Interface engineering of MXene-based heterostructures for lithium-
sulfur batteries

Siyu Wu', Xiang Li', Yongzheng Zhang'? (5<), Qinghua Guan®, Jian Wang®* (5<)), Chunyin Shen', Hongzhen Lin®,
Jitong Wang1, Yanli Wang1, Liang Zhan' (PA), and Licheng Ling1

! State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

2 Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Chemical Engineering, East
China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

3 i-Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of
Sciences, Suzhou 215123, China

* Helmholtz Institute Ulm (HIU), Ulm D89081, Germany

ABSTRACT

High energy density and low cost make lithium-sulfur (Li-S) batteries as one of the next generation's promising energy storage
systems. However, the following problems need to be solved before commercialization: (i) the shuttling effect and sluggish redox
kinetics of lithium polysulfides in sulfur cathode; (ii) the formation of lithium dendrites and the crack of solid electrolyte interphase;
(iii) the large volume changes during charge and discharge processes. MXenes, as newly emerging two-dimensional transition
metal carbides/nitrides/carbonitrides, have attracted widespread attention due to their abundant active surface terminals,
adjustable vacancies, and high electrical conductivity. Designing MXene-based heterogeneous structures is expected to solve
the stacking problem induced by hydrogen bonds or Van der Waals force and to provide other charming physiochemical
properties. Herein, we generalize the design principles of MXene-based heterostructures and their functions, i.e., adsorption and
catalysis in advanced conversion-based Li-S batteries. Firstly, the physiochemical properties of MXene and MXene-based
heterostructures are briefly introduced. Secondly, the catalytic functions of MXene-based heterostructures with the compositional
constituents including carbon materials, metal compounds, organic frameworks, polymers, single atoms and special high-entropy
MXenes are comprehensively summarized in sulfur cathodes and lithium anodes. Finally, the challenges of MXene-based
heterostructure in current Li-S batteries are pointed out and we also provide some enlightenments for future developments in

high-energy-density Li-S batteries.
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1 Introduction

As the depletion of global energy resources and the ever-growing
demands for portable electronic devices, electric vehicles and
smart power grids, the targets of carbon neutrality and carbon
peak are put forward [1-6]. Against such backgrounds, the value
chain of clean energy and low-carbon technology such as lithium-
ion batteries (LIBs) have become the top priority. However, the
state-of-art energy densities of commercial LIBs have almost
reached their ceiling, which will be difficult to meet the future
market demand of higher energy density to drive a long distance
or extend operation time [7,8]. Therefore, exploring and
developing a substitutable energy storage system with high specific
and volumetric energy density is of great importance [9, 10].
Among various anodic materials, lithium anode is known as the
“holy grail” and “ultimate anode” due to its remarkable theoretical
specific capacity (3680 mAh-g™) and the lowest electrochemical
potential (=3.04 V versus standard hydrogen electrode) [11-18].
By matching conversion-based sulfur cathode, the lithium-sulfur

(Li-S) batteries output a theoretical specific capacity of
1675 mAh-g" (Fig 1(a)). Together with an average operating
voltage of 2.15 V, Li-S batteries can achieve a superior theoretical
energy density of up to 2600 Wh-kg™, which is considered to be
one of the most attractive next-generation energy storage devices
[19-22]. Furthermore, different from the intercalation-typed
lithiated transition metal oxides, the elemental sulfur is rich in
natural content and environmentally friendly, which showcases
great prospects for low-cost large-scale application in the future
[23,24]. The operation of Li-S batteries relies on the reversible
redox reaction between Li and Sg (Fig. 1(b)).

Ss +16Li < 8Li,S

Actually, in the charging/discharging processes, the Li-S batteries
experience quite complicated processes with multi-step redox
reactions and triphasic changes. Firstly, the intermediate lithium
polysulfides (LiPSs) are easily dissolved in the electrolyte and tend
to migrate to the lithium anode, forming polysulfide shuttling and
deteriorating the metallic lithium anode. The severe shuttle effect
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Figure1 (a) Schematic diagram and (b) a representative charge—discharge voltage curve of Li-S batteries. (c) and (d) The number of recent five years publications on
MXene and heterostructures in Li-S batteries. Data adopted from Web of Science on Nov, 4", 2022.

leads to slow redox kinetics, resulting in loss of active materials in
cathode and terrible capacity attenuation [25,26]. Secondly, the
sluggish Li stripping/plating kinetics and uneven distribution in
the anodic side lead to the formation of fatal lithium dendrites and
the crack of formed solid electrolyte interphase (SEI) during
repeated charge and discharge processes, exhausting the limited
amount of electrolyte [27]. To make matters worse, continuous
growth of lithium dendrites can puncture the separator and cause
short circuit of batteries. Moreover, the large volumetric changes
induce the active materials detachment from the electrode,
aggravating the capacity loss.

Countless researches about rationally designed hosts or
protective materials come one after another in the past decades,
and these strategies include (i) physically confining sulfur,
chemically bonding with LiPSs by heteroatoms and polar metal or
metal compounds; (i) introducing multi-functional catalysts to
enhance the kinetics of sulfur redox conversions; (iii) designing
advanced Li anode hosts or artificial SEI layers to homogeneously
guide the Li nucleation and growth, thus suppressing the dendrite
formation [28-38]. In comparison with traditional materials such
as carbons, polymers, and other metal-based compounds (Table
1), MXenes (transition metal carbides, carbonitrides or nitrides)
are promising candidates due to the key features of high electrical
conductivity, adjustable terminals, rich defects and vacancies, large
specific surface area and good mechanical strength, offering
unlimited possibilities for applications in both sulfur cathodes and
lithium anodes. However, the hydrogen bonds and Van der Waals
forces within layers make MXene nanosheets stack easily, limiting
rapid transportation of ions and effective exposure of active sites.
Rationally constructing MXene-based heterogeneous structures
endows the composites with favorable physicochemical properties
to satisfy multiple requirements, which can solve these problems
hopefully. Moreover, the rapidly increasing number of literature
reports on MXene or their heterostructures in Li-S batteries
demonstrates the potential of using in the electrochemical fields
(Figs. 1(c) and 1(d)). However, up to date, there is no
comprehensive review about the designing principles of MXene-
based heterostructures in conversion-based Li-S batteries.

Herein, a comprehensive overview of recent advances in
MXene-based heterostructures for Li-S batteries is summarized

from structural design to catalytic sulfur redox reaction to indue
lithium metal deposition. Firstly, the properties of MXene and
MXene-based heterostructures are illustrated. Then, we classify
MXene-based heterostructures into six main types from the
aspects of compositional constituents and elaborate on their recent
progresses applied in sulfur cathode and Li anode for high
performance Li-S batteries (Fig. 2). Finally, we expound a concise
outlook on the future research directions of MXene-based
heterostructures and provide some inspirations for the design and
fabrication of advanced Li-S batteries.

2 Properties of MXene and MXene-based
heterostructures

2.1 Properties of MXene

MXenes (M,,,,X,T,) is a novel family of two-dimensional (2D)
materials obtained by etching of A-layer atoms from their MAX
phase, in which “M” represents the early transition metal (such as
Ti, V, Zr and Nb); “A” represents the third or fourth main group

elements (such as Al, Ga, and Si); “X” represents carbon or
nitrogen; “T,” represents the terminations left on the surface of
MXene after etching, such as -O, -OH, -F, -§, -Cl, and -NH,,

respectively [39-43]. MXenes are usually prepared by selective
etching lamination of “A” layer in MAX phases, including but not
limited to HF etching, alkali etching, molten salt etching, and
electrochemical etching [44-48]. Since Yury and co-workers
discovered the Ti;C,T,-MXene for the first time in 2011, due to its
large specific surface area (ranging from 250 to 1000 m*g™) high
conductivity (up to 151 x 10° S.em™) and rich functional
terminals (Fig. 3), MXene has a wide application prospect in the
energy storage fields including lithium-ion battery, sodium-ion
battery, Li-S battery, supercapacitor and so on [49-57].

