration or stops.

Otherwise u is marked as visited, by storing the current time-stamp cnt at ord[u]. After that

cnt is increased by one, as there is one more visited vertex now. Then the adjacent vertices

of u are stored in adj. The type and the retrieval of u’s adjacency-list depend on the used

data structure and so does the iteration of the elements in said list. In the following loop,

all unvisited vertices that are adjacent to u are pushed onto the stack. In this way, the next

vertex to be visited is one of the last visited vertex’s unvisited children (if any exist). If no

unvisited children are pushed onto the stack, all visited vertices are popped o� the stack, until

an unvisited one is on top. At this point, it is possible to estimate a maximum size of the stack.

When pushing unvisited vertices in adj on the stack, at most G.size elements are iterated,

which is the number of vertices in G. If for each vertex G.size vertices were pushed onto the

stack, this would result into a stack of the size G.size * G.size. This is a rough upper bound,

since there always is a vertex that is popped o� the stack, before new vertices are pushed onto

it. Also, there are less unvisited vertices each iteration, since one is always marked as visited

before new vertices are pushed onto the stack. Still, this rough upper bound su�ces to verify

non-recursive DFT.
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4.2 Specification

The implementation of non-recursive DFT (see section 4.1) has many properties that can

be speci�ed without knowledge of the used data structure. These will be presented in the

following, while the speci�c speci�cation of each data structure is discussed in sections 4.4

to 4.7.

Apart from the data structure’s invariants, the class-invariants in listing 4.5 contain the

same properties of cnt and ord, as they do in the recursive form (see listing 3.3). The cnt-�eld

must still be in [0,G.size] and equals the number of entries in ord that are not -1. Also ord’s

size must equal the number of vertices in the graph G.size and it must contain a permutation

of the visited vertices. Since the non-recursive implementation uses a stack, there are some

invariants concerning the stackPtr-�eld and the stack-array (see listing 4.6). The stackPtr

holds an index to the stack-array, which is why it can be at least 0 (in case the stack is empty)

and at most stack.length (in case the stack is full). Additionally the stackPtr is always less

or equal to cnt + 1 times the number of vertices in G. This is because after a vertex is visited

cnt is increased by one and at most G.size vertices are pushed onto the stack, thus stackPtr

is increased by at most G.size. The + 1 in cnt + 1 is necessary, since starting starchC(v)

puts v on the stack while cnt is still 0: at this point stackPtr = 1 ≤ (0 + 1) * G.size = (cnt

+ 1) * G.size is true but stackPtr = 1 ≤ 0 = 0 * G.size = cnt * G.size is wrong. This

invariant will be used later on, to prove that the stackPtr stays in bounds. The invariants of the

stack-array state that stack’s size equals the number of vertices in G squared. Also, to avoid

aliasing, the invariants state that ord does not equal stack. Finally, the entries of stack need

to be restricted: for one, the entries in [0,stackPtr) hold vertices that were pushed on the

stack, and thus must be values in [0,G.size). All other entries in [stackPtr,stack.length)

must be -1. Apart from the mentioned �elds there are two additional ghost-�elds: before and

diff that will appear in the searchC-method.

public class GraphDFT_nonrec {

/*Data structure specific invariants*/

/*GraphDS*/ G;

/*@ public invariant 0 <= cnt && cnt <= G.size;

@ public invariant (\num_of int i; 0 <= i && i < ord.length; ord[i] != -1) == cnt;

@*/

int cnt;

/*@ public invariant ord.length == G.size;

@ public invariant (\forall int i; 0 <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@*/

int[] ord;

Listing 4.5: Class-invariants of the non-recursive DFT class
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/*@ public invariant 0 <= stackPtr && stackPtr <= stack.length

&& stackPtr <= (cnt + 1)*G.size;

@*/

int stackPtr;

/*@ public invariant stack.length == (G.size * G.size);

@ public invariant (\forall int i; 0 <= i && i < stackPtr;

0 <= stack[i] && stack[i] < G.size);

@ public invariant (\forall int i; stackPtr <= i && i < stack.length;

stack[i] == -1);

@ public invariant stack != ord;

@*/

int[] stack;

/*@ ghost int diff;

@ ghost int before;

@*/

Listing 4.6: Class-invariants of the non-recursive DFT class concerning the stack

These invariants are established by the constructor, which does ensure some additional

properties, as shown in listing 4.7. First of, it ensures that G is set to the given parameter GIn.

Also, stackPtr and cnt are ensured to be 0. Finally, the constructor ensures that all entries in

the ord- and stack-array are set to -1.

/*@ public normal_behavior

@ requires //Data structure specific requirement on GIn//

@ ensures G == GIn;

@ ensures stackPtr == 0;

@ ensures (cnt == 0);

@ ensures (\forall int j; 0 <= j && j < ord.length; ord[j] == -1);

@ ensures (\forall int j; 0 <= j && j < stack.length; stack[j] == -1);

@*/

public GraphDFT_nonrec(/*GraphDS*/ GIn) {

/*...*/

}

Listing 4.7: Speci�cation of the constructor

As the non-recursive implementation of the dft-method does not di�er from the recursive

one (see listings 3.2 and 4.3), its speci�cation is mostly the same as well (see listing 3.5). The

method-contracts match, except the assignable-clause, which here also contains before, diff,

stackPtr and all entries of stack. Also it requires that stackPtr is 0, since no vertices should

be visited before dft is called.
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/*@ public normal_behavior

@ requires cnt == 0 && stackPtr == 0;

@ requires (\forall int i; 0 <= i && i < ord.length; ord[i] == -1);

@

@ ensures (cnt == G.size);

@ ensures (\forall int i; 0 <= i && i < G.size; ord[i] != -1);

@ ensures (\forall int i; 0 <= i && i < G.size;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ assignable ord[*], cnt, before, diff, stack[*], stackPtr;

@*/

public void dft() {

/*...*/

}

Listing 4.8: Method-contract of dft

The loop inside dft is speci�ed with loop-invariants instead of a loop-contract, which was

used in the recursive form (see listing 3.6). This is because during the veri�cation-process of

recursive DFT, the proof of dft’s loop-contract turned out not to be as large as expected. Hence,

the loop does not need to be veri�ed in an external proof. That loop-contract’s requirements

match the loop-invariants used in listing 4.9. Additionally the loop-invariants keep track that

the stackPtr must equal 0, which means that before and after each iteration, the stack should

be empty. Like the method-contract, the loop may additionally assign before, diff, stackPtr

and stack’s entries.

/*@ loop_invariant 0 <= k && k <= G.size;

@ loop_invariant \invariant_for(this);

@ loop_invariant (\forall int i; 0 <= i && i < k; ord[i] != -1);

@ loop_invariant cnt >= k && stackPtr == 0;

@ decreases G.size - k;

@ assignable unvisited(), cnt, k, before, diff, stack[*], stackPtr;

@*/

for(int k = 0; k < /*G.size*/; k++) {

if (ord[k] == -1){searchC(k);}

}

Listing 4.9: Loop-contract of dft

Since the searchC-method contains two loops, each having a contract, which speci�es its

behavior, we can brake down searchC’s speci�cation into three parts: a method-contract and

two block-contracts, one for each loop.
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/*@ public normal_behavior

@ requires cnt < G.size;

@ requires 0 <= v && v < G.size;

@ requires ord[v] == -1;

@ requires stackPtr == 0;

@

@ ensures cnt > \old(cnt);

@ ensures ord[v] == \old(cnt);

@ ensures (\forall int i; \old(cnt) <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ ensures stackPtr == 0;

@ assignable unvisited(), cnt, stack[*], stackPtr, before, diff;

@*/

public void searchC(int v) {

stack[stackPtr++] = v;

while(stackPtr != 0) {

/*...*/

}

}

Listing 4.10: Method-contract of searchC

The method-contract of searchC in listing 4.10 requires that the given int v is a valid vertex

(v ∈ [0,G.size)) and that v is not visited yet. This also means that cnt must be less than the

number of vertices in G. Also the stack must be empty, so it requires that stackPtr is 0. Before

the while-loop starts, v is pushed onto the stack, which means that it is the next vertex to be

visited. This is why the method-contract can ensure that v is visited afterwards and that cnt is

increased by at least one. Also it ensures that ord contains a permutation of all newly visited

vertices.

The following while-loop in listing 4.11 takes vertices o� the stack and marks the unvisited

ones as visited. So, in the �rst iteration, the stack only consists of vertex v at index 0. In the

second iteration, v is already marked as visited and cnt has been increased by one. This is why

there is a case-distinction in the loop-contract’s second requirement. The left side of the or

contains the requirements for the �rst iteration, the right side those for all later iterations. But

in both cases the contract can ensure that after the execution of the loop’s body, v is visited

and cnt has been increased at least once. Since the loop terminates when stackPtr equals

0, the loop-contract can also assure that the stack is empty after the last iteration. Also the

loop-contract maintains the class-invariants.

In order to show that the loop terminates, the contract contains a decreases-clause. In each

iteration a vertex is popped o� the stack, which is either visited or unvisited. In case it has

already been visited, the iteration is over, hence only the stackPtr is decreased by one. In

the other case, cnt is increased by one and the stackPtr is increased by at most G.size. So

progress towards termination is indicated by cnt increasing or stackPtr decreasing when cnt
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remains untouched. So the sum of -cnt and stackPtr would result in a decreasing expression,

if stackPtr would fall monotonically.But since it alternates, the change of cnt must be weighed

with the maximum size that stackPtr can increase, which is G.size. That results into -(cnt *
G.size) + stackPtr.

public void searchC(int v) {

stack[stackPtr++] = v;

/*@ loop_contract normal_behavior

@ requires \invariant_for(this);

@ requires (stack[0] == v && ord[v] == -1 && stackPtr == 1 && cnt == \old(cnt))

|| (cnt > \old(cnt) && ord[v] == \old(cnt));

@ ...

@ ensures (\forall int i; \old(cnt) <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ ensures \old(cnt) < cnt;

@ ensures ord[v] == \old(cnt);

@ ensures stackPtr == 0;

@ ensures \invariant_for(this);

@ decreases (G.size * G.size) - (cnt * G.size) + stackPtr;

@ assignable stackPtr, stack[*], cnt, unvisited(), diff, before;

@*/

{

while(stackPtr != 0) {

int u = stack[--stackPtr];

stack[stackPtr] = -1;

if (ord[u] == -1) {

ord[u] = cnt++;

/*List*/ adj = /*G.adjacent(v)*/;

/*@ set diff = 0;

@ set before = stackPtr;

@*/

for(/*int t : adj*/) {

/*...*/

}

}

}

}

}

Listing 4.11: Loop-contract of searchC

As the decreases-expression must not fall below 0, G.size * G.size is added to the expression,

since -(cnt * G.size) will not drop below -(G.size * G.size). Together with stackPtr
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being larger than 0, (G.size * G.size) - (cnt * G.size) + stackPtr falls monotonically

and wont drop below 0.

Finally, to be able to prove the termination of the while-loop, the next contract must assure

that the second loop increases stackPtr by at most G.size. Therefore, the ghost-�eld before

stores the stackPtr’s value before entering the next loop. The ghost-�eld diff is set to 0. It

will keep track of how much stackPtr changes during the loop.

The inner for-loop of searchC is speci�ed with loop-invariants (see listing 4.13). These are

additionally surrounded by a block-contract, which allows the inner loop to be veri�ed in a

separate, external proof. This block-contract (see listing 4.12) basically requires and ensures the

invariants of the for-loop. Still it adds three requirements: diff = 0 and stackPtr = before

which can be met, because diff and before were set just before the block. The third one

requires stackPtr to be less or equal to cnt * G.size, which di�ers from the class’s invariant,

which states: stackPtr ≤ (cnt + 1) * G.size. The stricter requirement can still be met, since

in the while-loop (see listing 4.11) cnt has been increased by one, but no new vertices have

been pushed on the stack yet, so stackPtr has also not been increased. With this precondition

and the limit of stackPtr, changing no more than G.size, the just mentioned class-invariant

can be shown to be correct after the loop.

/*List*/ adj = /*G.adjacent(u)*/;

/*@ set diff = 0;

@ set before = stackPtr;

@*/

/*@ requires diff == 0

@ requires stackPtr <= (cnt * G.size);

@ requires stackPtr == before;

@ ...

@*/

{

for(/*int t : adj*/) {

/*...*/

}

}

Listing 4.12: Block-contract of searchC

Listing 4.13 shows the inner for-loop of searchC and its invariants. Inside the loop’s body,

there is a set-statement, which, in case an unvisited adjacent vertex is pushed onto the stack,

increases the diff-ghost-�eld by one. In this way diff counts by how much stackPtr changes.

This is re�ected in the third loop-invariant, which states that stackPtr equals its value before

the block (before) plus the value it has already changed (diff). Also the value of diff can be

computed by counting the adjacent vertices to u in adj that are unvisited and whose index in

adj is in [0, t) (which means that the loop has already looked at this element in adj). Since

diff only counts unvisited vertices, its value cannot exceed the number of vertices in G minus
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the number of visited vertices cnt. All these invariants are later used to prove that stackPtr

changes by at most G.size and that it does not go out of stack’s bounds.

/*@ loop_invariant \invariant_for(this);

@ ...

@ loop_invariant diff <= ord.length - cnt;

@ loop_invariant stackPtr == before + diff;

@ loop_invariant //Number of unvisited vertices in adj before t// == diff;

@

@ decreases adj.length - t;

@ assignable stack[stackPtr..stack.length], stackPtr, t, diff;

@*/

for(/*int t : adj*/) {

if (ord[t] == -1) {

/*@ set diff = diff + 1;

@*/

stack[stackPtr++] = t;

}

}

Listing 4.13: Loop-invariants of searchC’s inner for-loop

4.3 Verification-Process and Interactive-Steps

During the veri�cation of non-recursive DFT the taclets used for verifying the recursive form

can be reused (see section 3.3). This is because the interactive steps described in section 3.3

need to be applied in the non-recursive proofs as well. Since the dft-methods do not vary,

the �rst two interactions (see section 3.3) appear at a similar positions in the dft-contract

proof. Due to the fact that the loop in dft is here speci�ed with loop-invariants instead of a

loop-contract, which was used in the recursive form, those interactions are not located in an

external proof but in the Body-Preserves-Invariant branch of the loop. The third one of the

mentioned interactions reappears in the proof of searchC’s loop-contract, when establishing

the class-invariants in the following block-contract’s precondition.

Apart from those reappearing interactions, some new ones are required in order to close

the proofs. For example, the decreases-clause of searchC’s loop-contract: (G.size * G.size)

- (cnt * G.size) + stackPtr is more complex, than the recursive one: G.size - cnt. Also

proving the invariant stackPtr <= (cnt + 1) * G.size to remain correct requires some atten-

tion. Depending on the used data structure, the attention they need varies. Some of these goals

can not be closed by KeY with its Basic Arithmetic Treatment, but selecting an advanced

Arithmetic Treatment (DevOps or Model Search) in the Proof Search Strategies su�ces to

close them. Others, which can not be closed with advanced Arithmetic Treatment, are closed

by the SMT-solver Z3 [MB13] after a few interactive steps. Still others can not be closed by Z3

and need to be closed completely interactively.

Furthermore, there are two new points, where the application of the de�ned taclets (see

section 3.3) is required. Both appear while proving the block-contract of searchC’s inner

for-loop (see listing 4.12), in the loop’s Body Preserves Invariant-branch in the case where

44



one of the vertices in adj is pushed onto the stack. Since the implementation of the loop

slightly varies for each data structure, we will look at the proofs for the adjacency matrix

version. Still, the general strategy behind the proofs remains the same for all data structures.

