KIT | KIT-Bibliothek | Impressum | Datenschutz

Identifying landscape hot and cold spots of soil greenhouse gas fluxes by combining field measurements and remote sensing data

Gachibu Wangari, Elizabeth 1; Mwangada Mwanake, Ricky 1; Houska, Tobias; Kraus, David ORCID iD icon 2; Gettel, Gretchen Maria; Kiese, Ralf ORCID iD icon 2; Breuer, Lutz; Butterbach-Bahl, Klaus 2
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU), Karlsruher Institut für Technologie (KIT)

Abstract:

Upscaling chamber measurements of soil greenhouse gas (GHG) fluxes from point scale to landscape scale remain challenging due to the high variability in the fluxes in space and time. This study measured GHG fluxes and soil parameters at selected point locations (n=268), thereby implementing a stratified sampling approach on a mixed-land-use landscape (∼5.8 km2). Based on these field-based measurements and remotely sensed data on landscape and vegetation properties, we used random forest (RF) models to predict GHG fluxes at a landscape scale (1 m resolution) in summer and autumn. The RF models, combining field-measured soil parameters and remotely sensed data, outperformed those with field-measured predictors or remotely sensed data alone. Available satellite data products from Sentinel-2 on vegetation cover and water content played a more significant role than those attributes derived from a digital elevation model, possibly due to their ability to capture both spatial and seasonal changes in the ecosystem parameters within the landscape. Similar seasonal patterns of higher soil/ecosystem respiration (SR/ER–CO2) and nitrous oxide (N2O) fluxes in summer and higher methane (CH4) uptake in autumn were observed in both the measured and predicted landscape fluxes. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000168058
Veröffentlicht am 05.02.2024
Originalveröffentlichung
DOI: 10.5194/bg-20-5029-2023
Scopus
Zitationen: 1
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 1726-4189
KITopen-ID: 1000168058
HGF-Programm 12.11.23 (POF IV, LK 01) Adaptation of managed landscapes to climate change
Weitere HGF-Programme 12.11.22 (POF IV, LK 01) Managed ecosystems as sources and sinks of GHGs
Erschienen in Biogeosciences
Verlag Copernicus Publications
Band 20
Heft 24
Seiten 5029–5067
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 19.12.2023
Nachgewiesen in Scopus
Dimensions
Web of Science
Globale Ziele für nachhaltige Entwicklung Ziel 13 – Maßnahmen zum Klimaschutz
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page