
3D Voxel Reconstruction and World
Model for Autonomous Driving

Master Thesis

Yitian Yang

Department of Computer Science
Institute for Anthropomatics

and
FZI Research Center for Information Technology

Reviewer: Prof. Dr. E Sax
Second reviewer: Prof. Dr. J. Becker, Prof. Dr. J. M. Zöllner
Advisor: Daniel Bogdoll, M.Sc.

Research Period: 30. May 2023 – 31. December 2023

KIT – The Research University in the Helmholtz Association www.kit.edu

3D Voxel Reconstruction and World Model for Au-
tonomous Driving

by
Yitian Yang

Master Thesis
im December 2023

Master Thesis, FZI
Department of Computer Science, 2023
Reviewers: Prof. Dr. E Sax, Prof. Dr. J. Becker, Prof. Dr. J. M. Zöllner

Abteilung Technisch Kognitive Assistenzsysteme
FZI Research Center for Information Technology

Affirmation

Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel
vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer
unverändert oder mit Abänderungen entnommen wurde.

Karlsruhe, Yitian Yang
im December 2023

v

Abstract

The real world is complex, variable, and highly interactive. Therefore, for autonomous driving,
understanding the scene and predicting plausible futures is crucial. World models have the ca-
pability to learn the environment through observations and make predictions based on actions.
Also, the choice of sensors is very important in order to get comprehensive information about
the environment. However, existing world models mostly use low resolution images as input and
operate only in simple environments.

To address this challenge, we propose an innovative world model that combines point cloud
data from the LiDAR and RGB image data from the camera sensor as observation inputs. Ad-
ditionally, the model not only decodes observations from latent states but also reconstructs 3D
voxel occupancy as outputs to enhance the understanding of the environment’s geometric features.
Unlike most existing world models, our model not only contains 2D visual information but also
incorporates 3D spatial data and represents the environment more accurately and comprehensively
through voxels.

In our study, we implemented various methods to extract features from point clouds and im-
ages, analyzing their effects. We used a transformer-based architecture to fuse features from
different sensors and compared it to two other simple methods: one is directly averaging features
from various sensors, while the other is concatenating features followed by a fully connected layer.
Moreover, we adapted the model to 2D latent states. We collected training and evaluation data
in the CARLA simulation environment. Then, we evaluated the reconstruction and prediction
performance of different combinations of feature extraction and feature fusion methods, as well as
1D and 2D latent states. The study demonstrates the good performance of our novel world model
framework in reconstruction and prediction.

vii

Contents

Contents

1 Introduction 1

2 Background 3
2.1 World Model . 3

2.1.1 Vision (V) Model . 4
2.1.2 Memory (M) Model . 4
2.1.3 Gated Recurrent Unit (GRU) . 6

2.2 ResNet . 7
2.3 range view . 10
2.4 Transformer . 11

2.4.1 Attention . 12
2.4.2 Positional Encoding . 12

3 Related Work 15
3.1 World Model . 15

3.1.1 RNN-based World Model . 15
3.1.2 Transformer-based World Model . 15
3.1.3 High-Resolution Image as Input . 16
3.1.4 Video Generation . 16
3.1.5 3D Application . 17

3.2 Sensor Fusion . 17
3.2.1 Encoder for Camera and LiDAR . 17
3.2.2 Fusion Method . 18

3.3 3D Voxel Reconstruction . 18
3.3.1 Transformer-based . 18
3.3.2 Unsupervised Training . 19
3.3.3 Multi-view . 19

4 Method 21
4.1 Encoder . 21

4.1.1 Image . 21
4.1.2 Point Cloud . 22
4.1.3 Others . 23

4.2 Sensor Fusion . 24
4.2.1 Simple Averaging . 24

ix

4.2.2 Fully Connected Layer . 24
4.2.3 Transformer . 25

4.3 Transition Model . 25
4.3.1 1D Latent States Version . 27
4.3.2 2D Latent States Adaption . 27

4.4 Decoder and Training Loss . 29
4.4.1 2D Decoder for Images and Point Clouds 29
4.4.2 3D Decoder for Voxels . 29
4.4.3 Training Losses . 30
4.4.4 Extra Outputs . 31

5 Experiment Setup 33
5.1 Dataset . 33

5.1.1 Simulation Environment CARLA . 33
5.1.2 Data Collection . 33
5.1.3 Data Pre-Processing . 34
5.1.4 Training Set . 36
5.1.5 Validation Set . 36

5.2 Training Parameters . 37
5.3 Metrics . 37
5.4 Experiments . 39

5.4.1 Different Combinations with 1D latent states 39
5.4.2 3D Voxel Occupancy . 39
5.4.3 2D Latent State with Voxel . 40

5.5 Implementation Details . 40

6 Evaluation 41
6.1 Combinations with 1D latent states . 41

6.1.1 Image Reconstruction and Prediction 41
6.1.2 Point Cloud Reconstruction and Prediction 42
6.1.3 Distribution of Stochastic States . 44

6.2 with 3D Voxel Occupancy Reconstruction 44
6.2.1 Impact on 3D Voxel Occupancy . 44
6.2.2 Impact on Image and Point Cloud 46

6.3 2D Latent State . 46
6.4 Extra Experiments . 48

6.4.1 Near-Field . 48
6.4.2 Failure with CrossEntropy Loss for Voxel Occupancy 48
6.4.3 BEV Reconstruction . 48
6.4.4 Dataset Evaluation . 50

7 Conclusion and Outlook 53

7.1 Conclusion . 53
7.2 Outlook . 54

A Appendix 57
A.1 Sensor Settings . 57
A.2 Dataset Settings . 57
A.3 Parameters in Model . 58

B List of Figures 59

C List of Tables 63

D Bibliography 65

1 Introduction

In recent years, autonomous driving has become more and more popular and there has been a
lot of research on it. For us humans, From early childhood, we are constantly observing and
interacting with the world, developing an understanding of the environment through continuous
learning. This innate ability allows us to understand scenarios, predict potential changes in them
and react quickly. This ability to learn and adapt is critical in the field of autonomous driving, where
vehicles must understand their surroundings and respond effectively and safely to unforeseen events.

Therefore, autonomous driving demands a deep comprehension of the vehicle’s environment,
as well as the ability to make predictions about possible futures. So-called world models [38,
40, 39, 41] have the capability to learn from observations, reconstruct the current state, and make
predictions about the future. Traditional world models [38, 40, 39, 41] typically extract features
from observations to obtain the current latent state and subsequently use the current latent state to
predict the next latent state determined by actions. This newly predicted state can then be used for
planning, or decoding to reconstruct the observations possible in the future. The key to the world
model is its two functions - reconstruction and prediction. These enable the vehicle to understand
its environment and to react and predict.

However, there are some limitations to existing world models [38, 40, 39, 41]. Most existing
world models use only RGB images as input and operate in simple, low-resolution environ-
ments [8, 119, 118], which makes them unable to cope with the complexity of autonomous driving.
Autonomous driving mostly operates in cities with a large number of unpredictable variables.
Since collecting real-world data is extremely expensive, we turned to the CARLA [27] driving
simulator for data collection. CARLA can not only provide the variety of sensors needed for
autonomous driving but also covers complex urban driving scenarios. This allows us to collect
training data more easily and comprehensively. To better understand the environment, our model
elevates the standard by not only utilizing high-resolution RGB images but also integrating LIDAR
point cloud data. While RGB images provide valuable color information, which helps to more
easily extract semantic information like traffic signals and signs, they lack the capacity to offer 3D
spatial information. Conversely, LIDAR point clouds present a detailed 3D geometric snapshot
of the environment but fall short of capturing traffic semantics. By combining these two types of
data, we can get comprehensive information about the environment, helping our model to achieve
a more holistic understanding.

Fusion of images and point clouds can be achieved in a number of ways. Data-level fusion,
feature-level fusion, and decision-level fusion [23, 127, 51]. Direct data-level fusion at the struc-

1

1 Introduction

ture level, either by projecting the LIDAR point cloud onto RGB images or by augmenting the
LIDAR point cloud with image characteristics, has its limitations: the former introduces signif-
icant geometric distortions, while the latter sacrifices rich image information [74]. Meanwhile,
decision-level fusion processes the data of different modalities separately to obtain the output and
then integrates the results. In this method, the data of various modalities are processed separately,
and the information of each modality is not merged interactively. Therefore we chose feature-level
fusion. For image feature extraction, we adopted two strategies: using ResNet [44] to extract fea-
tures from images directly or employing a deep neural network to derive a bird’s eye view (BEV)
representation of features [86]. Regarding the feature extraction of LiDAR point clouds, the field
is evolving rapidly with many advanced techniques [88, 89, 155, 143, 63, 134, 135, 139, 140]. We
employed two of them. One is to represent the point clouds in range view [134, 135, 139, 81, 29]
and then use ResNet for feature extraction, and the other is to get their BEV features through
PointPillars [63]. For feature fusion, we have also adopted various approaches. One involves
simply averaging the features [18], and another entails stacking the features and passing them
through a fully connected layer [74]. Alternatively, we employed the attention mechanism of a
Transformer [121] to enable feature interaction between different modalities [20, 98, 141]. As for
the latent states of the model, we adapted them to 2-dimensional to obtain a more comprehensive
environmental contextual compared to the 1D version.