The �rst goal is to prove that 1 + di� ≤ ord.length − cnt. The ghost-�eld di� is used to

count by how much stackPtr was already increased during the for-loop. Also di� equals

the number of unvisited, adjacent vertices of the vertex u that have already been treated by

the loop. Furthermore, cnt counts the visited vertices in G. The mentioned goal is one of

searchC’s for-loop’s postconditions. It states that the number of visited vertices together with

the number of unvisited, adjacent vertices can not be larger than the total number of vertices

in the graph (ord.length). This goal can be reduced to showing that di� = ord.length − cnt is

wrong.

ord[t] = −1,

cnt =
<ord.length∑

i=0

δ (ord[i] , −1),

di� =
<t∑
i=0

δ (ord[i] = −1 ∧ adj[i]),

di� = ord.length − cnt =⇒ 1 + di� ≤ ord.length − cnt

(4.1)

Equation (4.1) shows that goal. The sequent’s left side contains the goal’s assumptions and

its right side contains the postcondition we want to prove. We �nd four terms on the sequent’s

left side, which are important in the following. For one ord[t] equals −1, where t is the current

value of the loops counting-variable. Also there are the bounded sum expressions of cnt and

di� . Finally, there is the fourth equation, we want to prove wrong.

Here adj is the boolean-arrayG[u] andG[u][i] contains the information, whether i is adjacent

tou (see section 4.4). The idea behind the proof is that there are ord.length vertices in the graph,

of which cnt are visited. Furthermore, ord.length − cnt vertices are unvisited and adjacent to

u. As there cannot be any more vertices and the unvisited ones are summed up by di� ’s sum

in (4.1), all unvisited vertices must be in [0, t). This leads to a contradiction, since the vertex t
is also unvisited. At �rst, we can show with int-induction that weakening the guard of di� ’s

sum in (4.1) can only result in a greater value:

(4.1) =⇒

<t∑
i=0

δ (ord[i] = −1) ≥
<t∑
i=0

δ (ord[i] = −1 ∧ adj[i]) = di� (4.2)

Again with int-induction, we can prove two more properties. On the one hand, increasing

the �st sum’s upper bound in (4.2) to ord.length can only increase its value:

(4.1) =⇒

<ord.length∑
i=0

δ (ord[i] = −1) ≥
<t∑
i=0

δ (ord[i] = −1)
(4.2)

≥ di� (4.3)

45



On the other hand, adding two bounded sums, where each guard is the negative of the other,

equals the number of the summed elements:

<ord.length∑
i=0

δ (ord[i] = −1) +
<ord.length∑

i=0

δ (ord[i] , −1)︸                        ︷︷                        ︸
(4.1)

= cnt

= ord.length (4.4)

In (4.4) the second sum equals cnt, so the former sum equals ord.length − cnt. With that, the

following can be deduced:

(4.1) =⇒ ord.length − cnt
(4.4)

=

<ord.length∑
i=0

δ (ord[i] = −1)
(4.3)

≥

<t∑
i=0

δ (ord[i] = −1)
(4.2)

≥ di�
(4.1)

= ord.length − cnt

(4.5)

As ord.length − cnt is both the minimum and the maximum value in the chain of inequations

of (4.5), the sums in between must equal ord.length − cnt as well:

<t∑
i=0

δ (ord[i] = −1)
(4.5)

= ord.length − cnt (4.6)

.

<ord.length∑
i=0

δ (ord[i] = −1)
(4.5)

= ord.length − cnt (4.7)

Now we can split the sum in (4.7) at t into three parts:

<t∑
i=0

δ (ord[i] = −1)︸                 ︷︷                 ︸
(4.6)

= ord.length − cnt

+δ (ord[t] = −1)︸            ︷︷            ︸
(4.1)

= 1

+

<ord.length∑
i=t+1

δ (ord[i] = −1)︸                        ︷︷                        ︸
(3.3)

≥ 0

= ord.length − cnt (4.8)

As we just established in (4.6), the �rst sum in (4.8) equals ord.length − cnt, so the other two

summands must equal 0. But the bsum_num_of _bounds-taclet (3.3) tells us that the second

sum is at least 0. Also δ (ord[t] = −1) resolves to 1. This resolves to f alse on the sequent’s left

side, which closes this branch.

The second goal is to show that stackPtr < G.length + cnt ∗ G.length is true. Since stackPtr
equals before + di� + 1 and the block’s precondition provides before ≤ cnt ∗G.length, the goal

reduces to 1 + di� < G.length. Similar to the previous goal, di� counts the unvisited, adjacent

vertices of the vertex u that have already been treated by the loop. Also cnt counts the visited
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vertices in G. The length of G denotes the number of vertices in the graph. Here it su�ces to

prove that 1 + di� = G.length is wrong, the other case can then be closed by KeY.

ord[t] = −1,
adj[t] = TRUE,
ord[v] , −1,

di� =
<t∑
i=0

δ (ord[i] = −1 ∧ adj[i]),

1 + di� = G.length =⇒ 1 + di� < G.length

(4.9)

In (4.9), we see that goal consisting of the assumptions on the sequent’s left side and the

property we want to prove on its right side. On the sequent’s left side, we �nd again di� ’s

bounded-sum expression, as well as ord[t] = −1, adj[t] = TRUE and ord[v] , −1. The index v
represents that vertex that was visited at �rst in the current call of searchC and t is the current

value of the for-loops counting variable. Finally, the equality, we will show to be wrong can

be found there. The idea of this proof is to show that if 1 + di� = G.length were true, then all

vertices would be unvisited, which is wrong, since v has already been visited. At �rst we can

increase the upper bound of di� ’s sum in (4.9) by one, so it includes t . Since the sums guard is

true for t , 1 is added to the left side of the equation:

(4.9) =⇒ di� + 1 =
<t+1∑
i=0

δ (ord[i] = −1 ∧ adj[i]) (4.10)

The equality of di� + 1 to G.length (see (4.9)) can be applied on its appearance in (4.10). When

increasing the sums upper bound to G.length in (4.10), the resulting value can only increase,

which can be proven with int-induction:

(4.9) =⇒

<G.length∑
i=0

δ (ord[i] = −1 ∧ adj[i])︸                                  ︷︷                                  ︸
(3.3)

≤ G.length

≥ G.length (4.11)

The bsum_num_of _bounds-taclet (3.3) provides that the sum in (4.11) is at most G.length, so

the inequality (≥) is actually an equality (=):

(4.11) =⇒

<G.length∑
i=0

δ (ord[i] = −1 ∧ adj[i])
(4.11)

= G.length − 0 (4.12)

Now the taclet bsum_num_of _is_max (3.4) can be applied on (4.12), which states that the

following is true:

(4.12)

(3.4)

=⇒ ∀i : (0 ≤ i < G.length→ ord[i] = −1 ∧ adj[i]) (4.13)

When instantiating i in (4.13) with v , ord[v] = −1 is produced, which is a contradiction to the

assumption ord[v] , −1 in (4.9).
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4.4 Adjacency Matrix

The adjacency matrix is implemented as two-dimensional boolean array, as it is in the recursive

form (see section 3.4). Hence, there are also the same class-invariants, which state that G is a

square matrix and that it contains at least one vertex (shown in listing 4.14).

/*@ public invariant (\forall int j; 0 <= j && j < G.length;

G[j] != null && G[j].length == G.length);

@ public invariant G.length > 0;

@*/

boolean[][] G;

Listing 4.14: Invariants of the adjacency matrix

Also the retrieval of u’s adjacent vertices in searchC’s while-loop is similar to the recursive

from. Here (see listing 4.15), adj is set to G[u] and contains the information for each vertex,

whether it is adjacent to u. This is why the if-guard in the for-loop must check whether t is

adjacent to u, additionally to checking whether it is unvisited, before pushing it onto the stack.

Also the speci�cation of the diff-variable depends on the data structure. Here diff equals the

number of �elds adj[i] where i ∈ [0,t) and both adj[i] and ord[i] = -1 are true.

boolean[] adj = G[u];

/*@ requires \invariant_for(this);

@ requires adj == G[u];

@ requires 0 <= u && u < G.length;

@*/

{

/*@ loop_invariant (\num_of int i; 0 <= i && i < t; ord[i] == -1 && adj[i]) == diff;

@ ...

@*/

for(int t = 0; t < adj.length; t++) {

if (adj[t] && ord[t] == -1) {

/*...*/

}

}

}

Listing 4.15: Retrieval of adjacent vertices using the adjacency matrix

Except those interactive steps that all data structures required with non-recursive DFT (see

section 4.3), the veri�cation with adjacency matrix did not require any additional interactions.

Of all four data-structures, the adjacency matrix is the only one with which non-recursive

DFT is proven.
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4.5 Adjacency Array

The implementation and speci�cation of the adjacency array representation for non-recursive

DFT also equal those for recursive DFT (cf. section 3.5 and listing 4.16). The adjArr-array is a

concatenation of all the vertices adjacency lists and the interval [G[u],G[u+1]) describes the

range in adjArr, where u’s adjacent vertices are stored.

/*@ public invariant (\forall int j; 0 <= j && j < len;

0 <= G[j] && G[j] < adjArr.length && (G[j] <= G[j+1]));

@ public invariant len > 0;

@ public invariant G != adjArr && adjArr != ord && ord != G

&& G != stack && adjArr != stack;

@ public invariant 0 <= G[len] && G[len] < adjArr.length;

@*/

int[] G;

/*@ public invariant (\forall int i; 0 <= i && i < adjArr.length;

0 <= adjArr[i] && adjArr[i] < len);

@*/

int[] adjArr;

Listing 4.16: Invariants of the adjacency array

This is why searchC’s inner for-loop only needs to iterate that range instead of the whole

adjArr-array. Also the \num_of-expression, which equals diff, must be adapted to the data

structure. As shown in listing 4.17, G[u] is the lower bound of the iterated range, which also is

the lower bound of the sum. The expression counts those entries i, where the adjacent vertex

at i (adjArr[i]) is unvisited.

/*@ requires 0 <= u && u < len;

@ ...

@*/

{

/*@ loop_invariant G[u] <= t && t <= G[u+1];

@ loop_invariant 0 <= u && u < len;

@ ...

@ loop_invariant (\num_of int i; G[u] <= i && i < t; ord[adjArr[i]] == -1) == diff;

@*/

for(int t = G[u]; t < G[u+1]; t++) {

if (ord[adjArr[t]] == -1) {

/*...*/

}

}

}

Listing 4.17: Retrieval of adjacent vertices using the adjacency array data structure

The veri�cation-attempt non-recursive DFT with the adjacency array data structure required

similar interactions as the recursive one (see section 3.5). Additionally, proving that adjArr[t]

is in [0,len) in searchC’s inner for-loop required interactive help. The �rst invariant in
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listing 4.16 can be instantiated withu and together with the loop-invariantG[u] ≤ t ≤ G[u+1]
this implies 0 ≤ t < adjArr .length. As t is in its range, the universal quanti�er of the last

invariant in listing 4.16 can be instantiated with t , which resolves in the desired 0 ≤ adjArr[t] <
len.

The proof of non-recursive DFT with adjacency array was not closed and there are 7 open

goals left. When using the automatic proof-preparation in KeY on the initial proof-obligation,

a proof-tree with 327 open goals is created. Thus, after the proof-attempt, there are about 2%

of the initial goals left open.

4.6 Linked Data Structure

Like with the recursive implementation (see section 3.6), the linked data structure for non-

recursive DFT uses Vertex-objects. Each Vertex holds an int-id val and a Vertex-array of

its adjacent vertices. The non-recursive-DFT class holds an array G, which contains all of the

graphs vertices (see listing 4.18).

/*@ public invariant (\forall int j; 0 <= j && j < G.length;

G[j] != null && G[j].adj.length <= G.length);

@ public invariant G.length > 0;

@ public invariant (\forall int i; 0 <= i && i < G.length;

(\forall int j; 0 <= j && j < G[i].adj.length;

0 <= G[i].adj[j].val && G[i].adj[j].val < G.length

&& G[i].adj[j] == G[G[i].adj[j].val]));

@ public invariant (\forall int i; 0 <= i && i < G.length; G[i].val == i);

@ public invariant (\forall int i; 0 <= i && i < G.length;

(\forall int j; 0 <= j && j < G.length;

(i!=j) ==> (G[i] != G[j]) ));

@ public invariant (\forall int i; 0 <= i && i < G.length; \invariant_for(G[i]));

@*/

Vertex[] G;

Listing 4.18: Invariants of the linked data structure

To push u’s unvisited adjacent vertices onto the stack, searchC’s inner loop iterates the

Vertex-array G[u].adj. To check, whether an adjacent vertex adj[i] is unvisited, its index in

the ord-array must be obtained, which is stored in its val-�eld: adj[i].val. Looking up, if

ord is -1 at that index, decides whether the vertex is pushed onto the stack. So ord[adj[i]] =

-1 forms the guard inside the for-loop and also in the \num_of-expression.

Like the recursive version (see section 3.5), the veri�cation of non-recursive DFT with

the linked data structure required interactive help with assignable-clauses and for proving

that all Vertex’s invariants remain true. Additionally the decreases-clause of searchC’s

loop-contract and stackPtr’s invariant stackPtr <= (cnt + 1) * G.size required interactive

steps, as described in section 4.3.
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Vertex[] adj = G[u].adj;

/*@ requires adj == G[u].adj;

@ requires 0 <= u && u < G.length;

@ ...

@*/

{

/*@ loop_invariant adj == G[u].adj;

@ loop_invariant 0 <= u && u < G.length;

@ ...

@ loop_invariant (\num_of int i; 0 <= i && i < t; ord[adj[i].val] == -1) == diff;

@*/

for(int t = 0; t < adj.length; t++) {

if (ord[adj[t].val] == -1) {

/*...*/

}

}

}

Listing 4.19: Retrieval of adjacent vertices using the linked data structure

Applying the automatic proof-preparation in KeY on the initial proof-obligation results in

a proof-tree with 339 open goals. After the veri�cation process for non-recursive DFT with

the linked data structure there are 25 open goals left. This makes about 6% of the initial open

goals.

4.7 Adjacency Lists

The adjacency lists implementation for non-recursive and recursive DFT (see section 3.7) are

identical. It uses a List interface, which allows storing int values and provides a size()-

method for obtaining the List’s size as well as a get(int i)-method, which returns the i-th

element of the List. Thus the graph G is an array of List-objects, so that G[i] is the adjacency

list of the vertex i. Similar to the recursive version, the locations of a lists elements should not

alias with the cnt-�eld and ord’s entries. Since the non-recursive version uses a stack, also

the stackPtr and stack’s entries can be manipulated and might alias with the elements of the

lists, thus they are included in the last invariant.

The inner for-loop in searchC iterates G[u] to check u’s adjacent vertices. If the t-th adjacent

vertex adj.get(t) is unvisited, it is pushed onto the stack. This is why ord[adj.get(t)] is

the guard of the if-statement and the \num_of-expression in listing 4.21.
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/*@ public invariant (\forall int j; 0 <= j && j < G.length;

G[j] != null && G[j].size() <= G.length);

@ public invariant G.length > 0;

@ public invariant (\forall int i; 0 <= i && i < G.length;

(\forall int j; 0 <= j && j < G[i].size();

0 <= G[i].get(j) && G[i].get(j) < G.length));

@ public invariant (\forall int i; 0 <= i && i < G.length; \invariant_for(G[i]));

@ public invariant (\forall int i; 0 <= i && i < G.length;

\disjoint(G[i].footprint,\singleton(cnt))

&& \disjoint(G[i].footprint, \singleton(stackPtr))

&& (\forall int j; 0 <= j && j < ord.length;

\disjoint(G[i].footprint,\singleton(ord[j])))

&& (\forall int l; 0 <= l && l < stack.length;

\disjoint(G[i].footprint,\singleton(stack[l]))));

@*/

List[] G;

Listing 4.20: Invariants of adjacency lists

List adj = G[u];

/*@ requires 0 <= u && u < G.length;

@ requires adj == G[u];

@ ...

