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Abstract
Objective.Thefield of radiotherapy is highlymarked by the lack of datasets evenwith the availability of
public datasets. Our study uses a very limited dataset to provide insights on essential parameters
needed to automatically and accurately segment individual bones on planningCT images of head and
neck cancer patients.Approach.The studywas conducted using 30 planningCT images of real patients
acquired from5different cohorts. 15 cases from4 cohorts were randomly selected as training and
validation datasets while the remainingwere used as test datasets. Four experimental sets were
formulated to explore parameters such as background patch reduction, class-dependent augmenta-
tion and incorporation of aweightmap on the loss function.Main results.Our best experimental
scenario resulted in ameanDice score of 0.93± 0.06 for other bones (skull,mandible, scapulae,
clavicles, humeri and hyoid), 0.93± 0.02 for ribs and 0.88± 0.03 for vertebrae on 7 test cases from the
same cohorts as the training datasets.We compared our proposed solution approach to a retrained
nnU-Net and obtained comparable results for vertebral boneswhile outperforming in the correct
identification of the left and right instances of ribs, scapulae, humeri and clavicles. Furthermore, we
evaluated the generalization capability of our proposedmodel on a new cohort and themeanDice
score yielded 0.96± 0.10 for other bones, 0.95± 0.07 for ribs and 0.81± 0.19 for vertebrae on 8 test
cases. Significance.With these insights, we are challenging the utilization of an automatic and accurate
bone segmentation tool into the clinical routine of radiotherapy despite the limited training datasets.

1. Introduction

As of today, radiotherapy is a pillar in anti-cancer therapy and is administered tomore than half of cancer
patients at some point during their therapy. Radiotherapy is complex and involvesmany tasks that are likely to
be successfully automated or at least partly supported by tools developed usingmachine learning techniques
(Meyer et al 2018, Vogelius et al 2020).More specifically, bone delineation is an importantmedical imaging tool
to assist clinicians with the assessment ofmetastatic state of cancer (Belal et al 2019), the facilitation of clinical
decision-making for radiation treatment planning (Balagopal et al 2018, Kompella et al 2019) andmanymore.
For example, it has been used as a supportive tool for a biomechanical image registration to enhance registration
precision byBauer et al (2023).
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Manual contouring representing the gold standard for bone delineation is labour-intensive, time-
consuming and prone to high inter-observer variability. An accurate automatic segmentation tool for
delineating individual bony structures is non-trivial despite the high bone contrast offered byCT images
(Minnema et al 2018). This is specifically linked towide variations in the human bones in terms of shape, size and
composition ranging from long to irregular bones as found in the vertebral column or the skull (Leydon et al
2020). Other limiting factor includes the inherently low signal-to-noise ratio, poor spatial resolution and several
artifacts such asmetal artifacts inCT images (Karimi et al 2012). Thus, individual bone segmentation is
particularly difficult when relying on conventional image processingmethods such as thresholding, edge
detection algorithms, region growing, randomwalker and so on.

The emergence of deep learning based approaches largely outperforms humanperception power in
extracting useful information from large amounts of data such as images than conventionalmachine learning
methods inmany applications (Suzuki 2017, Xu et al 2018, Sahiner et al 2019). In this study scope, Belal et al
(2019) published thefirst promising step towards a highly needed automated PET/CT-based imaging
methodology in prostate cancer for 49 selected bones. Their proposed solution pipelinewas a hybridmethod of
deep learning and shapemodels. Klein et al (2019) performed a similar study using a stand-alone deep learning
method for a full-body bone tissue segmentation, without the identification of individual bones. As a follow-up
study for the deep learning based approach, Schnider et al (2020) carried out a study for over 100 individual
bones for the upper body using nnU-Net designed by Isensee et al (2021). Based on their findings, they
discovered that theirmodel found it very challenging to predict some bone classes which tend to be confused
with each other such as the ribs and vertebrae. Therefore, further validation and evaluation are needed for stand-
alone deep learning approaches before their introduction into clinical routine. On the other hand, the field of
radiotherapy is highlymarkedwith a lack of datasets evenwith the availability of public datasets such as the
StructSeg2019 segmentation for radiotherapy planning challenge 2019 (Wahid et al 2023). Hence, this need
raises concern on the essential parameters needed by deep learningmodels to yield an accurate segmentation of
individual bones on planningCT images with limited training datasets.