To further deepen the model’s understanding of the environment, we reconstructed not only the
input image and point cloud data but also the occupancy voxel representation [150, 69, 10, 52].
Voxels are structured data that provide a clearer representation of the environment than images and
point clouds.

In the following, we first provide an introduction to the basic methods and building blocks of
our approach in depth in Chapter 2. Then in Chapter 3, we introduce some state-of-the-art methods
in the fields covered by our model to explain our choices. Afterwards, we detail the complete
architecture of our approach in Chapter 4. In Chapter 5 we present the experimental setup we
use to test the approaches and subsequently evaluate those experiments in Chapter 6. Finally, we
summarize the conclusions of this thesis and provide an outlook on future research in Chapter 7.

2

2 Background

In this chapter, we begin with a comprehensive introduction to the world model [38, 40, 39, 41],
which serves as the foundational framework for our model. This can provide readers with a basic
concept of our research. Subsequently, we offer a brief overview of ResNet [44] as a feature
extraction model and the range view as a representation of point clouds. Finally, we recap the
Transformer [121], an advanced model that has proven its effectiveness in various tasks and has
been widely applied.

2.1 World Model

World model [38] was first proposed in 2018 as part of model-based reinforcement learning. It is
inspired by human perception of the world. The image of the world in the human mind is just a
model. Instead of imagining specific images of objects, we humans conceptualize complex images
and remember the relationships among them [30]. For example, when we see a car waiting at a
red light, what we remember is not this complete image, but the abstraction of the phrase "a car
is waiting at a red light." When needed, we can reimagine the image from this phrase through our
mental model. We are able to observe a scene and remember its abstract description [91, 16], and
then predict future sensory data based on current actions [58, 65]. Our predictions do not only
rely on current observations but also take into account what has happened in the past. Therefore,
the world model consists of two parts, the vision (V) model and the memory (M) model, as shown
in Figure 2.1. The V model is based on a Variational Autoencoder (VAE) [60], which is used to
encode observations into low-dimensional latent states; the M model is based on Recurrent Neural
Network (RNN), which is used to predict future latent states based on historical information.

environment
action

.---.、、、｀•，

observation

world model MDN-RNN (M)

、
骨蛉岫 气1...................．

．
．
拿

action

Figure 2.1: World Model. reprinted from [38].

3

2 Background

Encoder Decoder
sample

Encoder DecoderAE

VAE

Figure 2.2: Variational Autoencoder (VAE) compared to Autoencoder (AE).

2.1.1 Vision (V) Model

During the process of interacting with the environment, the model receives observations as input
at each time step. The observations are high-dimensional representations such as images, point
clouds, etc. What the V model does is learn abstract, compressed representations of those high-
dimensional inputs. The world model uses a Variational Autoencoder (VAE) as the V model.

VAE itself is a generative model that discerns the latent variables z from the data x and then
generates the data x̂ from these latent variables z. Unlike the Autoencoder (AE) [96], which
constructs the latent variable directly with a concrete numerical vector, VAE samples the latent
variable from a Gaussian distribution obtained from the encoder, as shown in Figure 2.2. That is
to say, the encoder of VAE essentially uses a neural network 𝑞θ (z |x) ∼ N (𝜇, 𝜎I) to approximate
the posterior probability distribution 𝑝(z |x) of latent variable within the original data.

2.1.2 Memory (M) Model

After the V model compresses the observation information, the role of the M model is to integrate
all these abstract, compressed representations over time and make predictions about future latent
variables. M model can also be called transition model.

MDN

RNN

MDN

RNN

MDN

RNN

Figure 2.3: Visualization of MDN-RNN. reprinted from [38].

4

2.1 World Model

MDN-RNN

In the original world model, the M model consists of a Recurrent Neural Network (RNN) and
a Mixture Density Network (MDN) [4, 5, 36] as shown in Figure 2.3. The RNN is utilized
to integrate the historical information h𝑡+1 = RNN(h𝑡 , z𝑡 ,a𝑡); the MDN is used to predict the
probability distribution 𝑃(z𝑡+1 |h𝑡+1) of the next latent variables z𝑡+1 based on the historical
information h𝑡+1. When there is observational input, the M model accepts the observation latent
variables z𝑡 , outputting (h𝑡 , z𝑡) as the state s𝑡 at time t. In the absence of observation input, the
MDN can predict the distribution of the latent variable 𝑃(z𝑡) and sample ẑ𝑡 from it as input. Where
a is the action, h is the hidden state of the RNN, z is the latent variables of observations obtained
from the V model, 𝑃 is the probability distribution, and the subscript denotes the time step.

Recurrent State Space Model (RSSM)

The Recurrent State Space Model (RSSM) was introduced in PlaNet [40]. By incorporating the
deterministic path into the stochastic model (SSM), RSSM enables the model to remember histori-
cal information over multiple time steps while predicting multiple futures. RSSM has been applied
in many world models that followed, such as the Dreamer series [39, 41, 42], MILE [48], and the
model in this thesis also uses RSSM as the transition model.

RSSM uses a sequence of deterministic historical states h𝑡 to calculate two distributions for
stochastic states: the posterior and the prior. The posterior state s𝑡 integrates the current observa-
tion information z𝑡 , while the prior state ŝ𝑡 is predicted in the absence of observations. As shown
in Figure 2.4. The components can be expressed as:

Deterministic state model: h𝑡 = 𝑓𝜙 (h𝑡−1, s𝑡−1,a𝑡−1)

Representation model: s𝑡 ∼ 𝑞𝜙 (s𝑡 |h𝑡 , z𝑡)

Transition predictor: ŝ𝑡 ∼ 𝑝𝜙 (ŝ𝑡 |h𝑡)

Observation model: ô𝑡 ∼ 𝑝𝜙 (ô𝑡 |h𝑡 , s𝑡)

[2.1]

Figure 2.4: Visualization of Recurrent State Space Model (RSSM). Adapted from [40, 39].

5

2 Background

Neural Network Layer

Pointwise Operation

Vector Transfer

Concatenate

Copy

Figure 2.5: Structure of Gated Recurrent Unit (GRU).

All components are approximated by neural networks, where 𝜙 represents the combined learnable
parameters of these networks. The deterministic state model 𝑓𝜙 (h𝑡−1, s𝑡−1,a𝑡−1) is modelled
as an RNN, to retain deterministic historical information. The representation model derives the
distribution of stochastic state s𝑡 from historical information h𝑡 as well as current observations
z𝑡 , serving as the posterior distribution. The transition predictor guesses the prior distribution of
stochastic state ŝ𝑡 only from the previous stochastic state s𝑡−1 with the action a𝑡−1, without relying
on the observations z𝑡 . So it can be used for prediction. The observation model reconstructs
the observation features ô𝑡 based on both deterministic state h𝑡 and stochastic state s𝑡 . During
training, the RSSM always takes observations as inputs and simultaneously computes both the
posterior and the prior stochastic state distributions. The observations are always reconstructed
from the posterior states s𝑡 . The posterior states are trained through the reconstruction error, and
then the prior state distribution is trained to approximate the posterior state distribution.

2.1.3 Gated Recurrent Unit (GRU)

The RNN in the transition model (M model) has many implementations, and the most commonly
used of them are long short-term memory (LSTM) [46] and gated recurrent unit (GRU) [21].
Compared to LSTM, GRU has similar performance but more efficient. In this thesis, we used a
GRU as the recurrent model, so the next is a review of GRU.

In the Gated Recurrent Unit (GRU), the most crucial components are the two gate units: the
reset gate and the update gate. The reset gate determines how to incorporate historical information
into the new input to obtain the candidate hidden state. The update gate controls how historical
memory is carried into the current state. Figure 2.5 shows the structure of a GRU, and the following

6

2.2 ResNet

equations demonstrate how the GRU updates its state:

𝑢𝑡 = 𝜎(𝑊𝑢 · [ℎ𝑡−1, 𝑥𝑡])

𝑟𝑡 = 𝜎(𝑊𝑟 · [ℎ𝑡−1, 𝑥𝑡])

ℎ̂𝑡 = tanh(𝑊ℎ · [𝑟𝑡 ⊙ ℎ𝑡−1, 𝑥𝑡])

ℎ𝑡 = (1 − 𝑢𝑡) ⊙ ℎ𝑡−1 + 𝑢𝑡 ⊙ ℎ̂𝑡

[2.2]

Where 𝜎 and tanh represent the sigmoid and tanh activation functions, respectively; 𝑊 denotes
the parameters of each neural network; ⊙ denotes element-wise multiplication; 𝑥𝑡 is the input
information at the current time step; ℎ𝑡 is the hidden state of GRU, which also serves as historical
memory, retaining past information; 𝑢𝑡 is the update gate, and 𝑟𝑡 is the reset gate, both determined
by the previous hidden state ℎ𝑡−1 and the current input 𝑥𝑡 ; ℎ̂𝑡 is the candidate hidden state, formed
by combining the current input 𝑥𝑡 with the previous hidden state ℎ𝑡−1 selected by the reset gate 𝑟𝑡 ;
the final output is the hidden state ℎ𝑡 , which is composed of the addition of two parts: the previous
hidden state ℎ𝑡−1 after forgetting and the candidate hidden state ℎ̂𝑡 after further selection, both by
the update gate 𝑢𝑡 .

