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Simple Summary: In radiation therapy, accurately contouring the volume containing cancerous
cells is crucial for effective tumor control. Experts defined this volume by its borders with respect to
anatomical structures. This study assesses the feasibility and precision of a deep-learning method
in extracting 71 necessary anatomical structures from provided computed tomography scans. For
most of these structures, automatically generated outlines are presented for the first time. For other
structures, our model improves upon previously reported results. We analyzed the constraints
posed by errors in the automatically generated outlines and found none that are relevant to our goal
of identifying the entire volume containing cancerous cells. Our research contributes additional
and enhanced outlines of anatomical structures, advancing the scientific objective of facilitating the
contouring of a human’s complete anatomy. Moreover, confirming the effectiveness of automatic
contouring techniques signifies a step closer to achieving precise automated contouring of the
cancerous volume.

Abstract: The delineation of the clinical target volumes (CTVs) for radiation therapy is time-
consuming, requires intensive training and shows high inter-observer variability. Supervised deep-
learning methods depend heavily on consistent training data; thus, State-of-the-Art research focuses
on making CTV labels more homogeneous and strictly bounding them to current standards. Inter-
national consensus expert guidelines standardize CTV delineation by conditioning the extension of
the clinical target volume on the surrounding anatomical structures. Training strategies that directly
follow the construction rules given in the expert guidelines or the possibility of quantifying the
conformance of manually drawn contours to the guidelines are still missing. Seventy-one anatomical
structures that are relevant to CTV delineation in head- and neck-cancer patients, according to the
expert guidelines, were segmented on 104 computed tomography scans, to assess the possibility of
automating their segmentation by State-of-the-Art deep learning methods. All 71 anatomical struc-
tures were subdivided into three subsets of non-overlapping structures, and a 3D nnU-Net model
with five-fold cross-validation was trained for each subset, to automatically segment the structures
on planning computed tomography scans. We report the DICE, Hausdorff distance and surface DICE
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for 71 + 5 anatomical structures, for most of which no previous segmentation accuracies have been
reported. For those structures for which prediction values have been reported, our segmentation
accuracy matched or exceeded the reported values. The predictions from our models were always
better than those predicted by the TotalSegmentator. The sDICE with 2 mm margin was larger than
80% for almost all the structures. Individual structures with decreased segmentation accuracy are
analyzed and discussed with respect to their impact on the CTV delineation following the expert
guidelines. No deviation is expected to affect the rule-based automation of the CTV delineation.

Keywords: automatic segmentation; anatomical structures; multi-label segmentation; clinical target
volume delineation; lymph-node-level segmentation; expert guidelines; head and neck cancer

1. Introduction

In the medical domain, the localization and determination of a disease’s extension can
be a major advantage for the treatment. Ever since imaging modalities became available
for cancer therapy, the precise delineation of organs and target volumes has been of great
interest. The manual generation of these contours is thereby often time-consuming, requires
intensive prior training and often lacks consistency between observers, especially for target
volumes [1,2]. Because of the importance of available contour annotations in the clinical
routine, a lot of research has been conducted in this area. Widespread early approaches
that were used to automate medical-image segmentation were atlas-based methods [3–5].
For this, reference images were first contoured to build the atlas. These atlas images were
then registered onto the new image while the same deformation field was applied to the
atlas’ contours, resulting in a segmentation of the new image. While this approach proved
to be successful in terms of manual labor reduction [6,7], it showed drawbacks in regard
to individual segmentation quality, when the image quality or the individual anatomy
deviated from the atlas.

With the increase in deep-learning (DL) methods that are capable of accurate contour-
ing, the automatization of segmentation (auto-segmentation) has been applied in more
and more of the areas in which medical images are analyzed. The most popular network
architecture for automatic medical-image segmentation is the U-Net, which was introduced
by Ronneberger et al. [8]. The deployment of this architecture in a framework with self-
configuring hyperparameters, the nnU-Net [9], increased the accuracy and accessibility of
DL-based segmentation methods. With the nnU-Net, it is possible to train a State-of-the-Art
deep-learning model for medical-image segmentation tasks on custom data-label pairs,
eliminating the need to explore task-specific hyperparameter settings.

While, at first, DL methods were optimized to predict single volumes of interest,
the importance of models for multi-organ segmentation has increased [10,11]. Recently,
the TotalSegmentator Version 2 toolkit was released under the URL https://github.com/
wasserth/TotalSegmentator (accessed on 31 October 2023). The TotalSegmentator is a
ready-trained open-access toolkit for the auto-segmentation of 117 anatomical structures in
the whole body, which is based on the nnU-Net framework [11].

Multi-label-segmentation models have been shown to be beneficial for the segmen-
tation accuracy of individual organs and for the robustness of the DL methods when
compared to single-label models [12]. Currently, most multi-organ-segmentation models
are trained on sparse labels (i.e., most voxels of an image are not labeled), due to missing
dense annotations in the available medical-image data sets. In aiming to increase segmenta-
tion accuracy, the dense segmentation of the human body is necessary, i.e., the segmentation
of every anatomical structure and its substructures. Gare et al. [13] showed that for ul-
trasound images dense pixel labeling improves disease classification when compared to
models trained on only sparsely labeled images.

DL-based auto-segmentation enhances different tasks that need medical-image seg-
mentation. Enhancements can be in the form of improved standardization, time savings or

https://github.com/wasserth/TotalSegmentator
https://github.com/wasserth/TotalSegmentator
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refined precision. Relevant tasks can be found in the realm of radiology, surgery [14] and
radiotherapy. It also facilitates research fields like biomechanical modeling [15] and genera-
tion of synthetic medical-image data sets [16], which, in turn, improve the results in clinical
applications. Nevertheless, the main application of automatic medical-image-segmentation
methods lies within cancer diagnosis and treatment planning [17]. In cancer therapy, com-
mon auto-segmentation tasks are the segmentation of organs at risk (OARs) [18,19], target
volumes [20–23] and metastases [24]. For example, Nikolov et al. [19] trained a DL-based
auto-segmentation model that delineates 21 OARs achieving expert-level performance in
the head and neck area.

In the field of radiation therapy, the exact contouring of OARs as well as target volumes
is of major importance for the treatment outcome. Only with the precise delineation of target
volumes and OARs, optimal tumor control can be achieved while adjacent healthy tissues
are preserved. This significance is particularly pronounced in the head and neck region,
where anatomical structures exhibit close spatial proximity paired with high anatomical
flexibility. Target volumes as well as OARs are delineated by experts on the planning CT
scans. These volumes are the basis for the objective function in the optimization of the
radiation treatment plan.

Different target volumes are defined in radiotherapy. Following [25], the gross target
volume is the visible and palpable, most inner tumor extension. It is surrounded by
the clinical target volume (CTV) which comprises tissue that is potentially infiltrated by
microscopic tumor cells. The CTV can itself be subdivided into the primary CTV and the
nodal CTV. The primary CTV is drawn as a margin of 0.5–1 cm around the gross target
volume, while the nodal CTV follows the lymphatic pathways and includes all areas that
are found to harbor microscopic tumor cells with a probability of 10% or more [26–28].
The outermost target volume is the planning target volume which surrounds the union of
all former mentioned target volumes and compensates for beam parameter uncertainties,
patient placement errors, organ fluctuations and other motion-induced variance [29].

The extension of the CTV is not visible with modern imaging techniques, since it
comprises normal tissues infiltrated by microscopic tumor cells. The definition of its outline
is rather based on recurrence studies and thus, empirically built clinical experience [30,31].
This makes the delineation of CTVs a difficult task for clinicians that need many years
of training [32]. Its complexity is not only visible in the training needed to perform this
task, but also in the time needed to produce acceptable delineations and in their resulting
divergence. Given the same CT scan, the manual CTV delineations of different experts
show a large inter- and intra-observer variability of up to 200% difference in volume [1].

The quality of manual labels heavily affects the training and thus, the prediction
accuracy of supervised learning methods. The inconsistent manual delineations of CTVs
have a negative impact on the auto-segmentation of target volumes [33,34]. For that,
researchers in this field focus on curating consistent data sets by executing extensive peer-
reviews on the process of manual contouring or incorporating contours of only a minimum
number of clinical experts, or institutes [21–23]. For CTV delineation, the predicted labels
are reported to still need intensive pre- and post-processing [35–38] and they are not easily
adaptable to changes in segmentation standards or patient-individual requirements. All
this is done, aiming for improved spatial conformance of the predicted contour with manual
delineation, while knowing that manual delineations are not well standardized.

Not only the comparison to labels that are highly dependent on the expert that gener-
ated the label, but also recent studies on evaluation metrics raise critiques on the current
state-of-the-art. Reinke et al. [39] point out that the measurements of pure spatial overlap
(i.e., the DICE) do not necessarily quantify the actual quality of interest in medical image
segmentation tasks. For the delineation of CTVs the quality of interest that should be
measured is the conformance of the CTV delineation with the expert guidelines.

