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A B S T R A C T

Solid-state lithium batteries are expected to revolutionize the future wearable electronics due to their enhanced 
safety and high energy density; however, the sluggish Li+ kinetics of solid-state electrolyte seriously hampered 
their practical applications. Herein, we design a solid-polymer-electrolyte (SPE) with the assistance of BN, which 
exhibits impressive electrochemical properties, i.e., a high ionic conductivity of 0.37 mS cm− 1 at 25 ◦C, a su
perior Li+ transference number of 0.63, and wide voltage window of 4.8 V. Density functional theory calculations 
and Raman spectra results reveal that BN not only changes the interaction between Li+ and -CF groups, which 
enables Li+ to hop easily along polymer segments, but also modifies the Li+ solvation environment from polymer 
units to aggregated ion pairs, which further accelerates the diffusion rate of Li+. Benefited from these merits, BN- 
assisted SPE presents superior performance at room temperature, i.e., Li/Li symmetric batteries maintain uniform 
polarization for more than 600 h at a current density of 0.2 mA cm− 2; LiFePO4/Li battery delivers an excellent 
long cycle stability with a high Coulombic efficiency (CE) of 99.7 % at 0.5C after 200 cycles; the high-voltage 
LiNi0.5Co0.2Mn0.3O2/Li system also achieves a superior CE of 99.7 % and, what’s more, this system also de
livers a high-capacity retention of 90 % over 100 cycles, indicating the outstanding antioxidation capability of 
this BN-assisted SPE. In addition, a bipolar LiFePO4/Li pouch cell with a high-voltage output of 6.41 V was 
achieved and it demonstrates impressive safety during the abuse cutting, well demonstrating its great potential in 
future applications.   

1. Introduction

With the development of wearable and portable electric devices,
rechargeable and safe batteries with high energy density are highly 
demanded. Unfortunately, current lithium-ion batteries (LIBs), such as 
LiCoO2/Graphite and LiFePO4/Graphite systems, have almost reaching 
their capacity ceiling [1–4], therefore new battery systems with high 
theoretical capacity are urgent to be developed. Lithium metal batteries 
(LMBs) are strongly considered as the next generation of high energy 
density batteries because the Li anode possesses high theoretical 

capacity (3860 mAh g 1) and the lowest negative electrochemical po
tential (-3.040 V vs the standard hydrogen electrode) [5–9]. It should be 
noted that the uncontrolled parasitic side reactions between Li and 
liquid electrolyte not only irreversibly consumes Li anode and thus, lead 
to a short cycle life, but also induces the formation of lithium dendrites, 
bringing serious safety problems such as flammability and explosion 
[10–14]. In order to address these issues, solid-state electrolyte (SSE) is 
regarded as an ideal substitute for liquid electrolytes, since the side re
actions between Li anode and electrolyte can be avoided once a robust 
solid electrolyte interface (SEI) is formed [15–17]; therefore, the safety 
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of LMBs with SSE will be dramatically improved. 
Among all the SSEs, solid-polymer-electrolytes (SPEs) have attracted 

a wide range of attention by the low cost, high flexibility, large-scale 
manufacturing process compatibility, as well as conformal interface 
with electrodes [18–20]. Recently, the development of SPEs moves to
wards self-healing, higher energy density (lower N/P ratio), and easier 
scaling-up producing technique [21–24]. For example, UV-cured com
posite polymer electrolyte benefited from quadruple hydrogen bond 
shows strong self-healing property, which dramatically enhances the 
safety of LMB in practical application [22]. Dynamic poly(urea- 
urethane) gel electrolyte was also reported that it not only presents 
superior safety contributed by its self-healing ability, but also delivers 
impressive ionic conductivity, even higher than that of commercial 
liquid electrolyte [23]. Moreover, apart from LMB systems, SPEs also 
present great potential in other metal batteries. Bella et al reported 
photocured gel polymer electrolyte with a high ionic conductivity of 17 
mS cm 1 for the application in potassium batteries to achieve unprec
edented 600 cycles with a capacity retention of 58 % [25]. Moreover, 
biobased polymer electrolytes were developed based on cardanol- 
derived epoxy resins, which present excellent electrochemical stability 
toward potassium metal in 0.2 ~ 5 V [26]. All these research works 
well demonstrate the great potential of SPEs in high-energy metal bat
tery systems. 

