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ABSTRACT:  

During the last decades satellite remote sensing has become an emerging technology producing big data for various application fields 
every day. However, data quality checking as well as the long-time management of data and models are still issues to be improved. 
They are indispensable to guarantee smooth data integration and the reproducibility of data analysis such as carried out by machine 
learning models. In this paper we clarify the emerging need of improving data quality and the management of data and models in a 
geospatial database management system before and during data analysis. In different use cases various processes of data preparation 
and quality checking, integration of data across different scales and references systems, efficient data and model management, and 
advanced data analysis are presented in detail. Motivated by these use cases we then discuss emerging research questions concerning 
data preparation and data quality checking, data management, model management and data integration. Finally conclusions drawn 
from the paper are presented and an outlook on future research work is given. 
 

1. INTRODUCTION 

During the last decades satellite remote sensing has become an 
emerging technology producing big data every day rasing the 
question of appropriate data preparation, data quality checking 
and efficient data management. NASA® and COPERNICUS® 
platforms, for example, are highly attractive for a multitude of 
possible users in science as well as in the public and in the private 
sector. Access to the data is provided by means of data and 
information access services, which provide basic functionalities 
to download the data and to process them to some degree. 
However, as experience shows, typical data preparation 
processes still consist of many single steps and advanced skills in 
data handling are needed to manually extract data of a given 
region in parallel for subsequent scenes or to extract data of 
different regions in parallel for the same scene. Therefore, data 
preparation - as an important step before writing the data into the 
database - still is expensive in operator time and hinders a fast 
exploitation of the data. That is why tailored geospatial database 
operations to support data preparation should be provided to 
achieve efficient data handling and data analysis. During data 
preparation, also the quality of the data has to be checked 
covering different aspects of data quality. This means e.g. that 
errors in the data have to be detected and corrected and the 
reliability of the data has to be documented by the authors. Also 
accuracy dimensions should be considered. Furthermore, it is 
important to provide an efficient long term management of big 
remote sensing data and their corresponding analysis models in a 
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geospatial database management system. Thus data analysis and 
data management should be closer integrated so that the analysis 
models have direct access to the operations of the geospatial 
database management system and integration of various data 
sources is supported adequately. 
The paper is structured as follows: In section 2, we refer to related 
work followed by section 3, describing use cases for data 
preparation to improve data quality, integration of elevation data 
across various scales and reference systems, data management 
and model integration for data analysis as well as advanced 
neural network based data analysis. In section 4, emerging 
research questions are derived from the use cases to improve the 
preparation, quality checking, management and integration of 
remote sensing data and models. Finally, section 5 presents the 
conclusions drawn from the paper and gives an outlook on future 
research. 
 