To overcome the variety in CTV delineation, the detailed clinical knowledge about the
extension of the CTVs is collected in international consensus expert guidelines including
head and neck treatments [27,28]. These expert guidelines provide a commonly accepted
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delineation scheme for the CTVs in a rule-based manner and thus, standardize their
segmentation. As one example, Grégoire et al. [27] focus on the delineation of nodal CTV
in the head and neck area. In these expert guidelines, the nodal CTV is subdivided into ten
levels with some additional subdivisions. The extent of each single level is described by
bordering anatomical structures. Thus, the expert guidelines convert the difficult problem
of delineating the extent of cancerous infiltration which is not visible in CT scans, in a
contouring task of anatomical structures. The selection of levels that should be irradiated is
based on the location of the primary tumor.

In summary, the current status quo for automatic CTV delineation is to optimize a
metric that measures spatial conformance with unreliable manual labels that impair the
training of supervised learning methods. The inconsistency of the manual labels result
from the diverse character of cancer growth and the missing contrast to surrounding tissues.
The international consensus expert guidelines are based on the combination of anatomical
boundaries for which more consistent segmentations are expected. Thus, we advocate the
exploitation of written-down human knowledge-based expert guidelines as ground truth
for the CTV delineation overcoming the dependence on inconsistent manual labels and
solely focusing on commonly agreed standards.

Oriented towards the goal of evaluating guideline conformance of CTV delineations, in
this study, the 71 most important anatomical structures mentioned in the expert guidelines
have been chosen for an auto-segmentation task. For that, all 71 structures have been
manually delineated, and used to train nnU-Net models for auto-segmentation. The
predictions for 18 unseen data sets are evaluated against the manual labels as well as
segmentations generated by the TotalSegmentator, and compared to previously reported
segmentation results. So far, studies on the segmentation of anatomical structures have
only published results on a small subset of the necessary 71 anatomical structures. The
existent results are widely distributed over multiple unrelated publications.

In this study, 48 of our 71 anatomical structures are automatically segmented for the
first time. For the remaining structures, our model provides improved or comparable
segmentations. We evaluate the segmentation accuracy between different tissue types and
reasons for why some structures are more difficult for an auto-segmentation task. Finally,
the impact of the segmentation accuracy for the construction of CTV delineation according
to the expert guidelines is discussed. Our results indicate that the automatic application of
delineation rules given in the expert guidelines is feasible without any restraint.

2. Materials and Methods
2.1. Image Properties of the Data Set

The planning CT scans for this study were aggregated from four different study
cohorts. Figure 1 shows an exemplary CT scan of each cohort. All patients received
radiotherapy for head and neck cancer. For each patient, there was exactly one planning
CT scan considered in this study. Each CT scan consists of 90 to 220 single slices (mean:
141 ± 24) of 512 × 512 voxels each. The voxel size ranged from 0.98 × 0.98 × 2 mm3 to
1.27 × 1.27 × 3 mm3.
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(a) (b)

(c) (d)

Figure 1. Screenshots of planning CT scans from exemplary patients of all four cohorts in sagittal,
coronal and transversal view. (a) Open access HNC data set [40–42], (b–d) in-house HNC data sets.
All cohorts differ in their scanning set-up using different treatment couches and immobilization
devices. (b) Shows artifacts due to dental implants, and (c) shows artifacts due to the stereotactic
frames and underwent tracheostomy.



Cancers 2024, 16, 415 6 of 27

The training data set and test data set are mutually exclusive. The training data set
(86 scans) included (a) 84 in-house HNC patients from three different cohorts (varying setup,
positioning, devices, and protocols) [43,44], and (b) 2 open access HNC data sets [40–42].
The test data set (18 scans) is curated from the same three study cohorts (14, and 4 scans,
respectively). The patient selection for the test data set was based on available meta-
information to best represent the variety of the data cohorts. Factors for the selections were
study cohort, location of the primary tumor, gender, presence of a tracheostoma, size of
nCTV, estimated age and weight of the patient.

2.2. Label Selection and Generation of the Manual Labels

The 71 structures were chosen based on their number of occurrence in the Grégoire
et al. [27] expert guidelines. The resulting set of anatomical structures is visualized in
Figure 2. Manual labels of the 71 anatomical structures were generated for all 104 CT scans
by six different trained observers on a Wacom Cintiq 24HD Display in RayStation 8B(R)
SP1. The observers were following a standard operation procedure for the delineations that
included (a) the unambiguous definition of the structures’ extent (e.g., mandible without
teeth), (b) windowing, and (c) spatial restrictions based on other anatomical structures
(mostly cranial and caudal). The whole standard operation procedure can be found in
Appendix A.1 . Each data set was at least once reviewed and if necessary adjusted by one
of the other observers before it was accepted for the study.

For one patient data set, 41 selected structures were segmented a second time by one
of the trained observers who was not involved in the initial segmentation or the review
of this patient. Based on those two sets of contours, the inter-observer variability was
approximately assessed.

Muscles Skin

constrictor s.

sternocleido
mastoideus
trapezius

constrictor m.
digastric an.
constrictor i.

Glands and 
Esophagus

thyroid gland
esophagus 

submandibular 
gland

Vessels

subclavian a.
brachiocephalic v. 

ĲV
common carotid a.

internal carotid a.
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Muscles

tongue

scalenus an. 
sternothyroid

levator scapulae
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hypopharynx 
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cricoid 

Bones

Figure 2. Visualization of all 71 anatomical structures manually delineated. Abbreviations: a. artery,
an. anterior, i. inferior, m. middle, me. medius, p. posterior, s. superior, v. vein.

Caused by the field of view of our CT scans, the esophagus, the sternum (corpus and
manubrium), the lobes of the lung, the trachea, the trapezius muscles, the brachiocephalic
veins, and the skin are never or not always completely present on our patient scans, but
cut off on the caudal edge of the scan. The sternum corpus is sometimes not present at all.
Further, in cases where the patients were post-operatively irradiated, or the extension of
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the primary tumor distorted surrounding anatomical structures, the respective missing
anatomical structures were not segmented. In total, there were 30 anatomical structures
missing. Fifteen of those structures cumulated in two test patients (#8, #7), and three other
patients had at least two missing structures. Nine of the 18 test patients were not missing
any structure and thus, had the full set of 71 anatomical structures manually segmented.

2.3. Network Training and Label Prediction

For the automatic segmentation, the nnU-Net framework Version 1 was chosen and
trained with one adaption to the default parameters: mirroring was removed from the data
augmentation to keep the left-right orientation of the patients consistent during training.
The final training data set provided for the nnU-Net training was generated by mirroring all
86 training data sets. Left and right instances of anatomical structures were then swapped
back for left-right consistency after mirroring.

Since in the nnU-Net Version 1, a network can only be trained for non-overlapping
structures, the labels of all 71 anatomical structures were subdivided into three non-
overlapping, disjoint subsets, containing (a) the labels for all bones, muscles, vessels,
air-related structures, glands and the esophagus (#64), (b) the labels for all cavities (i.e., hy-
popharynx, left and right nasal cavity, nasopharynx, oral cavity, and oropharynx), and
(c) the skin label. According to the author, nnU-Net Version 2 has no accuracy advantages
over its Version 1 [45].

Following the nnU-Net’s five-fold cross-validation standard, for all three subsets there
were five 3D full-resolution models trained with the trainer V2. Fold 1 and fold 2 were using
137 data sets for training and 35 data sets for validation, while fold 3–5 were using 138 data
sets for training and 34 data sets for validation. Each fold was trained for 1000 epochs. The
predictions were made for all 18 previously unseen test data sets in the nnU-Net’s default
5-heads manner. No postprocessing was applied.

All computations were executed using the nnU-Net Version 1.7.0 with Python Ver-
sion 3.9.7, PyTorch 1.10.2 with CUDA Version 11.3.1. Training and predictions were ex-
ecuted on a computer with an AMD Ryzen™ 9 3900X Processor, 128 GB RAM, with an
NVIDIA GeForce RTX 3090, and 24 GB VRAM.

For 16 of our anatomical structures, segmentations can also be retrieved by using
the pre-trained TotalSegmentator toolkit. We employed the TotalSegmentator as Python
library on our 18 test patients with default configurations. The predictions generated by
the TotalSegmentator were run on a computer with an Intel® Core™ i7 Processor, 64 GB
RAM, with an NVIDIA GeForce RTX 2070, and 8 GB VRAM.