Although SPEs exhibit lots of merits, their ionic conductivities are 
quite disappointing (<10 6 S cm 1) at 25 ◦C. Moreover, their Li+

transference numbers are also inferior (~0.3) [27,28], which make SPEs 
unqualified for practical applications. Besides, the ionic transport 
mechanism of SPE is based on the hopping of Li+ between solvation sites 

composed by polymer functional groups, such as typical ether oxygens 
(EO) groups in poly(ethylene oxide) (PEO), and Li+ hopping rate de
pends on the segmental mobility of the polymer chains [29]. To enhance 
the hopping rate, researchers introduce various fillers into SPEs [19] or 
design complex polymer segments [6,30] for creating more amorphous 
regions in polymer chain, thus enabling Li+ hopping easily. Indeed, the 
ionic conductivity of SPEs can be enhanced based on these treatments, 
but they are still far from the value required for working at 25 ◦C [31]. 
How to further improve the Li+ hopping rate in polymer chains is still a 
big challenge. 

Recently, aggregated ion pairs (AGG, an anion coordinating with two 
or more Li+) with their unique Li+ transport mechanism attract much 
attention. Normally, the Li+ solvation structure is composed by solvent 
molecules (solvent-separated ion pairs, SSIP), while it can turn into 
combination of solvent molecules and anions, such as AGG with the 
increase of lithium salt concentration [32,33]. Different from the vehicle 
diffusion mechanism of Li+ with SSIP, AGG solvation structure refers to 
Grotthuss mechanism, which enables Li+ transporting much faster [34]. 
Therefore, constructing AGG solvation structure seems to be an efficient 
way to enhance Li+ mobility in SPEs. High-concentrated lithium salt 
method has been proved to be the simplest way to achieve AGG struc
ture. For example, Liu et al. successfully developed a SPE with AGG 
structure based on high-concentrated lithium bis(tri
fluoromethanesulphonyl)imide (LiTFSI) and poly(vinylidene fluoride- 
co-hexafluoropropylene) (PVDF-HFP) with a weight ratio of LiTFSI/ 
PVDF-HFP around 1.1, which contributes to a high ionic conductivity 
of 0.124 mS cm 1 at 25 ◦C [35]. Unfortunately, further increasing 
concentration of lithium salt will decay the performance of SPE since the 

Fig. 1. (a) Schematic illustrations of the Li+ transport pathway of the as-designed PHLBH electrolyte. (b) The adsorption energy of dissociated Li+ ions on PVDF-HFP. 
(c) The adsorption energy of h-BN on PVDF-HFP.



high concentration of lithium salt not only suppresses segmental motion 
of polymer chain due to the ion-polymer “crosslinking”, but also de
teriorates the dissociation of lithium salt. To avoid the bad effect of high- 
concentrated lithium salts, a delicate strategy on manipulating the 
intermolecular interactions was designed in our previous work through 
introducing Li1.3Al0.3Ti1.7(PO4)3 (LATP) to tune the solvation environ
ment of Li+ for constructing AGG structure, and finally dramatically 
enhances the ionic conductivity to 0.73 mS cm 1 [36]. 