2.2 ResNet

Much evidence [103, 110] shows that the depth of the neural network is crucial to the model’s
performance. When the number of network layers is increased, the network can extract more
complex feature patterns, so in theory, better results can be achieved when the model is deeper.
However, training deep networks is not easy. The first is the well-known exploding/vanishing
gradient problem [3, 33], which fundamentally hinders convergence. But this problem has been
solved to a large extent by batch normalization [53]. However, even so, deep networks suffer from
degradation problems [43, 108, 44]. As shown in Figure 2.6, after exceeding a certain number of
layers, the training error of the model will increase. The original intention of ResNet is to solve
this problem [44].

ResNet solves the degradation problem of deep neural networks by introducing residual learn-
ing and identity mapping. ResNet does not directly fit the required underlying mapping by stacking
multiple nonlinear layers, but lets them fit the residual mapping. Denote stacked nonlinear layers as

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
Microsoft Research

{kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Abstract
Deeper neural networks are more difficult to train. We

present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8×
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions1, where we also won the 1st
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

1. Introduction
Deep convolutional neural networks [22, 21] have led

to a series of breakthroughs for image classification [21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also

1http://image-net.org/challenges/LSVRC/2015/ and
http://mscoco.org/dataset/#detections-challenge2015.

0 1 2 3 4 5 6
0

10

20

iter. (1e4)

tr
ai

ni
ng

 e
rr

or
 (

%
)

0 1 2 3 4 5 6
0

10

20

iter. (1e4)

te
st

 e
rr

or
 (

%
)

56-layer

20-layer

56-layer

20-layer

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
our current solvers on hand are unable to find solutions that

1

ar
X

iv
:1

51
2.

03
38

5v
1

 [
cs

.C
V

]
 1

0
D

ec
 2

01
5

Figure 2.6: degradation phenomena. reprinted from [44].

7

2 Background

weight layer

weight layer

ReLU
identity

+
ReLU

Figure 2.7: A building block of residual learning. Reprinted from [44].

F (x), assuming that it can asymptotically approximate any complex function. H(x) denotes the
required underlying mapping, i.e. the learned feature representation. According to the hypothesis,
if F (x) can fit H(x), then it can also fit H(x) −x. Therefore, compared with traditional methods
that directly use F (x) to fit H(x), ResNet explicitly makes these layers fit the residual function
F (x) := H(x) −x. Then the feature becomes F (x) +x. The network needs to learn the difference
between the feature and the input, rather than learning the feature directly.

In deeper networks, if the added layers can be learned as identity mappings, then the perfor-
mance of deeper networks should not decrease, which is not the case. This shows that the stacked
nonlinear layers have difficulty learning identity mapping. Thus, in the case of using a residual
structure, if the identity mapping of input x is the optimal solution, then the identity mapping can
be simulated by simply driving the residual to zero F (x) → 0. This is much easier than learning
identity mapping directly. If the identity mapping is not optimal, then it is only necessary to refer
to identity x for fine-tuning instead of learning an entirely new function.

The basic architecture of ResNet consists of building blocks, as shown in Figure 2.7. Each block
has two paths, one for the residual mapping through the stacked nonlinear layers and one for the
identity mapping. The outputs of the two paths are then added element-wise. It can be expressed
as y = 𝜎(F (x, {𝑊𝑖}) +x), where x, y are the input and output of the residual block. The function
F (x, {𝑊𝑖}) represents the stacked nonlinear layers used to learn the residual mapping. In the ex-
ample of Figure 2.7, F contains two weight layers with non-linearity provided by a ReLU function
in the middle. F (x) + x is a shortcut connection. When F and x have the same dimension, they
are directly added element by element. When the dimensions are different, a linear projection 𝑊𝑠

is performed in the shortcut connections to match the dimensions: F (x, {𝑊𝑖}) +𝑊𝑠x. 𝜎 is the
nonlinear layer ReLU [82] and is used as the activation layer for the final output. In ResNet, the
weight layer is the convolutional layer.

8

2.2 ResNet

output
size: 224

output
size: 112

output
size: 56

output
size: 28

output
size: 7

output
size: 1

VG
G

-1
9

R
es

N
et

-1
8

3x
3

co
nv

, 6
4

3x
3

co
nv

, 6
4

3x
3

co
nv

, 1
28

3x
3

co
nv

, 1
28

3x
3

co
nv

, 2
56

3x
3

co
nv

, 2
56

3x
3

co
nv

, 2
56

3x
3

co
nv

, 2
56

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12

fc
 4

09
6

fc
 4

09
6

fc
 1

00
0

7x
7

co
nv

, 6
4,

 /2

3x
3

co
nv

, 6
4

3x
3

co
nv

, 6
4

3x
3

co
nv

, 6
4

3x
3

co
nv

, 6
4

3x
3

co
nv

, 1
28

, /
2

3x
3

co
nv

, 1
28

3x
3

co
nv

, 1
28

3x
3

co
nv

, 1
28

3x
3

co
nv

, 2
56

, /
2

3x
3

co
nv

, 2
56

3x
3

co
nv

, 2
56

3x
3

co
nv

, 2
56

3x
3

co
nv

, 5
12

, /
2

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12

fc
 1

00
0

po
ol

, /
2

po
ol

, /
2

po
ol

, /
2

av
g

po
ol

po
ol

, /
2

po
ol

, /
2

po
ol

, /
2

im
ag

e
im

ag
e

output
size: 14

Figure 2.8: ResNet-18 compared to VGG-19. Adapted from [44].

Table 2.1: Architectures of ResNet with the different number of layers. Reprinted from [44].
layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer

conv1 112 × 112 7 × 7, 64, stride 2

conv2_x 56 × 56

3 × 3 max pool, stride 2[
3 × 3, 64
3 × 3, 64

]
× 2

[
3 × 3, 64
3 × 3, 64

]
× 3


1 × 1, 64
3 × 3, 64
1 × 1, 256

 × 3


1 × 1, 64
3 × 3, 64
1 × 1, 256

 × 3


1 × 1, 64
3 × 3, 64
1 × 1, 256

 × 3

conv3_x 28 × 28

[
3 × 3, 128
3 × 3, 128

]
× 2

[
3 × 3, 128
3 × 3, 128

]
× 4


1 × 1, 128
3 × 3, 128
1 × 1, 512

 × 4


1 × 1, 128
3 × 3, 128
1 × 1, 512

 × 4


1 × 1, 128
3 × 3, 128
1 × 1, 512

 × 8

conv4_x 14 × 14

[
3 × 3, 256
3 × 3, 256

]
× 2

[
3 × 3, 256
3 × 3, 256

]
× 6


1 × 1, 256
3 × 3, 256
1 × 1, 1024

 × 6


1 × 1, 256
3 × 3, 256
1 × 1, 1024

 × 23


1 × 1, 256
3 × 3, 256
1 × 1, 1024

 × 36

conv5_x 7 × 7

[
3 × 3, 512
3 × 3, 512

]
× 2

[
3 × 3, 512
3 × 3, 512

]
× 3


1 × 1, 512
3 × 3, 512
1 × 1, 2048

 × 3


1 × 1, 512
3 × 3, 512
1 × 1, 2048

 × 3


1 × 1, 512
3 × 3, 512
1 × 1, 2048

 × 3

1 × 1 average pool, 1000-d fc, softmax
FLOPs 1.8 × 109 3.6 × 109 3.8 × 109 7.6 × 109 11.3 × 109

The structure of ResNet is similar to VGG net [103] but incorporates residual learning through
shortcut connections. Figure 2.8 shows a comparison of the 18-layer ResNet with the VGG19 net-
work. ResNet follows several design principles: 1) the convolutional layers mostly use 3×3 kernels
and use the same number of kernel filters for feature maps with the same output size, represented
by the same colours; 2) the number of kernel filters is doubled when the size of the feature map is
halved. Convolutional layers with a stride of 2 are used for downsampling. Shortcut connections
with dashed indicate that downsampling is performed and the dimensionality is changed. Table 2.1
shows the architectures of ResNet with the different number of layers. Brackets indicate the shape
of the convolutional kernel within the residual building block and the number of blocks stacked in
each layer. The output shapes in the table are when using the ImageNet dataset [97]. In practice,
when using ResNet for feature extraction, any shape can be adapted, and the output of a layer can
be used directly as a feature map.