2.4. Evaluation of Predicted Labels

We assess the similarity and distance between two distinct labels of the same structure
through three metrics: (a) their volumetric overlap, measured using the Sørensen–Dice
coefficient (DICE) [46,47], (b) the distance between both contours, evaluated by the Haus-
dorff distance (HD) [48] and (c) the fraction of deviation larger than 2 mm, quantified
using the surface DICE (sDICE) as defined in Nikolov et al. [19]. For the evaluation of the
HD we chose the 95th percentile (HD (95)). Choosing a margin of 2 mm is based on the
clinical practice in photon radiation therapy to intervene when deviations are in the order
of 2 mm or larger. The sDICE (2 mm) is considered to indicate the correction effort needed
for the predicted CTVs. This selection of metrics is consistent with the metrics reloaded
framework [39] accessible under the URL https://metrics-reloaded.dkfz.de/ (accessed
on 20 October 2023). Structures that are not present in the manual labels, in the predicted
labels or both sets of labels are left out in the analyses. For the calculation of all metrics, the
library surface-distance-based-measures Version 0.1 was used.

https://metrics-reloaded.dkfz.de/
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3. Results
3.1. Analysis Based on Volumetric Overlap

An overview of the volumetric overlap between the manually segmented and the
predicted anatomical structures is given in Figure 3. It shows the mean DICE (DICEm)
value for each anatomical structure over all test patients grouped by their tissue types.
The median and standard deviation of the DICEm is 0.88 ± 0.09 for air-related structures,
0.84 ± 0.07 for bones, 0.77 ± 0.08 for cartilages, 0.78 ± 0.02 for glands, 0.78 ± 0.09 for
vessels, and 0.63 ± 0.16 for muscles. Outliers are left and right internal carotid arteries. The
box plot of all muscles is wide spread, while all other box plots show a centered median
with symmetric and narrow distribution of DICEm values around it. The analysis will focus
on structures that are below the 25th percentile (Q1) in DICEm within the group of muscles.
This comprises all single parts of the constrictor muscle, the right digastric muscle, the left
and right posterior scalene muscles, and the left thyrohyoid muscle.

A precise evaluation of the volumetric overlap between the manually segmented and
the predicted anatomical structures is given in Table 1. It shows the DICEm value for each
anatomical structure over all test patients, as well as the inter-observer variability in DICE
and previously reported DICE values for comparison. Some of the individually segmented
71 anatomical structures form a meaningful unit together, i.e. they are substructures
of a coherent anatomical structure. Thus, Table 1 also contains (a) the sternum (M., C.),
a combination of the sternum manubrium and the sternum corpus, (b) the constrictor
muscles (s., m., i.), a combination of the inferior, the middle and the superior constrictor
muscle, (c) the right and left scalene muscles (an., me., p.), a combination of the right and
left anterior, medius and posterior scalene muscle, respectively, and (d) the pharynx (nasop.,
orop., hyp.), a combination of the nasopharynx, hypopharynx and oropharynx. With these
combinations, Table 1 contains a total of 76 anatomical structures.

Air Bones Cart. Glands Vessels Muscl.0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

DI
CE

Figure 3. Mean DICE values between manual delineation and predicted label for each anatomical
structure grouped by their tissue types. Means are calculated over all test patients for that the
structure is present (maximum 18 test patients). Box plots show the median (cyan) and outliers (cross).
Box (blue) reaching from the first quartile (Q1) to the third quartile (Q3), whiskers reaching to the
1.5 interquartile range. Quantities per group were: Air (6), Bones (11), Cartilages (2), Glands (3),
Muscles (26), and Vessels (11).
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The inter-observer variability is approximated for 45 selected structures and their
available combinations. Inter-observer values outside the 3σ interval around the DICEm
are indicated by an asterisk (∗). Although within the 3σ interval, the inter-observer DICE
is noticeably low for the left internal carotid artery, the left and right posterior scalene
muscles, the left and right digastric muscles, and the tonsils.

Table 1 also shows previously reported DICEm values. While for most structures, there
is no DICE value found for comparison (48 of 76 structures), or only a single reference (17 of
76 structures), there are multiple comparisons for 11 anatomical structures. Detailed values
for multiple comparisons are listed in Appendix A.2. Our prediction results are mostly
within the 3σ interval (single comparison) or within the given range (multiple comparisons).
Lower DICEm values than previously reported result from the internal carotid arteries, and
the inferior, middle and superior constrictor muscle. For the former, left and right instances
are jointly evaluated in Nikan et al. [49], Ke et al. [50], while for the latter, our results are
comparable to Thomson et al. [51], Van Dijk et al. [52] when all substructures are combined.
Higher DICEm values than previously reported result from the levator scapulae muscles,
and the prevertebral muscles, and the sternum (M. C.), which is not completely present on
our CT scans.

Table 1. List of all segmented anatomical structures (right (r), left (l)) and their combinations
(e.g., sternum (M., C.)) sorted by tissue type. For each structure, the DICE (mean ± standard deviation)
between the manual contours and our models’ predicted contours (pred.) is given, as well as the
inter-observer variability in DICE (calculation based on a single patient data set). Asterisks (∗)
indicates inter-observer variability values outside the 3σ interval given by the mean and standard
deviation of the models’ comparison to the manual labels. The last column shows DICE previously
reported results as mean ± standard deviation (single comparison) or the range of means (multiple
comparisons). Superscript numbers indicate differences between the structure’s definition in the
literature and the definition used in this paper. Explanations are found as footnote at the end of
the table.

Structure Pred. vs. Manual Inter-Observer Literature

A
ir

Auditory Canal (l) 0.77 ± 0.09 0.83 ± 0.02 [50] 2

Auditory Canal (r) 0.80 ± 0.10 0.83 ± 0.02 [50] 2

Larynx (air) 0.86 ± 0.06
Lung (l) 0.99 ± 0.01 0.98 [53] 1, 2

Lung (r) 0.99 ± 0.01 0.98 [53] 1, 2

Trachea 0.90 ± 0.07

Bo
ne

s

Cheek Bone (l) 0.78 ± 0.04
Cheek Bone (r) 0.78 ± 0.06
Clavicle (l) 0.93 ± 0.02
Clavicle (r) 0.93 ± 0.01
Hyoid Bone 0.82 ± 0.07 0.76

Mandible 0.88 ± 0.06 0.78 [0.86–0.99]
[52,54–57]

Sternum (M., C.) 0.93 ± 0.04 0.83 [58] 1

Sternum Corpus 0.82 ± 0.22 0.90 ± 0.03 [59] 1

Sternum Manubrium 0.90 ± 0.06 0.88
Styloid Process (l) 0.72 ± 0.14
Styloid Process (r) 0.77 ± 0.08
Vertebra C1 0.86 ± 0.04 0.84

C
a. Cricoid Cartilage 0.69 ± 0.15 0.78 0.66 ± 0.12 [52]

Thyroid Cartilage 0.85 ± 0.06 0.85

G
la

nd

Submandibular Gland (l) 0.77 ± 0.17 [0.70–0.97]
[51,52,54,55]

Submandibular Gland (r) 0.78 ± 0.13 [0.73–0.98]
[51,52,54,55]

Thyroid Gland 0.81 ± 0.13 0.83, 0.90 [52,57]
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Table 1. Cont.

Structure Pred. vs. Manual Inter-Observer Literature

Ve
ss

el
s

Brachiocephalic Artery 0.84 ± 0.06 0.85
Brachiocephalic Vein (l) 0.82 ± 0.10 0.77
Brachiocephalic Vein (r) 0.82 ± 0.07 0.76
Common Carotid Artery (l) 0.81 ± 0.08 0.72 0.84 ± 0.04 [57] 2

Common Carotid Artery (r) 0.78 ± 0.10 0.50 0.85 ± 0.03 [57] 2

Internal Carotid Artery (l) 0.61 ± 0.15 0.25 0.81, 0.86 [49,50] 3

Internal Carotid Artery (r) 0.55 ± 0.22 0.49 0.81, 0.86 [49,50] 3

Internal Jugular Vein (l) 0.78 ± 0.13 0.45
Internal Jugular Vein (r) 0.75 ± 0.18 0.53
Subclavian Artery (l) 0.74 ± 0.09 0.54
Subclavian Artery (r) 0.74 ± 0.13 0.34∗

M
us

cl
es

Constrictors (s., m., i.) 0.56 ± 0.12 0.74 0.52, 0.68 [51,52]
Inferior Constrictor 0.44 ± 0.16 0.54 [0.65–0.80] [55,60]
Middle Constrictor 0.45 ± 0.18 0.66 [0.60–0.84] [55,60]
Superior Constrictor 0.48 ± 0.19 0.42 [0.67–0.83] [55,60]
Digastric (l) 0.52 ± 0.24 0.39
Digastric (r) 0.46 ± 0.28 0.33
Levator Scapulae (l) 0.87 ± 0.05 0.76 ± 0.01 [61]
Levator Scapulae (r) 0.83 ± 0.07 0.76 ± 0.01 [61]
Platysma (l) 0.59 ± 0.12
Platysma (r) 0.52 ± 0.16
Prevertebral (l) 0.74 ± 0.07 0.53∗ 0.70 ± 0.01 [61]
Prevertebral (r) 0.76 ± 0.06 0.50∗ 0.71 ± 0.01 [61]
Scalene (an., me., p.) (l) 0.74 ± 0.09 0.44∗