The underlying objective of this study is to explore the capability of aU-Net-based segmentation of
individual bones on planningCT images of head and neck cancer patients who received radiotherapy.
Specifically, we seek to investigate different experimental cases and essential parameters whichwill yield an
accurate prediction of all individual bones in the head and neck regionwith a very limited training dataset
acquired fromdifferent cohorts. Furthermore, we compared the prediction capability of our best experimental
scenario to benchmark segmentation tools. Finally, ourmodel was evaluated using cohorts from theHaN-Seg
challenge 2023 (Podobnik et al 2023) to quantify howourmodel generalizes to patients acquired using different
protocols and acquisition parameters.

2.Materials andmethods

2.1. Patient datasets
This studywas conducted using 30 planningCT images of head and neck cancer patients who received
radiotherapy. Image datasets were obtained from5different cohorts using different setup positioning devices
and acquisition protocols (Stoiber et al 2009, Giske et al 2011, Stoll et al 2016). The data cohort included patients
treatedwithin the: GermanCancer ResearchCenter (DKFZ) (Giske et al 2011, Stoll et al 2016), Heidelberg Ion
Therapy facility (HIT) (Bosch et al 2015), Cancer Imaging Archive (TCIA) (Ang et al 2014, Bosch et al 2015),
University ClinicsHeidelberg (UKHD) andHaN-Seg challenge 2023. The axial image sizewas 512× 512 pixels,
with axial slice numbers ranging from111 to 400. The voxel spacingwere in the range of 0.98× 0.98× 2 to
1.40× 1.40× 3.3 mm3.

2.2.Manual annotations
Since the selected deep learning approach is a supervised learning approach,manual annotation of individual
bones on each image is needed prior to themodel build-up.Manual annotations were performed on all planning
CT images (with the exception of theHaN-Seg challenge cohorts) by 5 observers following the anatomical
guidelines as outlined byMöller (2005). Despite the existing anatomical guideline,manual annotations between
the different observers was impacted by a complex set of aspects, which could be either patient-specific or
protocol-specific. Therefore, the inter-observer variability was indispensable especially in the skull and vertebral
bones for this task.Hence, a single observer with a high level of experience in bone segmentation taskwas
employed tomanually refine the segmentationmask of one observer whose segmentation qualitywas conformal
to the provided anatomical guideline. Infigure 1, we present the evolvement ofmanual annotations after an
expert correction. The refinement procedure additionally involved the exclusion of teeth in both the skull and
mandible; while delineation of each rib included its corresponding costal cartilage. An illustration ofmanually
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segmented individual boneswith their original names is depicted infigure 2. The structure set consists of 32
(excluding background) individual bones per patient aftermanual annotations.

2.3. Image preprocessing
Prior to theU-Netmodel build-up for automatic individual bone segmentation, bodymaskwasmanually
outlined on each patient to remove treatment couch and regions outside the body contour were set to the
HounsfieldUnit (HU) value of air (−1024 HU). Subsequently, the level of noise present in each planningCT
imagewas corrected using an isotropic diffusion filtering; which has the ability to preserve edge information
(Perona et al 1994). The number of individual boneswas reduced to 24 using a grouping techniquewhich assigns
the left and right instances of the same bone as an individual bone for bone structures such as the scapulae,
humeri, clavicles and ribs. That is, the same numeric value was assigned to left and right side of the same bone
class. A sample of the default and grouped bone classes is displayed infigures 3(a) and (b) respectively.

