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ABSTRACT Thermal Interface Materials (TIMs) are widely used in electronic packaging. Increasing power
density and limited assembly space pose high demands on thermal management. Large cooling surfaces
need to be covered efficiently. When joining the heatsink, previously dispensed TIM spreads over the
cooling surface. Recommendations on the dispense pattern exist only for simple surface geometries such
as rectangles. For more complex geometries, Computational Fluid Dynamics (CFD) simulations are used in
combinationwithmanual experiments.While CFD simulations offer a high accuracy, they involve simulation
experts and are rather expensive to set up.We propose a lightweight heuristic to model the spreading behavior
of TIM. We further speed up the calculation by training an Artificial Neural Network (ANN) on data from
this model. This offers rapid computation times and further supplies gradient information. This ANN can
not only be used to aid manual pattern design of TIM, but also enables an automated pattern optimization.
We compare this approach against the state-of-the-art and use real product samples for validation.

INDEX TERMS Deep learning, electronics packaging, flow behavior, thermal interface materials, thermal
management.

I. INTRODUCTION
Automotive industry is putting an increasing effort into
electric and autonomous vehicles. Demand for efficient and
reliable electronic components is rising accordingly. This is
valid for small Electronic Control Units (ECUs) used to con-
trol e.g. the engine, but also for power electronics components
such as inverters or chargers. Time-to-market tends to be
shorter and is a crucial factor for global competitiveness.
While power ratings increase, tight restrictions are imposed
on assembly space as well. Thus, the thermal performance is
a crucial factor in electronic packaging.

Thermal Interface Materials (TIMs) are widely utilized to
lower the thermal resistance between individual components
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and thus enable an efficient heat transfer. Typically, they are
applied onto a cooling surface with a dispensing machine.
An example of dispensed TIM is shown on the left-hand
side of Fig. 1. During the joining process of the heatsink,
TIM is compressed and spreads over the surface. The state
after compression is shown on the right-hand side of Fig. 1.
Design engineers determine the pattern, along which TIM is
dispensed. They need to consider multiple aspects. The most
evident is a high area coverage ratio of the cooling surface
with TIM after the joining process. Along with the high
heat conductivity of TIM, this results in the aforementioned
low thermal resistance. However, applying too large amounts
of TIM, with excess material flowing beyond the cooling
surface, leads to preventable material cost. This is especially
relevant in high-volume series production, where even a
small amount per part adds up to significant costs. Sensitive
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electronic components or product features such as screw
holes may be placed close to the cooling area. They are
regarded as taboo zones during the design process and may
not be covered by material.

A low coveragemay be caused by simply applying too little
TIM. Another cause for low coverage are air entrapments,
which develop during the joining process. Air within closed
contours such as circular shapes cannot escape while TIM is
being compressed. The formation of such voids depends on
the individual pattern shape and may not be easily recognized
in all cases. Furthermore, the design of a dispense pattern is
directly linked to the cycle time of the respective dispense
process.

Apart from the pattern, the design process itself needs
to be optimized as well. The design process is relevant for
the time-to-market and thus needs to be short. The cost of
human experts is also a relevant factor. Recommendations
regarding optimal patterns can help engineers during their
work. Specific guidelines exist for simple cooling area
geometries such as rectangles [1]. However especially for
larger and more complex surfaces, the dispense pattern needs
to be adjusted for each individual product.

To evaluate a given pattern, the respective compressed
state after joining needs to be known. It can be acquired
by simulating the flow behavior of TIM. Computational
Fluid Dynamics (CFD) simulations, carried out by highly
specialized experts, arewidely used.Modeling and evaluation
take time, but yield very accurate results. Besides simulations,
mechanical experiments are carried out with real product
samples. In an iterative fashion of trial-and-error, the
dispense patterns are optimized by development engineers.
After several trials, a dispense pattern is defined. However,
mechanical tolerances are prevalent in real products. When
joining parts together, tolerances from multiple parts add
up. The high accuracy of CFD simulations, which is
achieved with high efforts, needs to be weighed against
the variations of real products. A light-weight model
with a lower accuracy but faster setup and computation
times can fulfill the demands of dispense pattern design
better.