Scalene (an., me., p.) (r) 0.71 ± 0.11 0.03∗

Anterior Scalene (l) 0.82 ± 0.06 0.60∗

Anterior Scalene (r) 0.80 ± 0.06 0.00∗

Medius Scalene (l) 0.68 ± 0.10 0.14∗

Medius Scalene (r) 0.66 ± 0.16 0.03∗

Posterior Scalene (l) 0.40 ± 0.20 0.01
Posterior Scalene (r) 0.42 ± 0.28 0.00
Sternothyroid (l) 0.58 ± 0.08
Sternothyroid (r) 0.59 ± 0.09
Sternocleidomastoid (l) 0.84 ± 0.07 0.51∗ 0.73 ± 0.02 [61]
Sternocleidomastoid (r) 0.81 ± 0.15 0.52 0.74 ± 0.02 [61]
Thyrohyoid (l) 0.50 ± 0.17 0.48
Thyrohyoid (r) 0.56 ± 0.12 0.56
Trapezius (l) 0.90 ± 0.03 0.65∗ 0.41 ± 0.04 [61]
Trapezius (r) 0.89 ± 0.04 0.72∗ 0.45 ± 0.04 [61]
Tongue 0.63 ± 0.17

Esophagus 0.80 ± 0.10 [0.55–0.83] [52,55,57] 4

Hard Palate 0.63 ± 0.13
Hypopharynx 0.64 ± 0.15 0.71
Nasal Cavity (l) 0.86 ± 0.03
Nasal Cavity (r) 0.86 ± 0.03
Nasopharynx 0.83 ± 0.09 0.74
Oral Cavity 0.85 ± 0.07 [0.85–0.93] [52,55,57]
Oropharynx 0.84 ± 0.09 0.83
Pharynx (nasop., orop., hyp.) 0.82 ± 0.07 0.83 0.69 ± 0.06 [54]
Skin 0.99 ± 0.00
Soft Palate 0.61 ± 0.19
Tonsil (l) 0.08 ± 0.13 0.12
Tonsil (r) 0.12 ± 0.15 0.15

Differences between the structure’s definition in the literature and the definition in this paper: 1 The structures
mentioned in Section 2.2 are not completely present on each patient scan within our data set, whereas the literature
references are using scans containing those structures completely. 2 In the literature, internal, external and
common carotid artery are jointly delineated. 3 In the literature, left and right instances are jointly evaluated. 4 In
the literature, only the upper [55] and cervical esophagus is segmented [52].

3.2. Analysis Based on Distance-Based Metrics

An overview of the distance-based metrics between the manually segmented and the
predicted anatomical structures is given in Figure 4. It shows the mean HD (95) (HDm)
and the mean sDICE (2 mm) (sDICEm) for each anatomical structure grouped by their
tissue type. The median and standard deviation of the HDm is 4.96 ± 2.22 for air-related
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structures, 3.15 ± 1.51 for bones, 4.28 ± 1.88 for cartilages, 5.04 ± 0.67 for glands, 7.53 ± 4.13
for vessels, and 7.29 ± 4.23 for muscles. The median and standard deviation of the sDICEm
is 0.90 ± 0.04 for air-related structures, 0.94 ± 0.03 for bones, 0.89 ± 0.07 for cartilages,
0.85 ± 0.04 for glands, 0.87 ± 0.05 for vessels, and 0.86 ± 0.13 for muscles. Outliers in HDm
are the right platysma muscle and the right posterior scalene muscle. The outlier in sDICEm
is the tongue.

For the HDm, the analysis will focus on structures that are above the 75th percentile
(Q3) within the group of vessels and the group of muscles. This comprises the right
internal carotid artery, the left and the right subclavian artery, the right sternocleidomastoid
muscle, the superior constrictor muscle, the left platysma muscle, and the left posterior
scalene muscle. For the sDICEm, the analysis will focus on structures that are below the
25th percentile (Q1) within the group of vessels and the group of muscles. This comprises
the left and the right internal carotid artery, the right subclavian artery, the middle and
the superior constrictor muscle, the left and the right digastric muscle, and the left and the
right posterior scalene muscle.
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Figure 4. Mean HD and mean sDICE values between manual delineation and predicted label for each
anatomical structure grouped by their tissue types. Means are calculated over all test patients for that
the structure is present (maximum 18 test patients). Box plots show the median (cyan) and outliers
(cross). Box (blue) reaching from the first quartile (Q1) to the third quartile (Q3), whiskers reaching to
the 1.5 interquartile range. Quantities per group were: Air (6), Bones (11), Cartilages (2), Glands (3),
Muscles (26), and Vessels (11).

A precise evaluation of the distance-based metrics between the manually segmented
and the predicted anatomical structures is given in Table 2. It shows the HDm and the
sDICEm for all 71 segmented anatomical structures and the five combinations over all
test patients, as well as the inter-observer variability in HD (95) and sDICE (2 mm). The
inter-observer variability is calculated for the same subset as described for the DICE. Inter-
observer values outside the 3σ interval around the HDm and sDICEm, respectively, are
indicated by an asterisk (∗). Although within the 3σ interval, the inter-observer HD (95)
is noticeably low for a variety of scalene muscles, and the tonsils. For the DICE and
sDICE (2 mm), structures of low overlap are the same.
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Table 2. List of all segmented anatomical structures (right (r), left (l)) and their combinations
(e.g., sternum (M., C.)) sorted by tissue type. For each structure, the HD (95) and sDICE (2 mm)
(mean ± standard deviation) between the manual contours and our models’ predicted contours
(pred.) is given, as well as the inter-observer variability in HD (95) and sDICE (2 mm) (calculation
based on a single patient data set). Asterisks (∗) indicates inter-observer variability values outside the
3σ interval given by the mean and standard deviation of the models’ comparison to the manual labels.

HD (95) sDICE (2 mm)

Structure Pred. vs. Manual Inter-Observer Pred. vs. Manual Inter-Observer

A
ir

Auditory Canal (l) 5.16 ± 2.94 0.88 ± 0.08
Auditory Canal (r) 4.76 ± 3.16 0.89 ± 0.09
Larynx (air) 6.74 ± 4.13 0.89 ± 0.06
Lung (l) 1.42 ± 1.00 0.97 ± 0.03
Lung (r) 1.50 ± 0.86 0.98 ± 0.02
Trachea 6.87 ± 5.49 0.90 ± 0.08

Bo
ne

s

Cheek Bone (l) 4.23 ± 2.89 0.92 ± 0.05
Cheek Bone (r) 4.36 ± 3.37 0.92 ± 0.07
Clavicle (l) 1.33 ± 0.67 0.98 ± 0.02
Clavicle (r) 1.25 ± 0.49 0.98 ± 0.01
Hyoid Bone 3.23 ± 3.77 1.96 0.95 ± 0.06 0.97
Mandible 2.31 ± 1.67 2.77 0.96 ± 0.04 0.88
Sternum (M., C.) 1.98 ± 1.63 0.97 ± 0.04
Sternum Corpus 5.87 ± 6.69 0.87 ± 0.20
Sternum Manubrium 3.99 ± 4.18 3.00 0.93 ± 0.08 0.93
Styloid Process (l) 5.72 ± 9.58 0.92 ± 0.13
Styloid Process (r) 2.01 ± 0.97 0.97 ± 0.03
Vertebra C1 3.07 ± 1.24 3.16 0.93 ± 0.04 0.90

C
a. Cricoid Cartilage 6.15 ± 3.30 3.16 0.82 ± 0.14 0.92

Thyroid Cartilage 2.40 ± 2.10 0.98 0.96 ± 0.04 0.98

G
la

nd

Submandibular Gland (l) 5.04 ± 4.28 0.85 ± 0.15
Submandibular Gland (r) 4.50 ± 2.69 0.80 ± 0.23
Thyroid Gland 6.12 ± 9.45 0.89 ± 0.13

Ve
ss

el
s

Brachiocephalic Artery 3.90 ± 2.66 3.00 0.89 ± 0.09 0.96
Brachiocephalic Vein (l) 3.53 ± 1.58 6.00 0.90 ± 0.08 0.88
Brachiocephalic Vein (r) 4.88 ± 2.09 4.08 0.86 ± 0.07 0.85
Common Carotid Artery (l) 5.01 ± 7.04 2.94 0.94 ± 0.06 0.94
Common Carotid Artery (r) 3.48 ± 2.69 4.38 0.92 ± 0.07 0.81
Internal Carotid Artery (l) 7.53 ± 8.95 11.17 0.84 ± 0.12 0.38 ∗

Internal Carotid Artery (r) 13.85 ± 15.86 4.38 0.75 ± 0.20 0.80
Internal Jugular Vein (l) 9.57 ± 23.20 9.00 0.91 ± 0.10 0.64
Internal Jugular Vein (r) 8.25 ± 14.72 6.20 0.87 ± 0.14 0.73
Subclavian Artery (l) 16.36 ± 19.40 81.22 ∗ 0.84 ± 0.11 0.54
Subclavian Artery (r) 10.27 ± 12.35 75.01 ∗ 0.83 ± 0.12 0.42 ∗