@*/

{

/*@ loop_invariant 0 <= u && u < G.length && adj == G[u];

@ ...

@ loop_invariant (\num_of int i; 0 <= i && i < t; ord[adj.get(i)] == -1) == diff;

@*/

for(int t = 0; t < adj.size(); t++) {

if (ord[adj.get(t)] == -1) {

/*...*/

}

}

}

Listing 4.21: Retrieval of adjacent vertices using adjacency lists

The proof-attempt of non-recursive DFT with adjacency lists requires similar interactions

as the recursive form (see section 4.7). Additionally those interactions described in section 4.3

were required, including the ones, where Basic Arithmetic Treatment can not close the

branch.

The proof for non-recursive DFT with adjacency lists leaves 64 goals open. The automatic

proof-preparation in KeY creates a proof-tree with 422 open goals, when used on the initial

proof-obligation. In this way there are about 15% of the initial goals left open, after the

proof-attempt.
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5 Depth-First Property

In chapters 3 and 4 we consider the DFT-algorithm to be correct if the whole graph has been

traversed after it terminates, meaning that all vertices have been visited once. This speci�cation

was su�cient, to compare the suitability of the data structures in the veri�cation-process with

KeY. In the following, we will de�ne a stricter depth-�rst property, which describes that the

vertices in a graph traversal are actually visited in a depth-�rst order. Additionally we will

show, how this property can be translated to JML and veri�ed with KeY.

In the following, we will write ∃i ∈ [0..n] : phi(i) to denote that there exists an i , such that i
is in the range of [0,n] and phi(i) is true. Similar, we write ∀i ∈ [0..n] : phi(i), to describe that

for all i , if i is in the range of [0,n], then phi(i) is true.

First of all, we need to de�ne, what a graph traversal is, in order to describe which graph

traversals are depth-�rst traversals.

De�nition 9 (Graph traversal, partial graph traversal) A graph traversal of a graph G =
(V , E), is a sequence of vertices t = (v0, . . . ,vm), where every vertex v ∈ V appears in t exactly
once.
A partial graph traversal of a graph G is a graph traversal of a graph G′, such that G′ is a

subgraph of G.

By de�nition 9, a graph traversal is an arbitrary permutation of a graphs vertices. This

order could stem from an algorithm, performing breadth-�rst search, depth-�rst search or just

selecting random vertices.

When a yet unvisited vertex vm is visited, it can be added to the end of graph traversal

t = (v0, . . . ,vm−1). In this way, the index i of a vertexvi = ti (the i-th vertex in t ) denotes when

the vertex has been visited.

De�nition 10 Let t = (v0, . . . ,vm) be a graph traversal and let i and j be indices, such that
0 ≤ i < j ≤ m, then the vertex vi = ti is said to be visited before vj = tj .

With de�nition 10, the subsequence (v0, . . . ,vi−1) ⊂ t consists of vertices that are visited

before vi and the subsequence (vi+1, . . . ,vm) ⊂ t contains those that are visited after vi .

De�nition 11 (Parent, child) A vertex u is a parent of a vertex v in a graph G = (V , E) i�
there is an edge from the former to the latter. The vertex v is then called child of u. The predicate
parent(u,v), expressing that u is parent of v , is de�ned as follows:

parent(u,v) ⇔ (u,v) ∈ E
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If a vertex vn is visited during depth-�rst search it must have a parent vp , which is visited

before vn. The only vertex that does not have visited a parent is the root v0, which is the �rst

vertex to be visited. Also, vn’s parent vp may have other children besides vn. If such a child

vc , vn is visited before vn, it must be �nished by the DFS-procedure, before vn is visited.

If the vertex vc is �nished before vn that means it is �nished on the partial graph traversal

t = (v0, . . . ,vn−1). We can say that a vertex is �nished in a graph traversal, if itself and all its

children are visited in that graph traversal.

De�nition 12 (Finished vertex) A vertex vi in a partial graph traversal t = (v0, . . . ,vm) of
lengthm on a graph G = (V , E) is �nished i� vi and all children of vi appear in t , which means
they have been visited. The predicate �nished(i, t) describes this property and is de�ned as follows:

�nished(i, t) ⇔ 0 ≤ i ≤ m ∧ ∀y ∈ V : (parent(ti,y) =⇒ ∃c ∈ [0..m] : tc = y)

We can now de�ne, when visiting such a vertex vn is valid with respect to depth-�rst search.

De�nition 13 (Valid DFS vertex) The last vertexvm in a partial graph traversal t = (v0, . . . ,vm)
of lengthm on a graphG = (V , E) is a valid DFS vertex i� eithervm is the rootv0 or there is a parent-
vertex vp of vm in t , such that all vertices in (vp+1, . . . ,vm−1) are �nished in t ′ = (v0, . . . ,vm−1).
The predicate validDFSvertex(t) states whether the last vertex vm in t is a valid DFS vertex and is
de�ned as follows:

validDFSvertex(t) ⇔ (m = 0) ∨ ∃p ∈ [0..m) : (parent(tp, tm) ∧ ∀c ∈ (p..m) : �nished(c, t ′))

We are using DFT instead of DFS in chapters 3 and 4, which can execute DFS multiple times.

When DFS is started at the vertex v0 and all vertices that are reachable from v0 have been

visited by DFS, DFT must check whether the whole graph has been visited. In case it is not,

DFT has to restart DFS at a vertex vm that has not been visited yet. Thus, a vertex is either a

vertex where DFS is (re)started or it is visited during DFS but is not the root. Such a restart

vertex can only be visited if the previous DFS has �nished.

De�nition 14 (Valid DFT vertex) The last vertexvm in a partial graph traversal t = (v0, . . . ,vm)
of lengthm on a graph G = (V , E) is a valid DFT vertex i� either it is a valid DFS vertex (def-
inition 13) or all vertices visited before vm are �nished in t ′ = (v0, . . . ,vm−1). The predicate
validDFTvertex(t) states whether the last vertex vm in t is a valid DFT vertex and is de�ned as
follows:

validDFTvertex(t) ⇔ validDFSvertex(t) ∨ ∀c ∈ [0..m) : �nished(c, t ′)

⇔ ∃p ∈ [−1..m) : ((parent(tp, tm) ∨ p = −1) ∧ ∀c ∈ (p..m) : �nished(c, t ′))

De�nition 15 (Depth-�rst graph traversal) A graph traversal t = (v0, . . . ,vm) on a graph
G = (V , E) is a depth-�rst graph traversal i� for each partial graph traversal tn = (v0, . . . ,vn), (0 ≤
n ≤ m) the vertex vn is a valid DFT vertex. For tn = (v0, . . . ,vn), t ′n = (v0, . . . ,vn−1).

DFgraphTraversal(t) ⇔ ∀n ∈ [0..m] : validDFTvertex(tn)
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Now that we have a de�nition of the depth-�rst property (see de�nition 15), we can translate

it to JML, in order to specify a DFT-implementation. As working with the recursive version of

DFT (see chapter 3) using an adjacency matrix (see section 3.4) was easy to work with (see

section 6.4), we will specify the depth-�rst property for that implementation.

First of all, a int ghost-array t can be used as sequence of vertices, representing the graph

traversal. The entries of t contain vertices t[n] = v, such that v is the n-th visited vertex in

the graph traversal. If not all vertices are visited yet, there is one most recently visited vertex w

= t[m] and all entries t[m+1..t.length] are -1. The implementation contains an int-�eld cnt,

which counts the visited vertices, thus the most recently visited vertex is t[cnt-1]. Listing 5.1

shows, how in the searchC-method, the given vertex v is added to the graph traversal t, using

a set-statement. After that, v is marked as visited in the ord-array before the cnt-�eld is

increased by one, since another vertex has been visited. The ord-array is inverse to the t-array,

as ord[v] = n says that v is the n-th visited vertex, which is also t[n].

public void searchC(int v) {

/*@ set t[cnt] = v;

@*/

ord[v] = cnt++;

/*...*/

}

Listing 5.1: Adding a visited vertex v to the graph traversal t

With this representation of a graph traversal, we can translate the predicates parent(tv, tw )
and �nished(w, t ′n). A vertex vw is the w-th visited vertex and is stored at t[w]. Since the

implementation uses the adjacency matrix data structure, the parent(tv, tw )-predicate can be

translated to a lookup in that matrix: G[tv][tw] = G[t[v]][t[w]]. A vertex vw is marked as

visited, if ord[vw] is not −1. De�nition 12 says that a vertex vw is �nished in t = (v0, . . . ,vm)
if itself and all its children appear in t. Here we use the �nished-predicate to say that vw is

�nished in the partial graph traversal t ′n = (v0, . . . ,vn−1). From the de�nition we get that vw
and its children must appear in t with indices in [0,n − 1] = [0,n). Listing 5.2 shows that

�nished(w, t ′n) can be translated to JML, using a universal quanti�er over all vertices y in

G. The body of \forall states that, if vw is parent of y, vertex y must be visited before vn,

meaning that ord[y] must be in [0,n). The de�nition of the �nished-predicate contains an

existential quanti�er, which states that for a child y of ti there exists an index c in t , such that

tc = y. In the JML-speci�cation, this quanti�er can be replaced by ord[y], since the ord-array

is inverse to the t-array and contains each vertex’s index in t.

/* w < n & (\forall int y; 0 <= y && y < G.length; G[t[w]][y] ==> (0 <= ord[y] &&

ord[y] < n)))

*/

Listing 5.2: Translation of the �nished-predicate to JML

When using the translation in listing 5.2 to translate �nished(t ′n[w], t
′
n) in listing 5.3, we can

leave out the condition w < n, as it is nested in a universal quanti�er over those w in (p,n).
Hence w < n is always true. With this, we can give a class-invariant (see listing 5.3), which
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states that at every time, the current partial graph traversal t[0..cnt] ful�lls the depth-�rst

condition in de�nition 15.

/*@ public invariant (\forall int v; 0 <= v && v < cnt;

(\exists int p; -1 <= p && p < v;

(G[t[p]][t[v]] || p == -1)

&& (\forall int w; p < w && w < v;

(\forall int y; 0 <= y && y < G.length;

G[t[w]][y] ==> (0 <= ord[y] && ord[y] < v)))

)

);

@ ghost int[] t;

@*/

Listing 5.3: Speci�cation of the depth-�rst property in JML

Here the predicates were translated for the adjacency matrix implementation. For other

data structures, the translation would look similar, yet slightly di�erent, as the adjacency of

two vertices is represented di�erently. Additionally to the invariant in listing 5.3, a few other

invariants are required. On the one hand, there are unassigned entries in the t-array with a

default value of -1. As there are cnt visited vertices, one class invariant states that the range

t[0..cnt] is assigned (not -1) and the range t[cnt..t.length] is unassigned and has only

default entries. Furthermore, the class needs one invariant describing that ord is inverse to t

and vice versa. Additionally to the class-invariants, some additional pre- and postconditions

are added to the methods dft and searchC (see listing 3.2). The searchC-method takes a vertex

v, from where it starts depth-�rst search. Hence it requires v to be a valid DFT vertex. As

searchC(v) traverses all vertices, reachable from v, it ensures that v and all recursively visited

vertices during that call are �nished when searchC(v) returns. In the dft-method, searchC is

called for the next vertex that was not visited during the previous call of searchC. This means

that in every iteration, all vertices in the graph traversal t must be �nished, before depth-�rst

search is started anew with another call of searchC.

With these invariants, pre- and postconditions, the depth-�rst property was proven for the

recursive implementation of DFT using an adjacency matrix.

56



6 Evaluation

In this chapter we will evaluate the speci�cation- and veri�cation processes for all four data

structures. In section 6.1, the time that was spent on each proof will be evaluated and in

section 6.2 we will evaluate the proof statistics provided by KeY. These evaluations provide

data for both forms of DFT with all four data structures. Nevertheless, we have to keep in mind

that the non-recursive form was only veri�ed for the adjacency matrix version, while the other

non-recursive proofs are not closed. Finally, in sections 6.3 and 6.4, both forms of DFT will be

compared and the advantages and disadvantages for each data structure will be discussed. All

the data that will be shown in the following does not show the optimal time needed to �nish a

proof or the minimum number of interactions, needed to close a proof, but rather the time

and the number of interactions that I (resp. a common KeY user) needed to close these proofs.

Thus the comparison of the data structures will also contain personal impressions from the

working processes.

6.1 Evaluation of Time E�ort

In order to estimate how much time was spent on each data structure and algorithm-form,

all �les in the working directory were committed into a git-repository. Additionally the git-
autocommit-script was used (provided by [Hol17]). This script checks every minute, whether

there are any changed �les in the repository and commits them. In this way, the time between

two commits can be assumed to be the time spent on the committed �les. So after the

speci�cation- and veri�cation-processes the commit-times could simply be read from the

git-log, to compute the time e�orts. To receive the changed �les and time of each commits,

the git-log-command can be used with the -stat option (which adds the changed �les). In

order to make the obtained data easier to process, the -pretty=format-option can be added,

as listing 6.1 shows.

git log --stat --pretty=format:’ "},{"date":"%ai","body":"%B","change":"%n ’ > time.txt

Listing 6.1: Git-log-command for time evaluation

The pretty-option formats the output in a json-ish structure, so that each json-object contains

a date-string (inserted by % ai), containing the date and time of the commit. Also each json-

objects has a body-string (inserted by % B), containing the commit message, and a string change

(inserted by % n), which contains the names of the commits changed �les. Listing 6.2 shows

an example of a commit as json-object.
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{ "date":"2018-06-25 15:02:58 +0200",

"body":"<git-autocommit>",

"change":

"simple_outer_searchC(int)_v12.proof | 17857 +++++++++++++++++++

1 file changed, 17857 insertions(+)"

}

Listing 6.2: Example of a cajson-commit-object

The command in listing 6.1 writes the data into the �le time.txt. Now all commits exist

as comma-separated json-objects. By surrounding the generated json-objects with {"com-

mits":[...]}, they become elements of the json-array commits.

Now the commits can be processed by a processing-script (see listing A.15), which parses

the date-string and splits those commits that contain more than one �le into several commits,

each containing one �le with the same date.

The script saves the processed data as csv-�le, which can then be imported into Excel for

further evaluation. Now we can compute the time di�erence of each commit to the previous

one. Since the �rst commit of a day is committed several hours after the last one, we need to

replace these times with more plausible values. Therefore we can calculate the average time

per commit of previous and later commits of that same proof- or source-�le. After that, each

row contains the time that was spent on it. We can add three categories to each row, to divide

the �les in to di�erent classes. The �rst category describes the data structure (DS) treated

in the �le (adjacency matrix (MAT ), adjacency array (ARR), linked data structure (LINK) or

adjacency lists (LIST )). The second one states, whether a �le treated the recursive (REC) or

non-recursive form (NONREC) of DFT. The last category distinguishes between speci�cation

(SPEC) and veri�cation (VER). Table 6.1 shows some example data from the Excel-�le with the

classi�cation of the commited �les. The column ’Time spent’ contains time values that consist

of hours, minutes and seconds (h:mm:ss).

Table 6.1: Examplary commit-data with �le classi�cation

Time File DS Form Type Time spent

15:50 GraphDFTalt_loop_contracts.java MAT REC SPEC 0:01:06

15:52 GraphDFTalt_loop_contracts.java MAT REC SPEC 0:01:04

16:17 searchC(int)_outer_v41.proof MAT REC VER 0:25:45

16:29 GraphDFTalt_loop_contracts2.java MAT REC SPEC 0:11:43

...