CFD simulations of this kind are computationally expen-
sive. Artificial Neural Networks (ANNs) can be trained on
data from simulation models. They can typically be executed
much faster. Since a rather high number of training samples is
needed, an automated simulation setup is typically necessary.

Furthermore, ANNs or otherMachine Learningmodels are
well suited to build Digital Twins, since they are generally
fit to be fine-tuned by using real-world data. They can
support many design and production processes, e.g. for pose
estimation from image data [2] or for quality monitoring in
resistance welding [3]. Digital Twins are considered to be a
significant enabler for Industry 4.0 initiatives [4].
In this work, we present two flow behavior models for

TIM. They can be used to support development engineers
both during manual dispense pattern design and by enabling
an automated dispense pattern optimization. The first flow

FIGURE 1. Material flow of Thermal Interface Material (TIM) during
joining the heatsink of an Electronic Control Unit (ECU). Left: state before
joining, right: state after joining.

behavior model is a light-weight heuristic. The second one is
an ANN. The heuristic can be used to analyze a large range of
different dispense patterns automatically. Thus, training data
can be generated for the ANN, which offers an even higher
computational speed.

The remainder of this paper is organized as follows.
Section II provides an overview over the state-of-the-art
methods, which are relevant for the dispense pattern design
process. In Section III, we give a detailed insight into our
light-weight heuristic. It further includes the extension with
an ANN and specific details on spatial resolution and the
training setup. The experiments, which we carry out to
validate both of our models, are described in Section IV.
Results in Section V include a study of the achieved
computation speed and the accuracy both on samples from the
laboratory and on a real product. Advantages and limitations
of the heuristic itself as well as the combination with an ANN
are discussed in Section VI.

II. RELATED WORK
Several works have highlighted that a high surface coverage
with TIM enhances thermal performance of an electronic
package. Ekpu et al. [5] set up a numeric simulation model
including a chip, a heatsink and a TIM layer between both.
They analyze the influence of TIM area coverage on thermal
resistance. They report a lower thermal resistance with higher
coverage percentages and recommend a coverage ratio of
at least 75%. They anticipate that their results will aid
design engineers. Kesarkar and Sardana [6] also set up
a numeric simulation model. Their model reproduces the
thermal management problem as found in an ECU, with a
TIM layer below a heat sink. They analyze different TIM
coverage percentages in various configurations and report a
better thermal performance for a higher TIM area coverage.
Gowda et al. [7] state that the negative effect of [. . . ] voids on
the thermal resistance of a TIM layer can be devastating.

CFD simulation is a powerful tool to support design
engineers during the design of dispense patterns. They have

VOLUME 12, 2024 17783



S. Baeuerle et al.: Rapid Flow Behavior Modeling of Thermal Interface Materials

been used in the past both to model thermal performance and
to model the flow of fluid materials. For example, Lee [8]
analyze both the heat conductance within a thermal package
and the heat transfer to ambient air and compare different
techniques to enhance heat dissipation. Comminal et al. [9]
use CFD simulations to model the flow of extruded material
in additive manufacturing. They study the extrusion and
deposition of highly viscous material with different settings
of parameters such as nozzle velocity or extrusion velocity.
This demonstrates the feasibility of using CFD simulations
to model the flow behavior of TIM materials.

CFD simulations require a definition of the material
behavior, which may be complex. Thermal paste is typically
made up of two components, e.g. a silicone grease filled
with aluminum oxide particles. In such a case, the viscosity
may change both with shear stress and filler ratio [10]. The
rheology of TIM has further been studied (see e.g. [11],
[12]). CFD simulations typically aim to model both complex
material behavior and geometries accurately.

Gu et al. [13] create training data from a Finite Ele-
ment (FE) model. They modify the distribution of two
materials within a composite material structure and solve
for mechanical properties such as toughness and strength.
They train both a linear model and a Convolutional Neural
Network (CNN) on this data and speed up computation times
by a factor of 250, while maintaining sufficient accuracy.
Koeppe et al. [14] also train an ANN on data from an FE
model. They calculate the mechanical stress for a lattice
structure at given load conditions. The computation time
for a single FE simulation is approximately 5-10 hours,
whereas the ANN takes less than one second. They use
85 training examples to train an ANN, which has 16 output
features.