9

2 Background

yaw

Points

Laser beams

LIDAR

pitch

range

Cartesian Coordinate

Figure 2.9: The illustration of range view projection. Adapted from [29, 61].

2.3 range view

Range view [134, 135, 139, 81, 29, 140, 61] is a representation of point clouds. Since the quantity
of point clouds generated by LiDAR scanning is not fixed, it becomes challenging to utilize neural
networks for feature extraction. Range view transforms point clouds into an image-like represen-
tation, allowing for the straightforward application of convolutional networks such as ResNet for
feature extraction, similar to how they are used with images.

LiDAR emits N laser beams at the same angular intervals in the vertical direction (pitch), and
these beams rotate around the LiDAR at a certain frequency in the horizontal direction (yaw). The
laser beams are partially reflected back when encountering an object, providing the distance from
that point to the LiDAR. Consequently, the point cloud can be represented not only by Cartesian
coordinates with (𝑥, 𝑦, 𝑧) but also by cylindrical coordinates formed by the yaw, pitch, and distance
between the point and the LiDAR, as illustrated in Figure 2.9. The conversion relationship between
the two coordinate systems can be expressed as:

𝑥 = 𝑟 · 𝑐𝑜𝑠(𝜙) · 𝑐𝑜𝑠(𝜃)

𝑦 = 𝑟 · 𝑐𝑜𝑠(𝜙) · 𝑠𝑖𝑛(𝜃)

𝑧 = 𝑟 · 𝑠𝑖𝑛(𝜙)

[2.3]

Here, 𝜃, 𝜙, and 𝑟 =
√︁
𝑥2 + 𝑦2 + 𝑧2 are the yaw angle, pitch angle, and distance between the point

and LiDAR sensor, respectively. Subsequently, each point can be projected onto a 2D cylindrical
projection R(𝑢, 𝑣) with dimensions 𝐻𝑟 × 𝑊𝑟 based on yaw angel 𝜃 = tan−1 𝑦

𝑥
and pitch angel

𝜙 = sin−1 𝑧
𝑟
: (

𝑢

𝑣

)
=

(
1
2
(
1 − arctan(𝑦, 𝑥)𝜋−1)𝑊𝑟

(1 − (arcsin(𝑧, 𝑟−1) + | 𝑓down |) 𝑓 −1
v)𝐻𝑟

)
[2.4]

10

2.4 Transformer

Figure 2.10: The structure of Transformer. Reprinted from [121].

where 𝑓𝑣 = | 𝑓𝑢𝑝 + 𝑓𝑑𝑜𝑤𝑛 represents the vertical filed-of-views (FOVs) of the LiDAR sensor and
𝑓𝑢𝑝, 𝑓𝑑𝑜𝑤𝑛 are the FOVs at upward and downward directions, respectively. (𝑢, 𝑣) denotes the pixel
coordinate of each point in the 2D range view image R(𝑢, 𝑣). The (𝑥, 𝑦, 𝑧, 𝑟), formed by stacking
the Cartesian coordinates (𝑥, 𝑦, 𝑧) and distance 𝑟 of each projected point along the dimension axis,
serves as the features of that pixel, resulting in R(𝑢, 𝑣) ∈ R4×𝐻×𝑊 . For pixels without projected
points, the coordinates (𝑥, 𝑦, 𝑧) are set to 0, and 𝑟 is designated as −1, effectively indicating that
there are no points at these coordinates. If two points are projected onto the same pixel, the closer
point is taken to project, as shown by the red projection in Figure 2.9, where the solid circle
indicates that it is selected. In practice, the dimensions of the range view image are determined
based on the LiDAR’s beam count and rotation frequency to prevent multiple points from being
projected onto the same pixel.

2.4 Transformer

The Transformer, introduced by Vaswani et al. [121] in 2017, was originally designed for processing
sequential data. Its self-attention mechanism can dynamically focus on different parts of an input
sequence and their relationship, thereby improving its ability to concentrate on crucial information.

11

2 Background

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

query with all keys, divide each by
√
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1√

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1√

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

Multi-head attention allows the model to jointly attend to information from different representation
subspaces at different positions. With a single attention head, averaging inhibits this.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

∑dk
i=1 qiki, has mean 0 and variance dk.

4

(a) Scaled Dot-Product Attention

0.04

0.02

0.15

0.08

0.3

0.06

0.1

0.25

weighted

output

(b) Example of Attention with one query

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

query with all keys, divide each by
√
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1√

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1√

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

Multi-head attention allows the model to jointly attend to information from different representation
subspaces at different positions. With a single attention head, averaging inhibits this.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

∑dk
i=1 qiki, has mean 0 and variance dk.

4

(c) Multi-Head Attention

Figure 2.11: Attention. (a) and (c) are reprinted from [121].

Therefore, it was subsequently expanded to other fields like computer vision and sensor fusion,
demonstrating impressive performance. The Transformer consists of an encoder (left part of
Figure 2.10) and a decoder (right part of Figure 2.10), each constructed from multiple stacked
encoder layers and decoder layers respectively. Each encoder layer and decoder layer contains
some Feed-Forward layers, Add&Norm layers, and Multi-Head Attention layers. The feed-forward
layer is implemented as a simple fully connected network. The Add&Norm layer employs a residual
connection followed by layer normalization.

2.4.1 Attention

Vaswani et al. [121] named the attention mechanism they used as "Scaled Dot-Product Attention"
(Figure 2.11a). The inputs to the attention module are queries (𝑄), keys (𝐾), and values (𝑉),
where the dimensions of 𝑄 and 𝐾 are 𝑑𝑘 , and the dimension of 𝑉 is 𝑑𝑣 . By querying each
key, the correlation (attention weight) of each key to that query is determined. Then the values
corresponding to the keys are weighted and added according to this correlation to produce the
output for that query (Figure 2.11b). In practice, this is computed synchronously using matrices:

Attention(𝑄, 𝐾,𝑉) = softmax
(
𝑄𝐾𝑇

√
𝑑𝑘

)
𝑉 [2.5]

In Addition, the dimensions of 𝑄, 𝐾,𝑉 are split into ℎ parts, making the dimensions of each 𝑄, 𝐾
become 𝑑𝑘/ℎ and for each𝑉 is 𝑑𝑣/ℎ. Scaled Dot-Product Attention is performed synchronously on
each 𝑄, 𝐾,𝑉 group, yielding ℎ outputs with dimension 𝑑𝑣/ℎ. These outputs are then concatenated
to produce the final output with dimension 𝑑𝑣 , as shown in Figure 2.11c.

2.4.2 Positional Encoding

The attention module is not sensitive to position, in other words, changing the order of tokens in
the input sequence does not affect the attention weights. Hence, it’s necessary to inject position

12

2.4 Transformer

information about the tokens into the input sequence. In Transformer, a sine and cosine positional
encoding is added to the input embeddings. The formula for this positional encoding is:

𝑃𝐸 (𝑝𝑜𝑠,2𝑖) = sin
(

𝑝𝑜𝑠

100002𝑖/𝑑model

)
𝑃𝐸 (𝑝𝑜𝑠,2𝑖+1) = cos

(
𝑝𝑜𝑠

100002𝑖/𝑑model

) [2.6]

where 𝑝𝑜𝑠 represents the position and 𝑖 represents the dimension. 𝑑𝑚𝑜𝑑𝑒𝑙 is the total dimension of
the position encoding, which matches the input’s dimension so that the two can be directly added
together.

13

2 Background

14

3 Related Work

In this chapter, we delve into the current state of research in the three domains: world models,
multimodal sensor fusion, and 3D occupancy mapping. Our work is at the intersection of these
three research fields. By reviewing these areas, we analyze the strengths and limitations of related
works and draw inspiration from them.

3.1 World Model

World models are generative models that encode observations into latent states and predict fu-
ture states based on actions. These latent states can then be decoded back into the observation
space [7, 6, 64]. Originating from model-based reinforcement learning [109], world models serve
as simulators to emulate environmental dynamics, reducing the direct interaction between the con-
troller and the environment. This allows the agent to model the complex world while maintaining
a simplified action search space.

3.1.1 RNN-based World Model

Ha et al. [38] initially introduced the template for modern world models. They used Variational
AutoEncoders (VAEs) [60] to encode observations and Recurrent Neural Networks (RNNs) to
model latent state dynamics. PlaNet [40] subsequently introduced the Recurrent State Space
Model (RSSM), enhancing the model’s ability to capture dynamics by combining stochastic states
and deterministic paths. This allows the model to retain the environmental randomness while
remembering long-term historical information. In the subsequent Dreamer series [39, 41, 42], they
continuously improved this approach by using discrete latent state representations, employing the
KL balancing trick, and adding symlog predictions.

