KIT | KIT-Bibliothek | Impressum | Datenschutz

Simulated 2D RASER MRI dataset for AI-driven artefact correction

Becker, Moritz ORCID iD icon 1; Arvidsson, Filip; Bertilson, Jonas; Lehmkuhl, Sören ORCID iD icon 1
1 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)


Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Publikationstyp Forschungsdaten
Publikationsdatum 13.02.2024
Erstellungsdatum 01.01.2024
Identifikator DOI: 10.35097/1914
KITopen-ID: 1000168053
HGF-Programm 43.35.04 (POF IV, LK 01) Correlative Data Science
Lizenz Creative Commons Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International
Liesmich

Simulated 2D RASER MRI dataset for AI-driven artefact correction

Data for AI-driven artefact correction in 2D RASER MRI images.

Random images are generated with basic shapes and image transformations. 30 projections of each image are taken, and undergo a RASER (Radiowave amplification by the stimulated emission of radiation) [1] simulation in MATLAB. The data is divided into 3 subsets:

  • 10k_images.7z --> standard random images
  • 10k_images_WithPump.zip --> projections experience parahydrogen pumping
  • 1k_images_20TPI.zip --> high total population inversion (TPI) variations of +/- 20%

File format

Folder structure: {subset}/image{#}/{TPI value}/{filename.csv}

Each folder contains the following files:

  • A(0).csv --> Signal amplitude
  • d(0).csv --> TPI evolution
  • meta.csv --> Meta information
  • output(Real and Imag).csv --> Simulated RASER signal
  • Phi(0).csv --> Signal phase

Data loading

Scripts for data loading are provided with the code at github.com/mobecks/raser-mri-ai.

References

[1] Sören Lehmkuhl et al., RASER MRI: Magnetic resonance images formed spontaneously exploiting cooperative nonlinear interaction.Sci. Adv.8,eabp8483(2022). DOI:10.1126/sciadv.abp8483

Art der Forschungsdaten Dataset
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page