A major limitation of all proposed approaches is the
efficient generation of a training dataset that is sufficient
for the design of complex ANNs. Those prerequisites are
difficult to fulfill with experiments or state-of-the-art numeric
simulation models. Therefore, we use our proposed heuristic
flow behavior model to create a sufficiently high number of
training samples.

III. SIMULATION METHODS
In this section, we give an overview of our approach as
depicted in Fig. 2. First, we describe the in- and output data
representation and the 2D discretization, which is used as
a pre-processing step. We then take a closer look at each
of our proposed flow behavior models: a heuristic and an
ANN trained on data from the heuristic. Specific setup details
regarding e.g. dataset generation and training procedure are
outlined in Section IV.

A. DATA REPRESENTATION AND 2D DISCRETIZATION
We define the dispense pattern, which is the path along which
TIM is applied, using a polygonal chain. In the simplest
case, this equals a single line with five parameters: both

FIGURE 2. Overview of our approach for a single line of TIM. Inputs are
the start point coordinate, feed rate and end point coordinate. The TIM
distribution is spatially discretized before and after the compression step.

FIGURE 3. Visual representation of the 2D discretization for a line
segment.

endpoints of this line have continuous x- and y-coordinates.
The fifth parameter is the feed rate of TIM along the line
segment. For longer patterns, we iteratively append another
point and a respective feed rate. The input parameters are
shown on the left-hand side of Fig. 2. The state after
dispensing is represented as a two-dimensional grid. The
number on each grid cell represents the amount of TIM in
each cell. The previously introduced input parameterization
is transferred onto this two-dimensional representation. This
process is visualized as 2D discretization in Fig. 2. We apply
Unweighted Area Sampling [15], which is a technique in
the field of computer graphics to draw anti-aliased lines.
It works as follows in our case: each segment of the pattern is
assigned a width of one, i.e. all lines become rectangles. The
intersection of each grid cell with each rectangle is calculated.
The amount, which is specified via the feed rate for each
line segment, is assigned to each grid cell proportional to
this intersection. Fig. 3 contains a visual depiction of how
the amount for each grid cell is calculated. This discretized
state of the spatial TIM distribution after dispensing serves
as input to a flow behavior model, which outputs the state
after compression. This output is again a spatial distribution
of TIM and is discretized in the same way. An example is
shown on the right-hand side of Fig. 2. The flow behavior
model can be either the heuristic or an ANN. Both take
the dispensed state as input and output the compressed
state.

B. HEURISTIC
We now look into the details of our proposed heuristic.

Algorithm 1 contains the respective pseudocode. Fig. 4
visualizes how the material spreads to neighboring cells
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Algorithm 1 Pseudocode of Our Heuristic
1: COMPRESS(initial)
2: artificial_height = maximum(initial)
3: compressed = initial
4: while(artificial_height > 1)
5: reduce_artificial_height()
6: while(max(compressed) > artificial_height)
7: temp = zeros(max(x_coords), max(y_coords))
8: for x in x_coords
9: for y in y_coords

10: diff = compressed[x,y] - artificial_height
11: if(diff > 0)
12: compressed[x,y] -= diff
13: temp[next_neighbors(x,y)] += diff / 4
14: compressed += temp
15: return compressed

FIGURE 4. Visual representation of an exemplary iteration of the
heuristic. Left: top view; right: sectional view A-A.

during a single iteration of our algorithm. First, we define
an artificial height value hart corresponding to the maximum
TIM amount. We then enter a loop that is executed until we
reach a final hart equal to one. During this loop, we iteratively
reduce hart . While the TIM amount in any grid cell exceeds
the current hart , we loop over all grid cells. For each cell,
we check its current TIM amount hcur against hart . If hcur >

hart , we divide the excess amount hexc = hcur − hart by four
and add it to each of the next neighboring cells in a temporary
array.We subtract hexc from the current cell of the compressed
state. After we have looped over every cell, we update the
compressed state with the temporary array. This avoids that
the order of the cells within the loop has an influence on
the result. Increasing the dispensed amount on the input side
has the same effect as compressing down to a lower gap
height.