Taking Li-S battery for example, the metallic conductivity of
MZXene provides rapid electron transfer to maximize sulfur
utilization. Moreover, MXenes, as 2D materials, have large specific
surface area characteristics, providing a sufficient surface for
electrochemical reactions and efficiently constructing three-
dimensional (3D) composite materials for sulfur cathodes or
lithium anode hosts [58]. MXenes are highly hydrophilic; their



Table1 The advantages and disadvantages of MXene compared with other traditional materials

Materials Advantages Disadvantages
MXene o High electronic conductivity
® Large surface area ® Layer stacking
o Abundant terminal functional group
Carbon » High electronic conductivity

> Feasible synthesis & modification

» Low volumetric density

Metal compounds = Polar active sites

= High electronic conductivity

= High weight
= Low porosity
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¢ Poor conductivity
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Figure2 An overview of MXene-based heterostructures categories for cathode
design and anode protection

abundant surface terminations make them easily dispersed in
water and most polar organic solvents. Furthermore, sufficient
surface terminations can induce uniform nucleation and suppress
the growth of lithium dendrites [59,60]. At the same time, the
metal centers and polar functional groups on the surface of
MXenes can bond with LiPSs. Theoretical studies have proved
that most MXenes are suitable adhesives for LiPSs chemisorption
[61, 62]. Nazar’s team found that the hydroxyl groups on Ti;C,T,-
MXene were converted to thiosulfate after contacting with
polysulfides, and then Ti-S bonds were formed between Ti atoms
exposed on MXene and polysulfides through Lewis acid-base
interaction [63]. The adsorbed polysulfides were transformed into
Li,S by electron transfer of MXene and formed multiple
nucleation sites for Li,S. Besides, the catalytic ability of MXenes is
significantly affected by the terminations and vacancies on
MXene. Wei’s group reported that the adsorption energy of Li,Sg
on Ti;C,Cl, possessing 1/16 Cl deficiencies increased from
0.7-1.1 to 2.5-3.5 eV, meaning improved anchoring and catalytic
ability of Ti;C,T, to boost the electrochemical performance of Li-S
batteries [64]. MXenes also exhibit good mechanical stability due
to M-C or M-N bond with high bonding strength, so they can
adapt to the large volume change of sulfur cathode in the
charge—discharge processes. It can be seen that MXenes combine
all these benefits together compared to other 2D materials
(graphene, layered hydroxides, etc.). Therefore, it is considered
that MXenes have strong potential for building high performance
Li-S batteries.

2.2 Properties of MXene-based heterostructures

Although MXene endows Li-S batteries with a high specific
capacity, efficient ion transportation, and durable electrochemical
stability, the tendency of layered MXenes to stack again limits the
electron/ion transportation along the vertical direction between

layers, sacrificing the electrochemical performance of Li-S batteries
at high sulfur loading and content [65]. Moreover, it is difficult for
a certain kind of MXene to balance the physical capture,
chemisorption, and catalytic conversion of LiPSs, which can only
improve the performance of Li-S batteries to a limited extent.
Therefore, it is considered that the construction of heterogeneous
structures based on MXenes can achieve synergistic effects and
endue the composite with specified physical and chemical
properties to meet various requirements [66, 67].

W. Shockley first proposed the concept of heterostructure in
semiconductor physics [68]. According to the definition,
heterostructure consists of different semiconductors with similar
crystal structures, similar atomic spacings, and thermal expansion
coefficients. An interface is formed within the heterogeneous
structure, in which chemical composition, charge distribution, and
even some physicochemical properties change due to the band
structure, carrier concentration, and Fermi level differences [69,
70]. Firstly, the MXene-based heterostructure electrodes can
combine the advantages of different components to make up for
the shortcomings of MXene, thus providing more active sites and
promoting charge transfer (Fig.4). Secondly, the internal electric
field will be introduced at the interface of the heterogeneous
structure to accelerate the ion diffusion kinetics. Last but not the
least, the construction of heterostructure can adjust the electronic
structure and coordination environment, inducing more active
sites for adsorption and catalysis. Consequently, the synergistic
effect of the heterogeneous structure significantly improves the
corresponding electrocatalytic performance and reversible capacity
of Li-S batteries.

3 MXene-based heterostructures reinforced

sulfur redox kinetics

Owing to the insulative nature of S/Li,S, polysulfide shuttling, and
sluggish redox kinetics, an ideal sulfur cathode should satisfy the
following characteristics: (i) excellent electroconductivity to
provide unobstructed ion transport channels; (ii) abundant
anchoring sites to strengthen the physical/chemical adsorption
ability to LiPSs; (iii) rich catalytic sites to propel the redox
conversions of LiPSs; (iv) large specific surface area to afford high
sulfur loading and Li,S deposition. Considering the above
requirements, the reasonable designs of MXene-based
heterostructures in Li-S batteries have received intensive attention.
As expected, the heterostructure design directly incorporates the
distinctions of various components. The combination of other
materials with MXene can alleviate the restacking of MXene
nanosheet, enhance the affinity to LiPSs and accelerate the sulfur
redox reactions. In this section, multi-functional MXene-based
heterostructures for sulfur cathodes are categorized as MXene-
carbon, MXene-metal compounds, MXene-polymer, MXene-
organic framework, MXene-single atom and high-entropy MXene
catalyst heterostructures. A concise overview is summarized in
Table 2 (separator modification coating belongs to the cathode in
this review).
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Figure4 Properties of MXene-based heterostructures on Li-S batteries

3.1 MXene-carbon heterostructures

As pointed out by previous studies, 2D MXenes (Ti,C as an
example) have been proven to be chemisorbed by polysulfides at
the Ti site, forming the weak metal-sulfur bond [63]. However,
due to the instability and self-interaction behaviors via strong
hydrogen bonds and Van der Waals forces, MXenes show a
tendency of irreversible restacking, resulting in the decrease of
surface area and the loss of exposed active sites, limiting its
functions in adsorbing LiPSs [103, 104]. Carbonaceous materials
exhibit the advantages in light weight, excellent
electroconductivity, large specific surface area and electrochemical
stability to accommodate sulfur species [105]. For example,
graphene oxide (GO), carbon nanotubes (CNTs), and porous
carbon materials have been confirmed to physically confine the
LiPSs with acceptable electronic conductivity [106-113]. The
introduction of carbon into MXene can not only act as a spacer
insertor to prevent the stacking of MXene nanosheets but also
achieve rapid cross-linked electronic transport.

