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Abstract

Objective. The field of radiotherapy is highly marked by the lack of datasets even with the availability of
public datasets. Our study uses a very limited dataset to provide insights on essential parameters
needed to automatically and accurately segment individual bones on planning CT images of head and
neck cancer patients. Approach. The study was conducted using 30 planning CT images of real patients
acquired from 5 different cohorts. 15 cases from 4 cohorts were randomly selected as training and
validation datasets while the remaining were used as test datasets. Four experimental sets were
formulated to explore parameters such as background patch reduction, class-dependent augmenta-
tion and incorporation of a weight map on the loss function. Main results. Our best experimental
scenario resulted in a mean Dice score of 0.93 == 0.06 for other bones (skull, mandible, scapulae,
clavicles, humeri and hyoid), 0.93 & 0.02 for ribs and 0.88 £ 0.03 for vertebrae on 7 test cases from the
same cohorts as the training datasets. We compared our proposed solution approach to aretrained
nnU-Net and obtained comparable results for vertebral bones while outperforming in the correct
identification of the left and right instances of ribs, scapulae, humeri and clavicles. Furthermore, we
evaluated the generalization capability of our proposed model on a new cohort and the mean Dice
score yielded 0.96 £ 0.10 for other bones, 0.95 4 0.07 for ribs and 0.81 £ 0.19 for vertebrae on 8 test
cases. Significance. With these insights, we are challenging the utilization of an automatic and accurate
bone segmentation tool into the clinical routine of radiotherapy despite the limited training datasets.

1. Introduction

As of today, radiotherapy is a pillar in anti-cancer therapy and is administered to more than half of cancer
patients at some point during their therapy. Radiotherapy is complex and involves many tasks that are likely to
be successfully automated or at least partly supported by tools developed using machine learning techniques
(Meyer etal 2018, Vogelius et al 2020). More specifically, bone delineation is an important medical imaging tool
to assist clinicians with the assessment of metastatic state of cancer (Belal et al 2019), the facilitation of clinical
decision-making for radiation treatment planning (Balagopal et al 2018, Kompella et al 2019) and many more.
For example, it has been used as a supportive tool for a biomechanical image registration to enhance registration
precision by Bauer et al (2023).

© 2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd
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Manual contouring representing the gold standard for bone delineation is labour-intensive, time-
consuming and prone to high inter-observer variability. An accurate automatic segmentation tool for
delineating individual bony structures is non-trivial despite the high bone contrast offered by CT images
(Minnema et al 2018). This is specifically linked to wide variations in the human bones in terms of shape, size and
composition ranging from long to irregular bones as found in the vertebral column or the skull (Leydon et al
2020). Other limiting factor includes the inherently low signal-to-noise ratio, poor spatial resolution and several
artifacts such as metal artifacts in CT images (Karimi et al 2012). Thus, individual bone segmentation is
particularly difficult when relying on conventional image processing methods such as thresholding, edge
detection algorithms, region growing, random walker and so on.

The emergence of deep learning based approaches largely outperforms human perception power in
extracting useful information from large amounts of data such as images than conventional machine learning
methods in many applications (Suzuki 2017, Xu et al 2018, Sahiner et al 2019). In this study scope, Belal et al
(2019) published the first promising step towards a highly needed automated PET/CT-based imaging
methodology in prostate cancer for 49 selected bones. Their proposed solution pipeline was a hybrid method of
deep learning and shape models. Klein et al (2019) performed a similar study using a stand-alone deep learning
method for a full-body bone tissue segmentation, without the identification of individual bones. As a follow-up
study for the deep learning based approach, Schnider et al (2020) carried out a study for over 100 individual
bones for the upper body using nnU-Net designed by Isensee et al (2021). Based on their findings, they
discovered that their model found it very challenging to predict some bone classes which tend to be confused
with each other such as the ribs and vertebrae. Therefore, further validation and evaluation are needed for stand-
alone deep learning approaches before their introduction into clinical routine. On the other hand, the field of
radiotherapy is highly marked with a lack of datasets even with the availability of public datasets such as the
StructSeg2019 segmentation for radiotherapy planning challenge 2019 (Wahid et al 2023). Hence, this need
raises concern on the essential parameters needed by deep learning models to yield an accurate segmentation of
individual bones on planning CT images with limited training datasets.