C. ARTIFICIAL NEURAL NETWORK
The ANN is trained on data generated by the heuristic
flow behavior model. As such, an advantage with regard
to accuracy can not be expected. However, it can map the
complex relationship between in- and output more efficiently.
Programming libraries such as Keras [16] conveniently
implement ANNs ready to be executed in parallel on a
Graphical Processing Unit (GPU).

ANNs can be made up of various types of layers.
Well-known architectures such as VGG [17], ResNet [18]

or Inception [19] rely on the use of convolutional lay-
ers followed by dense layers. They have proven to
work very well with image data. Since our data can
be interpreted as gray scale images, we opt to work
with a similar architecture. Details regarding the architec-
ture definition and the training process are presented in
Section IV.

IV. EXPERIMENTAL SETUP
This section contains information on how we set up our
models and experiments. This includes the performance
benchmarking for both flow behavior models. For the
ANN, we describe the generation of the training data,
the architecture design and the training process. For the
experimental data, we describe the laboratory setup.

A. TRAINING THE ANN
The training dataset consists of 200 000 automatically
generated random dispense patterns. The patterns are similar
to the ones used during benchmarking as depicted in Fig. 7.
We obtain the architecture of the ANN from an automated
hyperparameter optimization. A template for the architecture
is visualized in Fig. 5. The layers indicated in blue are always
used. Yellow layers are optionally activated by the optimizer.
We vary the number of convolutional layers from two to
six and the number of dense layers from zero to two. The
convolutional layers have either 8, 32, 128 or 512 filters with
a kernel size of either three or five. If present, each dense layer
has 2500 neurons. The batch size may be 8, 32 or 128. The
optimizer to train the ANN is Adam [20] with a learning rate
between 10−5 and 10−2. We use the activation function ReLu
for all layers except for the last, where we apply the Sigmoid
function. The loss function to be optimized is mean squared
error. The weights of the ANN are initialized randomly.
Therefore, training an ANN multiple times on the same
dataset yields fluctuating results. Preliminary manual trials of
architecture tuning have shown convergence issues during the
training of some hyperparameter configurations. To account
for fluctuating performance and convergence issues, we train
10 ANNs for each configuration during the hyperparameter
optimization. We return the lowest loss over the 10 respective
runs value back to the optimizer. We use the hyperparameter
optimization framework Optuna [21]. The hyperparameter
optimization runs for 1 000 iterations. To make a high
number of iterations possible, we train within each iteration
for one epoch on 16 000 patterns and validate on 4 000
patterns. After finishing the hyperparameter optimization,
we fine-tune the ANN by training on 160 000 patterns
and validate using 40 000 patterns. During fine-tuning, the
training process runs for a maximum of 100 epochs. If the
validation loss does not improve for 5 consecutive epochs,
the training is stopped and the model is saved. When using
a different resolution, the ANN needs to be retrained as just
described.

The ANN is trained for a constant output gap height.
However, a change in the gap height has the same effect on the
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FIGURE 5. Architecture of the Artificial Neural Network (ANN).
Hyperparameters such as the number of optional layers (yellow) are
optimized. Mandatory layers (blue) are always included.

result as changing the input amounts. When using the ANN,
different gap heights can thus be accounted for by scaling the
input amounts respectively.

Since the ANN has a fixed input format, the ANN input
dimensionality is set according to the maximum pattern
length. To process shorter patterns, we simply append pattern
segments with zero amounts up to the maximum length.

B. PHYSICAL EXPERIMENTS
To validate our model, we carry out physical experiments.
We dispense TIM in various different patterns and compress
it as when joining a heatsink.

The machine used for dispensing is an automated Com-
puterized Numerical Control (CNC) machine. Its type is
almost identical to the ones that are used in automotive
series production.We transfer the patterns into G-code, which
is a format that is readable on this kind of machine. The
TIM is dispensed onto glass plates with a dimension of
70mm×70mm. Thin metal plates with a carefully machined
height are put on the edges of the glass plate. This ensures
a uniform final gap height when putting a second glass
plate on top and pushing it downwards. The dispensed and
compressed states of TIM are shown for an exemplary
pattern in Fig. 6. An image of the compressed state is
recorded. An automatic segmentation of the blue color
hue is applied and yields a representation in the same
discretized format as introduced previously. Thus, each
pixel is either entirely full or empty. Since the final gap
height is low, the error at the area boundary made by this
assumption is sufficiently small. After segmentation, the
resolution is scaled down to the same resolution as in the
heuristic model. During downscaling, we apply a linear
interpolation between neighboring cells. The zoom level is
adjusted uniformly for all experiments. This is done as a
post-processing step and has the same effect as adjusting the
vertical camera position. Since the experiments are carried
out manually, some samples are shifted slightly. Those
translational errors are corrected by re-centering each pattern
during post-processing. The post-processing, of course,
does not involve a modification of the overall pattern