Nazar and her colleagues incorporated CNTs into the MXene
phase as sulfur host to prevent the restacking of delaminated
MXene nanosheets [63]. A conductive network is formed by
interweaving CNTs into the MXene layers. The hydroxyl groups
on the surface of MXene can oxidize polysulfides to form
thiosulfate groups, followed by the Wackenroder reaction and
exposure of Ti atoms. Besides, strong Lewis acid-base interactions
induce the formation of Ti-S bonds between the exposed Ti
atoms and polysulfide-ion orbitals (Fig.5(a)) [114]. The
polysulfides instead of hydroxyl gradually act as the terminal
group on the MXene nanosheet, and the fully exposed MXene
exhibits the highest binding energy with LiPSs. The effects of dual
polysulfide entrapment mechanism and conductive network
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Good mechanical
stability

Strong adaptability to
the large volume change,

High
Rapid electron
transfer

conductivity

1.51x10° S-cm™!

design afford the sulfur cathode with superb long-term cycling. To
further improve the porosity and conductivity of MXene-CNT
heterostructure at high sulfur loading, the sandwich-like
structured MXene/CNT/MXene aerogel was prepared by the
unidirectional low-temperature freeze-drying method (Fig. 5(b))
[71]. When the mixed dispersion of CNTs and MXene was
immersed into liquid nitrogen, MXene precipitated along the ice
crystal surface and sandwiched the CNTs in the middle due to the
CNTs wrapped by PVP precipitating more slowly than MXene,
forming a parallel-arranged framework (PA-MXene/CNT) after
freeze-drying [115]. In comparison with the random MXene/CNT
host, the PA-MXene/CNT built physical barriers to block the
polysulfides and enhance the chance of exposure to catalyze the
conversion kinetics (Fig. 5(c)). As a result, even under a sulfur
loading as high as 7 mg-cm?, the PA-MXene/CNT@S cathode
stabilized for 800 cycles at 0.5 C, exhibiting a capacity fading rate
of 0.025% per cycle.

Similar to CNT, one-dimensional (1D) carbon fibers (CFs) with
micrometer-scale diameter, excellent flexibility, and good
conductivity are used to combine with MXenes. Wei et al.
reported a sulfur host by enveloping 3D intertwined CFs with
individual Ti;C, nanosheets (Ti;C,@CF), whose structure can
avoid the stack of nanosheets and significantly improve the
exposure degree on the surface of MXene [72]. The CFs
framework provides several holes with micrometer size and the
flexible Ti;C, nanosheets enveloping greatly improves the ductility
of CFs. These structural features can effectively endure the stress
and deformation brought from the volume expansion and prevent
the pulverization of the cathode. Thus, employed with the sulfur
mass loading of 4 mg-cm™, the Ti;C,@CF/S cathode delivered an
initial capacity of 10584 mAh-g' and retained a remarkable
capacity of 624.9 mAh-g™ after 1000 cycles at 1 C.

Apart from the 1D carbon materials of CNTs and CNFs,
graphene, as a typical 2D carbon material, has also been combined
with MXenes to fabricate advanced hosts for high-performance Li-
S batteries. The rGO-enveloped d-Ti;C,T,-MXene (GMr) matrix
was prepared by hydrothermal and freeze-drying methods,
displaying the 3D porous network structure [73]. The -COOH
groups on GO and the -OH groups on d-Ti,C,T, MXene
exchange, and then GO acts as an oxidant to partially oxidize the
Ti atoms with low coordination state in d-Ti;C,T,, MXene into
TiO,, resulting in the layered structure of d-Ti;C,T, MXene. On
one hand, the distribution of porous structures boosts Li-ion
diffusion and reduces the concentration polarization. On the other
hand, the TiO, particles partially oxidized by Ti;C,T,-MXene can
effectively adsorb the LiPSs by increasing the polar sites on non-
polar rGO surface, while the low-coordination-state Ti atoms
enhance the electrochemical redox reactions of sulfur [116]. In
addition to the rational designs of sulfur hosts, the shuttle effect of
LiPSs can also be significantly mitigated by modifying commercial
polypropylene (PP) separator with a layer of functional materials.

:ﬁ



Table2 A summary of MXene-based heterostructures for sulfur hosts and modifications

Heterostructure classification Sample Sulfur loading (mg-cm™)  Rate  Cycle number  Capacity (mAh-g")  Year  Ref.

li\’let)e(re::triftll’igs CNT/Ti;C, 1.5 02C 250 840 2017 [63]

CNT/PA-MXene 7 0.5C 800 712 2021 [71]

Ti;C,@CF 4 1C 1000 626 2020 [72]

GO-d-Ti,C,T, 1.5 0.5C 1000 542.9 2021 [73]

Ti,C,T,/GO — 1C 300 575 2020 [74]

Ti;C,/C 2.5 1C 200 475 2020 [75]

OV-T,QDs@PCN 2.2 2C 1000 660 2021 [76]

MCS-SiO,/MXene 3.2 1C 1000 537.6 2021 [77]

RGO/Ti,C,T, — 0.5C 300 878.4 2017 [78]

IS-MGN 2 1C 700 764 2022 [79]

MXene-metal compounds V,C/V,05/CNTs — 1C 500 871.8 2021 [80]
heterostructures

TiO,-MXene 5.1 0.5C 200 662 2019 [81]

VO,-V,C — 2C 1500 441.66 2020 [82]

VO,(p)-V,C 1.8 02C 100 1200 2019 [83]

V,C/VO, — 5C 500 604 2021 [84]

1T-VS,-MXene 1.2 2C 500 462.9 2022 [85]

MCCoS — 7C 1000 468 2022 [86]

N-MX-CoS, 2.5 1C 200 753 2022 [87]

Co-MoSe,/MXene 4.8 0.1C 100 700 2021 [88]

CoTe-MXene 2 0.1C 250 620 2022 [89]

MX-TiN - 5C 1000 516.9 2022 [90]

MXene-organic framework CTF/TNS L5 0.5C 300 841 2020 [91]
heterostructures

Ti,C,@iCON — 2C 2000 706 2021 [92]

nMOF-867/Ti;C,T, 1.2 02C 500 624 2021 [93]

N-Ti;C,/C 34 0.5C 500 716 2019 [94]

MCoNPCNs 1.5 1C 1000 920 2019 [95]

CoP/MXene — 02C 300 796.9 2021 [96]

CoZn-Se@N-MX 2.9 0.1C 100 917 2021 [97]

N-PC/Ti;C, — 1C 800 527 2019 [98]

MXene-polymer heterostructures MX-NF _ 1C 1000 645 2019 [99]

CMP-M — 2C 1000 550 2022 [100]

MXene-SAs heterostructures SA-Zn-MXene _ 1C 400 706 2020  [101]

High-entropy MXene HE CN-MXene - 1C 300 738 2021 [102]

That is to say, MXene-based composites are regarded as ideal
separator coating materials in Li-S batteries to further suppress the
shuttle effect and promote the diffusion of lithium ions. A free-
standing Ti,C,T,/GO modified separator was synthesized by
simple vacuum filtrating of the uniform dispersed solution of
Ti;C,T, and GO [74]. The obtained Ti,C,T,/GO hybrid modified
separator not only inhibited the polysulfides shutting by forming
tightly laminated microchannels and terminated groups on the
Ti,C,T,-MXene, but also increased the diffusion rate of lithium
ion flux during discharging/charging process, as demonstrated by

electrochemical ~ experiments and optical and  X-ray
characterizations.
Besides the above-mentioned synthesis process, the

MXene/carbon heterostructure can also be obtained by in-situ
synthesis method. For example, the Ti;C,/C hybrid material with
an expanded layer spacing ranging from 9.0 to 12.7 A was
prepared by one-step heating treatment in molten potassium
hydroxide [75]. Ti;C,-MXene with surface terminations of -OH