20:18 GraphDFT_link_nonrec.java LINK NONREC SPEC 0:05:08

20:19 GraphDFT_link_nonrec_dft_v16.proof LINK NONREC VER 0:01:03

20:21 GraphDFT_adjArr_nonrec.java ARR NONREC SPEC 0:02:04

20:22 GraphDFT_list_nonrec.java LIST NONREC SPEC 0:01:01

20:29 GraphDFT_link_nonrec_dft_v17.proof LINK NONREC VER 0:07:12
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With this classi�cation, the time can be summed up for each combination of theses three

categories: {MAT ,ARR, LINK, LIST }×{REC,NONREC}×{SPEC,VER}. In this way, we receive the

speci�cation- and veri�cation-time for each proof.

The table in �gure 6.1 shows the time that was spent on the speci�cation and the veri�cation

of recursive DFT for each data structure. For the recursive version of DFT, all proofs were

closed. The data is also plotted as stacked bar-chart next to the table. In the chart, the red bars

visualize the speci�cation time and the blue ones the veri�cation time. Since recursive DFT

with adjacency matrix was the �rst proof, its speci�cation and veri�cation took longer than

the next proofs with the adjacency array, linked or adjacency lists data structure (treated in

this order). For example, about three quarters of the speci�cation remains the same for all four

data structures. This is why the speci�cation time drops from about 10 hours to about 1 hour,

after the speci�cation was once written for the adjacency matrix version. For the following

data structures, only the invariants of the used graph-representation had to be speci�ed. Also

the veri�cation becomes easier with every new data structure, since the interactive steps are

similar across all data structures. So the chart in �gure 6.1 visualizes a learning curve across

the four data structures.

MAT ARR LINK LIST

10

30

50

70

90

i
n

v
e
s
t
e
d

t
i
m

e
i
n

h
o

u
r
s

Veri�cation Time Speci�cation Time

SPEC-time VER-time

MAT 10h 18m 76h 11m
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LINK 2h 01m 40h 25m

LIST 1h 41m 40h 51m

Figure 6.1: Invested time for recursive proofs

During the veri�cation-process of recursive DFT, after all data structures had been treated,

redundant invariants, pre- and postconditions were found in the speci�cation of DFT. After

removing those redundancies, the veri�cation was performed again for each data structure, this

time with the same knowledge base for all of them. The table in �gure 6.2 provides these new

veri�cation-times. Here the speci�cation time is mostly insigni�cant, since the speci�cation

was already available and only some redundancies were removed. The veri�cation time instead

shows a great di�erence compared to the data in �gure 6.1. The adjacency matrix version

could be veri�ed in less than an hour, while the adjacency array and the linked data structure

required about ten hours. The adjacency lists version even took another ten hours more to

verify.

These values are not in�uenced by a learning curve, since they do not contain the time

spent on learning to work with KeY or �guring out the required interactive steps. The plot in

�gure 6.2 shows how much time each data structure would need, after the interactive steps

are known. In contrast to the data in �gure 6.1, the data in �gure 6.2 shows, how much more

e�ort the adjacency list version requires compared to the adjacency matrix version (which is

about 13 times larger).
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Figure 6.2: Invested time for recursive proofs without learning curve

Figure 6.3 shows the time e�ort for the non-recursive version of DFT. For non-recursive

DFT, only the adjacency matrix version is proven. The other proofs still have some open goals

left. The ’Open goals’-column in �gure 6.3 contains entries x/y, where x is the number of open

goals that were not closed and y is the number of open goals, after applying KeY’s ’Autopilot

preparation’ on the initial proofs, which performs symbolic execution and splits the resulting

goals into multiple branches. We have to take these open goals into account, since closing

them would require more time. As with the recursive version (see �gure 6.1), the adjacency

matrix version was the �rst one to be treated. Thus, there is some knowledge gained during

this process. Although non-recursive DFT had already been veri�ed with the adjacency matrix

and although the proof is not closed, the linked data structure required almost the same time as

the adjacency matrix proofs. The adjacency array and the linked data structure have about 2%

and 7% open goals left (relative to the number of goals after preparation), while the adjacency

lists version has about 15% left.
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Figure 6.3: Invested time for non-recursive proofs

6.2 Evaluation of Proof Statistics

Additionally to comparing the working hours of each proof, they can also be compared by

the number of interactive steps that were applied. Therefore we can use the proof statistics

provided by KeY. A proof’s statistic includes the number of rules that were applied, how
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many of them were interactive steps as well as the name of each interactively applied rule.

Table 6.2 shows the proof statistics of the recursive and the non-recursive proofs for all four

data structures. Both tables show the number of interactive steps and the number of total rule

applications for each data structure.

Table 6.2: Proof statistics for recursive (left) and non-recursive proofs (right)

Total rule Interactive

REC applications steps

MAT 150 213 108

ARR 716 736 258

LINK 1 437 270 241

LIST 691 917 326

Open Total rule Interactive

NONREC goals applications steps

MAT 493 635 313

ARR 7/327 1 317 723 452

LINK 25/339 1 791 127 421

LIST 64/422 1 222 949 534
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Figure 6.4: Plot of total rule applications (left) and interactive steps (right)

While all recursive proofs could be closed, there are some open goals left in the non-recursive

proofs. Only the adjacency matrix version is closed, while the adjacency array, adjacency lists

and the linked data structure have open goals left. Therefore, the non-recursive proof statistics

contain an extra column showing the number of open goals. An entry x/y in that column

describes the number of goals that were not closed (x) and the number of open goals after

proof-preparation (y). By looking at the open proofs, we can �nd out what kind of goals are left

open. For example, all three versions have open goals in the proof of searchC’s loop-contract

for the while-loop (see listing 4.11). For each data structure, the corresponding proof has

open goals in a branch, where the loop-contract’s assignable-clause has to be proven. Also,

the proofs of searchC’s inner block-contract (see listing 4.12) contain open goals regarding

the stackPtr �led. In those goals it has to be shown that this stackPtr remains in certain

bound, which is required to prove the algorithms termination as well as to show that the

stack-array is not accessed out of bounds. Additionally to these open goals that appear for all

three data structures, the adjacency lists and the linked data structure have open goals, where

the invariants of all List- resp. Vertex-objects in G have to be shown to be true after each

iteration of the for-loop. Finally, the adjacency lists version has some additional open goals.

On the one hand, there are open goals, needed to prove the algorithm’s termination, where an
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arithmetic expression, containing a .size() call, has to be proven. On the other hand, when

proving that the class-invariants are maintained by the loop’s body, there are open goals left,

in which a class-invariant, containing more than one quanti�er, has to be proven. All these

open goals seem to be closable, but not without additional time e�ort and more interactive

steps.

The left chart in �gure 6.4 shows the number total rule applications of the recursive proofs

(blue) compared to the non-recursive number (red). Except for the linked data structure, the

non-recursive proofs required almost twice as many rule applications as the recursive proofs.

The right chart in �gure 6.4 shows the comparison of the recursive (blue) and the non-recursive

(red) form, regarding their number of interactive steps. For the adjacency array and the linked

data structure, the number of interactive steps in the non-recursive version is almost twice

as high as in the recursive version, although not all non-recursive proofs are closed. The

non-recursive version with adjacency matrix even triples the number, needed in the recursive

version. For adjacency lists, the proportion of interactive steps required for the non-recursive

version to the recursive one is about two thirds. Still, we need to take into account that there

around 15% goals left open, which potentially require more interactive steps.

6.3 Comparison of Recursive and Non-Recursive DFT

As the �gures in sections 6.1 and 6.2 show, the non-recursive version of DFT required more

e�ort than the recursive version. Across all four data structures, all non-recursive proofs use

more rule applications and interactive steps than the recursive ones (see �gure 6.4). Also, of the

non-recursive proofs only the one using an adjacency matrix is closed. The other three data

structures have open goals left, although the minimum time spent on the non-recursive proofs

(see �gure 6.3) is equal to the maximum time spent on the recursive proofs in �gure 6.2. This

extra e�ort, stems from the additional stack data structure that has to be taken care of. In the

recursive implementation of DFT, the stack is implicitly present in form of the call-stack, which

holds the local state for each recursive call of searchC. Since JML and KeY support recursion,

we can use for example a measured_by-clause to show that the recursive version terminates,

instead of arguing about the stacks size in the non-recursive version (cf. sections 3.2 and 4.2).

6.4 Comparison of Data Structures

With the evaluation of time e�ort and the proof statistics, we can now have a look at the

advantages and disadvantages of each data structure. For each of them, we will have a general

look at the (dis)advantages, followed by a paragraph in which we will look in detail, where

these (dis)advantages might stem from.

First of all, the adjacency matrix was easy to work with. Its properties can be expressed in

only two data structure speci�c invariants (see section 3.4), which are su�cient to prove both

the recursive and the non-recursive version of DFT. Furthermore, the adjacency matrix did

not su�er from aliasing problems during the veri�cation process. Still, the adjacency matrix

does not support the retrieval of a vertex’s adjacent vertices in constant time, which is why
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the implementation of DFT with this data structure requires a workaround to obtain these

adjacent vertices. In terms of time e�ort, the adjacency matrix took the least time to verify,

when leaving out the learn curve (see �gure 6.2). Also in terms of total rule applications and

interactive steps, it is the most e�cient one.

The adjacency-matrix uses boolean arrays, which prevents aliasing of its entries with heap

locations that are manipulated: the int-�eld cnt or the int-array ord’s entries. Still, when

acquiring the adjacent vertices adj = G[v] of a vertex v, the adj-array does not only contain

the adjacent vertices, but rather the information for each vertex , whether it is adjacent to v.

This adds another check adj[t] to (adj[t] && ord[t] == -1) to �nd out if t is an unvisited

adjacent vertex of v. This extra check resolves into an additional branch in the proof of

searchC’s inner loop-/block-contract that has to be closed.

The adjacency array data structure was only accompanied by minor aliasing problems. Still,

the adjacency arrays has more invariants than the adjacency matrix, since those properties of

the adjacency array that are required to verify DFT are more complex. The time e�ort needed

for the adjacency array data structure is similar to that of the linked data structure in the

recursive version and similar to the adjacency lists time e�ort in the non-recursive version.

Also, it requires a similar number of interactions as the linked data structure.

The adjacency array uses two int-arrays G and adjArr. Since an array’s elements are not

stored at arbitrary locations but in a �xed range on the heap, it su�ces to ensure that G, adjArr

and ord are pairwise unequal, to prevent aliasing. The invariants of this data structure are more

complex than the invariants of the adjacency matrix. For example the invariant, which states

that G[i] and G[i+1] are the lower and upper bound of i’s adjacent vertiecs in adjArr. This

leads to interactive steps, when showing that array-accesses like ord[adjArr[t]] are in bounds.

The proof statistics provided by KeY (see section 6.2) contain the names of the interactively

applied rules, thus the interactive steps can be divided into two classes: those that require the

manual instantiation of a variable and those that do not. The linked data structure needed

slightly less interactions than the adjacency array data structure. Still, the interactions for

the linked data structure contain almost twice as many instantiating interactive steps as the

adjacency array’s interactions. Apart from that, verifying DFT with the linked data structure

bought up several aliasing problems concerning the Vertex-objects. The non-recursive version

of DFT using the linked data structure took almost the same time as the version with adjacency-

matrix, regardless of the previously gained knowledge. Also that proof is still not closed, in

contrast to the adjacency matrix version.

Since the linked data structure uses an extra Vertex-class, the invariants of all Vertex-objects

must be shown to remain true during the veri�cation. At those points in the proof, interactive

steps were required, which is one reason why so many interactive steps were needed. When

iterating, a vertex’s adjacent vertices, those are Vertex-objects stored in a vertex’s adj-array.

As those vertices must be in the same graph, there is an invariant, which takes care that all

vertices in these adj-arrays appear in the graph G. This invariant prevents those Vertex-objects

in adj from aliasing and only allows them to equal one Vertex in G. The Vertex-class also

contains an int-�eld val that might alias with the cnt-�eld. Still KeY could close close the
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recursive proof, without an invariant preventing aliasing or interactive help.

The adjacency lists data structure required the most time to verify in its recursive version

and still has around 15% open goals in its non-recursive version. Also, the proof-trees of the

adjacency lists versions are less comprehensible, than those of the other versions. One reason

why working with adjacency lists in its recursive version took so long is because �nding

missing invariants or errors in the speci�cation was hindered by the unclear sequents. Of

the four data structures, the adjacency lists caused the most aliasing problems during the

veri�cation process.

While the other data structures require only one method-call of searchC in searchC’s inner

loop-/block-contract, the code of the adjacency lists version additionally contains a call of size

and two calls of get. Furthermore, there are multiple size- and get-queries in the speci�cation.

Therefore, every symbolic execution of size or get splits the proof into three branches: Pre,

Exceptional Post and Post. Thus, with every Post-branch, there is a new de�nition of the

current heap. All of that makes the proof-trees and the appearing sequents less lucid. Also, a

lists elements are stored at arbitrary locations on the heap, thus the invariants must assure

that they do not alias with �elds that are updated during DFT. The invariants concerning the

other data structures are the same for the recursive and the non-recursive version. In contrast,

the invariant that prevents aliasing of the lists elements must adapt to the used form of the

algorithm, since in the non-recursive version of DFT, additionally the stackPtr-�eld and the

entries of the stack-array are manipulated.
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7 Conclusion

In this thesis we showed the implementations of recursive and non-recursive DFT and four

graph data structures: adjacency matrix, adjacency array, linked data structure and adjacency

lists. For both versions of DFT, we gave a general speci�cation and we found invariants

of the four data structures. Moreover, we looked at speci�c implementation, speci�cation

and veri�cation details of all four data structures for both forms of DFT. Additionally, we

showed how the depth-�rst property of a graph traversal can be de�ned in general and how it

translates to JML. Finally, we evaluated the veri�cation-processes and listed the advantages

and disadvantages of the four data structures.

7.1 Results

The comparison of the graph-representations showed us that the adjacency matrix proofs took

less time and required less interactive steps, than the other data structures. Also it did not

su�er from aliasing problems, since it uses arrays of a di�erent type than those �elds that are

manipulated by the algorithm.

The adjacency array and the linked data structure, required more time and interactive steps,

as they had more complex invariants. As those invariants contained a lot of quanti�ers, KeY

required help at some points to instantiate them with the right variable.

Finally, we found that the adjacency lists representation required an invariant to prevent

aliasing of modi�ed �elds with the lists’ entries. Also, the method-calls on the lists, to obtain

vertices or a list’s size, resulted in a less comprehensible proof-tree.

In general, we found that the non-recursive version required more e�ort, than the recursive

one, due to the additional stack data structure, whose behavior had to be speci�ed and veri�ed.

The recursive version of DFT could be veri�ed for all four graph-representations, while the

non-recursive version was only closed for adjacency matrices.

Apart from comparing the data structures, we de�ned the depth-�rst property for graph

traversals and used it to show that the recursive DFT implementation with adjacency matrix

visits the vertices in a valid DFT-order. Also, we de�ned a set of taclets to treat bounded sums,

deriving from \num_of-quanti�ers.

During the veri�cation-processes, some bugs in KeY were found and could then be �xed.

For example, some proof-�les reached a size of 250 megabyte. When storing such a �le, a

’Java heap space OutOfMemory’ error occurred, as the whole string-representation of the

proof was stored in one giant array on the heap. Furthermore, the use of the \old-keyword in

loop-contracts or nested block-contracts used to reference an unde�ned ’heapBeforeMethod’.

These bugs were �xed and with the �xes, the veri�cation of DFT could be completed.
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7.2 Outlook

Now, that we have worked with KeY on DFT and the four graph-representations, the results

could be compared to other program-veri�cation tools and how they handle these data struc-

tures or how the data structures perform under other graph-algorithms. The gained knowledge

could also be used, to verify an algorithm, which is based on DFS, like Tarjan‘s algorithm for

computing strongly connected components.