The underlying objective of this study is to explore the capability of a U-Net-based segmentation of
individual bones on planning CT images of head and neck cancer patients who received radiotherapy.
Specifically, we seek to investigate different experimental cases and essential parameters which will yield an
accurate prediction of all individual bones in the head and neck region with a very limited training dataset
acquired from different cohorts. Furthermore, we compared the prediction capability of our best experimental
scenario to benchmark segmentation tools. Finally, our model was evaluated using cohorts from the HaN-Seg
challenge 2023 (Podobnik et al 2023) to quantify how our model generalizes to patients acquired using different
protocols and acquisition parameters.

2. Materials and methods

2.1. Patient datasets

This study was conducted using 30 planning CT images of head and neck cancer patients who received
radiotherapy. Image datasets were obtained from 5 different cohorts using different setup positioning devices
and acquisition protocols (Stoiber et al 2009, Giske e al 2011, Stoll et al 2016). The data cohort included patients
treated within the: German Cancer Research Center (DKFZ) (Giske etal 2011, Stoll et al 2016), Heidelberg Ion
Therapy facility (HIT) (Bosch et al 2015), Cancer Imaging Archive (TCIA) (Anget al 2014, Bosch et al 2015),
University Clinics Heidelberg (UKHD) and HaN-Seg challenge 2023. The axial image size was 512 x 512 pixels,
with axial slice numbers ranging from 111 to 400. The voxel spacing were in the range 0f 0.98 x 0.98 x 2to

1.40 x 1.40 x 3.3 mm’.

2.2.Manual annotations

Since the selected deep learning approach is a supervised learning approach, manual annotation of individual
bones on each image is needed prior to the model build-up. Manual annotations were performed on all planning
CT images (with the exception of the HaN-Seg challenge cohorts) by 5 observers following the anatomical
guidelines as outlined by Méller (2005). Despite the existing anatomical guideline, manual annotations between
the different observers was impacted by a complex set of aspects, which could be either patient-specific or
protocol-specific. Therefore, the inter-observer variability was indispensable especially in the skull and vertebral
bones for this task. Hence, a single observer with a high level of experience in bone segmentation task was
employed to manually refine the segmentation mask of one observer whose segmentation quality was conformal
to the provided anatomical guideline. In figure 1, we present the evolvement of manual annotations after an
expert correction. The refinement procedure additionally involved the exclusion of teeth in both the skull and
mandible; while delineation of each rib included its corresponding costal cartilage. An illustration of manually
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Manual Labels Manual Labels

CT Image Slice (Observer X) (Observer Y)

Fused Labels

Figure 1. Evolvement of manual annotations after an expert correction for 2 instances. Observer X represents the observer whose
manual segmentation were conformal to the provided anatomical guideline; Observer Y represents the corrections made by an expert;
Fused Labels is an overlay of manual annotations of Observer X and Observer Y. The white arrows point to regions where deviations
are visible.
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Hyoid ¢ Cervical Vertebrae__————
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Figure 2. An illustration of manually segmented individual bones for an exemplary head and neck cancer patient. Different colours
correspond to the different individual bones with their corresponding names.

segmented individual bones with their original names is depicted in figure 2. The structure set consists of 32
(excluding background) individual bones per patient after manual annotations.