FIGURE 6. Laboratory experiments using transparent glass plates to
compress TIM. Left: state before compression; right: state after
compression.

shape, since this would distort the error evaluation of the
model.

We further evaluate the TIM flow behavior in a physical
experiment using a real product sample. This product
involves a Printed Circuit Board (PCB) with mounted
electronic components to be cooled. The housing is pressed
onto the PCB and TIM spreads over both joining partners
to form a thermal connection. In contrast to our labo-
ratory experiments as just described, we cannot control
the actual gap height that precisely in this case: multiple
parts are joined together, with each part having individual
mechanical tolerances. Furthermore, the PCB itself bends
during the joining process. We thus use this experiment
for a qualitative rather than a quantitative assessment. For
comparison with our model we choose the total TIM amount
to fit the actually observed amount. Instead of evaluating
the general fit of our model, we evaluate the fit with
respect to only the shape of the predicted coverage area
outline.

C. BENCHMARKING
During this study, we use a resolution of 50 cells×50 cells.
This resolution was selected through preliminary trials with
different resolutions and represents a compromise between
sufficient accuracy and computational effort.

One part of our benchmarking covers the error of our
simulation models. This involves the comparison of the entire
simulation pipeline consisting of the discretization and either
flow behavior model to the physical experiments. It further
involves the error between the outputs of the heuristic and
the ANN. In all cases, we calculate the absolute error of the
respective compressed states:

ecomp =

50∑
i=1

50∑
j=1

|ma,comp,ij − mb,comp,ij|, (1)

with ma,comp,ij and mb,comp,ij being the TIM amounts per grid
cell (i, j) in the compressed states. The indices a and b refer
to either the experiment and a flow behavior model or the
heuristic and the ANN. We then divide the absolute error by
the sum of the covered cells

erel =
ecomp∑50

i=1
∑50

j=1ma,comp,ij
(2)
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FIGURE 7. Three exemplary patterns used in our computation time and
error benchmarking. Top row: before compression, bottom row: after
compression.

and calculate its mean

erel =
1

Npat

Npat∑
k=1

erel,k (3)

across Npat = 50 dispense patterns. This relative error
measure yields a better intuition of the model accuracy across
the different dispense patterns.

Besides the error, we also evaluate the computation
speed for our model. Both flow behavior models are called
from a Python script. The library timeit [22] measures the
computation time of a code snippet. Setup code, such as code
for loading data and models, is executed separately and not
included into the measurement. Background processes may
interfere with the program being measured and spuriously
lengthen the computation time. For this reason, it is
specifically not recommended to report mean and average
computation times for multiple runs of the same code [22].
Thus, we execute Nruns = 10 runs per measurement and store
the minimum value

tmin = min tl, l ∈ {1, . . . ,Nruns} (4)

for further evaluation. Since measurement time varies for
different patterns, we measure the computation time for the
compression ofNpat individual patterns. Examples are shown
in Fig. 7.

We report the mean value

t =
1

Npat

Npat∑
n=1

tmin,n (5)

for the computation time tmin,n across Npat = 50 paths and
the respective standard deviation

s =

√√√√ 1
Npat − 1

Npat∑
n=1

(tmin,n − t)2. (6)

The computation time tmin,n for an individual pattern is,
as just described, the minimum time across 10 runs per
individual pattern. All computations are executed on a
workstation with an INTEL E5-2680 processor and four
GPUs of type NVIDIA RTX 2080Ti.

V. RESULTS
This section contains the results regarding the heuristic, the
ANN and the physical experiments. We record the setup and
computation time for all three approaches and calculate the
relative absolute error of the compressed states as described
previously. Results are listed in Table I.