(Ti;C,(OH),) was converted to TiO, under heating treatment, and
then TiO, was converted into titanate after reacting with molten
KOH, which can be removed after acid washing. While the
internal carbon atoms in Ti;C,-MXene migrate outward during
the heating treatment, leaving disordered carbon layers between
the MXene layers to form the Ti,C,/C hybrid. The residual
disordered carbon in the Ti;C,/C heterostructures accelerates the
charge transfer kinetics and provides additional deposition sites
for Li,S, endowing the obtained S cathode with ultrahigh initial
discharge capacity (1668 mAh-g") at 0.1 C. In order to further
enhance the chemisorption and catalytic conversion of LiPSs, the
oxygen-vacancy-rich Ti,O,,;, quantum dots (QDs) in-situ
uniformly distributed on porous carbon nanosheets (OV-
T,QDs@PCN) were prepared [76]. Ti;C, T, was treated with H,O,
dilution for a short time and then quenched in liquid nitrogen to
oxidize Ti atoms into TiO, particles within the size of quantum
dots, while the 2D carbon layer was retained due to the mild
oxidation. Then after carbothermal reduction in H,/Ar
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atmosphere, oxygen in the lattice was detached, leaving the oxygen
vacancy site, thus obtaining the OV-T,QDs@PCN. The
introduction of oxygen vacancies shortens the binding bond
length between Li,S, and T,QDs, reducing the adsorption energy
to further promote the immobilization and conversion of LiPSs
(Fig.6(a)). That is to say, the OV-T,QDs act as chemical
adsorption and catalytic centers to capture and reversibly
transform the LiPSs. While the porous carbon sheets provide
physical confinement for LiPSs and serve as substrates to prevent
T,QDs aggregation (Fig. 6(b)). Strikingly, by the aid of in-situ
Raman, the working principle of sulfur cathode was changed and
catalyzed by the OV-T,QDs, displaying the reaction path from
“Se>87 8787 to “Sg3SF + S,07387 + SO>S
Integrating the “catalysis, constraint and electroconductibility”
into one design makes the fabricated cells display a superb long-
term cycling stability with a sulfur loading of 2.2 mg-cm™ under an
E/S ratio of 10 pL-mg™ (88% capacity retention over 1000 cycles at
20).

Apart from the 2D carbon materials, carbon nanosphere, as a
zero-dimensional (0D) carbon material, has also been combined
with MXenes to provide sufficient space to loading sulfur and
accommodate volume expansion during cycles. For example,
mesoporous carbon nanospheres (MCS-SiO,) firmly embedded in
the interlayer space of MXene nanosheets were prepared by the
strategies of self-assembly and high-temperature pyrolysis (Fig.
6(c)) [77]. During the hybrid composite, the MCS-SiO, captures
the polysulfides via physical confinement and alleviates the
volume expansion and collapse. While the MXene nanosheets
with terminal functional groups accelerate the conversions of
LiPSs into LiS, which are furtherly proved by in-situ X-ray
diffraction (XRD) and in-situ Raman (Fig. 6(d)). Taking the in-situ
XRD as an example, the peak intensity of crystallized sulfur
gradually decreases and finally transforms into Li,S in the

discharge process, while the characteristic peak of Sy comes back
in final charging stage (1.9 V). Accordingly, the synergistic effect
of the MCS-SiO, and MXene can effectively avoid the shuttle
effect, guarantee the uniform deposition of Li,S and accelerate the
diffusion of lithium-ion. Therefore, the formed sulfur cathode
remained at 600 mAh-g' after cycled 1000 cyclesat 1 C.

3.2 MXene-metal compounds heterostructures

Generally, to prepare high loading sulfur cathode, carbon-based
composites tend to exhibit thicker structures while the metal-
based matrix always possesses higher tap densities, which can
further increase the volume energy density of Li-S batteries
[117-119]. Combining metal compounds with MXene can
enhance the chemical adsorption capability towards polysulfides
and inhibit the stacking of MXene nanosheets, raising increasing
attentions. At the earliest, metal oxide-MXene heterostructure
served as bidirectional catalysts for liquid-solid sulfur/sulfide
redox conversions. In 2019, a TiO,-MXene heterostructure was
made by partly oxidizing the pristine Ti,C,T, nanosheets into
TiO, via hydrothermal treatment [81]. A coating layer with a
thickness of less than 5 pm was achieved by mixing the TiO,-
MXene heterostructure with graphene. Thanks to the strong
adsorption of TiO, to anchor polysulfides, the oxygen-sealed
MXene exerts high catalytic activity to polysulfide conversions,
ensuring smooth and rapid diffusion of Li ions. Thus, the
fabricated cathode with TiO,-MXene heterostructure catalyst
cycled for 1000 cycles at 2 C with a capacity decay rate as low as
0.028% per cycle. Besides, a series of MO,-MXene (M: Ti, V, and
Nb) heterostructures were synthesized by one-step hydrothermal
method involving etching and oxidation simultaneously (Fig. 7(a))
[82]. Despite the generation of VO, will partially reduce to the
high conductive V,C, the VO,-V,C heterostructure still maintains
the metallic properties as simulated in the density of states (DOS).



iy~ ! w b7 B Ti,0, Ti,O, Ti,C,0, Ti,C,(OH),
B ey ‘_ 2
ARG L | - O o
. f, . f, Discharge
Vs Yy (s W, N .
Ti,04 (100) ThC,0,(001)  ThC;(OH), (001) | & yat " N
o -5 PRIPASEM %
fe iy (e e C i N Charge
- Sy ® H i .
si;% A X oL |Ww-4 e
WARK JZ‘ L3 :
22 | v ovs
P e : 1,0 TO; e¢ oL ® LPss
OV-Ti,O5 (100) OV-Ti,C,0, (001) ov & N v v fﬁ’ 2 m i
(C}, N AN P
v " v | . \
- B S B S 354 | fi’:” s S Ry
t " 2 LA Oterminated 3
LA ST Vi BOI  Joce & :jj)ﬁf J,J,Jgf%"'ﬁn _,}5‘. \;ﬁ
245v| EREEERERE il 5
il e vsvl, SR Y0 wm o9
'y .2nv§ | gh“'_l’mﬂ:“ma TR
1200} N 200v|§ | Chesshoard vs. MXene
0 L 205v|2 | Wmm Omsao, SO% JUUS, JUS, JJUS oH 90
21600 A 175V
£ 160 V
F 500l s 180V (ol Nommehiiseteded s st
’ sy [ & e
b - 230V T s e £3 m,,;.,..,\.
2400 LK L 235V (B ¢ I ——— Ei i
R i i 240v(2 § 2 s Er
= LA M ; 2s0v|© 3 i RESL:
i i 280V = i 205V
3200%, JL'JL : ——— : ? ]
200 400 600 800 1000 1200

Voltage (V) Raman shift (cm™)

42 30 25 20
Valiage (V)

B’ 4 3

200)

36 150 200 250 300 350 400 450 500

Raman shift (cm™)

Figure 6 (a) Theoretical and experimental characterization of LiPSs chemisorption and conversion. (b) Schematic illustration of discharging/charging process of OV-
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Meanwhile, the free energy barriers of sulfur species on the VO,-
V,C heterostructure were comprehensively investigated, which is
better than the other two counterparts (TiO,-Ti;C, and NbO,-
Nb,C), and is more thermodynamically conducive to the
reduction from Sg to Li,S (Fig. 7(b)). Experimental results revealed
that the prepared VO,-V,C/S cathode outperformed the other
two, exhibiting a low capacity attenuation rate of 0.027% per cycle
after 1500 cycles at 2 C. Moreover, the fast ionic transport tunnel
was constructed by 3D printed electrode and the high sulfur
loadings of 3D printing electrodes (3DPE) were achieved by
varying the printing layer numbers. Compared to the long ion
transportation paths in normal coated electrode, the 3D printed
VO,-V,C/S electrode exhibited superior cycling stability
(800 mAh-g" after cycling for 100 times at 1 C) due to its
hierarchical porous and conductive framework (Fig. 7(c)).
Different from ordinary VO,, VO,(p) (paramontroseite-VO,) is
viewed as a promising room-temperature conductivity material
among all VO, crystals [120, 121]. Via hydrothermal treatment of
NaVO, and V,C MXene, VO,(p) nanorod clusters grow vertically
on the surface of V,C-MXene nanosheets [83]. The grid structure
composed of VO,(p) nanorod clusters can support high sulfur
loading and provide a larger specific surface area to accelerate the
electrochemical process. In addition, the theoretical calculation
proves that VO,(p) is a direct bandgap semiconductor, so the
VO,(p)-V,C heterostructure composed of semiconductor and
conductor produces different band dispersion near the Fermi level
(Fig. 7(d)), which affects the band structure and electron transport
at the interface. Furthermore, it is demonstrated that the reaction
kinetics from Li,S, to Li,S is the rate-determining step in the
whole redox reaction, which has the largest reaction energy
barrier. The simulation results show that the sulfur species on
VO,(p)-V,C heterostructure has lower reaction barriers (Fig. 7(e)),
accelerating the conversion from LiPSs to Li,S, especially for Li,S,
to Li,S. Thus, the VO,(p)-V,C/S cathode retained a discharge
capacity of 855 mAh-g™ after 500 cycles at 2 C, corresponding to a