2. RELATED WORK 

In the context of big data analysis and geospatial data 
management the improvement of data-driven workflows has 
been extensively discussed (Laney, 2001; Chen et al., 2014; 
Cheng et al., 2014; Lee and Kang, 2015; Breunig et al., 2016; Li 
et al., 2016; Werner and Chiang, 2021). In particular, parallel 
query support (Hahn et al., 2002) based on parallel hardware and 
software architectures (Xiaoqiang and Yuejin, 2010; Taylor, 
2010; Lenka et al., 2017; SpatialHadoop, 2023) has been 
investigated. Intensive research has also been carried out in the 
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field of raster databases focusing on the efficient storage of raster 
data (Baumann et al., 1997) and services (Baumann, 2010) to 
improve the access on raster data and operations (Zhong et al., 
2011; Ouyang et al., 2013; Hu et al., 2018). The appropriateness 
of existing database management systems to handle geospatial 
big data, has been examined by (Amirian et al., 2014; Mazroob 
et al., 2020) and other authors. A “tailored approach” to manage 
raster data, considering heterogeneous data models, was 
introduced by (Baumann et al., 2016). (Baumann et al., 2018) 
have proven specialized data cubes as a suitable concept to 
provide raster data interfaces for spatial and temporal data 
analysis. Here the code is “shipped to the data” to minimize the 
communication costs when transporting the data from one tool to 
another. As an example of a scalable geospatial data analytics 
cloud platform, the “Physical Analytics Integrated Repository 
and Services” (PAIRS) homogenize archived and real-time 
spatial data (Klein et al., 2015). This approach is empowered by 
Hadoop® holding a parallelized structure based on MapReduce 
(Klein et al., 2015). Parallel system architectures such as 
Hadoop® and Spark® distribute the computation actions to a 
computer cluster. They work on the basis of the Map-Reduce 
model (Dean and Ghemawat, 2008), which automatically 
distributes (Map) the calculation steps to the existing computers 
to execute there and merge (Reduce) the intermediate results of 
the map step into a solution. Concerning data analysis in remote 
sensing, Artificial Intelligence is a pregnant technology to 
support data handling (Lary, 2010; Lary et al. 2016; Mathieu and 
Aubrecht, 2018). Supervised or unsupervised machine learning 
algorithms, especially neural networks (NNs), have been 
frequently used for regression and classification (Bishop, 1995), 
image recognition and object detection (LeCun et al., 2015).  
Multiple radar applications, ground- and satellite-based have 
been proven to work with neural networks (NNs) (Qin et al., 
2004; Lombacher et al., 2016). Zhu et al. use machine learning 
methods to develop algorithms from signal processing and 
Artificial Intelligence to improve the extraction of geospatial 
information from satellite data (Zhu et al., 2017). 
However, until the present time, the data preparation and quality 
checking, data selection, integration and analysis of satellite data 
for scientific use are very time-consuming processes. Further 
research is necessary to support data scientists and experts from 
various disciplines adequately. 

 
3. USE CASES  

The following use-cases show examples how to improve the data 
processing workflow during data quality checking, data and 
model management, data integration, and data analysis in remote 
sensing scenarios. 

3.1 Data preparation and data quality: Cleansing of 
Sentinel-1 SAR Data  

Correctly unwrapping interferograms in Interferometric SAR 
(InSAR) approaches still poses a challenge due to its ill-defined 
nature and is still present in Differential InSAR (DInSAR) data 
used for time series analysis (Yu et al., 2019). Hence, the 
approach presented here is concerned with the automation of 
finding and mending phase unwrapping errors in Sentinel-1 data. 
In contrast to previous works, the problem is approached in a 
data-driven manner using semi-supervised active learning 
methods. In the proposed workflow, two distinct model types are 
trained, namely detection and correction model. The former is 
trained to detect an erroneous time series, and the latter is trained 
to suggest corrections on time steps to a human observer. The 
human observer inspects the proposed corrections using a 
graphical user interface and adapts them if needed. These newly 

labeled time series are used for further training of the models (see 
Figure 1). As the provided DInSAR data is spatially sparse, i. e. 
not structured in a dense raster, and provides sequential structure 
in time, Long Short-Term Memory (LSTM) neural networks are 

used to compensate processing errors in Sentinel-1 SAR data sets 
of the Upper Rhine Graben (Oberrheingraben, ORG) and Landau 
region, Germany. 

The considered data were provided by (Heck, 2019) and include 
two sets of processed Sentinel-1 time series. Singel Look 
Complex (SLC) SAR data products of the Sentinel-1 mission of 
the European Space Agency (ESA, 2023) were preprocessed and 
turned into interferograms using SNAP (Leskovec and Sosič, 
2016). Afterward, Persistent Scatterer DInSAR processing was 
conducted using the StaMPS software (Hooper et al., 2012) with 
the 3D phase unwrapping technique introduced by (Hooper et al. 
2007) and (Hooper, 2010).  
Four training iterations were conducted (see Figure 1): First, the 
models were trained to imitate a simple, heuristic initializing 
model. Second, the models’ current error detections in the 
Landau data set were adapted by a human observer and used as 
new labeled data for further training. In the last two iterations, 
the models were trained on labeled data of the ORG data set, first 
in Landau region and then on four subsets distributed over the 
ORG data set, where each iteration’s labeled data include current 
predictions adapted by a human observer. All training iterations 
were evaluated on validation and test sets separated from the 

   
Figure 1: Workflow of error detection and correction, general 
overview with correction of example time series (left), and 
interaction loop with the user (right).  