2.3.Image preprocessing

Prior to the U-Net model build-up for automatic individual bone segmentation, body mask was manually
outlined on each patient to remove treatment couch and regions outside the body contour were set to the
Hounsfield Unit (HU) value of air (—1024 HU). Subsequently, the level of noise present in each planning CT
image was corrected using an isotropic diffusion filtering; which has the ability to preserve edge information
(Perona et al 1994). The number of individual bones was reduced to 24 using a grouping technique which assigns
the left and right instances of the same bone as an individual bone for bone structures such as the scapulae,
humeri, clavicles and ribs. That is, the same numeric value was assigned to left and right side of the same bone
class. A sample of the default and grouped bone classes is displayed in figures 3(a) and (b) respectively.

2.4. Network description

The 3D U-Net architecture for dense volumetric segmentation was employed in our investigation (Cicek et al
2016). The encoding network consists of a double convolutional layer with a volumetric kernel size of 3 x 3 x 3
followed by batch normalization (Ioffe and Szegedy 2015), activation function based on Leaky ReLU (Xu et al
2020) with aleak factor of 0.2 and a pooling layer of 2 x 2 x 2. In contrast to the encoding network, the decoding

3
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Scapula (IR #11,) Scapula (IR =1L
(a) Default Labels (b) Grouped Labels

Figure 3. Grouping technique adopted to reduce individual bones. Default Labels define 32 individual bones while Grouped Labels
define 24 individual bones after the grouping technique. Ir and I; represent the numeric values of bone at the right and left instance
respectively.

network is made of double up-convolutional (opposite of convolution operation) layers with a volumetric
kernel size of 3 x 3 x 3 each followed by Leaky ReLU. High-level feature information extracted in the encoding
path was incorporated into the decoding path by concatenating them at each layer through a shortcut
connection. A1 x 1 x 1 convolutional layer was performed at the output layer to reproduce the required output
labels. For this selected network, adjustments were made in the base convolutional filter by initializing it to 64
and doubled whenever the network increases in depth. The number of channels assigned to the classification
layer was 24, to account for the different grouped bone classes.

2.5.Model generation

Of these 30 patients, 15 cases from a mixture of DKFZ, HIT, TCIA and UKHD cohorts were randomly selected
as training and validation datasets. The remaining 15 cases were divided into 2 test groups: Test A—7 cases from
the same cohort as reflected in the training datasets and Test B—38 cases acquired with different scanners and
protocols gathered from the HaN-Seg challenge. All models were implemented using TensorFlow (version 2.1)
and trained on a double NVIDIA GeForce RTX 2080Ti GPU card. Due to limitations in computational
resources, particularly in GPU RAM size, the 3D U-Net architecture was trained from scratch using an isotropic
patch size of 64° with a sliding window on its neighbouring patches with an overlap of 32° using the Patchify
library’. This overlap ensures that a continuous whole-label output can be obtained and allows for an increased
training dataset for the network (Fu et al 2020). Four experimental scenarios were formulated to determine how
different tuned parameters under limited training datasets can impact the final predicted bone classes. The
details of each experimental case are summarized below:

1. ExperimentI: training network with all extracted patches and without augmentation.

2. ExperimentII: training network with reduced background patches and without augmentation.

3. Experiment III: training network with reduced background patches and with augmentation.

4. Experiment IV: training network with reduced background patches, class-dependent augmentation and

weight maps.

Aside from the first experimental training, the number of background patches (i.e. patches which do not
contain any bone information) was drastically reduced by randomly selecting a few of these patches as part of the
training samples. The purpose of this step is to reduce the high-class imbalance skew towards background patches.
The image augmentation adopted reflect standard strategies specialized to radiotherapy application such as
rotations (+15°), shifts, flips and various amounts of image noise were applied to the training patches only.

? https://pypi.org/project/patchify/.
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Figure 4. 3D volume rendering of target labels against its predicted labels for all experimental cases as defined in subsection 2.5 in the
front, side and back view (top to bottom) of an exemplary test case in Test A. Different colours represent the different individual bones
as explained in figure 2. Target: ground-truth individual bones; Exp I: predicted bone labels from Experiment I; Exp II: predicted
bone labels from Experiment IT; Exp III: predicted bone labels from Experiment IIT and Exp IV: predicted bone labels from
Experiment IV. The white dashed circles on the predicted bone labels show the focus regions where improvement was observed across
the different experimental cases.