2.4. Network description
The 3DU-Net architecture for dense volumetric segmentationwas employed in our investigation (Cicek et al
2016). The encoding network consists of a double convolutional layer with a volumetric kernel size of 3× 3× 3
followed by batch normalization (Ioffe and Szegedy 2015), activation function based on Leaky ReLU (Xu et al
2020)with a leak factor of 0.2 and a pooling layer of 2× 2× 2. In contrast to the encoding network, the decoding

Figure 1.Evolvement ofmanual annotations after an expert correction for 2 instances.Observer X represents the observer whose
manual segmentationwere conformal to the provided anatomical guideline;Observer Y represents the correctionsmade by an expert;
Fused Labels is an overlay ofmanual annotations ofObserver X andObserver Y. Thewhite arrows point to regions where deviations
are visible.

Figure 2.An illustration ofmanually segmented individual bones for an exemplary head and neck cancer patient. Different colours
correspond to the different individual boneswith their corresponding names.
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network ismade of double up-convolutional (opposite of convolution operation) layers with a volumetric
kernel size of 3× 3× 3 each followed by LeakyReLU.High-level feature information extracted in the encoding
pathwas incorporated into the decoding path by concatenating them at each layer through a shortcut
connection. A 1× 1× 1 convolutional layer was performed at the output layer to reproduce the required output
labels. For this selected network, adjustments weremade in the base convolutional filter by initializing it to 64
and doubledwhenever the network increases in depth. The number of channels assigned to the classification
layer was 24, to account for the different grouped bone classes.

2.5.Model generation
Of these 30 patients, 15 cases from amixture ofDKFZ,HIT, TCIA andUKHDcohorts were randomly selected
as training and validation datasets. The remaining 15 cases were divided into 2 test groups:Test A—7 cases from
the same cohort as reflected in the training datasets andTest B—8 cases acquiredwith different scanners and
protocols gathered from theHaN-Seg challenge. Allmodels were implemented using TensorFlow (version 2.1)
and trained on a doubleNVIDIAGeForce RTX2080TiGPU card. Due to limitations in computational
resources, particularly inGPURAMsize, the 3DU-Net architecture was trained from scratch using an isotropic
patch size of 643 with a slidingwindow on its neighbouring patcheswith an overlap of 323 using the Patchify
library9. This overlap ensures that a continuouswhole-label output can be obtained and allows for an increased
training dataset for the network (Fu et al 2020). Four experimental scenarios were formulated to determine how
different tuned parameters under limited training datasets can impact the final predicted bone classes. The
details of each experimental case are summarized below:

1. Experiment I: training networkwith all extracted patches andwithout augmentation.

2. Experiment II: training networkwith reduced background patches andwithout augmentation.

3. Experiment III: training networkwith reduced background patches andwith augmentation.

4. Experiment IV: training network with reduced background patches, class-dependent augmentation and
weightmaps.

Aside from thefirst experimental training, the number of backgroundpatches (i.e. patcheswhich donot
contain anybone information)was drastically reduced by randomly selecting a fewof these patches as part of the
training samples. The purpose of this step is to reduce the high-class imbalance skew towards backgroundpatches.
The image augmentation adopted reflect standard strategies specialized to radiotherapy application such as
rotations (±15°), shifts,flips and various amounts of imagenoisewere applied to the training patches only.

Figure 3.Grouping technique adopted to reduce individual bones. Default Labels define 32 individual boneswhile Grouped Labels
define 24 individual bones after the grouping technique. IR and IL represent the numeric values of bone at the right and left instance
respectively.

9
https://pypi.org/project/patchify/.

4

Phys.Med. Biol. 69 (2024) 035008 AKYawson et al

https://pypi.org/project/patchify/


The class-dependent augmentation adopted in the last experimental case addresses the class imbalance problem
and it involves augmentingpatcheswith vertebrae or ribs at a higher degree than patcheswith other classes using a
ratio of 2:1 respectively. Besides the class-dependent augmentation in thefinal experimental scenario, aweight
mapwas introduced in the loss function expression inorder to compensate for the remaining class imbalance. The
weight of each classwas generatedusing equation (1) inspired by thework fromLaRosa (2017)

W
freq

freq
, 1c

m

c

= ( )

whereWc is theweight of the given bone class, freqm is themedian of the frequencies of all bone classes and freqc
is the frequency of the given bone class.