     
Figure 2: Example of predictions and evaluation of detection 
model on Landau evaluation site. TN, FP, FN, TP pixels. 
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training data regarding the true positives, false positives, false 
negatives, and true negatives as well as the derived metrics 
precision, recall, F1-score, and balanced accuracy. One example 
of the trained detection model prediction on the Landau 
evaluation site can be seen in Figure 2. A final evaluation 
regarding those metrics was conducted on three evaluation sites: 
Landau, Staufen i. B. and Lahr, for which labels were created 
manually beforehand.  
Regarding the detection model precision, recall, F1-score, and 
balanced accuracy ranged from 0.08 to 0.28, 0.90 to 1.0, 0.14 to 
0.42, and 0.93 to 0.99 respectively over the evaluation sites.  
Regarding the correction model, the average metrics over all 
correction classes for precision ranged from 0.46 to 0.66, the 
recall from 0.79 to 0.92, the F1-score from 0.4 to 0.59 and 
balanced accuracy from 0.72 to 0.82. 
The results show that phase unwrapping errors can be detected 
with high recall and low to moderate precision, reducing the 
number of pixels a human observer must inspect. Few pixel time 
series are affected by PU errors and even fewer are affected in 
more than three time steps. Errors affecting the slope of the 
displacement time series are scarce and mainly found near the 
geothermal site at Landau where higher deformation occurs. The 
detection model can reduce the amount of time series required to 
be regarded to 3 % to 9 % of the total amount of pixels in a data 
set, depending on the considered area. This provides an 
improvement in working efficiency, as currently PU errors in PS-
DInSAR data are mainly found by carefully inspecting the whole 
data set. 
The correction is more challenging: It provides a high number of 
falsely corrected time steps, but shows good results in case of 
truly erroneous pixel time series. The portability between the two 
data sets is limited, but considering the highly different provided 
data sets, it is possible that the trained models are still able to 
extend to more similar data sets. Furthermore, new training 
iterations with training samples from another data set can be used 
to transfer the model to another site. In addition, different models 
can be stored and trained individually for different area types. In 
the current state the models cannot provide an automatized 
correction of DInSAR time series. Nonetheless, this work is a 
step towards the automation of error prediction and correction in 
geospatial data. 
 
3.2 Integration of elevation data across various scales and 
reference systems 

The availability of multiple diverse elevation datasets – with 
different coverage, vertical datum, horizontal datum and 
resolution, accuracies, and consideration of waterbodies is very 
problematic for end-users who are often required to choose 
amongst multiple elevation datasets for a study area. This task 
usually entails heavy data pre-processing, while it can lead to 
biased and/or inconsistent decisions, with a negative impact to 
the corresponding project outcomes.  
In Canada, terrain datasets released by Natural Resources Canada 
(NRCan) mainly include the Canadian Digital Elevation Model 
(CDEM; NRCan, 2013) and the High Resolution Digital 
Elevation Model (HRDEM; NRCan, 2019). The CDEM 
collection is part of the NRCan’s altimetry system. The coverage 
and resolution of the CDEM mosaic varies according to latitude 
and extent of the study area. With reference to the NAD83 CSRS 
datum, the mosaic covers the whole country at resolutions that 
range from 0.75 to 12 arcsec along the latitudes. The elevation 
values are expressed in integer meters referenced to the Canadian 
Geodetic Vertical Datum of 1928 (CGVD28) and can be either 
ground or reflective surface elevations. As a part of the 
CanElevation Series, the HRDEM largely improves the accuracy 
and spatial resolution of Canadian terrain data. The HRDEM 