3.1.2 Transformer-based World Model

Given the effectiveness of Transformers [121] in tasks involving long-term dependencies and
memory-based predictions compared to RNN models, many methods [17? , 79, 149] have chosen
to use Transformers for dynamic modelling. TransDreamer [17] directly replaces the Gated Recur-
rent Units (GRUs) [21] in Dreamer with Transformer structure. IRIS [79] treats dynamic learning
of latent stats as a sequence modelling problem, using VQ-VAE [120] to encode images into to-
kens and employing a spatial-temporal Transformer to capture information between images and
make predictions. STORM [149] utilizes the stochastic nature of VAEs to improve the operational

15

3 Related Work

efficiency of Transformer-based world models. Additionally, many studies [37, 105, 77, 24] have
focused on improving the long dependencies and operational efficiency of world models based on
Structured State Space Sequence (S4) [37] layers.

3.1.3 High-Resolution Image as Input

These methods have demonstrated excellent performance in simple simulated environments [8,
119, 118], but they typically use low-resolution images as inputs, which may not be sufficient
for simulations in autonomous driving. The demand for higher-resolution and more complex
environmental understanding in autonomous driving applications necessitates models capable of
processing and predicting based on high-resolution data. Consequently, recent research has been
dedicated to world models that run in complex environments with high-resolution images, and
significant progress has been made in this area. MILE [48] is a model-based imitation learning
method that adopts an architecture similar to Dreamer. It operates within the CARLA simulation
environment [27], using high-resolution images to learn expert driving strategies. MILE enhances
the model’s understanding of the environment by leveraging predicted BEV (Bird’s Eye View)
semantic segmentation labels during training. This additional task guides the model to focus on
relevant features and structures within the environment that are crucial for making informed deci-
sions. Similarly, Gao et al. [31] proposed a semantic masked recurrent world model (SEM2), which
trains an additional latent feature filter by reconstructing BEV semantic masks. This process aims
to eliminate task-irrelevant information from high-resolution observations. By focusing on BEV
semantic masks, SEM2 can distil the important features from the environment that are necessary
for the task at hand, reducing the noise and complexity that come with high-resolution inputs. How-
ever, they rely on additional information to enhance their effectiveness, which limits their scalability.

3.1.4 Video Generation

Compared to using privileged information as supervision to reinforce the model’s learning of driv-
ing strategies, some world models [59, 125, 49, 67] focus on video generation, which encompasses
image reconstruction and prediction. This shift in focus represents a different approach to under-
standing and interacting with the environment. DriveGAN [59] is trained unsupervised based on
real-world data and can generate high-resolution and high-fidelity images conditioned on actions.
It employs VAE and GAN [34, 57] to learn the latent space of images. A distinctive feature of
DriveGAN is its ability to disentangle the latent space into content-related and style-related factors,
thereby providing additional control over the environment.

Due to the impressive performance of diffusion-based models [95, 106, 45, 144] in image and
video generation, attention has turned towards diffusion models as a powerful tool for creating
high-quality visual content. DriveDreamer [125] is one such model that enhances the representa-
tion of complex environments by incorporating a diffusion model. It employs a two-stage training

16

3.2 Sensor Fusion

process. In the first stage, the model is trained to understand structured traffic information by
using HD maps and 3D bounding boxes as conditions, and in the second stage, the environment
dynamics, i.e., the model’s ability to predict futures, are trained. They further utilise CLIP [92]
embedding to guide the style of predictions.

Hu et al. interpreted world models as single sequence models [19, 54, 79, 93, 72, 136, 22]
and demonstrated their Generative AI for Autonomy (GAIA-1) [49] model. This model is trained
on proprietary real-world camera data and can be modulated through actions and textual inputs.
They utilized vector quantization [120] to label data and enrich semantic content through DINO dis-
tillation [12]. With a video diffusion decoder, they achieved temporally consistent high-resolution
predictions.

3.1.5 3D Application

Zhang et al. [148] integrated a diffusion model into a spatial-temporal Transformer for predictions,
applying it to point cloud prediction. OccWorld [154] expands the concept of world models to 3D
voxel occupancy, offering a more comprehensive understanding of the environment by representing
not just where objects are, but also the 3D space they occupy.

3.2 Sensor Fusion

In autonomous driving, sensor fusion typically involves combining data from cameras and LiDAR.
During the fusion process, feature extraction is performed on data from both sources.

3.2.1 Encoder for Camera and LiDAR

Camera

For images, traditional convolution-based feature extractors [44, 110, 111, 112, 47, 62] are com-
monly used. However, with the evolution of Transformers [121] in computer vision in recent years,
Transformer-based image feature extraction methods [26, 73] have become popular.

LiDAR

For point clouds, there are point-based methods like PointNet [88] and PointNet++ [89], which
operate directly on points through Multilayer Perceptrons (MLPs). Subsequent methods [1, 117,
137, 128] have optimized this type of approach further. Another popular trend involves assigning
points to voxels and then integrating the points within each voxel to derive voxel features. The most
notable among these is VoxelNet [155], which has been applied as a voxel feature extractor in many
models. Recently, much work [25, 35, 50, 63, 99, 100, 114, 146] has been dedicated to optimizing
the efficiency of voxel-based point cloud decoders. PointPillars [63] use pillars to replace voxels.

17

3 Related Work

Some approaches [134, 135, 139, 81, 29, 61] opt to project point clouds into 2D spaces like range
view or BEV, after which image decoders can be directly applied. RPV [140] combines three types
of methods to get performance and efficiency gains.

3.2.2 Fusion Method

Many methods [141, 20, 98] encode the features extracted from both sensors into tokens for fusion
using a Transformer [121]. Using Bird’s Eye View (BEV) as an intermediary space for data of both
modalities is a popular approach [71, 74, 76, 55, 147]. Features from both sensors are mapped to
BEV [86] for fusion. Other methods [68, 152] opt for fusion in the information-richer voxel space,
which retains a detailed 3D context for the data.

For 3D object detection tasks, dense feature representations might be redundant, prompting some
methods [9, 66, 138] to choose sparse representations to filter out background noise. Some
approaches [87, 145, 153] generate candidate boxes from images to guide LiDAR prediction. Con-
versely, Transfusion [2] employs point clouds to prevent failures caused by low-quality images.
PointPainting [122] enhances point cloud data by directly appending semantic segmentation re-
sults obtained from images to the corresponding points in the cloud, thus enriching the point cloud
with additional semantic information. Similarly, MVX-Net [104] appends features extracted from
images using pre-trained convolutional networks to the point cloud.

Other works focus on different aspects of sensor fusion and processing. For instance, Fast-
CLOCs [85] emphasizes the real-time performance of the model, making it suitable for applica-
tions where rapid processing is critical. RPEFlow [124] deals with optical flow and scene flow,
providing detailed motion analysis. SupFusion [90] introduces auxiliary supervision to enhance
learning and improve model performance.

3.3 3D Voxel Reconstruction

Although 2D Bird’s Eye View (BEV) representations are prevalent in autonomous driving, they
can’t fully capture the complexity of environments. 3D occupancy, typically modelled by voxels,
offers a geometrically perceptive representation of the scene [7, 102].

MonoScene [10] estimates 3D semantic voxels using a single-view camera image, not only re-
constructing visible areas captured by the camera but also imagining occluded regions that are
not visible. It introduced new losses to refine Scene-class Affinity, optimizing both globally and
locally.

3.3.1 Transformer-based

Some approaches have introduced Transformers [121] to enhance the 3D voxel occupancy re-
construction effect. Voxformer [69] begins by estimating a set of sparse voxels as queries, con-

18

3.3 3D Voxel Reconstruction

tinuously inquiring about spatial information from image observations to generate denser voxels.
Occformer [150], on the other hand, extracts different aspects of information through a global path
and a local path, ultimately aggregating to form a more complete spatial representation. Sym-
phonies [56] recognize the impact of instance semantics and scene context on voxels, encoding
instance-centered semantics to strengthen the connection between voxels and pixels belonging to
the same instance. It also promotes the model’s understanding of the overall scene through scene
context.

3.3.2 Unsupervised Training

Annotating real-world 3D voxel occupancy grids is extremely time-consuming and labour-intensive.
Therefore, Tan et al. proposed a zero-shot learning approach, Open Vocabulary Occupancy
(OVO) [113, 83, 84, 133], eliminating the dependence on supervision during training. Some in-
novative methods [11] employ NeRF [80] to complete the rendering of 3D voxel grids from 2D
images, no longer relying on annotations for 3D occupancy. CLONeR [15] employs both Lidar
sensors and cameras, enhancing NeRF’s performance under sparse sensor input by decoupling the
learning of color and occupancy. It utilizes images to supervise color learning and point cloud for
geometry learning, thereby improving the overall effectiveness and accuracy of NeRF in scenarios
with limited sensor data.