The adaptivemoment estimation (Adam) (Singarimbun et al 2019)was the optimizing algorithm adopted
with a learning rate of 2e-4. The batch size was limited to 4with afixed epoch of 25. These hyper-parameters
were tuned empirically. To quantify the deviation of the estimated label from the target label, a combination loss
ofDice and cross-entropy loss wasminimized as the objective function.Once amodel was trained, themodel
was tested using the held-out test datasets. From the predicted patches, a whole 3D volume label was obtained via
patch fusion of the predicted patches using the Patchify library10.

2.6. Post-processing
Default labels were recovered from the raw prediction of grouped labels using connected components analysis
(Silversmith 2021) to remove redundant predictions in the background as well as separating grouped labels to
left and right instances of bone classes such as the ribs, clavicles, humeri and scapulae. This algorithm can
successfully distinguish between the left and right sides of the same bone, since the left and right sides of the same
bone are not connected. Once the left and right instances have been differentiated, the labels were renamed to
the same numeric value as the default labels.

2.7. Benchmark segmentation tools
The benchmark segmentation tools utilized for comparison are the nnU-Net andTotalsegmentator V1
(Wasserthal et al 2022). nnU-Net employs self-configuring preprocessing, augmentation and post-processing

Figure 4. 3D volume rendering of target labels against its predicted labels for all experimental cases as defined in subsection 2.5 in the
front, side and back view (top to bottom) of an exemplary test case inTest A. Different colours represent the different individual bones
as explained infigure 2.Target: ground-truth individual bones;Exp I: predicted bone labels fromExperiment I;Exp II: predicted
bone labels fromExperiment II;Exp III: predicted bone labels fromExperiment III andExp IV: predicted bone labels from
Experiment IV. Thewhite dashed circles on the predicted bone labels show the focus regions where improvementwas observed across
the different experimental cases.

10
https://pypi.org/project/patchify/.
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techniqueswhile Totalsegmentator is a segmentation tool trained on 1228CT images to classify over 100 classes
of the human anatomy using nnU-Net. Bone predictions fromTotalsegmentator were acquired using the 3D
Slicer (Pieper et al 2004) extension (version 5.2.0). The retrained nnU-Net on our dataset was implemented
using the default configuration of nnU-Net.

3. Results

The accuracy of the predicted bone labels and its corresponding target bone labels were evaluated both
qualitatively and quantitatively. Qualitative and quantitative analysis was performed using visual inspection and
theDice similarity index (Thada and Jaglan 2013) respectively.

Figure 5.Boxplot analysis (Dice score) of all experimental cases as defined in subsection 2.5 usingTest A. (a)All individual bones in
the head and neck region except ribs and vertebrae (Other bones); (b) all ribs and (c)All vertebrae. Exp I—Experiment I, Exp II—
Experiment II, Exp III—Experiment III and Exp IV—Experiment IV.
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3.1. Comparison between experimental scenarios
Test A representing the cohorts ofDKFZ,HIT, TCIA andUKHDas reflected in the training datasets was utilized
to analyze the different experimental scenarios. Figure 4 outlines the 3D volume rendering of target bone labels
against its corresponding predicted bone labels in the front, side and back view on a sample test case for all
experimental scenarios. Quantitative results from the dice indexmeasurewere classified into separate boxplots
of ribs, vertebrae and other bones consisting of skull,mandible, hyoid, sternum, clavicles, humeri and scapulae,
as detailed infigure 5. The trends observed in the grouped boxplots were in agreementwith the visual inspection.
Each experimental case resulted in a unique predictionwith significant differences observed in various bone
types. In view of thefirst experimental scenario, large deviations were observed in all individual bones and this is
due to the large number of background patches present in the training datasets. These patches hinder effective
learning although it provides huge dataset for the network evenwithout any formof augmentation. Therefore,
background patches were drastically reduced as described in Experiment II. Despite the few patches in
Experiment II, this step enables the network to focus on patcheswhich have useful information to effectively
learn and resulted in amore precise prediction than Experiment I. This parameter adaptation led to a significant
improvement in large bones such as the skull,mandible, scapulae, humeri and clavicles. Nevertheless, large
variations observed in bone classes such as ribs and vertebrae persisted in this experimental case. This can be
attributed to the less representation of these bone classes within the training sample. Experiment III comprising
data augmentation yielded an enhancement in all individual bones including ribs and vertebrae. However, the
mixing of vertebral bones with its neighbouring vertebraewas still present. Thus, with a focus on vertebral bone,
additional steps were taken to further improve the prediction accuracy of these bone classes as demonstrated in
Experiment IV. Experiment IV producedmore comparable vertebral bones to their target with a reducedmix-
up of neighbouring vertebrae.