Also, it could be further investigated, how this use-case can be made easier to verify in KeY.

Furthermore, the de�nition of the depth-�rst property for graph traversals could be used to

verify a commonly used implementation of depth-�rst traversal.
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A Appendix

Algorithm 1: Recursive DFS

Data: G = (V , E) directed graph

begin dfs_init

Visited ←− ∅
foreach v ∈ V do

dfs(v)

Data: G = (V , E) directed graph and vertex v ∈ V
begin dfs

if v < Visited then
Visited ←− Visited ∪ {v}
foreach (v,u) ∈ E do

dfs(u)

Algorithm 2: Non-Recursive DFS

Data: G = (V , E) directed graph

begin dfs_init

Visited ←− ∅
foreach v ∈ V do

stack_dfs(v)

Data: G = (V , E) directed graph and vertex v ∈ V
begin stack_dfs

S ←− ∅
S .push(v)

while S , ∅ do
u ←− S .pop()
if u < Visited then

Visited ←− Visited ∪ {u}
foreach (u,w) ∈ E do

if w < Visited then
S .push(w)
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\lemma

bsum_num_of_bounds2 {

\find(bsum{uSub;} (i0, i2, \if(phi)\then(0)\else(1)))

\varcond ( \notFreeIn(uSub, i0),

\notFreeIn(uSub, i2))

\add( 0 <= bsum{uSub;} (i0, i2, \if(phi)\then(0)\else(1)),

i0 <= i2 -> bsum{uSub;} (i0, i2, \if(phi)\then(0)\else(1)) <= i2 - i0 ==>)

};

Listing A.1: Bsum-taclet: min- and maimum value of num_of-bsum

\lemma

bsum_num_of_is_max3 {

\find(bsum{uSub;} (i0, i2, \if(phi)\then(0)\else(1)) = i2 - i0 ==>)

\varcond ( \notFreeIn(uSub, i0),

\notFreeIn(uSub, i2))

\add(\forall uSub; ((uSub>=i0 & uSub<i2) -> !phi)==>)

};

Listing A.2: Bsum-taclet: num_of-bsum equals maximum value

\lemma

bsum_num_of_lt_max3 {

\assumes(i2 > i0 & i0 >= 0 ==>)

\find(bsum{uSub;} (i0, i2, \if(phi)\then(0)\else(1)) < i2 - i0 ==>)

\varcond ( \notFreeIn(uSub, i0),

\notFreeIn(uSub, i2))

\add(\exists uSub; ((uSub>=i0 & uSub<i2) & phi)==>)

};

Listing A.3: Bsum-taclet: num_of-bsum less then maximum value
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public class GraphDFS_dft_prop {

/*@ public invariant (\forall int j; 0 <= j && j < G.length;

G[j] != null && G[j].length == G.length);

@ public invariant G.length > 0;

@*/

private /*@ spec_public @*/ boolean[][] G;

/*@ public invariant 0 <= cnt && cnt <= G.length;

@ public invariant (\num_of int i; 0 <= i && i < ord.length; ord[i] != -1) == cnt;

@*/

private /*@ spec_public @*/ int cnt;

/*@ public invariant ord.length == G.length;

@ public invariant (\forall int i; 0 <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ public invariant (\forall int i; 0 <= i && i < ord.length;

-1 <= ord[i] && ord[i] < cnt);

@*/

private /*@ spec_public @*/ int[] ord;

/*@ public invariant t.length == G.length && ord != t;

@ public invariant (\forall int i; 0 <= i && i < cnt;

0 <= t[i] && t[i] < G.length && ord[t[i]] == i);

@ public invariant (\forall int i; 0 <= i && i < G.length;

(ord[i] != -1) ==> t[ord[i]] == i);

@ public invariant (\forall int i; cnt <= i && i < G.length; t[i] == -1);

@ public invariant (\forall int v; 0 <= v && v < cnt;

(\exists int p; -1 <= p && p < v;

(G[t[p]][t[v]] || p == -1)

&& (\forall int w; p < w && w < v;

(\forall int y; 0 <= y && y < G.length;

G[t[w]][y] ==> (0 <= ord[y] && ord[y] < v))) ));

@*/

/*@ ghost int[] t;

@*/
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/*@ public normal_behavior

@ requires cnt < G.length;

@ requires 0 <= v && v < G.length;

@ requires ord[v] == -1;

@ requires (\exists int p; -1 <= p && p < cnt;

(G[t[p]][v] || p == -1)

&& (\forall int w; p < w && w < cnt;

(\forall int y; 0 <= y && y < G.length;

G[t[w]][y] ==> (0 <= ord[y] && ord[y] < cnt))) );

@ ensures cnt > \old(cnt);

@ ensures (ord[v] == \old(cnt)) && (ord[v] != -1);

@ ensures (\forall int i; \old(cnt) <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ ensures (\forall int i; ord[v] <= i && i < cnt;

(\forall int y; 0 <= y && y < G.length;

G[t[i]][y] ==> (0 <= ord[y] && ord[y] < cnt)));

@ measured_by (G.length - cnt);

@ assignable unvisited(), cnt, t[cnt .. t.length];

@*/

public void searchC(int v) {

/*@ set t[cnt] = v;

@*/

ord[v] = cnt++;

boolean[] adj = G[v];

/*@ loop_contract normal_behavior

@ requires \invariant_for(this);

@ requires adj == G[v] && 0 <= v && v < G.length;

@ requires 0 <= t && t <= adj.length;

@ requires ord[v] == \old(cnt);

@ requires 0 <= \old(cnt) && \old(cnt) < cnt && \old(G.length) == G.length;

@ requires (\forall int i; ord[v] < i && i < cnt;

(\forall int y; 0 <= y && y < G.length;

G[t[i]][y] ==> (0 <= ord[y] && ord[y] < cnt)));

@ requires (\forall int y; 0 <= y && y < t;

G[v][y] ==> (0 <= ord[y] && ord[y] < cnt));

@ ensures ord[v] != -1 && \before(cnt) <= cnt;

@ ensures \invariant_for(this);

@ ensures (\forall int i; \old(cnt) <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ ensures (\forall int i; ord[v] <= i && i < cnt; #

(\forall int y; 0 <= y && y < G.length;

G[t[i]][y] ==> (0 <= ord[y] && ord[y] < cnt)));

@ decreases adj.length - t;

@ measured_by (G.length - cnt);

@ assignable unvisited(), cnt, t, t[cnt .. t.length];

@*/
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{

for (int t = 0; t < adj.length; t++) {

if (adj[t] && ord[t] == -1) {searchC(t);}

}

}

}

/*@ public normal_behavior

@ requires (\forall int j; 0 <= j && j < GIn.length; GIn[j].length == GIn.length);

@ requires GIn.length > 0;

@

@ ensures G == GIn;

@ ensures (cnt == 0);

@ ensures (\forall int i; 0 <= i && i < G.length; ord[i] == -1);

@ ensures (\forall int i; 0 <= i && i < G.length; t[i] == -1);

@*/

public GraphDFS_dft_prop(boolean[][] GIn) {

this.G = GIn;

cnt = 0;

/*@ set t = new int[G.length];

@*/

ord = new int[G.length];

/*@ loop_invariant 0 <= r && r <= G.length;

@ loop_invariant (\forall int i; 0 <= i && i < r; ord[i] == -1);

@ loop_invariant (\forall int i; 0 <= i && i < r; t[i] == -1);

@ decreases ord.length - r;

@ assignable ord[r .. (ord.length - 1)], t[r .. (t.length - 1)], r;

@*/

for (int r = 0; r < G.length; r++) {

/*@ set t[r] = -1;

@*/

ord[r] = -1;

}

}

/*@ public normal_behavior

@ requires cnt == 0;

@ requires (\forall int i; 0 <= i && i < ord.length; ord[i] == -1);

@ ensures (cnt == G.length);

@ ensures (\forall int i; 0 <= i && i < G.length; ord[i] != -1);

@ ensures (\forall int i; 0 <= i && i < G.length;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ assignable ord[*], cnt, t[*];

@*/
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public void dfs() {

/*@ loop_contract normal_behavior

@ requires \invariant_for(this);

@ requires 0 <= k && k <= G.length;

@ requires (\forall int i; 0 <= i && i < k; ord[i] != -1);

@ requires cnt >= k;

@ requires (\forall int i; 0 <= i && i < cnt;

(\forall int y; 0 <= y && y < G.length;

G[t[i]][y] ==> (0 <= ord[y] && ord[y] < cnt)));

@

@ ensures (ord[k-1] != -1);

@ ensures (\forall int i; 0 <= i && i < k; ord[i] != -1);

@ ensures ord[k-1] != -1;

@ ensures cnt >= k;

@ ensures k == G.length;

@ ensures \invariant_for(this);

@

@ decreases G.length - k;

@ assignable unvisited(), cnt, k, t[*];

@*/

{

for (int k = 0; k < G.length; k++) {

if (ord[k] == -1) {

searchC(k);

}

}

}

}

/*@ model \locset unvisited() {

return \infinite_union(int i; (0 <= i && i < ord.length && ord[i] == -1);

\singleton(ord[i]));

} @*/

/*@ public normal_behavior

@ requires 0 <= v && v < G.length;

@ ensures \result == ord[v];

@ assignable \strictly_nothing;

@*/

public int order(int v) {

return ord[v];

}
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/*@ public normal_behavior

@ ensures \result == cnt;

@ assignable \strictly_nothing;

@*/

public int count() {

return cnt;

}

}

Listing A.4: Recursive DFT using an adjacency matrix with depth-�rst property invariant

public class GraphDFS_matr {

/*@ public invariant (\forall int j; 0 <= j && j < G.length; G[j] != null &&

G[j].length == G.length);

@ public invariant G.length > 0;

@*/

private /*@ spec_public @*/ boolean[][] G;

/*@ public invariant 0 <= cnt && cnt <= G.length;

@ public invariant (\num_of int i; 0 <= i && i < ord.length; ord[i] != -1) == cnt;

@*/

private /*@ spec_public @*/ int cnt;

/*@ public invariant ord.length == G.length;

@ public invariant (\forall int i; 0 <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@*/

private /*@ spec_public @*/ int[] ord;

/*@ public normal_behavior

@ requires cnt < G.length;

@ requires 0 <= v && v < G.length;

@ requires ord[v] == -1;

@

@ ensures cnt > \old(cnt);

@ ensures (ord[v] == \old(cnt)) && (ord[v] != -1);

@ ensures (\forall int i; \old(cnt) <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ measured_by (G.length - cnt);

@ assignable unvisited(), cnt;

@*/
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public void searchC(int v) {

ord[v] = cnt++;

boolean[] adj = G[v];

/*@ loop_contract normal_behavior

@ requires \invariant_for(this);

@ requires adj == G[v] && 0 <= v && v < G.length;

@ requires 0 <= t && t <= adj.length;

@ requires ord[v] != -1 ;

@ requires 0 <= \old(cnt) && \old(cnt) < cnt && \old(G.length) == G.length;

@ ensures ord[v] != -1 && \before(cnt) <= cnt;

@ ensures \invariant_for(this);

@ ensures (\forall int i; \old(cnt) <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ decreases adj.length - t;

@ measured_by (G.length - cnt);

@ assignable unvisited(), cnt, t;

@*/

{

for (int t = 0; t < adj.length; t++) {

if (adj[t] && ord[t] == -1) {searchC(t);}

}

}

}

/*@ public normal_behavior

@ requires (\forall int j; 0 <= j && j < GIn.length; GIn[j].length == GIn.length);

@ requires GIn.length > 0;

@ ensures G == GIn;

@ ensures (cnt == 0);

@ ensures (\forall int i; 0 <= i && i < G.length; ord[i] == -1);

@*/

public GraphDFS_matr(boolean[][] GIn) {

this.G = GIn;

cnt = 0;

ord = new int[G.length];

/*@ loop_invariant 0 <= t && t <= G.length;

@ loop_invariant (\forall int i; 0 <= i && i < t; ord[i] == -1);

@ decreases ord.length - t;

@ assignable ord[t .. (ord.length - 1)], t;

@*/

for (int t = 0; t < G.length; t++) {

ord[t] = -1;

}

}
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/*@ public normal_behavior

@ requires cnt == 0;

@ requires (\forall int i; 0 <= i && i < ord.length; ord[i] == -1);

@

@ ensures (cnt == G.length);

@ ensures (\forall int i; 0 <= i && i < G.length; ord[i] != -1);

@ ensures (\forall int i; 0 <= i && i < G.length;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ assignable ord[*], cnt;

@*/

public void dft() {

/*@ loop_contract normal_behavior

@ requires \invariant_for(this);

@ requires 0 <= k && k <= G.length;

@ requires (\forall int i; 0 <= i && i < k; ord[i] != -1);

@ requires cnt >= k;

@

@ ensures (ord[k-1] != -1);

@ ensures (\forall int i; 0 <= i && i < k; ord[i] != -1);

@ ensures ord[k-1] != -1;

@ ensures cnt >= k;

@ ensures k == G.length;

@ ensures \invariant_for(this);

@

@ decreases G.length - k;

@ assignable unvisited(), cnt, k;

@*/

{

for (int k = 0; k < G.length; k++) {

if (ord[k] == -1) {searchC(k);}

}

}

}

/*@ model \locset unvisited() {

return \infinite_union(int i; (0 <= i && i < ord.length && ord[i] == -1);

\singleton(ord[i]));

} @*/

/*@ public normal_behavior

@ requires 0 <= v && v < G.length;

@ ensures \result == ord[v];

@ assignable \strictly_nothing;

@*/
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public int order(int v) {

return ord[v];

}

/*@ public normal_behavior

@ ensures \result == cnt;

@ assignable \strictly_nothing;

@*/

public int count() {

return cnt;

}

}

Listing A.5: Recursive DFT using an adjacency matrix

public class GraphDFS_adjarr {

/*@ public invariant (\forall int j; 0 <= j && j < len;

0 <= G[j] && G[j] < adjArr.length && (G[j] <= G[j+1]));

@ public invariant len > 0;

@ public invariant G != adjArr && adjArr != ord && ord != G;

@ public invariant 0 <= G[len] && G[len] < adjArr.length;

@*/

private /*@ spec_public @*/ int[] G;

/*@ model int len;

@ represents len \such_that len == G.length - 1;

@*/

/*@ public invariant (\forall int i; 0 <= i && i < adjArr.length;

0 <= adjArr[i] && adjArr[i] < len);

@*/

private /*@ spec_public @*/ int[] adjArr;

/*@ public invariant 0 <= cnt && cnt <= len;

@ public invariant (\num_of int i; 0 <= i && i < ord.length; ord[i] != -1) == cnt;

@*/

private /*@ spec_public @*/ int cnt;

/*@ public invariant ord.length == len;

@ public invariant (\forall int i; 0 <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@*/

private /*@ spec_public @*/ int[] ord;
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/*@ public normal_behavior

@ requires cnt < len;

@ requires 0 <= v && v < len;

@ requires ord[v] == -1;

@

@ ensures cnt > \old(cnt);

@ ensures (ord[v] == \old(cnt)) && (ord[v] != -1);

@ ensures (\forall int i; \old(cnt) <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ measured_by (len - cnt);

@ assignable unvisited(), cnt;

@*/

public void searchC(int v) {

ord[v] = cnt++;

/*@ loop_contract normal_behavior

@ requires \invariant_for(this);

@ requires G[v] <= t && t <= G[v+1];

@ requires ord[v] != -1 ;

@ requires 0 <= \old(cnt) && \old(cnt) < cnt && \old(len) == len;

@ requires 0 <= v && v < len;

@

@ ensures ord[v] != -1 && \before(cnt) <= cnt;

@ ensures \invariant_for(this);

@ ensures (\forall int i; \old(cnt) <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ decreases G[v+1] - t;