The class-dependent augmentation adopted in the last experimental case addresses the class imbalance problem
and it involves augmenting patches with vertebrae or ribs at a higher degree than patches with other classes using a
ratio of 2:1 respectively. Besides the class-dependent augmentation in the final experimental scenario, a weight
map was introduced in the loss function expression in order to compensate for the remaining class imbalance. The
weight of each class was generated using equation (1) inspired by the work from La Rosa (2017)

= o M

freq,
where W, is the weight of the given bone class, freq,,, is the median of the frequencies of all bone classes and freq,
is the frequency of the given bone class.

The adaptive moment estimation (Adam) (Singarimbun et al 2019) was the optimizing algorithm adopted
with a learning rate of 2e-4. The batch size was limited to 4 with a fixed epoch of 25. These hyper-parameters
were tuned empirically. To quantify the deviation of the estimated label from the target label, a combination loss
of Dice and cross-entropy loss was minimized as the objective function. Once a model was trained, the model
was tested using the held-out test datasets. From the predicted patches, a whole 3D volume label was obtained via
patch fusion of the predicted patches using the Patchify library'®.

2.6. Post-processing

Default labels were recovered from the raw prediction of grouped labels using connected components analysis
(Silversmith 2021) to remove redundant predictions in the background as well as separating grouped labels to
left and right instances of bone classes such as the ribs, clavicles, humeri and scapulae. This algorithm can
successfully distinguish between the left and right sides of the same bone, since the left and right sides of the same
bone are not connected. Once the left and right instances have been differentiated, the labels were renamed to
the same numeric value as the default labels.

2.7.Benchmark segmentation tools
The benchmark segmentation tools utilized for comparison are the nnU-Net and Totalsegmentator V1

(Wasserthal et al 2022). nnU-Net employs self-configuring preprocessing, augmentation and post-processing

10 . , . .
https://pypi.org/project/patchify/.
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Figure 5. Boxplot analysis (Dice score) of all experimental cases as defined in subsection 2.5 using Test A. (a) All individual bones in
the head and neck region except ribs and vertebrae (Other bones); (b) all ribs and (c) All vertebrae. Exp I—Experiment I, Exp II—
Experiment II, Exp IIl—Experiment III and Exp IV—Experiment IV.

techniques while Totalsegmentator is a segmentation tool trained on 1228 CT images to classify over 100 classes
of the human anatomy using nnU-Net. Bone predictions from Totalsegmentator were acquired using the 3D
Slicer (Pieper et al 2004) extension (version 5.2.0). The retrained nnU-Net on our dataset was implemented
using the default configuration of nnU-Net.

3. Results

The accuracy of the predicted bone labels and its corresponding target bone labels were evaluated both
qualitatively and quantitatively. Qualitative and quantitative analysis was performed using visual inspection and
the Dice similarity index (Thada and Jaglan 2013) respectively.
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Target TotalSegmentator nnU-Net Proposed

(a)

(b)

Figure 6. Comparison of our final experimental results (Experiment IV) with Totalsegmentator and a retrained nnU-Net for one test
casein Test A. Row (a) represents the 3D volume rendering of target bone labels against predicted bone labels from Totalsegmentator,
nnU-Net and our proposed approach respectively; Row (b) represents the 2D slice extraction from all cases and Row (c) represents the
2D image slice of bone labels overlaid on the planning CT for all cases. The white arrow points to the region where large deviations can
be observed for the different approaches.