capacity retention rate of 69.1%. Compared with the metal oxides,
metal sulfides have higher electrical conductivity and catalytic
properties than metal oxides, accelerating their further
combination with MXene. Li et al. reported the dual-conductive
1T-VS,-MXene heterostructure as a bidirectional electrocatalyst by
one-step hydrothermal reaction (Fig. 8(a)) [85].

Compared with 2H phase VS, semiconductor materials, the 1T
metallic phase VS, nanosheet possesses excellent hydrophilicity,
superior electronic conductivity and abundant electrochemical
reaction sites [122-124]. Combined with MXene, the unoccupied
conduction band of 1T-VS, is occupied and shifted to the Fermi
level, resulting in superior conductivity and faster lateral charge
transfer. The designed heterostructure combines the merits of
anchoring ability and catalytic conversion (1T-VS,) for LiPSs with
good nucleation/decomposition (MXene) of Li,S to accelerate the
bidirectional sulfur redox kinetics, which is further proved by
adsorption energies between LiPSs and 1T-VS,-MXene, to achieve
balanced adsorption-catalytic and conversion-nucleation for sulfur
species.  Similarly, a  multi-dimensional ~MXene@CoS,
heterostructure as a separator coating by electrostatic interaction
and hydrothermal vulcanization was prepared by Peng et al. (Fig.
8(b)) [86]. The CoS, facilitated the electron transfer to the Ti,C,-
MXene surface, reducing the valence state of Ti, leading to the
change of charge distribution center and the density of states. The
transmission electron microscopy (TEM) image displayed an
obvious crystalline boundary of the two materials (Fig. 8(c)). As
shown in Figs. 8(d) and 8(e), the presence of CoS, can effectively
reduce the reaction barrier from LiPSs to Li,S and lower the
energy barrier of Li,S decomposition. For example, the
decomposition barrier was significantly reduced from 0.46 to
0.30 eV with the aid of CoS,. Thus, the battery with MXene@CoS,
catalyst finally achieved a major breakthrough in rate performance
at an ultra-high current density of as high as 20 C and long cycle
performance up to 1000 cycles at 7 C with the attenuation rate of
0.033%.
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Another CoS,-MXene bifunctional heterocatalytic structure was
prepared by molten salt etching and sulfidation (Fig 9(a)) [87]. In
the CoS,-MXene heterostructure, the nitrogen doping sites and
CoS, nanoparticles exert the adsorption affinity with LiPSs, while
the heterogeneous CoS,-MXene interface accelerates the
decomposition process of insulated Li,S. By taking advantage of
the synergistic effect of adsorption and catalytic conversion, the Li-
S batteries with N-CoS,-MXene modified separator achieved an
ultra-high initial capacity and excellent cycling stability.

Due to relatively similar electronegativity and ionic radius of S
and Se, transition metal selenides exhibit similar crystal structures
and polarity characteristics compared to metal sulfides [125].
However, the electronic conductivity of transition metal selenides
is much higher than that of transition metal sulfides, because Se is
characterized by electrical conductivities (1 x 10° S'm™), many
orders of magnitude higher than that of S (5 x 10* Sm)
[126-128]. Thus, Co-MoSe,/MXene heterostructure as a dual-
functional catalyst was synthesized by doping cationic cobalt into
MoSe, via hybridization with MXene under hydrothermal
conditions (Fig. 9(b)) [88]. Research findings confirm that the
introduction of Co atom forms a shorter Co-Se bond (Figs.
9(c)-9(e)), which can promote the Mo 3d band to approach the
Fermi level, adjusting the electronic structure and coordination
environment of MoSe,, as well as increasing the disorder and

defects. Thanks to the unique advantages, the Co-MoSe,/MXene
heterostructure provides more catalytic active sites for nucleation
and dissolution of Li,S, greatly improving the intrinsic catalytic
activity and conductivity of MoSe, as simulated and tested in Figs.
9(f) and 9(g) [129]. These merits endowed the Co-MoSe,@S
cathode with a high reversible capacity of 1454 mAh-g™ under a
sulfur loading of 4.8 mg:cm™ and an E/S ratio of 3.5 pL-mg™ at
0.1C.

Cobalt tellurium also has received growing attention recently
due to its more metallic properties and better stability during the
electrochemical ~ processes than  corresponding  selenides
[130-132]. Chen’s group reported 1D CoTe nanorods/2D MXene
heterogeneous bifunctional electrocatalysts for high operating
temperature Li-S batteries (Fig. 9(h)) [89]. The Te nanorods were
grown on MXene nanosheets by N,H, reduction and
subsequently converted to CoTe-MXene heterostructures under
solvothermal conditions. This robust 1D/2D architecture design
with multiple components significantly accelerates the nucleation
and decomposition of Li,S and improves the PP separator’s heat
resistance after composite coating. Compared with the other three
separators, the modified separator can withstand high temperature
rise (90 °C) without any deformation (Fig. 9(i)). Under high
operating temperature environment (60 °C), the battery with
CoTe-Mxene modified separator retained a high areal capacity of
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4.0 mAh-cm™ after 50 cycles under lean electrolyte (4 pL-mg™)
(Fig. 9()))-

3.3 MXene-organic framework heterostructures

In recent years, covalent organic frameworks (COFs) have
attracted much attention due to their regular structural periodicity,
inherent porosity, and rich functional ligands [133, 134]. However,
the electrical conductivity of COFs is far from the demand applied
in batteries, which can be effectively compensated by combining
with conductive MXene [135]. Yang’s group reported a 2D-2D
heterostructures consisting of in-situ grown layered porous COF
on the Ti;C,-MXene nanosheets (Fig. 10(a)) [91]. This
heterostructure delivers a surface area of 318 m*g" and provides
large amounts of micropores and mesopores to load sulfur and
tolerate the volumetric changes. Theoretical calculation and X-ray
absorption near-edge structure (XANES) show that Ti;C, MXene
nanosheets (TNS) has stronger adsorption energy for Li,Sq
through Ti-S bonds, while covalent triazine framework (CTF) has
strong adsorption energy for Li,S, through Li-N bonds (Figs.
10(b)-10(e)). Besides, a strong Ti-N bond is formed between the
CTF and TNS, which induces interfacial electron transfer and
interfacial mechanics. The ordered pore structure and the
lithiophilic site of triazine ring N in COF, coupled with the
sulfurophilic sites in Ti;C,, make S@CTF/TNS cathode display an
excellent cycling performance. With a high sulfur content of 76%,
the cathode achieved an initial capacity of 1441 mAh-g™ at 0.2 C
and retained a low capacity decay rate of 0.014% per cycle at 1 C.
Another guanidine ion-covalent organic nanosheet (iCON)
uniformly distributed on the surface of Ti;C,-MXene nanosheet
was prepared by electrostatic and hydrogen bonding (Fig. 10(f))
[92]. The Schiff-bases condensation reaction between guanidine
and phloroglucinol results in the formation of tremella-like
Ti;C,@iCON heterostructure. The positively charged guanidine
unit captures the negatively charged polysulfides by electrostatic
adsorption, so as to inhibit the LiPSs migration to Li anode.