@ measured_by (len - cnt);

@ assignable unvisited(), cnt, t;

@*/

{

for (int t = G[v]; t < G[v+1]; t++) {

if (ord[adjArr[t]] == -1) {searchC(adjArr[t]);}

}

}

}
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/*@ public normal_behavior

@ requires GIn.length - 1 > 0;

@ requires (\forall int j; 0 <= j && j < (GIn.length - 1);

0 <= GIn[j] && GIn[j] < adjIn.length && (GIn[j] <= GIn[j+1]));

@ requires (\forall int i; 0 <= i && i < adjIn.length;

0 <= adjIn[i] && adjIn[i] < (GIn.length - 1));

@ requires GIn != adjIn;

@ requires 0 <= GIn[GIn.length - 1] && GIn[GIn.length - 1] < adjIn.length;

@

@ ensures (cnt == 0);

@ ensures (\forall int i; 0 <= i && i < G.length - 1; ord[i] == -1);

@*/

public GraphDFS_adjarr(int[] GIn, int[] adjIn) {

this.G = GIn;

this.adjArr = adjIn;

cnt = 0;

ord = new int[G.length - 1];

/*@ loop_invariant 0 <= t && t <= len;

@ loop_invariant (\forall int i; 0 <= i && i < t; ord[i] == -1);

@ decreases ord.length - t;

@ assignable ord[t .. (ord.length - 1)], t;

@*/

for (int t = 0; t < G.length - 1; t++) {

ord[t] = -1;

}

}

/*@ public normal_behavior

@ requires cnt == 0;

@ requires (\forall int i; 0 <= i && i < ord.length; ord[i] == -1);

@ ensures (cnt == len);

@ ensures (\forall int i; 0 <= i && i < ord.length; ord[i] != -1);

@ ensures (\forall int i; 0 <= i && i < ord.length;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ assignable ord[*], cnt;

@*/

public void dft() {
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/*@ loop_contract normal_behavior

@ requires \invariant_for(this);

@ requires 0 <= k && k <= len;

@ requires (\forall int i; 0 <= i && i < k; ord[i] != -1);

@ requires cnt >= k;

@ ensures (ord[k-1] != -1);

@ ensures (\forall int i; 0 <= i && i < k; ord[i] != -1);

@ ensures ord[k-1] != -1;

@ ensures cnt >= k;

@ ensures k == len;

@ ensures \invariant_for(this);

@

@ decreases len - k;

@ assignable unvisited(), cnt, k;

@*/

{

for (int k = 0; k < G.length - 1; k++) {

if (ord[k] == -1) {searchC(k);}

}

}

}

/*@ model \locset unvisited() {

return \infinite_union(int i; (0 <= i && i < ord.length && ord[i] == -1);

\singleton(ord[i]));

} @*/

/*@ public normal_behavior

@ requires 0 <= v && v < len;

@ ensures \result == ord[v];

@ assignable \strictly_nothing;

@*/

public int order(int v) {

return ord[v];

}

/*@ public normal_behavior

@ ensures \result == cnt;

@ assignable \strictly_nothing;

@*/

public int count() {

return cnt;

}

}

Listing A.6: Recursive DFT using an adjacency array

81



public class GraphDFS_linked {

/*@ public invariant (\forall int j; 0 <= j && j < G.length;

G[j] != null && G[j].adj.length <= G.length);

@ public invariant G.length > 0;

@ public invariant (\forall int i; 0 <= i && i < G.length;

(\forall int j; 0 <= j && j < G[i].adj.length;

0 <= G[i].adj[j].val && G[i].adj[j].val < G.length

&& G[i].adj[j] == G[G[i].adj[j].val]));

@ public invariant (\forall int i; 0 <= i && i < G.length; G[i].val == i);

@ public invariant (\forall int i; 0 <= i && i < G.length;

(\forall int j; 0 <= j && j < G.length; (i!=j) ==> (G[i] !=

G[j]) ));

@ public invariant (\forall int i; 0 <= i && i < G.length; \invariant_for(G[i]));

@*/

private /*@ spec_public @*/ Vertex[] G;

/*@ public invariant 0 <= cnt && cnt <= G.length;

@ public invariant (\num_of int i; 0 <= i && i < ord.length; ord[i] != -1) == cnt;

@*/

private /*@ spec_public @*/ int cnt;

/*@ public invariant ord.length == G.length;

@ public invariant (\forall int i; 0 <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@*/

private /*@ spec_public @*/ int[] ord;

/*@ public normal_behavior

@ requires cnt < G.length;

@ requires 0 <= v && v < G.length;

@ requires ord[v] == -1;

@

@ ensures cnt > \old(cnt);

@ ensures (ord[v] == \old(cnt)) && (ord[v] != -1);

@ ensures (\forall int i; \old(cnt) <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ measured_by (G.length - cnt);

@ assignable unvisited(), cnt;

@*/
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public void searchC(int v) {

ord[v] = cnt++;

Vertex[] adj = G[v].adj;

/*@ loop_contract normal_behavior

@ requires \invariant_for(this);

@ requires adj == G[v].adj && 0 <= v && v < G.length;

@ requires 0 <= t && t <= adj.length;

@ requires ord[v] != -1;

@ requires 0 <= \old(cnt) && \old(cnt) < cnt && \old(G.length) == G.length;

@

@ ensures ord[v] != -1 && \before(cnt) <= cnt;

@ ensures \invariant_for(this);

@ ensures (\forall int i; \old(cnt) <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ decreases adj.length - t;

@ measured_by (G.length - cnt);

@ assignable unvisited(), cnt, t;

@*/

{

for (int t = 0; t < adj.length; t++) {

if (ord[adj[t].val] == -1) {searchC(adj[t].val);}

}

}

}

/*@ public normal_behavior

@ requires (\forall int j; 0 <= j && j < GIn.length;

GIn[j].adj.length <= GIn.length);

@ requires GIn.length > 0;

@ requires (\forall int i; 0 <= i && i < GIn.length;

(\forall int j; 0 <= j && j < GIn[i].adj.length;

0 <= GIn[i].adj[j].val && GIn[i].adj[j].val < GIn.length

&& GIn[i].adj[j] == GIn[GIn[i].adj[j].val]));

@ requires (\forall int i; 0 <= i && i < GIn.length; GIn[i].val == i);

@ requires (\forall int i; 0 <= i && i < GIn.length;

(\forall int j; 0 <= j && j < GIn.length;

(i!=j) ==> (GIn[i] != GIn[j]) ));

@ requires (\forall int i; 0 <= i && i < GIn.length; \invariant_for(GIn[i]));

@

@ ensures G == GIn;

@ ensures (cnt == 0);

@ ensures (\forall int i; 0 <= i && i < G.length; ord[i] == -1);

@*/
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public GraphDFS_linked(Vertex[] GIn) {

this.G = GIn;

cnt = 0;

ord = new int[G.length];

/*@ loop_invariant 0 <= t && t <= G.length;

@ loop_invariant (\forall int i; 0 <= i && i < t; ord[i] == -1);

@ decreases ord.length - t;

@ assignable ord[t .. (ord.length - 1)], t;

@*/

for (int t = 0; t < G.length; t++) {

ord[t] = -1;

}

}

/*@ public normal_behavior

@ requires cnt == 0;

@ requires (\forall int i; 0 <= i && i < ord.length; ord[i] == -1);

@ ensures (cnt == G.length);

@ ensures (\forall int i; 0 <= i && i < G.length; ord[i] != -1);

@ ensures (\forall int i; 0 <= i && i < G.length;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ assignable ord[*], cnt;

@*/

public void dft() {

/*@ loop_contract normal_behavior

@ requires \invariant_for(this);

@ requires 0 <= k && k <= G.length;

@ requires (\forall int i; 0 <= i && i < k; ord[i] != -1);

@ requires cnt >= k;

@ ensures (\forall int i; 0 <= i && i < k; ord[i] != -1);

@ ensures ord[k-1] != -1;

@ ensures cnt >= k;

@ ensures k == G.length;

@ ensures \invariant_for(this);

@

@ decreases G.length - k;

@ assignable unvisited(), cnt, k;

@*/

{

for (int k = 0; k < G.length; k++) {

if (ord[k] == -1) {searchC(k);}

}

}

}
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/*@ model \locset unvisited() {

return \infinite_union(int i; (0 <= i && i < ord.length && ord[i] == -1);

\singleton(ord[i]));

} @*/

/*@ public normal_behavior

@ requires 0 <= v && v < G.length;

@ ensures \result == ord[v];

@ assignable \strictly_nothing;

@*/

public int order(int v) {

return ord[v];

}

/*@ public normal_behavior

@ ensures \result == cnt;

@ assignable \strictly_nothing;

@*/

public int count() {

return cnt;

}

}

Listing A.7: Recursive DFT using a linked data structure

public final class Vertex {

/*@ public invariant val >= 0; @*/

int val;

/*@ public invariant adj != null;

@ public invariant (\forall int i; 0 <= i && i < adj.length; adj[i] != null);

@ public invariant (\forall int i; 0 <= i && i < adj.length;

(\forall int j; 0 <= j && j < adj.length;

(i==j) || (adj[i] != adj[j] && adj[i].val !=

adj[j].val)));

@*/

Vertex[] adj;

}

Listing A.8: Vertex class
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public class GraphDFS_adjlists {

/*@ public invariant (\forall int j; 0 <= j && j < G.length;

G[j] != null && G[j].size() <= G.length);

@ public invariant G.length > 0;

@ public invariant (\forall int i; 0 <= i && i < G.length;

(\forall int j; 0 <= j && j < G[i].size();

0 <= G[i].get(j) && G[i].get(j) < G.length));

@ public invariant (\forall int i; 0 <= i && i < G.length; \invariant_for(G[i]));

@ public invariant (\forall int i; 0 <= i && i < G.length;

\disjoint(G[i].footprint,\singleton(cnt)) && (\forall int j; 0 <= j && j <

ord.length; \disjoint(G[i].footprint,\singleton(ord[j])) ));

@*/

private /*@ spec_public @*/ List[] G;

/*@ public invariant 0 <= cnt && cnt <= G.length;

@ public invariant (\num_of int i; 0 <= i && i < ord.length; ord[i] != -1) == cnt;

@*/

private /*@ spec_public @*/ int cnt;

/*@ public invariant ord.length == G.length;

@ public invariant (\forall int i; 0 <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@*/

private /*@ spec_public @*/ int[] ord;

/*@ public normal_behavior

@ requires cnt < G.length;

@ requires 0 <= v && v < G.length;

@ requires ord[v] == -1;

@

@ ensures cnt > \old(cnt);

@ ensures (ord[v] == \old(cnt)) && (ord[v] != -1);

@ ensures (\forall int i; \old(cnt) <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ measured_by (G.length - cnt);

@ assignable unvisited(), cnt;

@*/
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public void searchC(int v) {

ord[v] = cnt++;

List adj = G[v];

/*@ loop_contract normal_behavior

@ requires \invariant_for(this);

@ requires adj == G[v] && 0 <= v && v < G.length;

@ requires 0 <= t && t <= adj.size();

@ requires ord[v] != -1 ;

@ requires 0 <= \old(cnt) && \old(cnt) < cnt && \old(G.length) == G.length;

@

@ ensures ord[v] != -1 && \before(cnt) <= cnt;

@ ensures \invariant_for(this);

@ ensures (\forall int i; \old(cnt) <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ decreases adj.size() - t;

@ measured_by (G.length - cnt);

@ assignable unvisited(), cnt, t;

@*/

{

for (int t = 0; t < adj.size(); t++) {

if (ord[adj.get(t)] == -1) {searchC(adj.get(t));}

}

}

}

/*@ public normal_behavior

@ requires (\forall int j; 0 <= j && j < GIn.length;

GIn[j].size() <= GIn.length && \invariant_for(GIn[j]));

@ requires GIn.length > 0;

@ requires (\forall int i; 0 <= i && i < GIn.length;

(\forall int j; 0 <= j && j < GIn[i].size();

0 <= GIn[i].get(j) && GIn[i].get(j) < GIn.length));

@ requires (\forall int i; 0 <= i && i < GIn.length; \invariant_for(GIn[i]));

@

@ ensures G == GIn;

@ ensures (cnt == 0);

@ ensures (\forall int i; 0 <= i && i < G.length; ord[i] == -1);

@*/
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public GraphDFS_adjlists(List[] GIn) {

this.G = GIn;

cnt = 0;

ord = new int[G.length];

/*@ loop_invariant 0 <= t && t <= G.length;

@ loop_invariant (\forall int i; 0 <= i && i < t; ord[i] == -1);

@ decreases ord.length - t;

@ assignable ord[t .. (ord.length - 1)], t;

@*/

for (int t = 0; t < G.length; t++) {

ord[t] = -1;

}

}

/*@ public normal_behavior

@ requires cnt == 0;

@ requires (\forall int i; 0 <= i && i < ord.length; ord[i] == -1);

@ ensures (cnt == G.length);

@ ensures (\forall int i; 0 <= i && i < G.length; ord[i] != -1);

@ ensures (\forall int i; 0 <= i && i < G.length;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ assignable ord[*], cnt;

@*/

public void dfs() {

/*@ loop_contract normal_behavior

@ requires \invariant_for(this);

@ requires 0 <= k && k <= G.length;

@ requires (\forall int i; 0 <= i && i < k; ord[i] != -1);

@ requires cnt >= k;

@ ensures (ord[k-1] != -1);

@ ensures (\forall int i; 0 <= i && i < k; ord[i] != -1);

@ ensures ord[k-1] != -1;

@ ensures cnt >= k;

@ ensures k == G.length;

@ ensures \invariant_for(this);

@ decreases G.length - k;

@ assignable unvisited(), cnt, k;

@*/

{

for (int k = 0; k < G.length; k++) {

if (ord[k] == -1) {searchC(k);}

}

}

}
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/*@ model \locset unvisited() {

return \infinite_union(int i; (0 <= i && i < ord.length && ord[i] == -1);

\singleton(ord[i]));

} @*/

/*@ public normal_behavior

@ requires 0 <= v && v < G.length;

@ ensures \result == ord[v];

@ assignable \strictly_nothing;

@*/

public int order(int v) {

return ord[v];

}

/*@ public normal_behavior

@ ensures \result == cnt;

@ assignable \strictly_nothing;

@*/

public int count() {

return cnt;

}

}

Listing A.9: Recursive DFT using a adjacency lists

public interface List {

//@ public ghost instance \locset footprint;

//@ public ghost instance \seq seq;

//@ public instance invariant \subset(\singleton(this.seq), footprint);

//@ public instance invariant \subset(\singleton(this.footprint), footprint);

//@ public instance invariant (\forall int i; 0<=i && i<seq.length;

// ((int)seq[i]) != null); //type(seq[i]) = type(int)

//@ public accessible \inv: footprint;

/*@ public normal_behaviour

@ accessible footprint;

@ ensures \result == seq.length;

@*/

public /*@pure@*/ int size();
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/*@ public normal_behaviour

@ requires 0 <= index && index < seq.length;

@ accessible footprint;

@ ensures \result == seq[index];

@

@ also public exceptional_behaviour

@ requires index < 0 || seq.length <= index;

@ signals_only IndexOutOfBoundsException;

@*/

public /*@pure@*/ int get(int index);

/*...*/

}

Listing A.10: A simpli�ed List interface

public class GraphDFS_matr_nonrec {

/*@ public invariant (\forall int j; 0 <= j && j < G.length;

G[j] != null && G[j].length == G.length);

@ public invariant G.length > 0;

@*/

boolean[][] G;

/*@ public invariant 0 <= cnt && cnt <= G.length;

@ public invariant (\num_of int i; 0 <= i && i < ord.length; ord[i] != -1) == cnt;

@*/

int cnt;