3.1. Comparison between experimental scenarios

Test A representing the cohorts of DKFZ, HIT, TCIA and UKHD as reflected in the training datasets was utilized
to analyze the different experimental scenarios. Figure 4 outlines the 3D volume rendering of target bone labels
against its corresponding predicted bone labels in the front, side and back view on a sample test case for all
experimental scenarios. Quantitative results from the dice index measure were classified into separate boxplots
of ribs, vertebrae and other bones consisting of skull, mandible, hyoid, sternum, clavicles, humeri and scapulae,
as detailed in figure 5. The trends observed in the grouped boxplots were in agreement with the visual inspection.
Each experimental case resulted in a unique prediction with significant differences observed in various bone
types. In view of the first experimental scenario, large deviations were observed in all individual bones and this is
due to the large number of background patches present in the training datasets. These patches hinder effective
learning although it provides huge dataset for the network even without any form of augmentation. Therefore,
background patches were drastically reduced as described in Experiment II. Despite the few patches in
Experiment II, this step enables the network to focus on patches which have useful information to effectively
learn and resulted in a more precise prediction than Experiment I. This parameter adaptation led to a significant
improvement in large bones such as the skull, mandible, scapulae, humeri and clavicles. Nevertheless, large
variations observed in bone classes such as ribs and vertebrae persisted in this experimental case. This can be
attributed to the less representation of these bone classes within the training sample. Experiment III comprising
data augmentation yielded an enhancement in all individual bones including ribs and vertebrae. However, the
mixing of vertebral bones with its neighbouring vertebrae was still present. Thus, with a focus on vertebral bone,
additional steps were taken to further improve the prediction accuracy of these bone classes as demonstrated in
Experiment IV. Experiment IV produced more comparable vertebral bones to their target with a reduced mix-
up of neighbouring vertebrae.

3.2. Comparison with benchmark segmentation approaches

The comparison of our final experimental results (Experiment IV) with Totalsegmentator and the retrained
nnU-Net s depicted in figure 6. Predictions from Totalsegmentator was unable to predict bone classes such as
the skull, mandible, hyoid and sternum. Additionally, ribs were segmented without their corresponding costal
cartilages. Unlike the Totalsegmentator, the retrained nnU-Net on our datasets was able to predict all individual
bones in the head and neck region. The retrained nnU-Net predictions yielded comparable results with our
proposed approach, and large deviations were mostly observed in the left and right instances of the same bone
classes, such as the ribs, clavicles, humeri and scapulae, as reflected in the boxplot analysis in figure 7.
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Figure 7. Boxplot analysis (Dice score) of our proposed solution approach (Experiment IV) with Totalsegmentator and nnU-Net
using Test A. (a) All individual bones in the head and neck region except ribs and vertebrae (Other bones); (b) all ribs and (¢) all
vertebrae.

3.3. Evaluation on a new cohort

Test B was used to evaluate the generalization capability of our proposed model on patients acquired with different
scanners and acquisition parameters. As demonstrated in figure 8, the prediction accuracy was on a similar level as Test
A for most individual bones with fluctuations observed in thoracic vertebrae (especially T4 and T5) between different
patients. That is, our model accurately identified the different thoracic vertebrae without mixing neighbouring thoracic
vertebrae for some patient cases and vice versa. A detailed quantitative analysis is illustrated in figure 9.

4, Discussion

In this study, we provide insights on essential parameters needed to automatically and accurately segment all
individual bones in the head and neck region using very limited planning CT images of patients who received

8
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Target Labels

Predicted Labels

Figure 8. 3D volume rendering of target bone labels against its predicted bone labels for one case in Test B. Different colours represent
the different individual bones as shown in figure 2. The white dashed circles show regions where deviations are visible.

radiotherapy. Before our study, preceding published works which adopted similar network architectures to
model different scales of input CT (diagnostic CT or planning CT) as well as bone classes have proven that
further validation and evaluation are needed for stand-alone deep learning based approaches before their
introduction into clinical routines.