M
us

cl
es

Constrictors (s., m., i.) 7.19 ± 6.40 3.00 0.89 ± 0.08 0.95
Inferior Constrictor 7.10 ± 6.16 2.77 0.82 ± 0.16 0.95
Middle Constrictor 9.66 ± 6.41 9.00 0.72 ± 0.18 0.88
Superior Constrictor 11.23 ± 8.38 9.00 0.73 ± 0.22 0.75
Digastric (l) 6.08 ± 3.90 6.30 0.73 ± 0.22 0.58
Digastric (r) 8.52 ± 5.28 6.96 0.64 ± 0.30 0.52
Levator Scapulae (l) 3.86 ± 2.05 0.92 ± 0.05
Levator Scapulae (r) 5.26 ± 2.87 0.88 ± 0.07
Platysma (l) 13.02 ± 9.59 0.82 ± 0.12
Platysma (r) 19.40 ± 11.75 0.75 ± 0.17
Prevertebral (l) 7.35 ± 8.25 6.86 0.90 ± 0.05 0.75
Prevertebral (r) 7.29 ± 8.51 6.28 0.91 ± 0.05 0.73 ∗

Scalene (an., me., p.) (l) 5.74 ± 3.20 13.09 0.86 ± 0.08 0.64
Scalene (an., me., p.) (r) 7.59 ± 5.19 15.80 0.82 ± 0.10 0.21 ∗
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Table 2. Cont.

HD (95) sDICE (2 mm)

Structure Pred. vs. Manual Inter-Observer Pred. vs. Manual Inter-Observer

M
us

cl
es

Anterior Scalene (l) 7.36 ± 9.67 15.00 0.92 ± 0.07 0.85
Anterior Scalene (r) 8.19 ± 9.73 16.69 0.89 ± 0.07 0.17 ∗

Medius Scalene (l) 6.06 ± 2.84 9.82 0.81 ± 0.10 0.42 ∗

Medius Scalene (r) 7.63 ± 4.11 19.16 0.78 ± 0.11 0.21 ∗

Posterior Scalene (l) 14.84 ± 8.84 17.71 0.56 ± 0.23 0.14
Posterior Scalene (r) 17.16 ± 16.53 19.45 0.57 ± 0.30 0.10
Sternothyroid (l) 4.48 ± 2.36 0.89 ± 0.08
Sternothyroid (r) 4.87 ± 2.03 0.89 ± 0.08
Sternocleidomastoid (l) 4.94 ± 5.34 22.57 ∗ 0.92 ± 0.08 0.50 ∗

Sternocleidomastoid (r) 12.31 ± 24.65 20.98 0.88 ± 0.15 0.54
Thyrohyoid (l) 4.16 ± 2.68 3.10 0.86 ± 0.12 0.91
Thyrohyoid (r) 3.08 ± 1.18 4.04 0.90 ± 0.07 0.87
Trapezius (l) 2.38 ± 0.76 12.96 ∗ 0.96 ± 0.03 0.69 ∗

Trapezius (r) 2.43 ± 0.59 9.42 ∗ 0.95 ± 0.04 0.71 ∗

Tongue 13.29 ± 5.51 0.43 ± 0.17

Esophagus 6.15 ± 5.92 0.88 ± 0.10
Hard Palate 7.60 ± 4.08 0.73 ± 0.12
Hypopharynx 6.74 ± 3.85 2.94 0.83 ± 0.12 0.93
Nasal Cavity (l) 2.30 ± 0.79 0.96 ± 0.02
Nasal Cavity (r) 2.26 ± 0.74 0.96 ± 0.02
Nasopharynx 4.84 ± 3.35 4.94 0.84 ± 0.12 0.72
Oral Cavity 7.56 ± 3.80 0.67 ± 0.12
Oropharynx 6.40 ± 4.89 6.00 0.88 ± 0.09 0.83
Pharynx (nasop., orop., hyp.) 5.15 ± 2.78 3.30 0.89 ± 0.06 0.91
Skin 1.88 ± 1.08 0.96 ± 0.05
Soft Palate 9.33 ± 7.89 0.75 ± 0.18
Tonsil (l) 10.57 ± 8.90 15.00 0.20 ± 0.23 0.26
Tonsil (r) 11.15 ± 8.19 15.13 0.28 ± 0.27 0.31

3.3. Completeness of Predicted Label Set

In the 18 test patients’ anatomies, a total of 30 anatomical structures are absent. Thir-
teen of these 30 structures were correctly identified as missing anatomical structures by
the trained nnU-Net models (true negatives). The remaining 17 missing structures were
erroneously contoured (false positives). Amongst these 17 structures, the sternothyroid
muscle was contoured five times, the platysma muscle three times, and the posterior scalene
muscle two times.

The analysis of anatomical structures that were present in the test patients’ anatomy,
but not segmented by the trained nnU-Net models (false negatives), result in the model’s
capability to predict all but two of the present structures (larynx (air), posterior scalene
muscle (l)). The tonsils were excluded from this analysis, since they are generally difficult
to segment as indicated by the inter-observer variability which is shown in Table 1 (DICE)
and Table 2 (HD, sDICE). They were predicted correctly on both sides only in eleven of
the 18 test patients. Even when predicted, the overlap between manual and predicted
segmentations was small.

3.4. Analyzing Only Patients without Tracheostoma

In the training data set, approximately one third of the patients were scanned with a
tracheostoma. In the test data set this ratio is one sixth, respectively. Although trained on
several data sets with tracheostomy, test patients that have a tracheostoma show below-
average values in several anatomical structures. Table 3 lists the 17 most deviating struc-
tures. For these structures, the DICEm, HDm and sDICEm is shown when only patients
without tracheostomy are considered. The deviation of all metrics between this analysis
and the analysis considering all patients is presented in brackets. All structures beside
these 17 anatomical structures show low deviations between both analyses: the average
deviation is 0.00 ± 0.07 in DICEm, and −0.01 ± 0.07 in sDICEm.
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Table 3. Mean DICE, mean HD (95) and mean sDICE (2 mm) for all test patients without tracheostomy
(#15). Seventeen structures are selected for that the mean DICE and mean sDICE (2 mm) increased the
most when compared to the values resulting from the analysis including all patients. The deviation
between the analysis including all patients and the analysis excluding patients with tracheostomy is
given in brackets.

Structure DICE HD (95) sDICE (2 mm)

Trachea 0.92 (0.13) 5.64 (− 7.40) 0.93 (0.16)
Hyoid Bone 0.83 (0.12) 2.31 (−7.32) 0.96 (0.09)
Thyroid Gland 0.84 (0.14) 5.90 (−1.32) 0.92 (0.18)
Internal Carotid Artery (r) 0.57 (0.10) 11.77 (−12.50) 0.77 (0.10)
Internal Jugular Vein (r) 0.78 (0.15) 8.09 (−0.98) 0.89 (0.13)
Constrictors (s., m., i.) 0.59 (0.19) 7.14 (−0.32) 0.90 (0.10)
Middle Constrictor 0.48 (0.21) 9.17 (−2.93) 0.75 (0.15)
Superior Constrictor 0.52 (0.23) 11.32 (0.50) 0.75 (0.14)
Digastric (r) 0.51 (0.30) 7.56 (−5.75) 0.69 (0.33)
Platysma (r) 0.54 (0.18) 17.61 (−15.24) 0.78 (0.20)
Sternothyroid (r) 0.60 (0.21) 4.66 (−3.01) 0.91 (0.28)
Sternocleidomastoid (l) 0.86 (0.12) 3.63 (−7.86) 0.93 (0.09)
Sternocleidomastoid (r) 0.85 (0.26) 5.17 (−42.80) 0.92 (0.26)
Thyrohyoid (r) 0.57 (0.09) 2.85 (−1.79) 0.91 (0.12)
Esophagus 0.82 (0.12) 5.41 (−4.44) 0.90 (0.11)
Hypopharynx 0.68 (0.23) 5.95 (−4.73) 0.86 (0.18)
Soft Palate 0.63 (0.16) 8.64 (−4.12) 0.78 (0.14)

3.5. Comparison to TotalSegmentator

Applying the pre-trained TotalSegmentator framework (TS) to our data resulted in
predictions of 16 common anatomical structures. Thereby, our label ‘Brachiocephalic
Artery‘ corresponds to their ‘Brachiocephalic Trunk’. All 16 structures are listed in Table 4
which shows the DICEm comparing the TS predictions with our manual segmentations.
Differences between this comparison and the comparison of our predictions to the manual
labels are favoring segmentations generated by our models (i.e., all values are negative).
Below the Q1 of −0.10 for the difference in DICEm is the trachea, the thyroid gland, and the
left and right common carotid arteries.