First, we give a deeper insight into the process of
setting up the ANN. We determine the hyperparameters by
carrying out a hyperparameter optimization as described
in Section IV. We obtain the following architecture: the
first layers are five convolutional layers with 8, 128, 512,
512 and 8 filters respectively and a filter size of 5 × 5.
They are followed by the mandatory convolutional layer
with one filter and a filter size of 3 × 3. Two dense
layers with 2500 neurons are appended. The best remaining
hyperparameters are a batch size of 8 and a learning rate
of 0.0002. The entire hyperparameter optimization process
with 1 000 iterations takes one week. The fine-tuning of
the final architecture takes about 12 hours. It takes about
one week to create the training dataset for the ANN, which
involves the simulation of 200 000 patterns. Those steps need
to be carried out only once for a specific input resolution.
They run fully automatic and do not need any human
intervention.

We compare the trained ANN with the original heuristic
approach. The error according to (3) is 3%. Fig. 8 shows
the output of the trained ANN as compared to the heuristic.
While some errors are prevalent in the outermost cells, the
ANN manages to fit the data well.

We now look closer into the laboratory experiments, which
are carried out as described in Section IV-B and form an
independent test dataset with unseen patterns. An exemplary
sample of those dispense patterns is shown in Fig. 7. Each
experiment takes 30minutes. This time includes sample
preparation, dispensing, compression and post-processing
of the results. The experiments serve as ground truth and
therefore are listed with an error equal to zero. We are aware
that they are still subject to error sources such as mechanical
tolerances or measurement noise.

Our heuristic flow behavior model assumes parallel joining
surfaces. A slight tilt due to mechanical tolerances is present
in real experiments. This tilting varies during production for
each individual workpiece and can also not be considered
well with e.g. CFD simulations. It is present in our laboratory
experiments and thus included into our reported error
estimation.

For both of our flow behavior models, we calculate the
mean relative error with respect to the experiments according
to (3). The heuristic and the ANN are both able to predict
the compressed shape well, with an error of 11% and
12% respectively across the 50 evaluated patterns. A visual
comparison of the ANN with the experiments is presented in
Fig. 9. Further samples are shown in the appendix. The left
column shows the compressed state as output from the ANN
for three different dispense patterns. The middle column
shows the compressed state acquired from the experiments.
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TABLE I. Comparison of simulation methods during deployment in
manual pattern design.

The right column shows the difference between ANN output
and experimental data along with the error score according
to (2). It is shown that the overall shape is almost identical in
most cases. Errors occur mainly in outer cells of the covered
area.

The example of a real ECU depicted in Fig. 10 shows
that the model fits the TIM behavior not only in a
laboratory environment, but also in the real product. In this
case, the cooling surface area is bounded and excess TIM
flowing beyond the boundaries will not be compressed any
further. The experiments we conducted in the laboratory
ensure a complete compression of the entire shape. While
the real product is certainly an important benchmark, the
laboratory experiments give a deeper insight into the model
accuracy.

Patterns with high errors are often characterized by the
entrapment of air. Once the TIM pattern forms such an
enclosed void area and is then compressed further, the
entrapped air is put under pressure as well. This pressure
counteracts the material flow into the void area. This effect
is not taken into account by our model. It can be seen in
Fig. 11 that our model predicts a quite small void, while
the experimental data suggests that the TIM flows rather
towards the outer areas than towards the center. The shown
example exhibits a relative error of 23.0% according to (2).
The predicted shape is generally still reasonable even in those
cases.

The initial dispense pattern can be calculated rather
straightforward from the pattern parameters as described
previously. The setup time for simulating a certain dispense
pattern is therefore relatively low and takes up to one minute.
This procedure is equal for both flow behavior models.
The computation time amounts to 3.41 s on average for the
heuristic and displays a rather large variance across different
patterns. The ANN can be executed consistently in 0.11 s.
To enable other researchers to reproduce our results with

the ANN easier, we have uploaded our test dataset and
our training dataset to Kaggle [23]. Our datasets are avail-
able at https://www.kaggle.com/datasets/simonbaeuerle123/
timflow/.