3.3.3 Multi-view

There are also many methods [28, 52, 78, 70, 123, 126, 130] specifically designed for multi-view
image inputs. OccDepth [78] reconstructs voxels by extracting the implicit depth information from
stereo cameras. TPVFormer [52] extends BEV feature mapping to Tri-Perspective Views (TPV),
integrating the features of a point’s projection positions in three views as its comprehensive feature.
In contrast to mapping the features from each view’s image to TPV 2D planes, SurroundOcc [130]
operates directly in 3D space through 2D-3D spatial attention, obtaining 3D features. There are
also some works [94, 107, 142] completing the semantic scene based on point clouds.

19

3 Related Work

20

4 Method

In the following sections, we provide a detailed introduction to our model. As illustrated in
Figure 4.1, our model’s foundational pipeline is divided into four parts: the Encoder, sensor fusion,
transition model, and decoder. The model accepts RGB images and point clouds, which are typical
for autonomous vehicles [32, 129], as inputs. These data are then separately processed through the
Encoder for feature extraction. Subsequently, the features from both sensors are fused together.
The fused features are then fed into the transition model, which retains historical information and
generates latent states determined by actions. Finally, these latent states are decoded into the
required multimodal data. In the following sections, we further explain these four components.

4.1 Encoder

ResNet is used for feature extraction in many methods and shows excellent performance. Thus,
our Encoder also employs ResNet as the backbone. In practice, we extract three feature maps of
varying sizes from three layers of ResNet and add them together (by upsampling, downsampling,
and convolutional layers to match their dimensions and sizes) to obtain features with different
scales.

4.1.1 Image

For image feature extraction, a simple way is to utilize ResNet to extract multiscale features directly.
An additional option is to map the features extracted through ResNet into Bird’s Eye View (BEV).
The advantage is that BEV is a shared space for both images and point clouds, allowing both to be
projected into BEV for fusion in this unified space. [71, 74, 76]

Point clouds

Actions

RGB images

Point clouds

RGB images

3D Occupancy

Sensor Fusion

Features

Fusion

Dec

Dec

Dec

Transition Model

Transition

Transition

Enc

Enc

Enc

DecoderEncoder

Figure 4.1: The pipeline of our model. Reprinted from [7].

21

4 Method

assign
to Pillars

max pooling

Figure 4.2: The BEV Mapping in LSS. Reprinted from [86].

BEV Mapping

We follow the procedure outlined by J. Philion et al. in LSS [86] for mapping image features to
BEV. For each pixel 𝑝 with feature dimension 𝐶 in the feature map F (ℎ, 𝑤) ∈ R𝐶×𝐻𝑧×𝑊𝑧 , we
assign |𝐷 | depths, where 𝐷 is a set of discrete depths 𝐷 = {𝑑0 +Δ, . . . , 𝑑0 + |𝐷 |Δ}. Thus resulting
in a point cloud collection of size |𝐷 | · 𝐻𝑧 ·𝑊𝑧 . For each pixel 𝑝 in the feature map, there are
features c ∈ R𝐶 , and depth distribution 𝛼 ∈ Δ |𝐷 | estimated by a neural network (converted to
probabilities via softmax). For the point 𝑝𝑑 at depth 𝑑 corresponding to pixel 𝑝, define its features
c𝑑 as features c of pixel 𝑝 scaled by its probability at this depth 𝛼𝑑:

c𝑑 = 𝛼𝑑c. [4.1]

This operation yields a point cloud P (ℎ, 𝑤, 𝑑) ∈ R𝐶×𝐻𝑧×𝑊𝑧×|𝐷 | . For the image, its camera’s
extrinsic matrices E𝑘 ∈ R3×4 and intrinsic matrices I𝑘 ∈ R3×3 jointly define the mapping from
world coordinates (𝑥, 𝑦, 𝑧) to local pixel coordinates (ℎ, 𝑤, 𝑑). With this mapping relation, the
point cloud P (ℎ, 𝑤, 𝑑) can be mapping to P (𝑥, 𝑦, 𝑧) ∈ R𝐶×𝑋×𝑌×𝑍 . The point cloud space is then
divided into 𝐻𝑏 ×𝑊𝑏 pillars in the 𝑥 − 𝑦 plane. By assigning each point to its nearest pillar and
performing sum-pooling for each pillar, we can obtain a feature map with size 𝐶 × 𝐻𝑏 ×𝑊𝑏 in
Bird’s Eye View.

4.1.2 Point Cloud

Processing of point clouds typically falls into three categories: point-based, range view-based,
and voxel-based. Point-based methods [88, 89] extract features of each point through multi-layer
MLPs and obtain their local features by aggregating features of neighbouring points. However,
point clouds are sparse, unstructured data with variable order and quantity, making the efficiency
of searching for neighbouring points extremely low. Range view-based methods [134, 135, 139,
81, 29] project the distances of point clouds onto a 2D image, alleviating sparsity to some extent.
Subsequent convolution towers can aggregate information over a large receptive field to further
mitigate the sparsity problem of point clouds. Moreover, it is very efficient due to highly optimized
2D convolutions. However, since cylindrical projection, the size of objects in range view images is
not distance-invariant. Voxel-based methods [155, 63, 143] maintain the physical size of objects
with clear structure but are relatively sparse and require high resolution to prevent information loss
due to quantization. An increase in 3D resolution results in a cubic consumption of memory and
computational resources. Overall, the range view offers the best efficiency and is also convenient for

22

4.1 Encoder

reconstruction since it’s image-like data; voxel-based methods perform well at high resolutions, but
the efficiency depends on the resolution [140]. Hence, we chose range view and PointPillars [63],
an efficiency-optimized voxel-based-like method, to process point clouds.

Range View

We straightforwardly use the Formula [2.4] described in Section 2.3 to project the point cloud
onto a range view image R(𝑢, 𝑣) ∈ R4×𝐻𝑟×𝑊𝑟 . For this pseudo-image R(𝑢, 𝑣), we can directly
use ResNet to extract multiscale features. Since the range view projection is just a simple map-
ping transformation and does not involve any learnable parameters, it does not bring additional
computational overhead and can be prepared in advance.

PointPillars

Firstly, discretize the point cloud space into uniformly distributed pillars on the x-y plane, where
each pillar is equivalent to a voxel extending infinitely in the z-direction. Then assign each point to
the corresponding pillar according to coordinates. For the point with coordinate (𝑥, 𝑦, 𝑧), its global
coordinates (𝑥, 𝑦, 𝑧), its relative coordinates (𝑥𝑐, 𝑦𝑐, 𝑧𝑐) to the geometric center of all points in the
pillar it’s located in, and the offsets (𝑥𝑝, 𝑦𝑝) to the x, y center of the pillar it’s located in are used
as its features. Let 𝐷 represent the number of point features, 𝑃 the number of pillars, and N the
limit of points per pillar. If a pillar contains more than 𝑁 points, points are randomly sampled; if
fewer, it is filled with zero-padding. From this, we obtain a dense tensor of size (𝐷, 𝑃, 𝑁). Then
use MLPs to extract features of each point, yielding point features F𝑛 ∈ R𝐶×𝑃×𝑁 and perform
max pooling within each pillar to obtain features F𝑝 ∈ R𝐶×𝑃. Finally, unfolding these features
back to their original pillar positions results in a 2D feature map F𝑝 ∈ R𝐶×𝐻𝑝×𝑊𝑝 [63]. This 2D
pseudo-image can then undergo further feature extraction using ResNet.

4.1.3 Others

In addition to images and point clouds, our model can also accept route maps or measurements
such as velocity and Global Navigation Satellite System (GNSS) data as input. Route maps are
image-like 2D data, so we use ResNet for feature extraction as well and use average pooling to

Pillar Index

Point
cloud

Stacked
Pillars

Learned
Features

Pesudo
image

Figure 4.3: The Illustration of PointPillars. Reprinted from [63].

23

4 Method

Camera Features

LIDAR Features

Fully Connected Layer

average
pooling

Simple Averaging

Figure 4.4: The Illustration of Simple Averaging Fusion (top) and Fully Connected Layer Fusion (bottom).

compress it to a 1D vector. The rest 1D data is processed by MLPs. The action vectors required
for the transition model are also obtained through MLPs.

4.2 Sensor Fusion

After feature extraction through the Encoder, we obtain 2D image features F𝑖 ∈ R𝐶×𝐻𝑖×𝑊𝑖 and
point cloud features F𝑝 ∈ R𝐶×𝐻𝑝×𝑊𝑝 . Some other 1D features are uniformly represented as
f𝑜 ∈ R𝐷𝑜 . We implement three fusion approaches for these features: 1). Simple averaging of
features; 2). Concatenating features and followed by a fully connected layer; 3). Fusion using a
Transformer [121].