collection consists of high-resolution DEMs derived from 
LiDAR and remote sensing imagery produced by separate 
projects. HRDEM includes a Digital Terrain Model (DTM), a 
Digital Surface Model (DSM) and other derived data (e.g., slope, 
aspect, shaded relief, color-relief, and color-shaded relief maps). 
HRDEM is available only over the corresponding projects 
footprints. In the southern part of the country, HRDEM 
collections include DTM and DSM datasets at a 1m or 2m 
resolution and projected to the UTM NAD83 (CSRS) coordinate 
system and the corresponding zones. In the northern part of the 
country, HRDEM collections include DSM datasets at a 2m 
resolution projected in the Polar Stereographic North coordinate 
system referenced to WGS84 horizontal datum or UTM NAD83 
(CSRS) coordinate system. HRDEM elevation values are 
referenced to the Canadian Geodetic Vertical Datum of 2013 
(CGVD2013), which is now the reference standard for heights 
across Canada. 
In Li et al. (2021) we have recently explored the adoption of 
Discrete Global Grid Systems (DGGS; OGC, 2017) as an 
integration platform for Canadian terrain datasets to improve the 
coverage and elevation data quality in various study areas across 
the nation (Figure 3). Various algorithms were introduced to 
integrate the CDEM and HRDEM by direct quantization at 
various granularities and to aggregate the modelled elevations by 
mean, maximum, and minimum statistics across the resolution 
levels to meet the needs of different applications. For example, 
the minimum elevation helps to determine stream channel areas, 
while the maximum elevation is useful for calculating the height 
of vertical obstructions (Danielson and Gesch, 2011). This study 
set the stage for a national elevation service across various scales 
for Canada. 
 

 
 
Figure 3: Representation of a. world landmass, b. Canada, c. 
Ontario, and d. study areas in the ISEA3H DGGS (adopted by Li 
et al., 2021). 
 
3.3 Data management and model integration for CNN-
based image analysis 

In the following use case precipitation data of Hyderabad, India, 
from 1991 – 2011 is used as Landsat 5 multi-spectral data. For 
categorization self-organizing neural networks (Babu, 1997), and 
especially Convolutional Neural Networks (CNNs) are used as 
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an appropriate method for image classification of satellite data 
(Kanellopoulos and Wilkinson, 1997). To produce a straight-
forward joint workflow of data analysis and data management, 
and to avoid unnecessary data loading, in the following use case 
it is outlined how CNN-based data analysis and raster-based data 
and model management can work together using TensorFlow® 
data analysis tool and rasdaman® array-DBMS, respectively. 
The dataset consists of 94 images of 7 spectral bands of 1710 x 
1750 with a resolution of 30m from the years 1991 to 2011 
(excluding 2002-2003). Using rasdaman´s filter functions for 
irregular time intervals, all data have been considered presenting 
less than 10 percent clouds in each image (Yang, 2022). Using 
rasdaman, spatio-temporal database queries have been used in 
two different ways: first, attributes of a coverage such as bands 
of the 7-band hyperspectral Landsat 5 dataset have been selected 
via OGC´s Web Coverage Service. Secondly, OGC´s Web 
Coverage Processing Service have been used to execute raster 
operations such as special filter operations. For example, a 3D 
data cube with the three dimensions “band”, “time step” and “2D 
region” has been created as a result of a spatio-temporal database 
query (see figure 4). Here bands 2-7 are selected in the region of 
Hyderabad from 1991 to 2011, presenting one time step in figure 
4. 

 
Figure 4: Result of a spatio-temporal database query represented 
in the three dimensions “band”, “time step” and “2D region” of a 
3D data cube (from: Yang, 2022). 

A database query filter operation has been used to generate False 
Color Composite (FCC) images facilitating the detection of 
vegetation changes (Yang, 2022). The user controls such queries 
via rasql, rasdaman´s raster query language. An example of such 
a database result showing two FCC images is presented in figure 
5. 
 

 
Figure 5: Result of a spatio-temporal database query computing 
False Color Composite images of the precipitation data in the 
region of Hyderabad, March and October 2011 (from: Yang, 
2022). 
 