VI. DISCUSSION
The CFD simulations can be considered state-of-the-art in
this field of simulation.We do not aim to analyze them deeper
within this work, since they have been used extensively

FIGURE 8. Output of the ANN as compared to data from the heuristic
model. Left column: output of ANN for different dispense patterns, center
column: output from heuristic, right column: difference between outputs
of ANN and heuristic. Furthermore, we list the error score according to (2).

FIGURE 9. Validation on experimental data. Left column: output of ANN
for different dispense patterns, center column: experimental data, right
column: difference between ANN output and experimental data.
Furthermore, we list the error score according to (2).

for over 20 years in a wide range of different applications.
We have shown our samples to two experienced simulation
experts and asked them for their professional opinion. They
are regularly occupied with simulations of similar dispense
patterns. They estimate the setup time for such dispense
patterns to be in the range of 10min up to 60min. 10min
would include a very basic setup without much detail. 60min
would include a more elaborate setup, e.g. a fine modeling
of 3D roundings of the dispense pattern. The computation
time is estimated by consulting the simulation logging files
for similar patterns and is in the range of 60 - 120min.
Due to the high effort of CFD simulations, we omit the
exact error calculation on our 50 samples. We do not claim
that our new simulation approach offers an advantage over
the CFD simulation with regard to the error. However,
they are clearly outperformed by both of our proposed
surrogate flow behavior models with regard to computational
speed.

The accuracy of our heuristic model is high enough to
support manual development work. Its application can thus
save a significant effort during manual dispense pattern
design for electronics packages. It enables the use of
gradient-free optimizers, which could partially automate
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FIGURE 10. Overlay with the compressed TIM on a real ECU. Left: image
of compressed TIM in a physical experiment; right: additional overlay of
the compressed state as obtained from the heuristic.

FIGURE 11. Dispense pattern involving a void area due to air entrapment.
Left: output of ANN, center: experimental data with marked air
entrapment, right: difference between ANN output and experimental
data. Furthermore, we list the error score according to (2).

the dispense pattern design process. CFD simulations and
physical experiments will still be necessary, but only for
fine-tuning during the last design cycles. This is specifically
the case in tests involving the design limits, e.g. experiments,
which cover the highest expected mechanical tolerances.
We do not claim to replace CFD simulations or experiments
fully, but rather to reduce the number of trials.

Duringmanual dispense pattern design, using the ANN has
the following advantages. The computation time improves by
a factor of about 30, whereas the mean relative error increases
only by one tenth (see Table I). In contrast to the initial setup
duration of the ANN, the duration of the design process is
relevant for the time-to-market and needs to be carried out
for each individual product. The time-to-market is valuable
and product departments may require a quick feedback from
design engineers. During manual dispense pattern design,
a design engineer is activelyworkingwith themodel. His time
is more valuable than the training time. When embedding
the flow behavior model into a user interface, the results
from the ANN are available almost in real-time. This is an
advantage in terms of user experience. Thus, it is better to
invest time into the automated setup of the ANN and in
turn gaining more valuable time during the dispense pattern
design.

During automated dispense pattern design, using the ANN
has the following advantages. While the heuristic could be
paired with a gradient-free optimizer to perform a zero-
order optimization, this would involve many calls to the

model in order to calculate the objective function during the
optimization progress. The speed-up of computation time
by the ANN can thus leveraged higher as compared to the
manual dispense pattern design. Gradient-based optimizers
for first-order optimization could only be paired with the
heuristic when utilizing the numeric gradient. This is very
time consuming and would involve a high number of calls
to the model during each individual optimization step. For
a trained ANN, the gradient of its output with respect to its
input can be retrieved easily. Tensorflow [24] includes an
Application Programming Interface (API) called Gradient-
Tape. During the training procedure, it is used to update the
weights of the network. During an optimization involving
the trained ANN, theGradientTape.gradient() function could
be used to compute the gradient. The ANN enables the use
of gradient-based optimizers and would significantly speed
up the optimization when using gradient-free optimizers.
In both cases, the time investments into the setup of the
ANN would be compensated by the time savings during the
optimization quickly. Automated pattern design with state-
of-the-art optimizers could explore a much larger range of
the design space and thus lead to better solutions than those
found via manual trial-and-error iterations. Several solution
candidates can be generated by executing the optimization
with slightly varied settings. The design engineer can then
choose the most promising patterns.