Besides, the Ti;C,-MXene nanosheet accelerates the
transformation of polysulfides and brings about the uniform
nucleation/deposition of Li,S. As a result, the synergistic effect of
Ti;C,@iCON-PP made the battery maintain a high capacity of
1186 mAh-g™ after 200 cycles at 0.1 C.

Metal-organic frameworks (MOFs), another kind of novel
organic porous framework materials, have also been widely
studied due to their large specific surface area, high porosity, pore
size controllability, opened metal center and heteroatomic doping
sites [136-138]. As reported, 3D layered Zr-MOF/Ti,C,T,
nanosheets were prepared through an in-situ solvothermal
method and electrostatic self-assembly [93]. The Zr-MOF with the
shape of polyhedron locates in the interlayer of Ti;C,T,-MXene
nanosheet, which effectively inhibits the stacking of MXene
nanosheets and fully exposes the surface active sites of MXene.
During the discharging/charging process, the Zr-MOF interacts
with LiPSs by forming Li-N and Zr-S bonds to inhibit the loss of
active sulfur species. Besides, the unique 3D Zr-MOF/Ti,C,T,
heterostructure possesses a large specific surface area of
911.5 m*g™ and a pore volume of 0.36 cm’g™, which is beneficial
to store more intermediate active materials and offer sufficient
electrochemical reaction active sites.

Compared with the pristine MOF-based heterostructure
materials, the derivatives from MOF/MXene heterostructure
usually have a richer porous structure and heteroatom-doped
composition, which is conducive to achieving better stability and
electrochemical performance. For example, Li et al. reported a
nitrogen-doped porous carbon modified MXene heterostructure
(N-T1;C,/C) by simple heating treatment under reductive 10% H,
atmosphere and acid washing (Fig. 11(a)) [94]. Evenly distributed
nitrogen heteroatoms as preferential lithium-ion transfer sites
effectively promote the uniform diffusion of lithium-ion flux. The
resultant battery with N-Ti;C,/C coated separator maintains a
high and stable specific capacity (an areal capacity of 6.3 mAh-cm™
after 50 cycles at 0.1 C) when the sulfur loading is over
10 mgcm™ Similarly, a spongy shaped MXene-based
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heterostructure with Co/N co-doped porous carbon nanosheets
(MCoNPCNSs) was obtained (Figs. 11(b) and 11(c)) [95]. Due to

sites and adequate room to adsorb LiPSs and accommodate sulfur.
Besides, the Co/N co-doping efficiently enhances the adsorption

the catalytic graphitization of Co during calcination, 3D carbon
nanocages are formed to encapsulate the Co, avoiding the etching
of Co by HCl when removing Zn. The resultant MXene-based
heterostructure possesses abundant microporous and mesoporous
structures with a specific surface area up to 726.6 m*g™ and a pore
volume up to 0.71 cm™g™, which confers amounts of electroactive

ability of polysulfides and promotes the kinetics of sulfur redox
conversion,  contributing  to  excellent  electrochemical
performances.

The low temperature phosphating of Ti;C,/ZIF-67 was selected
to realize the typical sandwiched-like structure of CoP@MXene
heterostructure (Fig. 11(d)) [96]. Ti;C,-MXene supports a
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conductive substrate while CoP grown in the interlamination of
MXene nanosheets exerts the catalytic effect on polysulfide
intermediates. Consequently, the unique structure of MOF-
derived CoP@MXene heterostructure can be used as an efficient
bifunctional ~catalyst to achieve stable electrochemical
performance. Similarly, a 0D-2D (CoZn-Se@N-MXene)
heterostructure was synthesized by in-situ selenization of the self-
assembled CoZn-MOF on the MXene nanosheet (Figs.
11(e)-11(g)) [97]. As a catalytic substrate, Ti,C,-MXene
nanosheets ensure rapid electron transportation and prevent the
aggregation of MOF-derived selenides. The CoZn-Se@N-MXene
not only preserves the 2D backbone with rich N heteroatoms on
the surface but also provides unique CoZn-Se heterostructures
with tunable electronic properties, resulting in hierarchical micro-
meso-macropores (Fig. 11(h)). The unique double
lithiophilic—sulfiphilic binding sites (Co-S and Ti-S, Li-Se, and
Li-N) effectively capture and catalyze the conversion of LiPSs. As
exhibited in Fig. 11(i), the CoZn-Se@N-MXene heterostructure
can significantly reduce the energy barrier of Li,S decomposition,
which also confirms its inherent ability to facilitate the sulfide
oxidation reaction process. Attributed to the synergistic effect
provided by CoZn-Se@N-MXene heterostructure, the obtained
cathode displayed remarkable cycling performance of lasting 2000
cyclesat2 C.

34 MXene-polymer heterostructures

Polymers are famous for their rich abundance, numerous
molecular structures and definable functional groups. Specifically,
polymers with rich functional groups and tunable topologies are

beneficial to capture LiPSs through strong covalent bonds. In
addition, the flexible framework of the polymer can satisfy high
sulfur content and alleviate the volume change of sulfur cathode
during the charging/discharging process. For example, the
functional separator by vacuum filtration of the dispersion of
Ti;C,T, and Nafion was reported by Huang et al. (Fig. 12(a)) [99].

As a result, MXene nanosheet orderly stacks during the filtration
process with the help of Nafion binder. Furthermore, the uniform
interlayer embedding of Nafion into MXene serves as a cation
permselective role—promoting the transport of Li", restricting the
migration of LiPSs to anode through electrostatic repulsion. As
mentioned above, the lamellar Nafion-MXene integrates “cationic
selectivity, physical constraint and LiPSs reutilization” all in one,
which exhibits outstanding electrochemical properties. Another
2D-2D sandwich-like structured sulfur host was successfully
prepared by in-situ polymerizing a conjugated microporous
polymer on bromophenyl functionalized MXene nanosheets
(CMP-M, Figs. 12(b) and 12(c)) [100]. Brominated MXene acts as
a template in the polymerization reaction, making the CMP-M
appear in a flake shape without aggregation (Figs. 12(d) and
12(e)). The obtained CMP-M heterostructure features a sandwich
structure consisting of a conductive inner layer (MXene) and two
porous outer layers (CMP). On the other hand, heteroatoms in the
triazine and benzothiophene units of CMP endow it with rich
chemisorption sites to capture LiPSs. Based on the above
synergistic effects, the S@CMP-M cathode delivered outstanding
electrochemical stability including a high specific capacity of
1402 mAh-g* at 0.1 C and a low capacity decay rate of 0.025% per
cycleat2 C.
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3.5 MXene-single atoms (SAs) heterostructures