Based on the above analysis, it can be concluded that an ideal SPE 
should possess two types of Li+ transportation channels: one is along the 
polymer chain with fast Li+ hopping rate and the other is the internal 
cluster channel created by AGG solvation structure. Is there any possi
bility to design a simple SPE system with these two types of transport 
path for fast Li+ diffusion kinetics? In this work, SPE with dual ionic 
transportation channels has been designed through hexagonal boron 
nitride (h-BN)-assisted PVDF-HFP and LiTFSI (LiTFSI/PVDF-HFP) sys
tem. As shown in Fig. 1, the interaction of PVDF-HFP/BN is stronger 
than that of PVDF-HFP/LiTFSI, which may weaken the hopping energy 
of Li+ along PVDF-HFP chain, and thus enhances Li+ mobility. More
over, these BN additives also change Li+ solvation structure from PVDF- 
HFP unit to PVDF-HFP/anions, as evidenced by Raman results. The 
abundant AGG creates another faster Li+ diffusion pathway, which 
further enhances Li+ transport kinetics in SPE. Benefited from these two 
types of Li+ transport channels, the as-fabricated PVDF-HFP/LiTFSI/BN 
(PHLBN) SPE presents impressive ionic conductivity (3.7 × 10 4 S 
cm 1), high tLi+ (0.63) and wide electrochemical window (~4.8 V) at 
25 ℃. Applying this PHLBN to a LMB system, the cycle life of Li|PHLBN| 

Li cell can be extended to as long as 800 h at 0.1 mA cm 2 and 600 h at 
0.2 mA cm 2. The Li|PHLBN|LiFePO4 (LFP) cell delivers a Coulombic 
efficiency of 99.7 % after 200 cycles under 25 ◦C. Furthermore, pairing 
with high-voltage NCM523 (LiNi0.5Co0.2Mn0.3O2) as a cathode, 
NCM523/Li cells can still achieve a superior capacity retention of 90 % 
(127 mAh g 1) after 100 cycles at 0.5C under 25 ℃. Thanks to the 
excellent stability and easy-processing, PHLBN can also be facilely 
assembled into bipolar LFP/Li pouch cell, which not only supports high- 
voltage output (6.41 V), but also exhibits excellent safety under abuse 
tests (folding and cutting), demonstrating the great potential in future 
practical applications. 

2. Results and discussion

H-BN with boron and nitride atoms arranged in a two-dimensional
honeycomb lattice structure seems to be a magic material. Lately, it 
has been found that these N atoms with strong electron-withdrawing 
effect working together with the B atoms with Lewis acidic properties 
effectively limit the movement of anions in electrolyte system [37,38], 
which may promote the dissociation of lithium salt in SPE. To examine 
whether BN shows great influence in LiTFSI/PVDF-HFP system, density 
functional theory (DFT) calculation was employed to study the inter
action among BN, LiTFSI and PVDF-HFP. As shown in Fig. 1b, the 
adsorption energy of dissociated Li+ ions and h-BN on PVDF-HFP is 

1.14 eV and 1.48 eV, respectively. This result well suggests a stronger 
interaction between PVDF-HFP and h-BN compared to PVDF-HFP and 
Li+. While the weak interaction in PVDF-HFP/Li+ may benefit for these 

Fig. 2. (a) Schematic illustration of the synthesis of PHL and PHLBN electrolytes. (b) Digital photograph of a large-scale PHL1.25BN5 membrane. (c) SEM image of 
PHL1.25BN5 electrolyte surface. (d) SEM image of PHL1.25BN5 membrane in side-view. (e–g) EDS elemental mappings of C, B and N in PHL1.25BN5 membrane. 



dissociated Li+ ions hopping along polymer segments. 
Based on the above calculation suggestions, BN-assisted PVDF-HFP/ 

LiTFSI SPE was designed and developed. PVDF-HFP was selected as a 
polymer due to its high dielectric constant and ionic conductivity [39]. 
The fabrication process of PHLBN is illustrated in Fig. 2a. Firstly, PVDF- 
HFP and LiTFSI were dissolved in N,N-dimethylformamide (DMF) to 
form clear solution, then BN was added to form white slurry (Fig. S1). 
Finally, PHLBN membrane can be obtained through casting the slurry on 
a glass substrate by doctor blade method. To investigate the working 
mechanism of BN, a control sample PVDF-HFP/LiTFSI (PHL) membrane 
without BN was also prepared. As discussed above, salt concentration 
has a great influence on the ionic conductivity of polymer electrolytes. 
In Fig. S2, it can be found that ionic conductivity of PHL-0.5 (0.0047 mS 
cm 1), PHL-0.75 (0.025 mS cm 1), PHL-1 (0.054 mS cm 1), PHL-1.25 
(0.097 mS cm 1) and PHL-1.5 (0.108 mS cm 1) increases with salt 
mass ratio. Unfortunately, a higher salt concentration may deteriorate 
the mechanical property of SPE. A shown in Fig. S3, it can be clearly 
observed that pure PHL-1.5 membrane is broken, well indicating its poor 
mechanical property. Therefore, PHL-1.25 was selected as the optimized 
composition considering the trade-off between ionic conductivity and 
mechanical property. To further enhance the ionic conductivity of PHL, 
BN was introduced to form PHLBN. Differential scanning calorimetry 
tests present that the glass transportation temperatures (Tg) of PHLBN 
(with 5 wt% BN) and PHL are 90 and 136 ◦C, respectively. The lower Tg 
in PHLBN well indicates that the introduction of BN enhances the 