During training of the ANN, we only used open source
software libraries. This allows the integration of our model
into a custom user interface, i.e. independently from propri-
etary simulation software. Especially a web-based implemen-
tation could provide easy access to design engineers without
any license costs as seen with e.g. CFD supported tools.

The hyperparameter optimization supported the training
process of the ANN. Compared to preliminary manual
hyperparameter tuning, the automated hyperparameter opti-
mization yielded better results. This is valid not only with
regard to the model performance, but also with regard to
the convergence behavior of the training process. We thus
recommend using an automated hyperparameter optimization
when training on data of this kind. During preliminary
experiments, we have also tested the hyperparameter opti-
mization library KerasTuner [25] as an alternative toOptuna.
We have found Optuna easier to work with. According to
the number of citations, it seems to be a popular choice
among other researchers as well. In its backend we utilize the
optimization algorithm tree-structured Parzen estimator [26].
The successful hyperparameter optimization that we report
validates a) our choice of this library and b) the effectiveness
of the embedded optimization algorithm. The research
field Neural Architecture Search (NAS) [27] has received
increasing attention in recent years. We would like to refer
anyone interested in more elaborate studies regarding NAS
to the cited review and the works referenced within.

Our model assumes an infinitely wide planar surface and
thus might model the compression behavior even beyond
the physical area boundaries. This overflow is generally not
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FIGURE 12. Validation on experimental data. Left column: output of ANN
for different dispense patterns, center column: experimental data, right
column: difference between ANN output and experimental data.
Furthermore, we list the error score according to (2).

desired in practical application. Especially in the case of
taboo zones such as screw holes being positioned next to
the cooling surface, this needs to be avoided. Similarly, air
entrapments are not desired in practical application, since the
air significantly impairs thermal performance [7]. The failure
to model those effects accurately is an evident limitation of
our model. However, it is sufficient to predict the presence
of a violation of a taboo zone or the formation of a void.

A highly precise but time-consuming CFD simulation to
estimate the respective quantitative extent offers only little
additional benefit. We argue that in those cases, a quick
feedback is more valuable than an exact feedback. This
is especially the case for the first design iterations. With
the last design iterations, it is obviously different: manual
experiments are carried out to validate the final design
choice.

The dispense pattern shown in Fig. 10 was designed
manually by an engineer without the support of our model.
The effect of compressed material extending beyond the
cooling area can be observed for example at the bottom part
of Fig. 10. This indicates that the dispense pattern, which
is the result of a conventional pattern design process, could
have been improved. When the dispense pattern would fit
the cooling area perfectly, no overflowing material would be
visible. This has an effect on both material usage and cycle
time and motivates the use of our model for future product
variants.

As of now, the ANN is trained solely on data from the
heuristic. It inherits the previously discussed limitations from
the heuristic model: the ANN will make similar errors to
the heuristic, e.g. when encountering air entrapments or non-
planar surfaces. However, the ANN has the ability adapt to
new experimental data. With data from series production,
the ANN could further be fine-tuned and improved to
reflect the actual process even better. The real-world process
behavior can be integrated into our model and it can be
used as a Digital Twin for the design of future product
generations.

VII. CONCLUSION
We present two flow behavior models, which can quickly
predict the flow behavior of TIM when joining the heatsink.
Our proposed heuristic aids design engineers during the
definition of the initial dispense pattern by providing a
quick and easy method to estimate the compressed state.
This reduces the need for elaborate CFD simulations and
manual experiments with product samples. The time-to-
market can thus be shortened for a variety of ECUs and
power electronics components. Training an ANN on data
from our heuristic reduces accuracy only slightly, but yields
a significant speed-up of computation time. Using an ANN
thus makes the manual design process even more convenient.
It further allows the efficient usage of optimizers for an
automated dispense pattern optimization. We show that the
predicted compressed state fits experimental results well.
This is true not only in the laboratory, but also for a real
ECU. Future work includes the development of a method for
automated dispense pattern optimization on the basis of this
model.

APPENDIX.
In Fig. 12, we present further examples from our experimental
dataset.
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