The performance of deep learning models grow with the amount of data in the training dataset
(Sarker 2021). However, the performance of individual deep learning models can be saturated after the addition
of certain amount of data (Shorten and Khoshgoftaar 2019). Thus, further improvements can frequently be
attained by either extending model architectures or exploring parameters within the available datasets which will
enforce effective learning from limited datasets. For this reason, we have examined 4 experimental cases with the
aim of determining how different parameters can impact the final predicted bone classes on 30 patient studies.
These parameters include background patch reduction, class-dependent augmentation and the incorporation of
weight information to the loss function of the network model parameters. From all the different sets of
experiment carried out, we can deduce that the sequential tuning of different parameters provided the network
with rich information during the training phase to help differentiate all individual bones present in the head and
neck region irrespective of their shape or size.

In figures 6 and 7, we compared our proposed approach (Experiment IV) with Totalsegmentator and a
retrained nnU-Net on datasets. As mentioned earlier, Totalsegmentator has been trained on a large number of
CT images (both diagnostic and planning). Therefore, the high prediction accuracy observed in all vertebral
bones (figure 7(c)) by Totalsegmentator is expected; because the model has seen many representations of
vertebral bones. Nonetheless, it was unable to segment some bone classes (skull, mandible, hyoid and sternum)
and ribs were segmented without their corresponding costal cartilages. Since our research question is focused to
only radiotherapy (i.e. planning CT) and learning from limited datasets, the nnU-Net was retrained on datasets
to promote fair comparison. Predictions from nnU-Net resulted in an accurate prediction in the upper vertebrae
(such as C1 and C2) with large variance observed in the lower vertebrae for all test cases. Even so, as reported in
the findings of Schnider et al (2020), nnU-Net retrained on our datasets was unable to distinguish between the
left and right instances of the same bone classes such as the scapulae, clavicles, humeri and the mix-up of rib
classes; which our model was able to solve by the adopted grouping technique prior to the model training.
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Figure 9. Boxplot analysis (Dice score) of our proposed solution approach (Experiment IV) using Test B. (a) All individual bones in
the head and neck region except ribs and vertebrae (Other bones); (b) all ribs and (c) all vertebrae.

Furthermore, to quantify how our model generalizes on a new cohort, we tested our model on 8 additional
test cases from the ongoing HaN-Seg challenge. The data selection criteria was based on their similarity in terms
of matrix dimension and spatial resolution. The detailed analysis as demonstrated in figure 9 proves an optimal

generalization to new patient cases in almost all individual bones. Nevertheless, large fluctuations observed in

the prediction accuracy of thoracic vertebrae (especially T4 and T5) can be attributed to the different patient

positioning set-up during the delivery of radiotherapy. Patient positioning has a great impact on the appearance

of thoracic spine (Plataniotis et al 2019) and it confused our model by mixing up neighbouring thoracic

vertebrae since our selected U-Net architecture is variant to rotation. Therefore, as a future direction, we will

further extend our model by investigating and introducing a rotational component in the class-dependent

augmentation parameter to account for the change in the appearance of thoracic vertebrae due to the different

patient positioning.
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5. Conclusion

This study examined essential parameters needed to automatically and accurately segment individual bones on
planning CT images of head and neck cancer patients. We explored 4 experimental scenarios to determine the
impact of different parameter adaptations on predicted individual bones irrespective of their shape, size and
level of complexity on 30 patients. Our proposed solution approach proves that the sequential tuning of
parameters such as background patch reduction, class-dependent augmentation and the incorporation of
weight information in the loss function yielded an equivalent prediction with a retrained nnU-Net on our
datasets for all vertebral bones and outperformed nnU-Net in the correct identification of left and right instances
of the same bone class; because of the grouping approach adopted before the model generation. Furthermore,
our model showed an optimal generalization capability for almost all individual bones on a new test cohort.
Nevertheless, large fluctuations observed in thoracic vertebrae warrant the introduction of a rotational
component in the class-dependent augmentation parameter to account for the different patient positioning.
With these insights, we are challenging the utilization of an automatic and accurate bone segmentation tool into
the clinical routine of radiotherapy despite the limited training datasets.
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