3.2. Comparisonwith benchmark segmentation approaches
The comparison of ourfinal experimental results (Experiment IV)withTotalsegmentator and the retrained
nnU-Net is depicted infigure 6. Predictions fromTotalsegmentator was unable to predict bone classes such as
the skull,mandible, hyoid and sternum. Additionally, ribs were segmentedwithout their corresponding costal
cartilages. Unlike the Totalsegmentator, the retrained nnU-Net on our datasets was able to predict all individual
bones in the head and neck region. The retrained nnU-Net predictions yielded comparable results with our
proposed approach, and large deviationsweremostly observed in the left and right instances of the same bone
classes, such as the ribs, clavicles, humeri and scapulae, as reflected in the boxplot analysis infigure 7.

Figure 6.Comparison of ourfinal experimental results (Experiment IV)with Totalsegmentator and a retrained nnU-Net for one test
case inTest A. Row (a) represents the 3D volume rendering of target bone labels against predicted bone labels fromTotalsegmentator,
nnU-Net and our proposed approach respectively; Row (b) represents the 2D slice extraction from all cases andRow (c) represents the
2D image slice of bone labels overlaid on the planningCT for all cases. Thewhite arrowpoints to the regionwhere large deviations can
be observed for the different approaches.
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3.3. Evaluation on a new cohort
TestBwasused to evaluate the generalization capability of ourproposedmodelonpatients acquiredwithdifferent
scanners andacquisitionparameters.Asdemonstrated infigure8, theprediction accuracywasona similar level asTest
A formost individual boneswithfluctuationsobserved in thoracic vertebrae (especiallyT4andT5)betweendifferent
patients. That is, ourmodel accurately identified thedifferent thoracic vertebraewithoutmixingneighbouring thoracic
vertebrae for somepatient cases andvice versa.Adetailedquantitative analysis is illustrated infigure9.

4.Discussion

In this study, we provide insights on essential parameters needed to automatically and accurately segment all
individual bones in the head and neck region using very limited planningCT images of patients who received

Figure 7.Boxplot analysis (Dice score) of our proposed solution approach (Experiment IV)with Totalsegmentator and nnU-Net
usingTest A. (a)All individual bones in the head and neck region except ribs and vertebrae (Other bones); (b) all ribs and (c) all
vertebrae.
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radiotherapy. Before our study, preceding publishedworkswhich adopted similar network architectures to
model different scales of input CT (diagnostic CT or planningCT) aswell as bone classes have proven that
further validation and evaluation are needed for stand-alone deep learning based approaches before their
introduction into clinical routines.

The performance of deep learningmodels growwith the amount of data in the training dataset
(Sarker 2021). However, the performance of individual deep learningmodels can be saturated after the addition
of certain amount of data (Shorten andKhoshgoftaar 2019). Thus, further improvements can frequently be
attained by either extendingmodel architectures or exploring parameters within the available datasets whichwill
enforce effective learning from limited datasets. For this reason, we have examined 4 experimental cases with the
aimof determining howdifferent parameters can impact the final predicted bone classes on 30 patient studies.
These parameters include background patch reduction, class-dependent augmentation and the incorporation of
weight information to the loss function of the networkmodel parameters. From all the different sets of
experiment carried out, we can deduce that the sequential tuning of different parameters provided the network
with rich information during the training phase to help differentiate all individual bones present in the head and
neck region irrespective of their shape or size.