/*@ public invariant ord.length == G.length;

@ public invariant (\forall int i; 0 <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@*/

int[] ord;

/*@ public invariant 0 <= stackPtr && stackPtr <= stack.length

&& stackPtr <= (cnt + 1)*G.length;

@*/

int stackPtr;

/*@ public invariant stack.length == (G.length * G.length);

@ public invariant (\forall int i; 0 <= i && i < stackPtr;

0 <= stack[i] && stack[i] < G.length);

@ public invariant (\forall int i; stackPtr <= i && i < stack.length;

stack[i] == -1);

@ public invariant stack != ord;

@*/

int[] stack;
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/*@ public normal_behavior

@ requires (\forall int j; 0 <= j && j < GIn.length; GIn[j].length == GIn.length);

@ requires GIn.length > 0;

@

@ ensures G == GIn;

@ ensures stackPtr == 0;

@ ensures (cnt == 0);

@ ensures (\forall int j; 0 <= j && j < ord.length; ord[j] == -1);

@ ensures (\forall int j; 0 <= j && j < stack.length; stack[j] == -1);

@*/

public GraphDFS_matr_nonrec(boolean[][] GIn) {

G = GIn;

cnt = 0;

ord = new int[G.length];

stackPtr = 0;

stack = new int[G.length * G.length];

/*@ loop_invariant 0 <= i && i <= ord.length;

@ loop_invariant (\forall int j; 0 <= j && j < i; ord[j] == -1);

@ decreases ord.length - i;

@ assignable ord[i .. (ord.length - 1)], i;

@*/

for(int i = 0; i < ord.length; i++) {

ord[i] = -1;

}

/*@ loop_invariant 0 <= k && k <= stack.length;

@ loop_invariant (\forall int j; 0 <= j && j < k; stack[j] == -1);

@ decreases stack.length - k;

@ assignable stack[k .. (stack.length - 1)], k;

@*/

for(int k = 0; k < stack.length; k++) {

stack[k] = -1;

}

}

/*@ model \locset unvisited() {

return \infinite_union(int i; (0 <= i && i < ord.length && ord[i] == -1);

\singleton(ord[i]));

} @*/
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/*@ public normal_behavior

@ requires cnt == 0 && stackPtr == 0;

@ requires (\forall int i; 0 <= i && i < ord.length; ord[i] == -1);

@

@ ensures (cnt == G.length);

@ ensures (\forall int i; 0 <= i && i < G.length; ord[i] != -1);

@ ensures (\forall int i; 0 <= i && i < G.length;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ assignable ord[*], cnt, before, diff, stack[*], stackPtr;

@*/

public void dft() {

/*@ loop_invariant 0 <= k && k <= G.length;

@ loop_invariant \invariant_for(this);

@ loop_invariant (\forall int i; 0 <= i && i < k; ord[i] != -1);

@ loop_invariant cnt >= k && stackPtr == 0;

@ decreases G.length - k;

@ assignable unvisited(), cnt, k, before, diff, stack[*], stackPtr;

@*/

for(int k = 0; k < G.length; k++) {

if (ord[k] == -1){searchC(k);}

}

}

/*@ ghost int diff;

@ ghost int before;

@*/

/*@ public normal_behavior

@ requires cnt < G.length;

@ requires 0 <= v && v < G.length;

@ requires ord[v] == -1;

@ requires stackPtr == 0;

@

@ ensures cnt > \old(cnt);

@ ensures (ord[v] == \old(cnt)) && (ord[v] != -1);

@ ensures (\forall int i; \old(cnt) <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ ensures stackPtr == 0;

@ assignable unvisited(), cnt, stack[*], stackPtr, before, diff;

@*/
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public void searchC(int v) {

stack[stackPtr++] = v;

/*@ loop_contract normal_behavior

@ requires \invariant_for(this);

@ requires 0 <= v && v < G.length;

@ requires (stack[0] == v && ord[v] == -1 && stackPtr == 1 && cnt == \old(cnt))

|| (cnt > \old(cnt) && ord[v] == \old(cnt));

@ requires cnt <= G.length;

@ requires 0 <= \old(cnt) && \old(cnt) <= G.length;

@

@ ensures (\forall int i; \old(cnt) <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ ensures \old(cnt) < cnt;

@ ensures ord[v] == \old(cnt);

@ ensures stackPtr == 0;

@ ensures \invariant_for(this);

@ decreases (G.length * G.length) - (cnt * G.length) + stackPtr;

@ assignable stackPtr, stack[*], cnt, unvisited(), diff, before;

@*/

{

while(stackPtr != 0) {

int u = stack[--stackPtr];

stack[stackPtr] = -1;

if (ord[u] == -1) {

ord[u] = cnt++;

boolean[] adj = G[u];

/*@ set diff = 0;

@ set before = stackPtr;

@*/

/*@ requires \invariant_for(this);

@ requires adj == G[u];

@ requires 0 <= u && u < G.length;

@ requires ord[u] != -1 && (cnt > \old(cnt) && ord[v] == \old(cnt));

@ requires diff == 0 && stackPtr <= (cnt * G.length);

@ requires stackPtr == before;

@ ensures \invariant_for(this)

&& (cnt > \old(cnt) && ord[v] == \old(cnt));

@ ensures diff <= ord.length - cnt;

@ ensures stackPtr == before + diff;

@ signals_only \nothing;

@ assignable stack[stackPtr..stack.length], stackPtr, t, diff;

@*/
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{

/*@ loop_invariant \invariant_for(this);

@ loop_invariant adj == G[u];

@ loop_invariant 0 <= t && t <= adj.length;

@ loop_invariant 0 <= u && u < G.length;

@ loop_invariant ord[u] != -1;

@ loop_invariant diff <= ord.length - cnt

&& stackPtr < (cnt + 1) * G.length;

@ loop_invariant stackPtr == before + diff;

@ loop_invariant (\num_of int i; 0 <= i && i < t;

ord[i] == -1 && adj[i]) == diff;

@

@ decreases adj.length - t;

@ assignable stack[stackPtr..stack.length], stackPtr, t, diff;

@*/

for(int t = 0; t < adj.length; t++) {

if (adj[t] && ord[t] == -1) {

/*@ set diff = diff + 1;

@*/

stack[stackPtr++] = t;

}

}

}

}

}

}

}

}

Listing A.11: Non-recursive DFT using an adjacency matrix

public class GraphDFS_adjarr_nonrec {

/*@ public invariant (\forall int j; 0 <= j && j < len;

0 <= G[j] && G[j] < adjArr.length && (G[j] <= G[j+1]));

@ public invariant len > 0;

@ public invariant G != adjArr && adjArr != ord && ord != G

&& G != stack && adjArr != stack;

@ public invariant 0 <= G[len] && G[len] < adjArr.length;

@*/

int[] G;
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/*@ public invariant (\forall int i; 0 <= i && i < adjArr.length;

0 <= adjArr[i] && adjArr[i] < len);

@*/

int[] adjArr;

/*@ model int len;

@ represents len \such_that len == G.length - 1;

@*/

/*@ public invariant 0 <= cnt && cnt <= len;

@ public invariant (\num_of int i; 0 <= i && i < ord.length; ord[i] != -1) == cnt;

@*/

int cnt;

/*@ public invariant ord.length == len;

@ public invariant (\forall int i; 0 <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@*/

int[] ord;

/*@ public invariant 0 <= stackPtr && stackPtr <= stack.length

&& stackPtr <= (cnt + 1)*len;

@*/

int stackPtr;

/*@ public invariant stack.length == (len * len);

@ public invariant (\forall int i; 0 <= i && i < stackPtr;

0 <= stack[i] && stack[i] < len);

@ public invariant (\forall int i; stackPtr <= i && i < stack.length;

stack[i] == -1);

@ public invariant stack != ord;

@*/

int[] stack;
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/*@ public normal_behavior

@ requires GIn != adjIn;

@ requires (\forall int j; 0 <= j && j < GIn.length - 1;

0 <= GIn[j] && GIn[j] < adjIn.length && (GIn[j] <= GIn[j+1]));

@ requires 0 <= GIn[GIn.length-1] && GIn[GIn.length-1] < adjIn.length;

@ requires (\forall int i; 0 <= i && i < adjIn.length;

0 <= adjIn[i] && adjIn[i] < GIn.length-1);

@ requires GIn.length - 1 > 0;

@

@ ensures G == GIn && adjArr == adjIn;

@ ensures stackPtr == 0;

@ ensures (cnt == 0);

@ ensures (\forall int i; 0 <= i && i < ord.length; ord[i] == -1);

@ ensures (\forall int i; 0 <= i && i < stack.length; stack[i] == -1);

@*/

public GraphDFS_adjarr_nonrec(int[] GIn, int[] adjIn) {

G = GIn;

adjArr = adjIn;

cnt = 0;

ord = new int[G.length-1];

stackPtr = 0;

stack = new int[(G.length - 1) * (G.length - 1)];

/*@ loop_invariant 0 <= i && i <= ord.length;

@ loop_invariant (\forall int j; 0 <= j && j < i; ord[j] == -1);

@ decreases ord.length - i;

@ assignable ord[i .. (ord.length - 1)], i;

@*/

for(int i = 0; i < ord.length; i++) {

ord[i] = -1;

}

/*@ loop_invariant 0 <= k && k <= stack.length;

@ loop_invariant (\forall int j; 0 <= j && j < k; stack[j] == -1);

@ decreases stack.length - k;

@ assignable stack[k .. (stack.length - 1)], k;

@*/

for(int k = 0; k < stack.length; k++) {

stack[k] = -1;

}

}

/*@ model \locset unvisited() {

return \infinite_union(int i; (0 <= i && i < ord.length && ord[i] == -1);

\singleton(ord[i]));

} @*/
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/*@ public normal_behavior

@ requires cnt == 0 && stackPtr == 0;

@ requires (\forall int i; 0 <= i && i < ord.length; ord[i] == -1);

@

@ ensures (cnt == len);

@ ensures (\forall int i; 0 <= i && i < len; ord[i] != -1);

@ ensures (\forall int i; 0 <= i && i < len;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ assignable ord[*], cnt, before, diff, stack[*], stackPtr;

@*/

public void dft() {

/*@ loop_invariant 0 <= k && k <= len;

@ loop_invariant \invariant_for(this);

@ loop_invariant (\forall int i; 0 <= i && i < k; ord[i] != -1);

@ loop_invariant cnt >= k && stackPtr == 0;

@ decreases len - k;

@ assignable unvisited(), cnt, k, before, diff, stack[*], stackPtr;

@*/

for(int k = 0; k < G.length-1; k++) {

if (ord[k] == -1){searchC(k);}

}

}

/*@ ghost int diff;

@ ghost int before;

@*/

/*@ public normal_behavior

@ requires cnt < len;

@ requires 0 <= v && v < len;

@ requires ord[v] == -1;

@ requires stackPtr == 0;

@

@ ensures cnt > \old(cnt);

@ ensures (ord[v] == \old(cnt)) && (ord[v] != -1);

@ ensures (\forall int i; \old(cnt) <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ ensures stackPtr == 0;

@ assignable unvisited(), cnt, stack[*], stackPtr, before, diff;

@*/
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public void searchC(int v) {

stack[stackPtr++] = v;

/*@ loop_contract normal_behavior

@ requires \invariant_for(this);

@ requires 0 <= v && v < len;

@ requires (stack[0] == v && ord[v] == -1 && stackPtr == 1 && cnt == \old(cnt))

|| (cnt > \old(cnt) && ord[v] == \old(cnt));

@ requires 0 <= \old(cnt) && \old(cnt) <= len;

@

@ ensures (\forall int i; \old(cnt) <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ ensures \old(cnt) < cnt;

@ ensures ord[v] == \old(cnt);

@ ensures stackPtr == 0;

@ ensures \invariant_for(this);

@ decreases (len * len) - (cnt * len) + stackPtr;

@ assignable stackPtr, stack[*], cnt, unvisited(), diff, before;

@*/

{

while(stackPtr != 0) {

int u = stack[--stackPtr];

stack[stackPtr] = -1;

if (ord[u] == -1) {

ord[u] = cnt++;

/*@ set diff = 0;

@ set before = stackPtr;

@*/

/*@ requires \invariant_for(this);

@ requires 0 <= u && u < len;

@ requires ord[u] != -1 && (cnt > \old(cnt) && ord[v] == \old(cnt));

@ requires diff == 0 && stackPtr <= (cnt * len);

@ requires stackPtr == before;

@

@ ensures \invariant_for(this)

&& (cnt > \old(cnt) && ord[v] == \old(cnt));

@ ensures diff <= ord.length - cnt;

@ ensures stackPtr == before + diff;

@ signals_only \nothing;

@ assignable stack[stackPtr..stack.length], stackPtr, t, diff;

@*/
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{

/*@ loop_invariant \invariant_for(this);

@ loop_invariant G[u] <= t && t <= G[u+1];

@ loop_invariant 0 <= u && u < len;

@ loop_invariant ord[u] != -1;

@ loop_invariant diff <= ord.length - cnt && stackPtr < (cnt + 1) * len;

@ loop_invariant stackPtr == before + diff;

@ loop_invariant (\num_of int i; G[u] <= i && i < t;

ord[adjArr[i]] == -1) == diff;

@

@ decreases G[u+1] - t;

@ assignable stack[stackPtr..stack.length], stackPtr, t, diff;

@*/

for(int t = G[u]; t < G[u+1]; t++) {

if (ord[adjArr[t]] == -1) {

/*@ set diff = diff + 1;

@*/

stack[stackPtr++] = adjArr[t];

}

}

}

}

}

}

}

}

Listing A.12: Non-recursive DFT using an adjacency array
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public class GraphDFS_link_nonrec {

/*@ public invariant (\forall int j; 0 <= j && j < G.length;

G[j] != null && G[j].adj.length <= G.length);

@ public invariant G.length > 0;

@ public invariant (\forall int i; 0 <= i && i < G.length;

(\forall int j; 0 <= j && j < G[i].adj.length;

0 <= G[i].adj[j].val && G[i].adj[j].val < G.length

&& G[i].adj[j] == G[G[i].adj[j].val]));

@ public invariant (\forall int i; 0 <= i && i < G.length; G[i].val == i);

@ public invariant (\forall int i; 0 <= i && i < G.length;

(\forall int j; 0 <= j && j < G.length;

(i!=j) ==> (G[i] != G[j]) ));

@ public invariant (\forall int i; 0 <= i && i < G.length; \invariant_for(G[i]));

@*/

Vertex[] G;

/*@ public invariant 0 <= cnt && cnt <= G.length;

@ public invariant (\num_of int i; 0 <= i && i < ord.length; ord[i] != -1) == cnt;

@*/

int cnt;

/*@ public invariant ord.length == G.length;

@ public invariant (\forall int i; 0 <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@*/

int[] ord;

/*@ public invariant 0 <= stackPtr && stackPtr <= stack.length && stackPtr <= (cnt +

1)*G.length;

@*/

int stackPtr;

/*@ public invariant stack.length == (G.length * G.length);

@ public invariant (\forall int i; 0 <= i && i < stackPtr;

0 <= stack[i] && stack[i] < G.length);

@ public invariant (\forall int i; stackPtr <= i && i < stack.length;

stack[i] == -1);

@ public invariant stack != ord;

@*/

int[] stack;
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/*@ public normal_behavior

@ requires (\forall int j; 0 <= j && j < GIn.length;

GIn[j] != null && GIn[j].adj.length <= GIn.length);

@ requires (\forall int i; 0 <= i && i < GIn.length;

(\forall int j; 0 <= j && j < GIn[i].adj.length;

0 <= GIn[i].adj[j].val && GIn[i].adj[j].val < GIn.length

&& GIn[i].adj[j] == GIn[GIn[i].adj[j].val]));