4.2.1 Simple Averaging

Since the shapes of the image and point cloud features are inconsistent, it is impossible to average
them directly. Therefore, we first use a convolutional layer to unify their dimensions and then
average the feature values on all pixels to obtain a global feature f𝑔 ∈ R𝐷 , which is a 1D vector.
Then we perform an element-wise averaging to global features of two sensors to obtain the fused
feature (the top frame of Figure 4.4):

z =
avg(Conv(F𝑖)) + avg(Conv(F𝑝))

2
[4.2]

4.2.2 Fully Connected Layer

Similar to simple averaging, this method first compresses the 2D image and point cloud features
into 1D vectors. Afterwards, the two 1D vectors and other 1D features f𝑜 are concatenated to form
a vector of dimension 2𝐷 + 𝐷𝑜. This vector is then passed through a fully connected layer for
information interaction to obtain the fused feature with the required dimensions (the bottom frame
of Figure 4.4):

z = FC([avg(Conv(F𝑖)), avg(Conv(F𝑝)), 𝑓𝑜],𝑊) [4.3]

24

4.3 Transition Model

Camera Features

Other Features
(Route Map, Speed, etc) Flatten

and
 Concatenate

LIDAR Features

concatenated Tokens

Position Encodings

Transformer
Encoder

merged Tokens

FC

Sensor type Embeddings

Figure 4.5: The Illustration of Transformer Fusion.

4.2.3 Transformer

The attention module of a Transformer can focus on the correlation between all input tokens. This
feature is highly suitable for sensor feature fusion, as it allows features from different sensors to
complement each other. Therefore, many recent methods use it for data fusion [141, 20, 98], and
we also introduce it into our model. The input required by Transformer is a sequence of tokens
T𝑖𝑛 ∈ R𝐷𝑡×𝑁𝑡 , where 𝐷𝑡 is the dimension of each token and 𝑁𝑡 is the number of tokens in the
sequence. Since the properties of image features F𝑖 and point cloud features F𝑝 is similar, we
use a uniform symbol F ∈ R𝐶×𝐻×𝑊 to illustrate the same operation for both. In order to match
the shape of the input to the Transformer, we first use a convolutional layer to change the channel
number of feature F and then flatten it along the 𝐻 and 𝑊 dimensions to obtain tokens of shape
𝐷 ×𝐻𝑊 . To compensate for the Transformer’s insensitivity to position, we add 2D sine and cosine
position encoding e ∈ R𝐷×𝐻𝑊 [2.6] to each token. Moreover, We incorporate learnable sensor
embeddings s ∈ R𝐷×𝑁𝑠 into each token to distinguish the sensor category they belong to, where
𝑁𝑠 is the number of sensors. So the resulting token sequence for a single sensor is T ∈ R𝐷×𝐻𝑊 ,
where each token is 𝑡 (𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) + 𝑒(𝑥, 𝑦) + 𝑠, and 𝑥, 𝑦 indicate the pixel coordinate of that
token within its sensor feature. In addition, for 1D features f𝑜 from other sensors, we use a
fully connected layer to match the Transformer’s dimension, obtaining T𝑜 ∈ R𝐷×1. Finally, we
concatenate these token sequences from all sensors and pass them into a Transformer encoder,
resulting in fused tokens T 𝑓 𝑢𝑠𝑒𝑑 ∈ R𝐷×(𝐻𝑖𝑊𝑖+𝐻𝑝𝑊𝑝+𝑁𝑜) , where 𝑁𝑜 is the number of 1D features.
The illustration is shown in Figure 4.5

4.3 Transition Model

Our transition model follows the design in MILE [48], differing slightly from the Recurrent State
Space Model (RSSM) proposed by Hafner et al [40]. In the original RSSM, actions are introduced
into the deterministic history via an RNN h𝑡 = RNN(h𝑡−1, s𝑡−1,a𝑡−1), and the stochastic state
s𝑡 is derived from the deterministic state h𝑡 as s𝑡 ∼ 𝑝(s𝑡 |h𝑡 , z𝑡) (Section 2.1.2). In contrast, we
do not introduce actions a𝑡 into the deterministic history h𝑡 = 𝑓 (h𝑡−1, s𝑡−1). Instead, actions

25

4 Method

min KL

Enc

Imagine

Dec Dec

Observation

Figure 4.6: The Visualization of Transition Model. (left) With observation. (right) Without observation

are introduced in the subsequent stochastic state model s𝑡 ∼ 𝑝(s𝑡 |h𝑡 , z𝑡 ,a𝑡−1). The complete
structure is shown in Figure 4.6, with the specific model given by the following equations:

Initial deterministic state: h0 ∼ 𝛿(0)

Deterministic state model: h𝑡 = 𝑓𝛼 (h𝑡−1, s𝑡−1)

Initial stochastic state: s0 ∼ N (0, I)

Representation model: s𝑡 ∼ N (𝜇𝜙, 𝜎𝜙I), (𝜇𝜙, 𝜎𝜙) = 𝑔𝜙 (h𝑡 , z𝑡 ,a𝑡−1)

Transition predictor: ŝ𝑡 ∼ N (𝜇𝜃 , 𝜎𝜃I , (𝜇𝜃 , 𝜎𝜃) = 𝑔𝜃 (h𝑡 ,a𝑡−1))

reconstruction model: ô𝑡 ∼ 𝑝𝛼 (ô𝑡 |h𝑡 , s𝑡)

[4.4]

Where h0 is the initial deterministic historical state, also served as the hidden state for RNN,
initialized by 𝛿(0), with 𝛿 the Dirac delta function. s0 is the initial stochastic state, sampled from
the standard normal distribution N (0, I). 𝑓𝛼 is the RNN model, we implement it as GRU [21]
(Section 2.1.3). The representation model, with parameters 𝜙, estimates the posterior distribution
of the stochastic state based on the observation features z𝑡 , combined with historical information
h𝑡 and action a𝑡 , as shown on the left side of Figure 4.6. z𝑡 is the fused observation feature
obtained through encoding (Section 4.1) and fusion (Section 4.2). The transition predictor, with
parameters 𝜃, predicts the prior distribution of the stochastic state based on historical information
h𝑡 and actiona𝑡 , without z𝑡 . The right side of Figure 4.6 shows this imagining process. We assume
both stochastic state distributions to be multivariate Gaussian, allowing the Kullback-Leibler (KL)
divergence to be calculated in closed form. Furthermore, the neural network estimates the mean
𝜇 and variance 𝜎 of the distribution, and states are sampled with the reparameterization trick so
that gradients are able to be backpropagated. Finally, the deterministic historical state h𝑡 and
the stochastic state s𝑡 together constitute the current latent state, from which the reconstruction
distribution ô𝑡 ∼ 𝑝(ô𝑡 |h𝑡 , st) can be decoded. The reconstruction ô𝑡 includes images, point
clouds, and voxels, which we describe in Section 4.4.

26

4.3 Transition Model

4.3.1 1D Latent States Version

In the transition model, the latent states are typically one-dimensional, corresponding to the
one-dimensional input observational features [40, 39, 41, 42, 48]. For the fused features obtained
through Simple Averaging (Section 4.2.1) or a Fully Connected Layer (Section 4.2.2) we previously
mentioned, they have already been compressed into 1D vectors and thus can be directly fed into the
transition model for calculation. However, in the case of Transformer Fusion, the obtained fused
features are a sequence of tokens, which can’t be directly input into the transition model. According
to Section 4.2.3, we can get Tfused ∈ R𝐷×(𝐻𝑖𝑊𝑖+𝐻𝑝𝑊𝑝+𝑁𝑜) through Transformer Fusion. We first
split this Tfused into token sequences of lengths 𝐻𝑖𝑊𝑖 , 𝐻𝑝𝑊𝑝, and 𝑁𝑜 according to the shapes of
the input sensor features in their input order. Subsequently, we reshape these token sequences back
to the original sensor feature shapes, yielding F𝑖,fused ∈ R𝐷×𝐻𝑖×𝑊𝑖 , F𝑝,fused ∈ R𝐷×𝐻𝑝×𝑊𝑝 , and
F𝑜,fused ∈ R𝐷×𝑁𝑜 . Lastly, we employ the same method as the Fully Connected Layer Fusion in
Section 4.2.2 to compress and merge all features into a 1D vector.

4.3.2 2D Latent States Adaption

Although we can compress features into 1D vectors, the information contained in these 1D vectors
is significantly limited compared to the complex images and point clouds, which is a large challenge
for reconstruction tasks. If we simply increase the dimension of the 1D vector, it would lead to
an overly complex network, greatly increasing computation and memory consumption. Therefore,
we modified the transition model a bit to adapt 2D variables. These modifications involve two
parts: the model that generates the stochastic state distribution and the GRU as the deterministic
state model. In the modified transition model, we use 2D tensors with a shape similar to the fused
observation tokens Tfused to represent both types of states h𝑡 , s𝑡 ∈ R𝐷×𝑁 .