To achieve reproducible CNN models during data analysis, the 
different variants of CNNs produced during the training process 
of the data have to be stored together with the data in the 

geospatial database for long term use. From a technical point of 
view, a direct connection is established between the data analysis 
tool (such as TensorFlow®) and the array-based DBMS (such as 
rasdaman®). This means that TensorFlow® then has direct 
access to the data and models stored in rasdaman®. As an 
alternative, graph-based DBMS may be used to store the CNNs. 
In both cases, a DBMS-supported image analysis workflow then 
consists of the following steps: Data preparation and quality 
checking => Data management and integration => Model 
management and integration => Data analysis with continuous 
access to data and model management. This workflow not only 
saves time, but supports the continuous management of data and 
CNN models during data analysis. 
 
3.4 Advanced data analysis: CNN-based semantic 
segmentation of swimming pools 

As application of advanced data analysis for remote sensing data 
we refer to the identification and delineation of man-made 
structures in aerial or satellite imagery. In this use case, aerial 
images from Baden-Württemberg, Germany, have been used for 
semantic segmentation of swimming pools and subsequent 
comparison with publicly available information from 
OpenStreetMap. 
In general, such an application could enable the estimation of 
residential property values or monitoring of swimming pool 
maintenance and safety. However, for the development of robust 
deep learning models, a variety of requirements and challenges 
must be addressed: 

- Large image sizes: Images need to be resized, cropped, or 
tiled to be usable by regular deep learning models. In this 
case, the images were 5000 x 5000 pixels.  

- Small objects: In this case, a typical swimming pool mask 
has the size of approx. 100-500 pixels within a total pixel 
quantity of 25,000,000 pixels per image.   

- Unbalanced dataset: Even after filtering out images without 
any swimming pools, the vast number of pixels still do not 
belong to the desired class.  

- Geo-referencing: If the results of the semantic segmentation 
are supposed to be used for an application where the 
geospatial context is needed, the geo-referencing of the 
original images must be preserved. 

 

        
Figure 6: Top left: Original image. Top: right: Corresponding 
ground truth mask. Bottom left: Random crop of original image. 
Bottom right: Corresponding ground truth mask.  
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As a first step, a dataset of 155 aerial images with manually 
created ground truth masks was developed. As shown in Figure 
6, the masks classify each pixel as either belonging to a 
swimming pool or background pixels. This enables the training 
of a deep learning model for binary segmentation to detect 
swimming pools in aerial images. At the same time, the 
coordinates of the corner points of the image are saved to 
preserve the geo-reference.  
As a second step, a U-Net (Ronneberger et al., 2015) was trained 
using binary cross entropy loss and SGD optimizer (Robbins and 
Monro, 1951). The U-Net architecture consists of a contracting 
path (encoder) and an expanding path (decoder) with skip 
connections between them. The model was trained to perform 
binary segmentation on the before-mentioned dataset, where 
each pixel in the image is classified as either swimming pool or 
background. The binary cross entropy loss function measures the 
difference distance between the prediction and the ground truth, 
whereas the SGD optimizer minimizes the loss function during 
training by adjusting the weights of the U-Net model. 

    

     
Figure 7: a) original image, b) ground truth mask, c) prediction - 
Preliminary segmentation results of the trained U-Net on new 
aerial images.  

 
Lastly, the trained model can be used for binary segmentation of 
swimming pools in new aerial images. Figure 7 shows two 
examples of preliminary results. The first example demonstrates 
the effectiveness of the trained U-Net model for identifying 
swimming pools in aerial images as it successfully segmented the 
swimming pool (highlighted in yellow) from the surrounding are 
with high accuracy. However, the second example highlights the 
difficulty of the task as the model misclassified a pond as a 
swimming pool. This misclassification could be due to the similar 
shape and color of the pond and swimming pools, as well as the 
presence of another swimming pool and residential buildings 
near the pond.  
The segmentation results can finally be aligned with the geo-
referenced original images which enables the comparison with 
publicly available information from OpenStreetMap. In future 
work, we plan to significantly improve the segmentation results 
through incorporating more training data and refining the training 
process to thereafter identify missing swimming pools in 
OpenStreetMap. By doing so, we might be able to contribute to 
the improvement publicly available geospatial data in general.  
 