Table 4. Subset of segmented anatomical structures of this study for which segmentation labels are
also available in the TotalSegmentator toolkit [11]. For each structure, the DICE (mean ± standard
deviation) between the TS predicted contour (pred.) and the manual contour is given, as well as the
decline in mean DICE (diff.) between the TS predicated contour and our models’ predicted contour.

Structure Pred. vs. Manual Diff.

Lung (l) 0.98 ± 0.01 −0.01
Lung (r) 0.98 ± 0.01 −0.01
Trachea 0.80 ± 0.06 −0.10
Clavicle (l) 0.89 ± 0.03 −0.04
Clavicle (r) 0.88 ± 0.02 −0.06
Sternum (M., C.) 0.90 ± 0.02 −0.02
Vertebra C1 0.81 ± 0.04 −0.05
Thyroid Gland 0.71 ± 0.14 −0.10
Brachiocephalic Artery 0.75 ± 0.07 −0.09
Brachiocephalic Vein (l) 0.76 ± 0.10 −0.05
Brachiocephalic Vein (r) 0.72 ± 0.08 −0.10
Common Carotid Artery (l) 0.64 ± 0.13 −0.17
Common Carotid Artery (r) 0.55 ± 0.18 −0.23
Subclavian Artery (l) 0.67 ± 0.10 −0.07
Subclavian Artery (r) 0.65 ± 0.14 −0.09
Esophagus 0.77 ± 0.09 −0.04
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Table 5 shows the same comparisons using the HDm and the sDICEm. All predicted
segmentations generated by our models show better results in HDm (i.e., all diff. values
are positive) and better or equal results in sDICEm (i.e., all diff. values are negative or
zero). Above the Q3 of 7.98 for the difference in HDm is the trachea, the left and right
common carotid arteries, and the right subclavian artery. Below the Q1 value of −0.09 for
the difference in sDICEm is the trachea, the thyroid gland, and the left and right common
carotid arteries.

Table 5. Subset of segmented anatomical structures of this study for which segmentation labels
are also available in the TotalSegmentator toolkit [11]. For each structure, the HD and the sDICE
(mean ± standard deviation, each) between the TS predicted contour (pred.) and the manual contour
is given, as well as the decline in mean HD and sDICE (diff.) between the TS predicated contour and
our models’ predicted contour.

HD (95) sDICE (2 mm)

Structure Pred. vs. Manual Diff. Pred. vs. Manual Diff.

Lung (l) 2.18 ± 1.31 0.76 0.97 ± 0.03 −0.01
Lung (r) 1.91 ± 1.31 0.41 0.97 ± 0.01 0.00
Trachea 16.04 ± 6.73 9.17 0.80 ± 0.09 −0.10
Clavicle (l) 2.54 ± 1.82 1.21 0.96 ± 0.03 −0.02
Clavicle (r) 2.83 ± 1.69 1.57 0.94 ± 0.03 −0.04
Sternum (M., C.) 2.98 ± 1.45 1.00 0.94 ± 0.03 −0.03
Vertebra C1 3.70 ± 1.52 0.63 0.90 ± 0.06 −0.03
Thyroid Gland 8.89 ± 8.70 2.77 0.79 ± 0.15 −0.11
Brachiocephalic Artery 9.29 ± 5.16 5.39 0.80 ± 0.08 −0.09
Brachiocephalic Vein (l) 5.82 ± 2.07 2.28 0.86 ± 0.08 −0.04
Brachiocephalic Vein (r) 7.68 ± 2.96 2.80 0.79 ± 0.08 −0.07
Common Carotid Artery (l) 25.15 ± 17.16 20.14 0.80 ± 0.13 −0.13
Common Carotid Artery (r) 28.41 ± 20.01 24.94 0.71 ± 0.17 −0.22
Subclavian Artery (l) 23.94 ± 16.66 7.58 0.79 ± 0.10 −0.05
Subclavian Artery (r) 20.88 ± 17.13 10.61 0.75 ± 0.14 −0.08
Esophagus 9.80 ± 9.62 3.65 0.85 ± 0.10 −0.03

4. Discussion

When comparing the grouped DICEm between tissue types, groups with good con-
trast on CT scans like air-related structures and bones show an increased accuracy when
compared to other groups. Noticeably, the variation in DICEm is the largest for the group of
muscles. First, this group has the largest number of different anatomical instances. Further,
the contrast of soft tissues on CT scans is not sufficient to identify most muscles completely.
Finally, the group of muscles is also the most diverse group ranging from structures with
an average volume of 550 voxels (digastric muscle) to 55,000 voxels (trapezius muscle).

4.1. Reasons for Impaired Prediction Accuracy

We have visually analyzed cases of impaired prediction accuracy for highlighted
anatomical structures from before. Typical deviations occur at the transition between related
structures (e.g., between the superior, the middle and the inferior constrictor muscles),
or at the beginning and ending of elongated structures (e.g., the final cranial slice of the
internal carotid artery). DICE values are sometimes low for thin structures although the
sDICE (2 mm) is high. This is because small deviations of thin structures can lead to a large
decrease in overlap and cause large changes in DICE, which does not tolerate any type of
deviation. The sDICE (2 mm) instead allows deviations smaller than 2 mm. Non-systematic
segmentation errors originate from largely deviating manual labels, which are cause by
metal artifacts (e.g., for the tongue) or insufficient soft tissue contrast (e.g., for the platysma
muscle). In the following section, reasons for impaired prediction accuracy are discussed
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for every prior identified anatomical structure, for that the automatic prediction resulted in
a below Q1 (or above Q3) evaluation metric.

The visual analysis of cases in which the internal carotid artery (ICA) shows especially
low DICE and sDICE on both sides, results in four common reasons for deviations between
the manual segmentation and its prediction: (a) the ICA is a thin structure, (b) the transition
between internal carotid artery and common carotid artery varies, (c) the final slice, on
which the ICA occurs cranially varies, and (d) due to metal in the mouth, CT artifacts occur
in this area. Figure 5 shows the deviation between manual and predicted segmentation
of the ICA due to inconsistent decision on the most cranial slice and the bottom row of
Figure 6 shows metal artifacts.

Figure 5. 3D visualization of the subclavian artery (orange, green), the common carotid artery
(yellow, brown), the internal carotid artery (dark green, cyan), the trachea (teal), and the constrictor
muscles (pink, light green, blue). Contours are generated manually (left), by our trained nnU-
Net models (middle), and by the TotalSegmentator (right). Horizontal black lines are there for
heights comparison.

For the subclavian artery similar reasons are resulting in small DICEm and sDICEm:
(a) the subclavian artery is a thin structure, (b) the transition between the right subclavian
artery and the brachiocephalic artery varies, and (c) the lateral extension varies.

The visual analysis of the superior constrictor muscles and middle constrictor muscles also
results in clear confusion at the area of transition between both structures, as well as the
transition between the middle and the inferior constrictor muscles. This observation is
supported by the above-median performance of their combination (i.e., constrictors (s.,
m., i.)). Training their combination, and differentiating the substructures in a rule-based
post-processing, might be beneficial to the auto-segmentation of the constrictor muscles
and similar cases.

The digastric muscles and the posterior scalene muscles show an (almost) below Q1
performance in DICEm and sDICEm with large standard deviations amongst test patients.
DICE values range from [0–0.83] for the digastric muscles and [0–0.71 (0.81)] for the
posterior scalene muscles. sDICE values deviate by more than 0.68 (digastric muscles) and
0.85 (posterior scalene muscles) between minimum and maximum. All predictions show
greater accordance with the manual labels than the segmentations generated by the second
observer (high inter-observer variability).

The tongue has an above-median DICEm, but a noticeable low sDICEm. Since the
tongue is a theoretically easy to locate structure of above-average volume, the DICEm does
only marginally indicate problems with its segmentation. The sDICEm signals inconsisten-
cies in the precise outline of the tongue. Reasons are metal artifacts that occur predomi-
nantly in the area of the mouth which impair the precise segmentation of the tongue.

The right platysma muscle is an outlier in HDm. The analysis of individual cases shows
a deviation of the manual labels in the frontal-dorsal direction and the cranial-caudal
direction. Since the platysma muscle is a thin cutaneous muscle, it is sometimes barely
visible in its most frontal and most dorsal extension. Thus, the network is trained on only a
few extended examples. Auto-segmentations depict only the mostly visible inner extension
of the platysma muscles.
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Figure 6. CT slices of two different patients with contours generated manually (left), contours
generated by our trained nnU-Net models (middle), and the comparison of both contours without CT
slice (right). White arrows indicate large deviations between both contours in the platysma (top row)
and the tongue (bottom row). Deviations in the segmentations of the internal carotid artery are
indicated by pink arrows (manual labels) and yellow arrows (predicted labels). The right tonsil (green
arrow) is not visible.