amorphous regions in PVDF-HFP, which will efficiently promote the 
motion of polymer chain segments (Fig. S4). Indeed, the ionic conduc
tivity of PHLBN increases with the BN mass ratio, but it drops later 
(Fig. S5). The highest ionic conductivity of 0.37 mS cm 1 can be ach
ieved by adding 5 % BN, which is 3.8 times higher than that PHL-1.25 
(0.097 mS cm 1) and almost 3 times higher than that of reported 
high-concentrated salt system (0.124 mS cm 1) [35]. The decrease of 
ionic conductivity with 6 % BN (0.197 mS cm 1) suggests that high BN 
concentration affects these PVDF-HFP solvation sites. Based on the 
above results, PHL1.25BN5 (PHL-1.25 with 5 % BN) as the optimized SPE 
was investigated in the following study and PHL1.25 was also studied for 
comparison. 

Benefiting from the simple fabrication process, PHL1.25BN5 and 
PHL1.25 could be easily scaled up [40]. As shown in Fig. 2b, PHL1.25BN5 
membrane with a size of 20 cm in length and 10 cm in width can be 
easily achieved, making the designed electrolytes extremely suitable for 
the practical application. Moreover, this large size membrane indicates 
the excellent reproducibility of SPE. The detailed structure of this 
PHL1.25BN5 membrane was studied by scanning electron microscopy 
(SEM). It can be found that the top surface of PHL1.25BN5 is quite dense 
(Fig. 2c) comparing to PHL1.25 (Fig. S6). The defect-free PHL1.25BN5 may 
provide efficient Li+ pathway. The side view in Fig. 2d suggests that the 
thickness of PHL1.25BN5 is around 50 μm, which enables the membrane 
to be quite flexible as shown in Fig. S7. The mechanical property test 
shows that the stress and strain of PHL1.25BN5 is around 2.25 MPa and 

Fig. 3. (a) XRD patterns of PHL1.25 and PHL1.25BN5 electrolytes. (b) FTIR spectra of PHL1.25 and PHL1.25BN5 electrolytes. (c) Raman spectra and fitting curves of 
PHL1.25 and PHL1.25BN5 electrolytes in the range of 730–760 cm− 1 (S–N stretching, C–S stretching, and CF3 bending vibration mode of TFSI− ). Solid lines denote 
experimental spectra and shadow sections represent the fitting peak (CIP: contact ion pair, AGG: aggregated ion pair). (d) The quantitative analysis of CIPs and AGGs 
of PHL1.25 and PHL1.25BN5 electrolytes. 



110.5 %, respectively, which are superior to those of PHL1.25 (1.5 MPa, 
48 %), indicating these BN additives dramatically improve the me
chanical property of membrane (Fig. S8). The distribution of BN in PHL 
was further studied by energy dispersive spectroscopy (EDS) mapping. 
As shown in Fig. 2e–g, it can be found that BN is distributed homoge
neously inside the PVDF-HFP matrix, according to elements C, B and N. 