Infigures 6 and 7, we compared our proposed approach (Experiment IV)withTotalsegmentator and a
retrained nnU-Net on datasets. Asmentioned earlier, Totalsegmentator has been trained on a large number of
CT images (both diagnostic and planning). Therefore, the high prediction accuracy observed in all vertebral
bones (figure 7(c)) by Totalsegmentator is expected; because themodel has seenmany representations of
vertebral bones. Nonetheless, it was unable to segment some bone classes (skull,mandible, hyoid and sternum)
and ribswere segmentedwithout their corresponding costal cartilages. Since our research question is focused to
only radiotherapy (i.e. planningCT) and learning from limited datasets, the nnU-Net was retrained on datasets
to promote fair comparison. Predictions fromnnU-Net resulted in an accurate prediction in the upper vertebrae
(such asC1 andC2)with large variance observed in the lower vertebrae for all test cases. Even so, as reported in
thefindings of Schnider et al (2020), nnU-Net retrained on our datasets was unable to distinguish between the
left and right instances of the same bone classes such as the scapulae, clavicles, humeri and themix-up of rib
classes; which ourmodel was able to solve by the adopted grouping technique prior to themodel training.

Figure 8. 3D volume rendering of target bone labels against its predicted bone labels for one case inTest B. Different colours represent
the different individual bones as shown infigure 2. Thewhite dashed circles show regions where deviations are visible.
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Furthermore, to quantify howourmodel generalizes on a new cohort, we tested ourmodel on 8 additional
test cases from the ongoingHaN-Seg challenge. The data selection criteria was based on their similarity in terms
ofmatrix dimension and spatial resolution. The detailed analysis as demonstrated infigure 9 proves an optimal
generalization to new patient cases in almost all individual bones. Nevertheless, largefluctuations observed in
the prediction accuracy of thoracic vertebrae (especially T4 andT5) can be attributed to the different patient
positioning set-up during the delivery of radiotherapy. Patient positioning has a great impact on the appearance
of thoracic spine (Plataniotis et al 2019) and it confused ourmodel bymixing up neighbouring thoracic
vertebrae since our selectedU-Net architecture is variant to rotation. Therefore, as a future direction, wewill
further extend ourmodel by investigating and introducing a rotational component in the class-dependent
augmentation parameter to account for the change in the appearance of thoracic vertebrae due to the different
patient positioning.

Figure 9.Boxplot analysis (Dice score) of our proposed solution approach (Experiment IV)usingTest B. (a)All individual bones in
the head and neck region except ribs and vertebrae (Other bones); (b) all ribs and (c) all vertebrae.
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5. Conclusion

This study examined essential parameters needed to automatically and accurately segment individual bones on
planningCT images of head and neck cancer patients.We explored 4 experimental scenarios to determine the
impact of different parameter adaptations on predicted individual bones irrespective of their shape, size and
level of complexity on 30 patients. Our proposed solution approach proves that the sequential tuning of
parameters such as background patch reduction, class-dependent augmentation and the incorporation of
weight information in the loss function yielded an equivalent predictionwith a retrained nnU-Net on our
datasets for all vertebral bones and outperformed nnU-Net in the correct identification of left and right instances
of the same bone class; because of the grouping approach adopted before themodel generation. Furthermore,
ourmodel showed an optimal generalization capability for almost all individual bones on a new test cohort.
Nevertheless, large fluctuations observed in thoracic vertebraewarrant the introduction of a rotational
component in the class-dependent augmentation parameter to account for the different patient positioning.
With these insights, we are challenging the utilization of an automatic and accurate bone segmentation tool into
the clinical routine of radiotherapy despite the limited training datasets.
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