@ requires (\forall int i; 0 <= i && i < GIn.length; GIn[i].val == i);

@ requires (\forall int i; 0 <= i && i < GIn.length;

(\forall int j; 0 <= j && j < GIn.length; (i!=j) ==> (GIn[i] !=

GIn[j]) ));

@ requires (\forall int i; 0 <= i && i < GIn.length; \invariant_for(GIn[i]));

@ requires GIn.length > 0;

@

@ ensures G == GIn;

@ ensures stackPtr == 0;

@ ensures (cnt == 0);

@ ensures (\forall int i; 0 <= i && i < ord.length; ord[i] == -1);

@ ensures (\forall int i; 0 <= i && i < stack.length; stack[i] == -1);

@*/

public GraphDFS_link_nonrec(Vertex[] GIn) {

G = GIn;

cnt = 0;

ord = new int[G.length];

stackPtr = 0;

stack = new int[G.length * G.length];

/*@ loop_invariant 0 <= i && i <= ord.length;

@ loop_invariant (\forall int j; 0 <= j && j < i; ord[j] == -1);

@ decreases ord.length - i;

@ assignable ord[i .. (ord.length - 1)], i;

@*/

for(int i = 0; i < ord.length; i++) {

ord[i] = -1;

}

/*@ loop_invariant 0 <= k && k <= stack.length;

@ loop_invariant (\forall int j; 0 <= j && j < k; stack[j] == -1);

@ decreases stack.length - k;

@ assignable stack[k .. (stack.length - 1)], k;

@*/

for(int k = 0; k < stack.length; k++) {

stack[k] = -1;

}

}
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/*@ model \locset unvisited() {

return \infinite_union(int i; (0 <= i && i < ord.length && ord[i] == -1);

\singleton(ord[i]));

} @*/

/*@ public normal_behavior

@ requires cnt == 0 && stackPtr == 0;

@ requires (\forall int i; 0 <= i && i < ord.length; ord[i] == -1);

@

@ ensures (cnt == G.length);

@ ensures (\forall int i; 0 <= i && i < G.length; ord[i] != -1);

@ ensures (\forall int i; 0 <= i && i < G.length;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ assignable ord[*], cnt, before, diff, stack[*], stackPtr;

@*/

public void dft() {

/*@ loop_invariant 0 <= k && k <= G.length;

@ loop_invariant \invariant_for(this);

@ loop_invariant (\forall int i; 0 <= i && i < k; ord[i] != -1);

@ loop_invariant cnt >= k && stackPtr == 0;

@ decreases G.length - k;

@ assignable unvisited(), cnt, k, before, diff, stack[*], stackPtr;

@*/

for(int k = 0; k < G.length; k++) {

if (ord[k] == -1){searchC(k);}

}

}

/*@ ghost int diff;

@ ghost int before;

@*/

/*@ public normal_behavior

@ requires cnt < G.length;

@ requires 0 <= v && v < G.length;

@ requires ord[v] == -1;

@ requires stackPtr == 0;

@

@ ensures cnt > \old(cnt);

@ ensures (ord[v] == \old(cnt)) && (ord[v] != -1);

@ ensures (\forall int i; \old(cnt) <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ ensures stackPtr == 0;

@ assignable unvisited(), cnt, stack[*], stackPtr, before, diff;

@*/
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public void searchC(int v) {

stack[stackPtr++] = v;

/*@ loop_contract normal_behavior

@ requires \invariant_for(this);

@ requires 0 <= v && v < G.length;

@ requires (stack[0] == v && ord[v] == -1 && stackPtr == 1 && cnt == \old(cnt))

|| (cnt > \old(cnt) && ord[v] == \old(cnt));

@ requires cnt <= G.length;

@ requires 0 <= \old(cnt) && \old(cnt) <= G.length;

@

@ ensures (\forall int i; \old(cnt) <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ ensures \old(cnt) < cnt;

@ ensures ord[v] == \old(cnt);

@ ensures stackPtr == 0;

@ ensures \invariant_for(this);

@ decreases (G.length * G.length) - (cnt * G.length) + stackPtr;

@ assignable stackPtr, stack[*], cnt, unvisited(), diff, before;

@*/

{

while(stackPtr != 0) {

int u = stack[--stackPtr];

stack[stackPtr] = -1;

if (ord[u] == -1) {

ord[u] = cnt++;

Vertex[] adj = G[u].adj;

/*@ set diff = 0;

@ set before = stackPtr;

@*/

/*@ requires \invariant_for(this);

@ requires adj == G[u].adj;

@ requires 0 <= u && u < G.length;

@ requires ord[u] != -1

&& (cnt > \old(cnt) && ord[v] == \old(cnt));

@ requires diff == 0 && stackPtr <= (cnt * G.length);

@ requires stackPtr == before;

@ ensures \invariant_for(this)&&(cnt > \old(cnt) && ord[v]==\old(cnt));

@ ensures diff <= ord.length - cnt;

@ ensures stackPtr == before + diff;

@ signals_only \nothing;

@ assignable stack[stackPtr..stack.length], stackPtr, t, diff;

@*/
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{

/*@ loop_invariant \invariant_for(this);

@ loop_invariant adj == G[u].adj;

@ loop_invariant 0 <= t && t <= adj.length;

@ loop_invariant 0 <= u && u < G.length;

@ loop_invariant ord[u] != -1;

@ loop_invariant diff <= ord.length - cnt && stackPtr < (cnt + 1) *
G.length;

@ loop_invariant stackPtr == before + diff;

@ loop_invariant (\num_of int i; 0 <= i && i < t;

ord[adj[i].val] == -1) == diff;

@

@ decreases adj.length - t;

@ assignable stack[stackPtr..stack.length], stackPtr, t, diff;

@*/

for(int t = 0; t < adj.length; t++) {

if (ord[adj[t].val] == -1) {

/*@ set diff = diff + 1;

@*/

stack[stackPtr++] = adj[t].val;

}

}

}

}

}

}

}

}

Listing A.13: Non-recursive DFT using a linked data structure
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public class GraphDFS_list_nonrec {

/*@ public invariant (\forall int j; 0 <= j && j < G.length;

G[j] != null && G[j].size() <= G.length);

@ public invariant G.length > 0;

@ public invariant (\forall int i; 0 <= i && i < G.length;

(\forall int j; 0 <= j && j < G[i].size();

0 <= G[i].get(j) && G[i].get(j) < G.length));

@ public invariant (\forall int i; 0 <= i && i < G.length; \invariant_for(G[i]));

@ public invariant (\forall int i; 0 <= i && i < G.length;

\disjoint(G[i].footprint,\singleton(cnt))

&& \disjoint(G[i].footprint, \singleton(stackPtr))

&& (\forall int j; 0 <= j && j < ord.length;

\disjoint(G[i].footprint,\singleton(ord[j])))

&& (\forall int l; 0 <= l && l < stack.length;

\disjoint(G[i].footprint,\singleton(stack[l]))) );

@*/

List[] G;

/*@ public invariant 0 <= cnt && cnt <= G.length;

@ public invariant (\num_of int i; 0 <= i && i < ord.length; ord[i] != -1) == cnt;

@*/

int cnt;

/*@ public invariant ord.length == G.length;

@ public invariant (\forall int i; 0 <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@*/

int[] ord;

/*@ public invariant 0 <= stackPtr && stackPtr <= stack.length&& stackPtr <= (cnt +

1)*G.length;

@*/

int stackPtr;

/*@ public invariant stack.length == (G.length * G.length);

@ public invariant (\forall int i; 0 <= i && i < stackPtr;

0 <= stack[i] && stack[i] < G.length);

@ public invariant (\forall int i; stackPtr <= i && i < stack.length;

stack[i] == -1);

@ public invariant stack != ord;

@*/

int[] stack;
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/*@ public normal_behavior

@ requires (\forall int j; 0 <= j && j < GIn.length;

GIn[j] != null && GIn[j].size() <= GIn.length);

@ requires (\forall int i; 0 <= i && i < GIn.length;

(\forall int j; 0 <= j && j < GIn[i].size();

0 <= GIn[i].get(j) && GIn[i].get(j) < GIn.length));

@ requires (\forall int i; 0 <= i && i < GIn.length; \invariant_for(GIn[i]));

@ requires GIn.length > 0;

@

@ ensures G == GIn;

@ ensures stackPtr == 0;

@ ensures (cnt == 0);

@ ensures (\forall int i; 0 <= i && i < ord.length; ord[i] == -1);

@ ensures (\forall int i; 0 <= i && i < stack.length; stack[i] == -1);

@*/

public GraphDFS_list_nonrec(List[] GIn) {

G = GIn;

cnt = 0;

ord = new int[G.length];

stackPtr = 0;

stack = new int[G.length * G.length];

/*@ loop_invariant 0 <= i && i <= ord.length;

@ loop_invariant (\forall int j; 0 <= j && j < i; ord[j] == -1);

@ decreases ord.length - i;

@ assignable ord[i .. (ord.length - 1)], i;

@*/

for(int i = 0; i < ord.length; i++) {

ord[i] = -1;

}

/*@ loop_invariant 0 <= k && k <= stack.length;

@ loop_invariant (\forall int j; 0 <= j && j < k; stack[j] == -1);

@ decreases stack.length - k;

@ assignable stack[k .. (stack.length - 1)], k;

@*/

for(int k = 0; k < stack.length; k++) {

stack[k] = -1;

}

}

/*@ model \locset unvisited() {

return \infinite_union(int i; (0 <= i && i < ord.length && ord[i] == -1);

\singleton(ord[i]));

} @*/
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/*@ public normal_behavior

@ requires cnt == 0 && stackPtr == 0;

@ requires (\forall int i; 0 <= i && i < ord.length; ord[i] == -1);

@

@ ensures (cnt == G.length);

@ ensures (\forall int i; 0 <= i && i < G.length; ord[i] != -1);

@ ensures (\forall int i; 0 <= i && i < G.length;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ assignable ord[*], cnt, before, diff, stack[*], stackPtr;

@*/

public void dfs() {

/*@ loop_invariant 0 <= k && k <= G.length;

@ loop_invariant \invariant_for(this);

@ loop_invariant (\forall int i; 0 <= i && i < k; ord[i] != -1);

@ loop_invariant cnt >= k && stackPtr == 0;

@ decreases G.length - k;

@ assignable unvisited(), cnt, k, before, diff, stack[*], stackPtr;

@*/

for(int k = 0; k < G.length; k++) {

if (ord[k] == -1){searchC(k);}

}

}

/*@ ghost int diff;

@ ghost int before;

@*/

/*@ public normal_behavior

@ requires cnt < G.length;

@ requires 0 <= v && v < G.length;

@ requires ord[v] == -1;

@ requires stackPtr == 0;

@

@ ensures cnt > \old(cnt);

@ ensures (ord[v] == \old(cnt)) && (ord[v] != -1);

@ ensures (\forall int i; \old(cnt) <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ ensures stackPtr == 0;

@ assignable unvisited(), cnt, stack[*], stackPtr, before, diff;

@*/
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public void searchC(int v) {

stack[stackPtr++] = v;

/*@ loop_contract normal_behavior

@ requires \invariant_for(this);

@ requires 0 <= v && v < G.length;

@ requires (stack[0] == v && ord[v] == -1 && stackPtr == 1 && cnt == \old(cnt))

|| (cnt > \old(cnt) && ord[v] == \old(cnt));

@ requires 0 <= \old(cnt) && \old(cnt) <= G.length;

@

@ ensures (\forall int i; \old(cnt) <= i && i < cnt;

(\exists int j; 0 <= j && j < ord.length; ord[j] == i));

@ ensures \old(cnt) < cnt;

@ ensures ord[v] == \old(cnt);

@ ensures stackPtr == 0;

@ ensures \invariant_for(this);

@ decreases (G.length * G.length) - (cnt * G.length) + stackPtr;

@ assignable stackPtr, stack[*], cnt, unvisited(), diff, before;

@*/

{

while(stackPtr != 0) {

int u = stack[--stackPtr];

stack[stackPtr] = -1;

if (ord[u] == -1) {

ord[u] = cnt++;

List adj = G[u];

/*@ set diff = 0;

@ set before = stackPtr;

@*/

/*@ requires \invariant_for(this);

@ requires 0 <= u && u < G.length && adj == G[u];

@ requires ord[u] != -1

&& (cnt > \old(cnt) && ord[v] == \old(cnt));

@ requires diff == 0 && stackPtr <= (cnt * G.length);

@ requires stackPtr == before;

@

@ ensures \invariant_for(this)

&& (cnt > \old(cnt) && ord[v] == \old(cnt));

@ ensures diff <= ord.length - cnt;

@ ensures stackPtr == before + diff;

@ signals_only \nothing;

@ assignable stack[stackPtr..stack.length], stackPtr, t, diff;

@*/
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{

/*@ loop_invariant \invariant_for(this);

@ loop_invariant 0 <= t && t < adj.size();

@ loop_invariant 0 <= u && u < G.length && adj == G[u];

@ loop_invariant ord[u] != -1;

@ loop_invariant diff <= ord.length - cnt

&& stackPtr < (cnt + 1) * G.length;

@ loop_invariant stackPtr == before + diff;

@ loop_invariant (\num_of int i; 0 <= i && i < t;

ord[adj.get(i)] == -1) == diff;

@

@ decreases adj.size() - t;

@ assignable stack[stackPtr..stack.length], stackPtr, t, diff;

@*/

for(int t = 0; t < adj.size(); t++) {

if (ord[adj.get(t)] == -1) {

/*@ set diff = diff + 1;

@*/

stack[stackPtr++] = adj.get(t);

}

}

}

}

}

}

}

}

Listing A.14: Non-recursive DFT using adjacency lists
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import java.text.SimpleDateFormat;

import java.util.Date;

void setup() {

String path = sketchPath();

JSONObject log = loadJSONObject(path + "/data/log_time.txt");

Table perFile = new Table();

perFile.addColumn("date");

perFile.addColumn("day");

perFile.addColumn("time");

perFile.addColumn("body");

perFile.addColumn("file");

SimpleDateFormat date = new SimpleDateFormat("yyyy-mm-dd hh:mm:ss X");

SimpleDateFormat day = new SimpleDateFormat("yyyy-mm-dd");

SimpleDateFormat time = new SimpleDateFormat("hh:mm:ss");

JSONArray commits = log.getJSONArray("commits");

for (int i = 0; i < commits.size();i++) {

println(i + "/" + commits.size());

JSONObject commit = commits.getJSONObject(i);

String dateStr = commit.getString("date");

String body = commit.getString("body");

String changeStr = commit.getString("change");

Date d = new Date();

try {d = date.parse(dateStr);} catch (Exception e) {}

String[] files = parseChangedFiles(changeStr);

TableRow row;

for(String file : files) {

row = perFile.addRow();

row.setString("date",dateStr);

row.setString("day",day.format(d));

row.setString("time",time.format(d));

row.setString("body",body);

row.setString("file",file);

}

}
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println("saving");

saveTable(raw, path + "/data/raw_output_aug.csv");

saveTable(perCommit, path + "/data/commit_changes_aug.csv");

saveTable(perFile, path + "/data/file_changes_aug.csv");

println("done");

}

String[] parseChangedFiles(String changes) {

String[] lines = changes.split("\n");

ArrayList<String> list = new ArrayList<String>();

for(String s : lines) {

if(match(s,"\\|") != null) {

//parse changed file

String[] parts = s.split("\\|");

for (int i = 0; i < parts.length - 1; i++) {

String[] sub = parts[i].split("\\+");

sub = sub[sub.length-1].split("-");

list.add(sub[sub.length-1]);

}

}

}

String[] res = new String[list.size()];

for(int i = 0; i < list.size(); i++) {

res[i] = list.get(i);

}

return res;

}

Listing A.15: Processing-script to parse json-commits to csv
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