SAs are endowed with high exposure active centers and maximum
atomic utilization, which can be served as centers of anchoring
and electrocatalytic towards LiPSs [139-142]. However, single
atoms easily aggregate into nanoclusters because of the high
surface energy and thermodynamic instability [143-145]. Loading
SAs on defect-rich MXene by strong bonding can effectively solve
the agglomeration problem, maximizing the catalytic ability. Yang
et al. introduced the single atomic Zn onto the Ti;C,-MXene
surface by Lewis acid molten salt method and mixed it with sulfur
spheres in an aqueous solution to obtain SA-Zn-MXene coated
sulfur (S@SA-Zn-MXene) [101]. The high-angle annular dark-
field scanning transmission electron microscopy (HAADF-STEM)
image in Fig. 13(a) demonstrated the presence of Zn atoms highly
dispersed on the Ti;C,-MXene nanosheet as circled. The SA-Zn-
MXene layer with abundant single-atom active centers not only
has good affinity with polysulfides, but also can significantly
reduce the conversion free energy from Li,S, to Li,S, consequently
catalyzing the conversions of polysulfides and accelerating the rate
of redox reaction (Figs. 13(b) and 13(c)). In addition, the injection
of atomic Zn widens the DOS around the Fermi level, causing the
increase of the valence band level, which favors the excitation of
electrons in SA-Zn-MXene (Fig. 13(d)). Furthermore, evenly
dispersed Zn single atoms can promote the nucleation kinetics of
Li,S,/Li,S on the surface of MXene. Different from the traditional
melt-diffusion method, the SA-Zn-MXene wrapped sulfur spheres
were obtained by aqueous mixing via the strong interaction
between SA-Zn-MXene and sulfur (Figs. 13(e) and 13(f)).
Consequently, the S@SA-Zn-MXene cathode performed a low
overpotential (~ 23 mV), a high initial capacity (1136 mAh-g* at
0.2 C), an excellent rate capacity (640 mAh-g" at 6 C) and a stable
capacity with an ultralow retention rate of 80% after 200 cycles at
4C.

3.6 High-entropy MXenes

In recent years, high-entropy metal compounds, a special kind of
heterostructure, have attracted significant attention in the catalytic
field due to their unique electronic structures and tunable
chemical compositions. High-entropy metal compounds are solid-
soluble from five or more metallic elements with similar atomic
ratios, which not only make them inherit the advantages of
various components but also endow them with unique properties
such as lattice distortion effect, ‘cocktail’ effect, and slow diffusion
effect. In addition, the high-entropy metal compounds have highly
exposed atomic environments and abundant edge active sites,
which can provide high electrocatalytic activity to drive the sulfur
redox reaction. Inspired by this, Yang et al. innovatively
synthesized the high-entropy carbonitride MAX phase by
metallurgical treatment of the medium entropy MAX phase with
other MAX phases, and further etched it in the LiF/HCI solution
to obtain the high-entropy carbonitride MXene (HE CN-MXene)
[102]. As shown in Fig 13(g), the transition metal atoms of
different sizes are randomly arranged and uniformly distributed in
the atomic layer. Due to the lattice distortions caused by the atom
difference, strong mechanical strain is created both in e,, and e,,
directions (Figs. 13(h) and 13(i)). Benefiting from the strong
mechanical strain and rich M-N bonds, the high-entropy
carbonitride MXene exhibited significantly improved adsorption
and catalytic ability towards polysulfides for high performance.

4 MXene-based heterostructures for dendrite
free lithium anode

The high-capacity lithium metal anode suffers from the crack of

solid electrolyte interphase and the dendrite formation. In order to
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overcome the dendrite growth problem of lithium anodes, several
strategies have been proposed, including preparing a stable 3D
conductive host for lithium to promote uniform lithium
deposition with reducing the deposition current density;
constructing stable and uniform SEI films via in-situ growth on
liquid electrolyte additives or artificially coating, exploring
suitable substrates to guide the nucleation and growth of
lithium [146-151].

Acting as the lithium host, MXene shows the merits in the
following aspects: (i) high conductivity and fast ionic diffusion
coefficient can achieve fast electrochemical reaction during charge
and discharge process to inhibit the dendrite growth; (ii) feasible
structure designs with other materials into 3D porous hybrid
materials can alleviate the volume expansion problem [152]; (iii)
the functional groups on the surface of MXene have a certain
degree of lithiophilicity, inducing uniform distribution of lithium
ion flux and achieving high lithium loading. As mentioned above,
MXene often faces a serious re-stacking problem during the
preparation process, which greatly affects its performance and
wide application [153,154]. Therefore, assembling MXene with
other materials can also make a difference in the protection of Li
anode [155]. Considering these issues, the integrations of Ti;C,T\-
MXene as a 3D host have been widely used to inhibit the dendrite
growth by obtaining lower local current densities [156]. A flexible
Ti;C,T,-MXene@cellulose nanofiber paper was fabricated by spin
steaming technique, serving as a lithium host (Fig. 14(a)) [153].

Firstly, the MXene nanosheets formed lamellar micelles with
cellulose nanofibers through hydrogen bonding. Then, under the
action of roller granulation, the lamellar micelles formed spherical
micelles layer by layer, resulting in nanofiber microspheres
between MXene@cellulose. The interlocks between MXene
nanosheets and nanofiber microspheres not only greatly improved
the toughness and flexibility of films, but also prevent the re-
accumulation of MXene. Besides, MXene nanosheets with
functional groups showed good affinity to Li, where the -OH and
—-COOH groups reacted with Li, while the -F groups bound with
Li by physical absorption action. MXene with —F groups exhibited
stronger interactions between F and Li atoms, displaying higher
binding energy (-2.70 eV) than pure MXene (-2.47 eV). With the
above merits, the obtained MXene@cellulose/Li anode achieved
uniform Li nucleation and growth with an overpotential of 60 mV
at 1 mA-cm™ over 250 cycles and a cycle time of over 1300 h at
0.5 mA-cm™. Another independent 3D structured MXene/GO
(MGO) aerogel for lithium deposition via freeze-drying was
fabricated (Figs. 14(b) and 14(c)) [157]. The 3D MGO framework
features a high specific surface area (259 m*g”), light weight
(39 mgcem™) and interconnected pore structure, which can
achieve a high lithium loading (92%) and mitigate large lithium
volume fluctuations. In addition, the lithiophilicity sites in MXene
nanosheets provide nucleation sites for lithium and induce
uniform lithium growth (Figs. 14(d) and 14(e)). The resultant
MGO-based Li anode assembled Li-S battery achieved high
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cycling stability (a long lifespan up to 2700 h at a high capacity of
5 mAh-cm™).

Different from freeze-drying, hydrothermal treatment can be
used to prepare a 3D porous MXene/rGO aerogel [152]. More
abundant nucleation centers and good ion transport paths are
created with the increased Ti;C, content. As a result, the
MXene/rGO aerogel with 3D porous structure and metal
conductivity achieved fast Li-ion transport to ensure uniform
plating/stripping of dendrite-free Li metal anode (Fig. 15(a)).
However, these 3D open channels may also worsen the reaction of
LiPSs with Li anodes. Thus, Yang et al. prepared a 2D layered
structure of rGO/Ti;C,T, composite by vacuum filtration method
to block the LiPSs and protect Li anode (Fig. 15(b)) [158]. The
interface between Ti;C,T, and rGO has a strong adsorption effect
on Li, which can guide Li nucleation/deposition uniformly and
inhibit the LiPSs shutting to Li anode. The composited Li anode
exhibited dendrite-free Li deposition and promoted highly
reversible Li electroplating/stripping behaviors. As a result, the
resultant composited Li anode exhibited superb cyclic stability
over 1000 h at an ultra-high rate (10 mA-cm™) and a high area
capacity (3 mAh-cm™). Another typical 2D/2D lithiophilic layer is
designed as the artificial SEI for lithium anode by Gong et al. (Fig.
15(c)) [159]. The heterostructure was self-assembled in the
solution of MXene and dicyandiamide by hydrogen bond and
subsequently annealed to in-situ form the g-C;N, coating on
MXene. They further analyzed the SEI composition by X-ray

photoelectron spectroscopy (XPS) with argon ion sputtering (Fig.
15(d)). With the increase of argon sputtering time, Li;N and LiF
became the main components of the SEI inner layer. The
formation of the Li-N bond was mainly attributed to the strong
interaction between Li and the N element in g-C;N,. These results
proved that g-C;N, participated in SEI formation, which inhibited
the decomposition of electrolyte and regulated the uniformity of
Li plating/stripping. The amorphous g-C;N, makes the artificial
SEI film highly homogenous to protect Li anode from continuous
corrosion; abundant nitrogen species in g-C;N, regulate the
uniform lithium-ion flux on the electrode and reduce the
nucleation overpotential, while MXene provides sufficient
lithiophilic sites for Li nucleation. Consequently, the battery with
MXene/g-C;N,@Li anode exhibited a capacity retention of 85.5%
after 320 cycles at 0.5 C.