4. EMERGING RESEARCH QUESTIONS                             
DERIVED FROM THE USE CASES                                               

The use cases have shown that there is a big need to improve the 
workflows during data preparation, data quality checking, data 
and model integration, and data analysis in remote sensing 
scenarios. We now derive general research questions triggered by 
the use cases. 
 

4.1 Improving data preparation and data quality checking  

To improve data preparation and data quality checking of big 
data, first geospatial data cleansing should be applied. Adjusting 
the workflow of Nelder and Wedderburn (1972) to remote 
sensing scenarios and following Mazroob et al. (2020), geospatial 
data cleansing should retain the following rules: 

- Remove unwanted observations as irrelevant data: Outliers 
can negatively distort data models, in particular linear 
regression models in comparison with decision trees. 
Therefore, removing outliers will help model performance. 
Irrelevant data usually includes duplicate records, missing 
or incorrect information and poorly formatted data sets.  

- Predict missing values - categorical or numerical, because 
data analysis algorithms mainly do not accept missing data: 
To manage missing data for categorical features, a class is 
added and this handles the case of no missing values. As for 
missing numeric data, the observation should be indicated 
and replaced with a “0” to satisfy the model’s algorithm 
requirement of no missing values enabling it to predict the 
best estimate for missing values rather than just the mean 
(Lee and Nelder, 2002).  

- Remove unwanted data including duplicate, redundant and 
irrelevant data. 

The correctness of acquired remote sensing data has to be 
measured by different data quality metrics. Depending on the 
application of the data, various quality measures can be defined. 
However, most important is accuracy of the remote sensing data. 
Accuracy defines how close the measured values are to the true 
values. Applied to remote sensing data, accuracy can be 
measured in geometric, radiometric or temporal context.  
The remote sensing data lifecycle has strong relation to data 
quality dimensions and their adequate metrics. The definition of 
accuracy dimensions related to data preparation are as follows: 
- Geometric precision: instability of the observation. 
- Spatial precision: correctness of the spatial representation 

of the feature. 
- Radiometric precision/ stability: correctness of the 

quantization. 
- Spectral precision: correctness of the boundaries of the 

spectral bands 
- Temporal precision: goodness of the data capture date and 

time. 
- Spatial accuracy: accuracy of position of features in 

relation to Earth. 
- Radiometric accuracy: correctness of the intensity values 

(radiance uncertainty). 
- Spectral accuracy: correctness of the sensor’s imaging 

capability in the given channel. 
- Temporal accuracy/validity: quality of the remote sensing 

product in time (how long does it store good information). 
 

Besides accuracy, completeness, redundancy, readability, 
accessibility, and consistency are notable data quality 
dimensions in remote sensing.  
Data quality requirements are based on data user specification. 
Inspection is carried out to evaluate whether data meets 
specification. Certain ISO standards exist for data quality check 
to examine fit for their intended purpose: Smart city operations 
are considered as a major consumer of satellite data and small-
scale imagery, that is beside using high-resolution images to 
detail all cadastral level information and perform data 
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management. In fact, those smart city operations tend to insure 
the completeness of city smartness, e.g. governance; safety 
security; mobility; sustainability; livability; resilience, etc. 
Similar to tabular and vector-based data, raster-based remotely 
sensed data and its processed information including the 
formulated knowledge resulting from analysis and solution 
scenarios, that are acquired via satellite sensors/images play a 
major role in feeding those smart city operations. It is hence 
certain that raster or vector (derived from raster) data 
preparation, data quality checks, model integration, and data 
analysis directly or indirectly affect the smartness of cities, e.g. 
producing cloud-free and haze-free satellite images leads to more 
proper image interpretations and classifications allowing by that 
to feed operations such as managing forests in a smarter and safer 
way. Thus, automating actions such as accelerating the proper 
selection of the most effective image is an important data 
preparation and quality checking-based activity that in future can 
be performed at the level of database operations, reducing by that 
the expenditure in skilled operator time. 
In fact, it would fare to mention that international open satellite 
imagery providers, as well as commercial ones, have been 
working extensively to ease access and encourage the usage of 
provided data and information, by partially performing some of 
the data preparation and data quality checking that require skilled 
labour. In other words, they not only provide corrected images 
based on user selection criteria but also produce the so-called 
Analysis Ready Data (ARD) which overcome many initial steps 
of data preparation and quality checking. The preparation acts for 
the satellite data providers can include the following among 
others: 

