KIT | KIT-Bibliothek | Impressum | Datenschutz

Development of a surrogate artificial neural network for microkinetic modeling: case study with methanol synthesis

Lacerda de Oliveira Campos, Bruno ORCID iD icon 1; Oliveira Souza da Costa, Andréa; Herrera Delgado, Karla ORCID iD icon 1; Pitter, Stephan ORCID iD icon 1; Sauer, Jörg ORCID iD icon 1; Ferreira da Costa Junior, Esly
1 Institut für Katalyseforschung und -technologie (IKFT), Karlsruher Institut für Technologie (KIT)

Abstract:

Microkinetic models allow the description of complex reaction kinetics but require high computational costs, hindering their combination with detailed reactor models. In this contribution, a methodology to develop a surrogate artificial neural network (ANN) was proposed and demonstrated for methanol synthesis on Cu/Zn-based catalysts. The resulting model accurately reproduces the simulations of the original microkinetic model, reducing the computational costs by orders of magnitude. In the developed methodology, the ANN learns only the kinetics of the global reaction rates, thereby decreasing model complexity and computational costs while ensuring thermodynamic consistency. In addition, an improved activation function for the ANN was designed in this work to minimize computational costs and to smooth out calculations. The proposed approach creates a bridge to integrate microkinetics into applications in the field of reaction engineering, such as reactor design, process optimization, and scale-up.


Verlagsausgabe §
DOI: 10.5445/IR/1000168145
Veröffentlicht am 06.02.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Katalyseforschung und -technologie (IKFT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 30.04.2024
Sprache Englisch
Identifikator ISSN: 2058-9883
KITopen-ID: 1000168145
HGF-Programm 38.03.02 (POF IV, LK 01) Power-based Fuels and Chemicals
Erschienen in Reaction Chemistry & Engineering
Verlag Royal Society of Chemistry (RSC)
Band 9
Heft 5
Seiten 1047–1060
Vorab online veröffentlicht am 15.01.2024
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page