4.2. Inter-Observer Variability, and Tracheostomy Analysis

The anatomical structures with an inter-observer variability outside the 3σ interval
around the mean in any of the three metrics or a value below the Q1 in DICEm or sDICEm
or above the Q3 in HDm were visually analyzed. Two systematic reasons are found that
explain deviations. First, the lateral extension of the subclavian artery was inconsistent.
Second, muscular structures were systematically segmented wider by one observer than by
the other. This holds for the prevertebral muscles, the sternocleidomastoid muscles, the
trapezius muscles and the digastric muscles. The deviation between all scalene muscles
and the tonsils did not follow systematic reasons. Those structures are barely or not visible
in the planning CT scans. Figure 6 shows this for the tonsil (green arrows). This results
in largely deviating contours between both observers as visualized in the right column of
Figure 7. No unambiguous reason can be given for the right internal carotid artery. As it is
a thin structure that is difficult to segment, deviations occur in some central slices, while
its left counterpart is much better aligned between both observers. No clear difference is
visible between both sides of the patient CT scan.

Although the DL-models were trained on a distinct amount of patient data sets with
tracheostomy, leaving out those patients from the analysis improves seventeen selected
structures noticeably in almost all of the three metrics. Analyzing the deviation of the
DICEm and the sDICEm for all other anatomical structures shows almost no change. Most
of the 17 structures are in close proximity to the tracheostomy or the distortions in the
larynx caused by tracheostomy.
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Figure 7. CT slice (top) with contours generated manually (area) for comparison (outline) with
contours predicted by our trained nnU-Net models (left), and contours manually delineated by
another trained observer (right). The second set of contours does not contain all 71 structures
(no outlines). Green (right) and yellow (left) arrows point to corresponding segmentations of the
posterior scalene muscle generated by one observer (darker color) or the other (lighter color). The
same contours whiteout CT slice are visualized in the bottom row.

4.3. Comparison to TotalSegmentator

Most anatomical structures that are automatically segmented by the TotalSegmentator
framework (TS) are very similar to our own generated segmentations. For those structures
that are deviating noticeable there is a common reason when analyzing the segmentations
visually. Figure 5 includes the 3D comparison of those structures. The most common reason
is the disagreement in the starting and ending position of elongated structures like the
common carotid artery, the trachea, and the subclavian artery. Our manual segmentations
for the common carotid arteries ends cranially at the artery’s bifurcation. Although caudally
starting very similarly, the segmentations of the TS end approximately half way to the
artery’s bifurcation, close to the cranial edge of the esophagus and the trachea. For the
trachea, our manual labels exclude the bronchi, while the TS predicted segmentations
include the right and left primary bronchi. Our manual labels for the subclavian artery
exceed the TS generated labels laterally.

Deviations in the auto-segmentation of the thyroid gland result from patient-individual
differences, rather than a systematic difference in the definition. Especially in patients
that are equipped with a tracheostoma, the TS predictions deviate more from the manual
segmentations than our own predictions. It might be, that in the training data set on which
the TS model was trained, there were less or no patient data with a tracheostoma.

4.4. Impact on CTV Delineation

The delineation of CTVs should be targeted for auto-segmentation using DL algo-
rithms. Following the international consensus guidelines of Grégoire et al. [27]. This study
can be the basis for improved standardization and reduced workload. In the following
section, the implications are analyzed that the prior described systematic deviations in the
auto-segmentations of anatomical structures have on the clinical target volume delineation
when following Grégoire et al. [27].
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The predicted contour of the internal carotid artery (ICA) deviates caudally when
transitioning into the common carotid artery (CCA) and its final slice cranially, as well as
due to metal artifacts. Within the expert guidelines [27], the ICA is needed as the medial
edge of Level II, the lateral edge of Level VIIa, and the medial edge of the Level VIIb.
All these levels are transitioning into each other and the precise boundary becomes only
relevant if some, but not all of these levels are irradiated. Since Level II begins caudally
approximately where the CCA and ICA are transitioning, one might add the CCA as
boundary into the rules when automating the delineation of Level II. The cranial edge of
Level II is given by either the lateral process of C1 which the ICA always exceeds, or Level
VIIb. The cranial edge of Level VIIb is the base of skull (jugular foramen) which the ICA
reaches in all our test patients. Thus, the deviations introduced by the auto-segmentation
of the ICA do not affect the CTVs’ delineation.

The predicted contour of the subclavian artery (SuA) deviates laterally and in its tran-
sition to the brachiocephalic artery. Within the expert guidelines [27], the SuA is needed
as the posterior edge of the Level IVb. Caudally, this posterior boundary is cumulating
both, the SuA and the brachiocephalic artery, such that their transition does not affect the
delineation of the CTV. Also cranially, the lateral deviation of the SuA’s segmentation does
not affect the posterior edge of the Level IVb. This is, because the SuA’s extension always
exceeds the necessary boundary of Level IVb.

The predicted contour of the inferior, middle and superior constrictor muscles (CM) de-
viates caudally and cranially at the transitions between each other. Within the expert
guidelines [27], the CM is needed as the anterior edge of Level VIIa which is bordering
the superior or middle pharyngeal constrictor muscle. This boundary is cumulating both,
the superior and middle CM, such that their transition does not affect the delineation of
the CTV.

The predicted contour of the platysma muscle (PM) deviates in frontal and dorsal
direction as well as in cranial and caudal direction. Within the expert guidelines [27], the
PM is needed as caudal edge of Level Ia and Ib, lateral edge of Level Ib and Level V, and
anterior edge of Level VIa. The caudal edge of Level Ia required sufficient delineations
of the PM in its central regions which is shown consistently. The caudal edge of Level Ib
is described by a plane independent of the PM. The PM only cuts this plane as it is the
lateral border of Level Ib. For this, the central parts of the PM are relevant. Those are
well-predicted. In the boundary descriptions of Level V and Level VIa, the skin is given as
an alternative edge. Since the PM is a thin cutaneous muscle, the expert guidelines already
account for its potential invisibility. In this case, there will be no further implications for
the CTV delineation than the irradiation of the PM itself.

The predicted contour of the anterior belly of the digastric muscle (aDM) deviates unsys-
tematically. Within the expert guidelines [27], the aDM is needed as caudal and lateral edge
of Level Ia, and medial edge of Level Ib. For the caudal edge of Level Ia the aDM is not the
primary boundary, but a substitute for the PM if the PM is not visible. Due to inconsistent
delineations of the sDM, substituting the PM in this case might cause deviations in the
caudal boundary of Level Ia. Nevertheless, as discussed before, the PM is often delineated
well in the discussed region. Visually analyzing the data, as lateral edge of Level Ia, often
the mandible is chosen. Further, as medial edge of Level Ib, often the Level Ia is chosen.
Thus, the delineations we got from the clinics do not always spare the aDM. With our
inconsistent delineations, we cannot improve this situation and spare the aDM reliably. No
solution can be provided for cases in which Level Ib is irradiated while Level Ia is not.

The predicted contour of the posterior scalene muscle (pSM) deviates unsystematically.
Within the expert guidelines [27], the scalene muscles are needed as medial edge of Level
II , Level III, Level IVa, Level V, Level Vc, posterior edge of Level IVa, and lateral edge of
Level IVb. Although not specified precisely, the visual analysis shows that most boundaries
are given by the anterior scalene muscle. The pSM potentially plays a role in delineating
the medial edge of Level V caudally. Here, the confusion between different scalene mus-
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cles does not affect CTV delineation, but the pSM could be unintentionally irradiated if
contoured erroneously.

The predicted contour of the tongue and the tonsils deviate unsystematically due
to metal artefacts and missing soft tissue contrast. Since both structures are not used
as a boundary definition, but only as selection criterion for nodal levels in the expert
guidelines [27], the CTV delineation is not affected by distortions of these two structures.

4.5. Limitations and Future Research Directions

In our study, we segmented 71 anatomical structures. With additional tools like
the TotalSegmentator, the set of structures can be further extended. Nevertheless, even
including multiple models, there are still anatomical structures that are segmented neither
previously nor in this study. Thus, the dense segmentation of all anatomical structures
in the human body is still an issue. Future research should focus on bringing different
segmentation models together to generate data sets with dense labels so that the observed
positive effects of dense annotations can be exploited.

For this, the large inter-observer variability indicates upcoming problems related to
this topic. In our opinion, better agreement of structures’ definitions should be reached,
before dense annotations can be generated expediently. Their precise delineation could be
supported by additional multi-modal images. We suggest to use MRI scans which have
better soft tissue contrast in addition CT scans for the segmentation of soft tissue structures.

Not all necessary structures are covered for the auto-segmentation of all CTV levels in
the head and neck area. Structures like the posterior belly of the digastric muscle, the mylo-
hyoid muscle, the transversal cervical vessel and the infrahyoid (strap) muscles are missing
for completeness. Further, some segmented structures do not lead to sufficient prediction
accuracy to be spared (e.g., the anterior belly of the digastric muscles). Completing the
prerequisites for generating a guideline conform CTV automatically, additional manual
labels need to be generated on which new models can be trained for their auto-segmentation.
Improvements for the anterior belly of the digastric muscles and the platysma muscle are
expected from the use of additional MRI scans.