X-ray diffraction (XRD) analysis confirms the successful addition of
BN in PVDF-HFP/LiTFSI system (Fig. 3a). No diffraction peaks from 
LiTFSI are detected in both PHL1.25 and PHL1.25BN5 membranes, indi
cating the dissociation of LiTFSI in PVDF-HFP matrix. In addition, the 
remarkably broad peaks observed at 18◦ ~ 20◦ could be attributed to the 
interaction between the molecular chains of PVDF-HFP and BN, which 
also increases the intensity of the peaks at 19.8◦ [41]. What more, to 
further explore the molecular interaction in PHL1.25BN5 electrolyte, 
Fourier transform infrared spectrometer (FTIR), solid-state nuclear 
magnetic resonance (NMR) spectra of 6Li and Raman spectra were 
conducted. As shown in Figs. 3b and S9, the vibrations at 1096 and 1053 
cm 1 correspond to symmetrical stretching of -CF2, which take a red 
shift after introducing BN into the PHL electrolyte, confirming the 
interaction between BN and PVDF-HFP. 6Li NMR was used here to 
investigate the lithium environment. As shown in Fig. S10, the peak at 

0.41 ppm corresponds to the resonance between Li+ and PVDF-HFP 
segments. Meanwhile, the 6Li sign shows an obvious upfield shift from 

0.41 ppm to 0.26 ppm after introducing h-BN, indicating that the 
interaction between PVDF-HFP and Li+ is weakened [42,43]. To further 
study Li+ coordination environment in SPE, Raman spectra was used 
here to characterize TFSI . It has been well known that TFSI consists of 
three different dissociation states: free TFSI at 740 cm 1, contact ion 
pairs (CIPs) at 744 cm 1 (TFSI interacting with a single Li+) and 
aggregated ion pairs (AGGs) at 749 cm 1 (TFSI interacting with two or 
more Li+) [44,45]. The dissociation states of TFSI in both PHL1.25BN5 
and PHL1.25 samples are dominated by CIP and AGG, as shown in 

Figs. 3c and S11. The quantitative analysis demonstrates that PHL1.25 is 
composed by 75 % CIP and 25 % AGG, while PHL1.25BN5 consists of 
49.1 % CIP and 51.9 % AGG (Fig. 3d). The significant enhancement on 
AGG in PHL1.25BN5 can be attributed to BN, which effectively tunes the 
ionic solvation environment. These abundant AGG in PHL1.25BN5 may 
accelerate Li+ transportation kinetics, and thus delivers a superior 
electrochemical property. 

To study the electrochemical performances of PHL1.25BN5, a variety 
of tests were performed. The most vital property parameter for SPE is the 
ionic conductivity. As shown in Fig. 4a, it can be found that PHL1.25BN5 
delivers higher ionic conductivity in all temperature range than PHL1.25 
(25 ~ 80 ◦C). Specifically, PHL1.25BN5 shows an ionic conductivity of 
0.37 mS cm 1 at 25 ◦C, which is 3.8 times higher than that of PHL1.25 
(0.097 mS cm 1). Correspondingly, the activation energy (Ea) of 
PHL1.25BN5 calculated by Arrhenius equation is 0.22 eV, which is lower 
than that of PHL1.25 (0.39 eV), as shown in Figs. 4b and S13, implying 
that fast ionic transportation channels induced by BN/PVDF-HFP and 
BN/LiTFSI interfaces greatly decrease the Ea of Li+ migration [46–48]. 
The linear sweep voltammetry (LSV) measurements demonstrate that 
PHL1.25BN5 can work till to 4.8 V, higher than PHL1.25 (4.55 V), as 
presented in Fig. 3c. This high-voltage window is also contributed to BN, 
which suppresses the decomposition of PVDF-HFP under high voltage. 
Moreover, BN also enhances the thermal property of PHL1.25BN5, as 
evidenced by the heating test and thermal gravimetric analysis (TGA). 
As shown in Fig. S14, Celgard membrane and PHL1.25 electrolyte start to 
melt at 140 ◦C; but PHL1.25BN5 electrolyte is quite stable under the same 
temperature. Impressively, it can endure up to 200 ◦C. The excellent 
thermal stability well matches with the TGA results shown in Fig. S15, 
revealing the important role of BN in safety enhancement. 