- Radiometric corrections can include calibration 
insuring the consistency between sensors and 
overtime, and also atmospheric corrections of images. 

- Geometric corrections such a geo-referencing, ortho-
rectifications, colour balancing, mosaicking, etc. 

- Metadata – including usable data masks (UDM) 
- Time series of the same region. 

Further, perhaps some unsupervised pre-classifications and 
initial segmentation can also be categorized under preparation, 
the parameters of which can be predicted based on provided 
usage and application area information. Organizations such as 
Copernicus (open access Hub) and Nasa, also other platforms 
such as ARCGIS online from ESRI, Google Earth Engine, 
Sen2Cube from Austria, Earth Observation browser, Earth 
Observation Compass, USGS, CEOS, and many others even take 
it to a further level, where some provide Analysis ready Data 
(ARD). In fact, some organizations even construct the so-called 
data cubes, providing users ready prepared blocks that can be 
combined with pre-defined tools to prepare many ready maps that 
are based on basic analysis functionalities, workflows and 
formulas. ARD maps cover atmospheric, marine and land 
different themes. 
All produced products shall be subject to uncertainty, which 
entitle the necessity of quality checking. Other than checking the 
internal structure of the data such as duplications and missing 
values, error values etc., the data has to be validated and assured 
to reflect the respective existing reality, and that can be done by 
ground truth or by comparing the data to more trusted solid data 
sets. 
 

4.2 Improving data and model management for CNN-based 
data analysis 

Hitherto data analysts have to pass through a long and time-
consuming process chain across several software systems to 
spatially or/and temporally select particular regions and time 
intervals out of big satellite image data. To automate and shorten 
the process of data selection, a geospatial database should support 
this process providing spatial, temporal, and spatio-temporal 
operations on satellite image data such as (see also Mazroob et 
al., 2020):  

- Automatically checking geometric, topological, and 
temporal constraints on satellite image data to detect data 
errors.  

- Seamlessly selecting arbitrary, a-priori not defined tiles 
from one given scene (defining one time step) of a satellite 
image. 

- Selecting the same tile at different scenes (versions of the 
tile). 

- Detecting the differences of values in pixel attributes of two 
scenes  (change detection). 

- Overlaying data from different sources and domains for the 
same region (e.g. SENTINEL and weather data). 

“Seamlessly selecting a tile” means that the data have to be 
selected spatially independent of à priori fixed partitions. 
Furthermore, the temporal selection of the same region within a 
time interval has to be supported by a spatio-temporal database 
operation. The same is true to compute the differences between 
two images of the same region generated at two different time 
steps. Note that the overlay of two images from different data 
sources has to be applied carefully: the generation of “integrated 
models” is a sophisticated task and has to consider a variety of 
geometric, topological, temporal, and semantical constraints. 
Picking up the example of our first use case (section 3.1), the 
automatic checking of phase errors in interferometric synthetic 
aperture (InSAR) radar data could be executed by setting data 
constraints such as “the phase must not be greater than 2π” up to 
complex algorithms implementing unwrapping operations. The 
advantage of this database-supported approach is that the data has 
no more to be loaded from a data platform and later laboriously 
spatially or/and temporally selected as wanted, but the selection 
of the data is immediately done in the geospatial data 
management system. 