Although our training data set was very diverse, the number of training and test
samples was too low to train the models to identify each image feature and each patient
condition. Thus, patients with tracheostomy led to worse segmentation accuracies. The
same might hold for postoperative patients, different stages of contrast agents, or different
resolutions of CT scans. Additional data sets might improve the results on underrepre-
sented image features.

In the future, we aim to construct guideline conform CTV delineations by extracting
the necessary anatomical boundaries from the generate labels of the presented 71 anatomical
structures. These boundaries can be combined following the expert guidelines to form all of
the ten levels in the head and neck area which are selected for radiation therapy dependent
on the location of the primary tumor. All discussed segmented anatomical structures show
sufficient accuracy for this method of CTV generation. Thus, the automatization of CTV
delineation becomes independent of inconsistent training and test labels, while providing
the desired standardization and becoming more easy to adapt to changes in the guidelines
than common segmentation methods.

5. Conclusions

In this study, we have automatically segmented 71 anatomical structures in the head
and neck area relevant for CTV delineation. Most of these structures have not been auto-
matically segmented before. We analyzed systematic deviations of anatomical structures
that showed mean DICE, mean HD or mean sDICE values below the Q1 (above the Q3,
respectively) and their impact on the automation of CTV delineation. No deviation is
expected to be inferior to the current clinical practice.

These results are a step forward towards dense annotations and the auto-segmentation
of guideline conform CTV delineation.
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Appendix A

Appendix A.1. Standard Operation Procedure

1. Nasopharynx

• Cranial boundary: up to the nasal septum
• Caudal boundary: from the hard palate

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=39879146#3987914647deb804b80d40149cf58b123547480d
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=39879146#3987914647deb804b80d40149cf58b123547480d
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2. Oropharynx

• Cranial boundary: from the hard palate
• Caudal boundary: epiglottis

3. Hypopharynx

• Cranial boundary: epiglottis
• Caudal boundary: transition to the esophagus, along with the caudal end of the

cricoid cartilage
• Segmentation note: No clear caudal boundary, orientation is based on the larynx-

air structure

4. Tongue (muscle)

• Bounded by the oral cavity
• Caudal boundary: tongue base (ambiguous border)

5. Thyroid cartilage

• Segment in the larynx window
• Boundary: entire cartilage structure (typical shape was always recognizable in

3D view)

6. Sternocleidomastoid muscle

• Cranial boundary: mastoid cells, up to the skull
• Caudal boundary: clavicle and sternal manubrium, occasional branching near

the origin may be visible

7. Thyroid gland

• Bright structure, merging caudally, variable cranial boundary

8. Hyoid bone

• Segment in the bone window
• Boundary: entire bone structure (typical shape was always recognizable in 3D view)

9. Cricoid cartilage

• Segment in the larynx window
• Boundary: entire cartilaginous structure (typical shape usually visible in 3D view)
• Special note: Caudal boundary simultaneously limits hypopharynx, larynx air,

and inferior constrictor

10. Pharyngeal constrictor muscles (superior, medius, inferior)

• S. from the level of upper jaw teeth caudally
• M. from hyoid cranially (both structures "meet" in the middle)
• I. from hyoid caudally to the caudal end of the cricoid cartilage

11. Esophagus

• Cranial boundary: caudal end of the cricoid cartilage
• Caudal boundary irrelevant for head-neck region, as the esophagus ends in

the stomach

12. C1/vertebral bodies

• Segment in the bone window

13. Soft palate

• Cranial boundary: transition to hard palate
• Caudal boundary: uvula

14. Hard palate

• Segment in the larynx window

15. Larynx

• Cranial boundary: epiglottis
• Caudal boundary: caudal end of the cricoid cartilage
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16. Mandible

• Segment in the bone window
• Teeth not segmented

17. Digastric muscle

• Cranial boundary: mandible
• Caudal boundary: until no longer visible

18. Nasal cavities

• Cranial boundary: until no longer visible
• Caudal boundary: together with nasopharynx
• Note: Exclude ethmoid cells

19. Oral cavities

• Includes tongue, uvula

20. External Auditory Canal
21. Tonsils

• Bilateral at the level of uvula

22. Common Carotid Artery

• Cranial boundary: until artery bifurcation
• Caudal boundary: branching from brachiocephalic trunk

23. Sternal manubrium

• Segment in the bone window
• Note: Manubrium is posterior at transition with corpus sterni

24. Sternum body

• Segment in the bone window
• Note: Corpus is anterior at transition with manubrium

25. Clavicle

• Segment in the bone window

26. Zygomatic arch

• Segment in the bone window
• Ventral boundary: continuation from posterior edge of maxillary sinus
• Dorsal boundary: up to mastoid cells

27. Styloid process

• Segment in the bone window
• Cranial boundary: first slice where not connected to mastoid
• Caudal boundary: until no longer visible

28. Lung

• Segment in the lung window
• Often already exists
• ‘Region growing’ with upper threshold = −300 and ‘remove holes’, but avoid in-

cluding trachea/air outside the patient (sometimes segmented, correct manually)

29. Trachea

• Cranial boundary: larynx air
• Caudal boundary: bifurcation
• Excludes bronchi

30. Internal Carotid Artery

• Cranial boundary: entry into the skull
• Caudal boundary: separation of common carotid

31. Internal Jugular Vein
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• Cranial boundary: entry into the skull
• Caudal boundary: brachiocephalic vein

32. Trapezius muscles

• Cranial boundary: skull
• Caudal boundary: from the spine
• Note: At the clavicle, trapezius also extends anteriorly, creating a tight “hole” in

segmentation where tendon lies

33. Platysma Muscle

• Boundaries not clear but segmented as long as visible course toward mandible

34. Brachiocephalic Artery

• Cranial boundary: up to division into common carotids
• Caudal boundary: from aortic arch

35. Brachiocephalic vein

• Cranial boundary: up to division into IJV
• Caudal boundary: from SVC division

36. Submandibular Gland

• Segment as long as visible within platysma

37. Levator Scapulae Muscle

• Cranial boundary: as far as possible
• Caudal boundary: from scapula

38. Scalenus muscles (anterior, medius, posterior)

• A. and M. around subclavian artery
• A. and M. originate from first rib
• P. often unclear, originates from second rib
• All three structures traced cranially as far as possible

39. Subclavian Artery

• Lateral boundary: up to cranial boundary of sternum

40. Skin

• Adopt from outline or external contour and correct significant errors from auto-
matic contouring

41. Sterno-thyroid muscle

• Cranial boundary: first slice where thyroid cartilage is ventrally united
• Caudal boundary: first slice from manubrium

42. Thyro-hyoid muscle

• Cranial boundary: first slice where hyoid is visible
• Caudal boundary: first slice after sternothyroid

43. Pre-vertebral muscles (longus colli + longus capiti)

• Cranial boundary: up to visible dens axis
• Caudal boundary: as far as possible

Appendix A.2. Previously Reported DICE Values for Comparison

Table A1. Previously reported DICE values (mean ± standard deviation) between contours predicted
by different deep learning methods and manual labels.

Structure Previously Reported DICE (Mean ± Std.)

Mandible 0.86 ± 0.12 1 [56], 0.90 ± 0.04 [54], 0.91 ± 0.02 [55], 0.94 ± 0.02 [57],
0.94 ± 0.01 [52], 0.99 ± 0.01 [55]

Submandibular Gland (r) 0.73 ± 0.09 [54], 0.78 ± 0.10 [52], 0.79 [51], 0.95 ± 0.07 [55], 0.98 ± 0.03 [55]
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Table A1. Cont.

Structure Previously Reported DICE (Mean ± Std.)

Submandibular Gland (l) 0.70 ± 0.13 [54], 0.77 ± 0.12 [52], 0.79 [51], 0.91 ± 0.08 [55], 0.97 ± 0.05 [55]
Thyroid Gland 0.83 ± 0.08 [52], 0.90 ± 0.02 [57]
Internal Carotid Artery (r) 0.81 [49], 0.86 ± 0.02 [50]
Internal Carotid Artery (l) 0.81 [49], 0.86 ± 0.02 [50]
Superior Constrictor 0.67 ± 0.11 [60], 0.76 ± 0.13 [55], 0.83 ± 0.15 [55]
Middle Constrictor 0.60 ± 0.19 [60], 0.76 ± 0.10 [55], 0.84 ± 0.01 [55]
Inferior Constrictor 0.65 ± 0.12 [60], 0.71 ± 0.21 [55], 0.80 ± 0.24 [55]
Constrictors (s., m., i.) 0.52 [51], 0.64 ± 0.13 [57], 0.68 ± 0.08 [52]
Esophagus 0.85 ± 0.10 [55], 0.91 ± 0.03[52], 0.93 ± 0.07 [55]
Oral Cavity 0.85 ± 0.10 [55], 0.90 ± 0.04 [57], 0.91 ± 0.03 [52], 0.93 ± 0.07 [55]

1 The values are only estimated from presented graphs in the referenced paper.
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