Another important electrochemical parameter for SPE is Li+ trans
ference number (tLi

+). Normally, the tLi+ of SPEs is low (<0.3), due to the 
Lewis base centers of the polymer coupling with Li+, causing its sluggish 

Fig. 4. (a) Arrhenius plots of the ionic conductivities of PHL1.25 and PHL1.25BN5 electrolytes in temperature range of 30–80 ◦C. (b) The activation energy (Ea) of 
PHL1.25 and PHL1.25BN5 electrolytes. (c) LSV curves of PHL1.25 and PHL1.25BN5 electrolytes. (d) Li+ transference number measurement of PHL1.25BN5 electrolyte. (e) 
Ionic conductivity and Li+ transfer number of two different electrolytes systems. (f) Comparing the electrochemical performance of the recently reported work with 
our work. More information can be found in Table S1. 



mobility [49]. In this work, the tLi+ of PHL1.25BN5 is calculated to be 
0.63, which is almost twice higher than that of PHL1.25 (0.32), indicating 
the excellent mobility of Li+ in PHL1.25BN5 (Fig. S16). Fig. 4f and 
Table S1 present the comparison of our PHL1.25BN5 with previous re
ported SPEs from three aspects, i.e., ionic conductivity, tLi+ and stable 
voltage window. Surprisingly, this simple PHL1.25BN5 shows the best 
electrochemical properties. 

Considering the above merits of PHL1.25BN5, it is also expected to 
behave efficiently in batteries. Symmetric Li/Li cells were used to 
evaluate the interfacial stability of electrolyte against Li anode and 
suppressing capability on lithium dendrites. As shown in Fig. S17, the 
electrochemical impedance spectroscopy (EIS) of these two systems re
veals that the interface resistance of PHL1.25BN5 system is 93 Ω, almost 
half of PHL1.25 system (195 Ω). The lower interface resistance demon
strates the efficient Li+ transportation kinetics in PHL1.25BN5, which is 
consistent with the above electrochemical properties. In Fig. S18, it can 
be found that the overpotential increases with the current density 
increasing from 0.025 to 0.1 mA cm 1 in both cells, but the over
potential of Li|PHL1.25|Li is much higher than that of Li|PHL1.25BN5|Li at 
all current densities under 25 ◦C, suggesting that PHL1.25BN5 is 
compatible with Li anode. Indeed, Li/Li cell with PHL1.25 appears short- 
circuit phenomenon at 309 h at 0.05 mA cm 1, while Li|PHL1.25BN5|Li 
can maintain stable till to 1100 h (Fig. S19). Further increasing the 
current density to 0.1 mA cm 1, Li|PHL1.25|Li battery shows very jerky 
voltage curve and its polarization voltage increases sharply after 80 h, 
suggesting the failure of cell caused by lithium dendrites. In contrast, the 
overpotential of Li|PHL1.25BN5|Li system is around 60 mV and it can 
remain stable up to 800 h without obvious fluctuation. Even under the 
current density of 0.2 mA cm 2, this PHL1.25BN5 system could also cycle 
up to 600 h; while the control Li|PHL1.25|Li system even could not make 