Besides satellite image data, also the models used for data 
analysis such as Convolutional Neural Networks (CNNs) should 
be managed in a geospatial database management system. The 
persistent storage and retrieval of these models will significantly 
improve the reproducibility of image analysis such as CNN-
based image analysis. Therefore, not only the “original models” 
should be stored in the database, but also optimized versions of 
the (learning) models. To provide the models by a database is 
even more important, if data from different sources are involved.  
 
4.3 Improving data integration 

The rapid growth in the number of ground, airborne, and satellite 
sensors has led to an unprecedented increase in the amount, 
variety, and rate of collection of remote sensing data. The process 
of integrating huge volumes of heterogeneous geospatial data 
using traditional data models on the geographic grid is lossy, 
computationally expensive, and time-consuming (OGC, 2017). 
Recently, Discrete Global Grid Systems (DGGS) have been 
proposed as an alternative geospatial reference framework that 
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can facilitate the fusion of multi-source remote sensing data 
(Goodchild, 2018; OGC, 2017; Gibb, 2021). 
A DGGS applies a partitioning approach to divide the Earth’s 
surface into a group of uniform cells at various levels of 
resolutions. Its hierarchical structure can effectively support the 
sampling, storage, modeling, processing, analysis, integration, 
and visualization of voluminous and heterogeneous remote 
sensing data.  
The adoption of a DGGS in modelling and management of 
remote sensing data has two objectives. The first objective is to 
facilitate the integration of heterogeneous remote sensing 
datasets for a study area using a DGGS. Figure 8 summarizes the 
DGGS parameters, which are chosen to provide an optimal 
hierarchical tessellation of Canada’s landmass.  
 

 
Figure 8: Example DGGS configuration parameters for Canada’s 
landmass. 
 
The integration of remote sensing datasets includes the following 
three tasks:   
 

1. Data preparation: remote sensing data will be converted into 
a common horizontal and vertical datum.  

2. Data quantization: remote sensing data will be assigned to 
DGGS cells at various resolutions based on their horizontal 
and vertical accuracy.   

3. Quality Control: Ground control points will be used to 
validate the quantization of the remote sensing dataset by 
calculating and comparing the post-DGGS and pre-DGGS 
statistical errors.  

The second objective is to support the geo-processing of the 
‘analysis-ready’ remote sensing data modelled into a DGGS. 
Various generic and application specific analytical operations 
need to be developed to allow the extraction of consistent derived 
data from the DGGS. These operations need to be extensively 
validated through experimental testing for various study areas 
based on acquired knowledge from past works carried out by both 
domain experts and data analysts to guarantee an efficient 
toolbox for reliable decision-making processes.  
 

5. CONCLUSIONS AND OUTLOOK 

In this paper we presented use cases showing the emerging need 
of improving data quality and the management of data and 
models in a geospatial database management system before and 
during data analysis. Different new processes of data preparation 
and quality checking, integration of data across different scales 
and references systems as well as efficient data and model 
management showed that data analysis in satellite remote sensing 
scenarios has to be supported by various data quality and data 
management techniques. Based on the use cases we discussed 
emerging research questions concerning data preparation and 
data quality checking, data and model management, and data 
integration, cf. Figure 9. 

 
Figure 9: Overview of a typical remote sensing data processing 
workflow. 
 
Data cleansing during data preparation, accuracy dimensions, the 
applicability on smart city operations, spatio-temporal database 
operations, the integration of Discrete Global Grid Systems and 
learning models in a geospatial database have been presented as 
possible solutions for an improved data analysis in remote 
sensing scenarios. In our future work we will embed integrated 
data management and data analysis architectures into existing 
remote sensing and geospatial applications. Finally, we intend to 
apply some of the introduced data preparation and data 
management techniques to support earth observation scenarios in 
the United Arab Emirates, with special emphasis on applications 
such as smart city management and intelligent traffic solutions. 
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