Another 2D-2D MXene@COF heterostructure was reported as
the Li host [160]. The COF layer grew on aminated MXene
nanosheets by Schiff base condensation under the action of an
acetic acid catalyst. The growing COF layer provided not only
abundant nanochannels, but also constructed layered porous
scaffolds by inhibiting the re-accumulation of MXene. As a result,
the Li* migration barrier (0.36 eV) along the lithiated COF
channels was lower than MXene (0.58 eV), which can promote
fast Li* migration (Figs. 15(e) and 15(f)). The full battery
assembled with MXene@COF/Li anode achieved dendrite-free
and fast charging, which had a capacity of 780 mAh-g* after 150
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cycles at 0.5 C. Besides, Feng et al. also reported the successful
achievement of a stable, dendrite-free Li metal anode by designing
a flexible, self-supporting MXene/COF backbone for Li metal,
demonstrating great application prospects [161].

Besides, metal atoms (Au, Ag, Zn) dispersed in conductive
substrates can construct a lithophilic site and maximize atomic
efficiency, which has been proved to be highly efficient nucleating
agents and a promising strategy to produce dendrite-free lithium
anodes [162-167]. Therefore, the combination of MXene with
metal atoms is expected to control lithium plating behaviors. A
large number of zinc atoms were substituted for Ti by the reaction
of MAX with Lewis acid molten salt of ZnCl, to obtain Zn-
MXene, followed by simple rolling spraying to get uniform Zn-
MXene nanosheet films [168]. Due to the rich zinc atoms in the
MXene layer, metallic lithium tends to uniformly nucleate on the
surface of the Zn-MXene layer and grow vertically along the
nucleation position to form lithium spheres. Besides, Li will grow
at the edge and eventually form bowl-shaped lithium because of
the strong electric field at the edge (Fig. 15(g)). As a result,
dendrite-free Li anode with low overpotential (11.3 mV) and long
cycle life (1200 h with an areal capacity of 1 mAh-cm™) were
obtained.

In addition, high-entropy MXene also reveals great promise in
inducing Li nucleation and suppressing the growth of lithium
dendrites to catalyze the sulfur redox reaction. Yang et al
successfully prepared new high-entropy MXene nanosheets by
selectively  etching  high-entropy =~ MAX  phase  of
(Tiy5VysZr,sNby 5T, 5),AIC, where the five transition metal
atoms are homogeneously formed into an MX plate in the form of
solid solution phase [169]. Based on the entropy stabilization
principle, the obtained high-entropy MXene atomic layer
exhibited high stability and significant lattice distortion, which

resulted in reinforced mechanical strain (Figs. 15(h) and 15(1)).
Profiting from the strong mechanical strain and rich -F groups in
high-entropy MXene, the modified lithium anode delivered an
ultra-long cycling life (1 mAh-cm, 1200 h) and deep stripping-
plating behaviors (20 mAh-cm™, 500 h).

5 Summary and prospects

This review introduces and summarizes the recent advances in the
design and construction of MXene-based heterostructures in Li-S
batteries. Firstly, the potential of MXene and properties of MXene-
based heterostructures in Li-S batteries are analyzed. Then, the
functional mechanisms of the MXene-based heterostructures for
sulfur cathode and lithium anode are described in detail.
Specifically, MXene-based heterostructures are discussed by

categorizing recent studies into six main categories:
MXene/carbon  heterostructure, MXene/metal compounds
heterostructure, MXene/organic framework  material

heterostructure, MXene/polymer heterostructure, MXene/SA
heterostructure, and special high-entropy MXene heterostructure.
The intrinsic properties of MXene and synergistic effect of
heterostructure can be utilized best: the LiPSs shuttling is greatly
inhibited, and the utilization rate of sulfur is improved even under
high sulfur loading, thus obtaining high discharge capacity,
favorable rate performance, and cycle stability. By fully using
inherent properties and controllable surface chemistry of active
materials, heterostructure engineering shows great potential and
prospects, providing infinite possibilities for developing high-
performance Li-S batteries. After about 60 years of development,
Li-S batteries have made great strides in basic research on
electrocatalysts, especially in the past decade. However, some
problems need to be noticed and solved to promote its large-scale
commercial application in the future.



(i) Probing adsorption and conversion mechanisms of
MXene-based heterostructures in Li-S batteries by in-situ
tools

Li-S batteries’ charge and discharge intermediates are complex,
and detecting the interaction and influencing factors between
MXene-based heterostructures and intermediates is difficult.
Therefore, it is challenging to thoroughly understand the
mechanisms of the adsorption and catalytic transformation of
LiPSs by MXene-based heterostructures. It is also an important
research field to determine active species’ changes, structural
evolution, and catalytic mechanisms under reaction conditions by
in situ characterization techniques and theoretical calculations.

(ii) Developing and looking for new strategies to stabilize
MXene-based heterostructures

MXene is the largest 2D material family, with more than 100
stoichiometric phases. Only about 30 kinds of MXene materials
have been synthesized, and Ti;C,T, is the most studied in MXene,
which is easily oxidized when exposed to air and water. Therefore,
exploring new MXene species and heterostructures to achieve a
higher stability and electrochemical performance is also a
promising research field.

(iii) Binding information between MXenes and others
through simulation method

The heterostructure is similar to composite material in
composition, but special attention should be paid to the inherent
characteristics of the component block, such as band structure,
carrier density, and Fermi level difference; it should study their
influence on the electronic structure and electric field distribution
of the whole material as well Besides, some unique
microstructural factors of heterogeneous interfaces, such as the
location and size of heterogeneous interfaces, are still unknown to
ion transfer kinetics. An in-depth understanding of these
fundamental and structural properties can provide theoretical
guidance for constructing MXene-based high-performance
heterostructures.

(iv) The
heterostructure in large areal sulfur cathode

catalysis evaluation of MXene-based

The most reported MXene heterostructure is evaluated in coin-
cells, and excessive lithium metal is always used in the Li-S
batteries. The practical application of large-scale Li-S batteries
should consider more comprehensive factors, not only
constrained by the structure design of sulfur cathode, separator,
and lithium anode but also consider the electrochemical
performance in high sulfur content, low E/S ratio, limited lithium
content and different operating temperatures. In addition,
attentions must be paid to the materials synthesis adapted to large-
scale practical pouch cell production.

(v) More focuses of MXene-based heterostructures in
lithium anode and full Li-S batteries

The application of MXene-based heterostructures in lithium
anode at present is still in its early stage. In addition to being used
as the host of lithium metal, MXene-based heterostructure can
also be used to construct an artificial SEI layer. Combined with the
advantages of MXene and other materials, it can be integrated into
the artificial SEI layer to prevent contact between lithium metal
and polysulfides to reduce side reactions, inhibit the growth of
lithium dendrites on the surface and stabilize the lithium anode.
Besides, future researches should consider the positive and

negative electrode ratio of full batteries to obtain a higher energy
density. In view of the aforementioned challenges and
opportunities for improvement, there is still a lot of research value
in MXene-based heterostructure engineering. Thanks to the
functionality of MXene-based heterostructures, we believe it is a
promising strategy to realize high-performance Li-S batteries in
future practical applications.
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