it 30 h. This significant difference again verifies the superior property of 
PHL1.25BN5. The morphology of Li metal after 40 cycles is presented in 
Fig. 5c and d. Apparently, there are lots of cracks and dendrites on the Li 
surface in PHL1.25 system (Fig. 5c), while relatively smooth Li surface 
without any detectable dendrites structure can be observed in 
PHL1.25BN5 system. To explore whether the cycling stability contributed 
by interfacial engineering, the compositions of the interface layers from 
the cycled Li metal surface was studied by X-ray photoelectron spec
troscopy (XPS). As shown in Figs. 5e and S0, the interface layer is mainly 
composed of organic and inorganic substances in both electrolyte sys
tems, such as C-F, C–N, C–C, C–O, LiF, Li3N and Li2CO3. These 
organic/inorganic components may provide promising ionic conduc
tivity, excellent electrical insulation, and outstanding mechanical 
properties. Especially, the appearance of LiF and Li3N in solid electrolyte 
interphase (SEI) can effectively reduce the diffusion barrier of Li+ ions 
through SEI, facilitating uniform migration and deposition of Li+ ions 
along the Li metal interface [50–56]. It can be found that the intensity of 
LiF in PHL1.25BN5 system is much higher than that in PHL1.25 system. 
The quantitative analysis on all components is shown in Table S2. The F 
content in PHL1.25 system is 7.92 %; it increases to 14.96 % (almost two 
times) in PHL1.25BN5 system, indicating a fluorine-rich interfacial phase 
formed in later system, which is not only a robust interface, but also a 
fast Li+ transportation interface [57]. The contents of N and S also in
crease in PHL1.25BN5 system, but the contents of C and O decreases; 
implying that more inorganic components dominate in PHL1.25BN5 
system comparing to PHL1.25 system. In addition, h-BN can also partic
ipate in the formation of the SEI. As presented in Fig. S21, B-containing 
inorganic salt (LixBOy) appears at around 190.5 eV, which is an effective 
inorganic component to prevent lithium dendrites [58–60]. To further 
reveal the distribution of these components in SEI, time-of-flight second 

Fig. 5. (a, b) Long-term voltage profiles of Li/Li batteries at a current density of 0.1 mA cm− 2 and 0.2 mA cm− 2 with PHL1.25 and PHL1.25BN5 electrolytes under 
25 ◦C. (c) SEM images of pristine Li anode surface and after 40th cycling in Li|PHL1.25|Li system at 0.1 mA cm− 2. (d) SEM images of pristine Li anode surface and after 
40th cycling in Li|PHL1.25BN5|Li system at 0.1 mA cm− 2. (e) XPS spectra of F 1 s, N 1 s and C 1 s of the surface of cycled Li metal after 40 cycles at 0.1 mA cm− 2. (f) 
The 3D reconstruction distribution map of the LiF2

− of cycled Li surface formed in PHL1.25 and PHL1.25BN5 electrolyte systems. 



ions mass spectrometry (TOF-SIMS) was performed for both electrolyte 
systems. As shown in Fig. S22, the signal of LiF2 is higher in PHL1.25BN5- 
derived SEI than that in the PHL1.25-derived SEI at different sputter 
times, indicating a LiF-rich SEI layer formed in PHL1.25BN5 system. 
Correspondingly, the 3D reconstruction of LiF2 distribution map clearly 
displays that LiF is much dense in PHL1.25BN5-derived SEI than that in 
the PHL1.25-derived SEI, well matching with XPS results. Other com
ponents show similar distribution in these two systems (Figs. S23 and 
S24). As a consequence, it can be inferred that a large amount of LiF is 
formed from the decomposition of AGGs in PHL1.25BN5 system. 

To demonstrate its great potential in solid-state LMBs, PHL1.25BN5 
was applied in LiFePO4/Li (LFP/Li) and LiNi0.5Co0.2Mn0.3O2/Li 
(NCM523/Li) systems. As shown in Fig. 6a, LFP/Li cell with PHL1.25BN5 
delivers an initial discharge capacity of 156 mAh/g at 25 ◦C and a high 
Coulombic efficiency (CE) of 99.7 %. Even after cycling 200 cycles, the 
discharge capacity can still remain 85 % of initial discharge capacity 
(133 mAh/g), demonstrating the excellent cycle stability. In contrast, 
the LFP/Li cell with PHL1.25 can only achieve a discharge capacity of 
136 mAh/g with a poor CE of 96 %, and finally it only works for 60 
cycles. The superior performance of PHL1.25BN5 is probably contributed 
by the fast Li+ transferring kinetics between PHL1.25BN5 and electrodes, 
as evidenced by its smaller interface resistance (110 Ω) comparing to 
PHL1.25 system (235 Ω) (Fig. S25). From voltage/capacity profiles, it can 

also clearly observe that the overpotential of LFP|PHL1.25BN5|Li is much 
lower that of LFP|PHL1.25|Li (Fig. S26). Moreover, the overpotential of 
LFP|PHL1.25|Li increases while cycling, i.e., 0.05 V at 1st cycle, 0.13 V at 
80th cycle, while the overpotential of LFP|PHL1.25BN5|Li keeps still 
along cycling up to 200 cycles. The rate performances again demonstrate 
the superior property of PHL1.25BN5. As shown in Fig. 6b, LFP| 
PHL1.25BN5|Li delivers a discharge capacity of 165, 163, 154, 140 and 
125 mAh/g at 0.1, 0.2, 0.5, 1 and 2C, respectively; it can return to 156 
mAh/g when the current density is back to 0.5C, which is much higher 
than those obtained in PHL1.25 system. Correspondingly, the voltage/ 
capacity profiles in Fig. S27 again verifies that PHL1.25BN5 presents 
lower overpotentials than those of PHL1.25 system at different rates, well 
explaining the poor rate performance of PHL1.25 system. 

Considering the good electrochemical stability of PHL1.25BN5 (~4.8 
V), high-voltage NCM cathode (4.3 V) was used here to pair with 
PHL1.25BN5 for further exploring its potential applications. As shown in 
Fig. S28, the interface resistance of PHL1.25BN5 and PHL1.25 are 101 and 
203 Ω, respectively in NCM system, indicating that the former system 
may deliver a better electrochemical performance than PHL1.25 system. 
To further evaluate the superiority of PHL1.25BN5, commercial liquid 
electrolyte (LE, 1 M LiPF6 dissolving in ethylene carbonate (EC) and 
diethylene carbonate (DEC) with 1/1 vol ratio) was used here as a 
control sample. In Fig. 6c, it can be found that NCM523|LE|Li system 

Fig. 6. (a) Cycling performances of LFP/Li cells with PHL1.25 and PHL1.25BN5 electrolytes at 25 ◦C. (b) Rate capability of LFP/Li batteries with two different 
electrolytes. (c) Cycling performance of NCM/Li cell at 0.5C with PHL1.25BN5 and liquid electrolyte. (d) Discharge/charge profiles of NCM/Li cell with PHL1.25BN5 
electrolyte. (e) The schematic diagram of the bipolar pouch cell. (f) Picture of the LFP|PHL1.25BN5|Li bipolar pouch cell with a high output voltage of 6.41 V. (g) 
Images of the bipolar pouch cell illuminating LED under different abuse tests. 



3. Conclusion

In summary, a high-performance solid-state electrolyte has been
achieved by BN-assisted high concentrated PVDF-HFP/LiTFSI. The 
interaction between BN and the C-F bond in PVDF-HFP not only accel
erates the transport of Li+ along the chain segment, but also creates the 
internal cluster channel by AGG solvation structure. With these two 
types of Li+ transport channels, PHL1.25BN5 exhibits high ionic con
ductivity (0.37 mS cm 1 at 25 ◦C) and high Li+ transference number 
(0.63) and wide electrochemical window (4.8 V). As a result, Li| 
PHL1.25BN5|Li can be cycled for 1100 h at 0.05 mA cm 1, 800 h at 0.1 
mA cm 1 and 600 h at 0.2 mA cm 1. Experiments verifies that the su
perior performance of PHL1.25BN5 is contributed by the high Li+ trans
portation kinetics in solid-state electrolyte phase and LiF-rich SEI as well 
as the robust mechanical property of SEI, which effectively suppresses 
the dendrites formation. Applying PHL1.25BN5 in LFP/Li and high- 
voltage NCM/Li systems, both solid-state battery systems could ach
ieve impressive CE of 99.7 % at 0.5C under 25 ◦C. Even after 100 cycles 
in high voltage NCM/Li system, the capacity retention can be still up to 
90 %. Moreover, the PHL1.25BN5-based pouch cell can be easily assem
bled into bipolar structure, achieving not only high-voltage output of 
6.41 V, but also excellent safety under cutting. These results well 
demonstrate the great potential of PHL1.25BN5 in future applications. 
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