Convolutional GRU

In the GRU cell, all neural networks are implemented as fully connected layers. We replace them
with convolutional layers suitable for 2D tensors[115, 101]. Since convolution is a local operation
with a small receptive field and cannot provide global information, we additionally average all
inputs across spatial dimensions to obtain global features[116]. The modified ConvGRU can be
represented as follows:

𝑢𝑡 = 𝜎(Conv([h𝑡 , s𝑡],𝑊𝑢) + Conv([g𝑡],𝑊𝑔𝑙𝑜𝑏𝑎𝑙
𝑢))

𝑟𝑡 = 𝜎(Conv([h𝑡 , s𝑡],𝑊𝑟) + Conv([g𝑡],𝑊𝑔𝑙𝑜𝑏𝑎𝑙
𝑟))

h̃𝑡 = tanh(Conv([𝑟𝑡 ⊙ h𝑡 , s𝑡],𝑊ℎ) + Conv([g𝑡],𝑊𝑔𝑙𝑜𝑏𝑎𝑙

ℎ
))

h𝑡+1 = (1 − 𝑢𝑡) ⊙ h𝑡 + 𝑢𝑡 ⊙ h̃𝑡

g𝑡 = mean([h𝑡 , s𝑡] ⊙ 𝜎(Conv([h𝑡 ,x𝑡],𝑊𝑔)))

[4.5]

Where g𝑡 is the global feature combining h𝑡 and s𝑡 , controlled by a gate-like operation to regulate
its proportion. As h𝑡 and s𝑡 can be considered as a sequence of tokens, we use 1D convolutions

27

4 Method

Transformer Decoder

Q K V

learnable Modality Embeddings

Figure 4.7: Estimate Stochastic State Distribution with Transformer Decoder. Take the example of accepting
observation features as input and reconstructing images, point clouds, and voxels.

with a kernel size of 1, which actually performs as an MLP on each token.

Stochastic State Model

The transition model includes two types of stochastic state distributions, with similar models for
generating both. The only difference is whether they use observation features as inputs. In the
following, we use the posterior distribution, which accepts observations as input, as an example to
illustrate.

We use a Transformer Decoder to generate the stochastic state. We combine h𝑡 , z𝑡 , and a𝑡

into a sequence of tokens to generate key-value pairs, with learnable embedding as the query[98].
The number of query embeddings depends on the desired reconstruction modalities. For example,
if we want to reconstruct RGB images, range view images of point clouds, and voxels, we need
three types of features: F𝑖 ∈ R𝐷×𝐻𝑖×𝑊𝑖 , F𝑝 ∈ R𝐷×𝐻𝑝×𝑊𝑝 , and F𝑣 ∈ R𝐷×𝑋×𝑌×𝑍 . Thus, we
create corresponding queries Q𝑖 ∈ R𝐷×𝐻𝑖𝑊𝑖 , Q𝑝 ∈ R𝐷×𝐻𝑝𝑊𝑝 , and Q𝑣 ∈ R𝐷×𝑋𝑌𝑍 , combined
into Q ∈ R𝐷×(𝐻𝑖𝑊𝑖+𝐻𝑝𝑊𝑝+𝑋𝑌𝑍) . Since the Transformer Decoder is also insensitive to position,
we add sine and cosine position encodings and learnable modality embeddings to these query
embeddings, and type embeddings to (h𝑡 , z𝑡 , a𝑡). Then, in each layer of the Transformer de-
coder, we can use these queries to retrieve state information in the key-value pairs generated by
(h𝑡 , z𝑡 , a𝑡) through the attention mechanism. After multi-layer information querying, we can
obtain the stochastic state tokens T𝑠 ∈ R𝐷×(𝐻𝑖𝑊𝑖+𝐻𝑝𝑊𝑝+𝑋𝑌𝑍) , which integrates the information
of (h𝑡 , z𝑡 , a𝑡). We then expand the feature dimension of these tokens via an MLP and then
split them into two parts, respectively serving as the mean 𝜇 and variance 𝜎 of the stochastic
state distribution. Since the learnable query embeddings are set according to the modalities of
reconstructions, the resulting stochastic states can be divided into states corresponding to different
modalities: st = (T 𝑠

𝑖
∈ R𝐷×𝐻𝑖𝑊𝑖 , T 𝑠

𝑝 ∈ R𝐷×𝐻𝑝𝑊𝑝 , T 𝑠
𝑣 ∈ R𝐷×𝑋𝑌𝑍). Figure 4.7 is an illustration

of this process.

28

4.4 Decoder and Training Loss

4.4 Decoder and Training Loss

Our model aims not only to reconstruct common images [38, 41, 49] and point clouds [148] but also
voxels [10, 69, 150], a data form capable of representing the geometric properties of world space.
When dealing with images, the goal is to recreate 3-channel RGB images identical to the inputs.
In the case of point clouds, given the uncertain number and order of the original data points, we
choose to reconstruct 4-channel pseudo-images projected onto the range view. As for voxels, they
are stored in a tensor of size 𝑋 ×𝑌 × 𝑍 , where each voxel stores the category (presence, absence, or
type of object) to which it belongs. During training, categories are stored as one-hot vectors, and
the reconstruction estimates the probabilities of each grid cell belonging to each category, similar
to semantic segmentation in images. Both the reconstructed images and point clouds are 2D data,
while voxels belong to 3D data. Next, we introduce two decoders for these two data formats.

4.4.1 2D Decoder for Images and Point Clouds

For a target with shape 𝐻 × 𝑊 , we start with a feature map of initial shape 𝐻
𝑑
× 𝑊

𝑑
, where 𝑑

is the downscale factor. Through a series of upscaling layers, the resolution is progressively
increased to achieve the target resolution. These upscaling layers involve transposed convolu-
tions with stride 2 for upsampling, followed by an activation layer to maintain the non-linearity
of the model [38, 39, 41]. The final layer is customized with a specific head to suit different outputs.

According to Section 4.3, the transition model can generate the latent states (h𝑡 , s𝑡) in 1D or
2D versions. For the 2D version, since the states can be divided corresponding to each modality
of reconstruction, it can be directly reshaped into the feature shape 𝐻

𝑑
× 𝑊

𝑑
required for the recon-

struction of that modality.

For the 1D version, the latent states (h𝑡 , s𝑡) ∈ R𝐷 is first reshaped into 𝐷 × 1 × 1 and then
convolved with kernels of shape 𝐻

𝑑
× 𝑊

𝑑
to produce a feature map with initial shape 𝐻

𝑑
× 𝑊

𝑑
for the

decoder.

4.4.2 3D Decoder for Voxels

For the 2D version of the latent states, it can also be reshaped into 𝑋
𝑑
× 𝑌

𝑑
× 𝑍

𝑑
as the initial feature,

and then upsampled to the target shape using 3D transposed convolutions.

For the 1D version of the latent states, we employ an architecture similar to StyleGAN [57].
We use a learnable tensor of shape 𝑋

𝑑
× 𝑌

𝑑
× 𝑍

𝑑
as the start. This tensor is then gradually upsampled

to the target voxel grid size. At each upsampling step, the states (s𝑡 ,h𝑡) undergoes an affine trans-
formation into means and variances, which are then injected into the tensor via adaptive instance
normalization[57, 48].

29

4 Method

4.4.3 Training Losses

Our world model can be trained without supervision using the standard sensor setup of autonomous
vehicles [32, 129], which includes stereo cameras and LiDAR. It does not require expensive
manually annotated labels, thereby permitting training on any large datasets without labels. For
the target of each modality, we reduce its resolution by factors of 2 and 4, resulting in targets at
three distinct scales, including the original one. As for the decoder, it operates by progressively
upsampling small-scale feature maps to the final resolution, allowing us to flexibly add output heads
at different layers to produce outputs corresponding to targets of various sizes. By employing this
multi-scale approach, we can calculate losses at different scales, thereby enhancing the network’s
ability to learn features at different scales.

Image

We reconstruct RGB images of the same size as the input and use the common L1 loss Limg to
reduce the absolute difference between the target and reconstruction.

Point Cloud

We generate range view images of size 4 × 𝐻𝑟 ×𝑊𝑟 , where the four channels represent (𝑥, 𝑦, 𝑧, 𝑑)
(Section 2.3). We use the range view images converted from the ground truth of point clouds as
targets. For points coordinate (𝑥, 𝑦, 𝑧), we apply an MSE loss Lp, xyz to minimize the Euclidean
distance. For distance 𝑟 , we use an L1 Loss 𝐿p, r to get the minimum absolute distance difference.

3D Voxel Occupancy

We output Voxel grids of size 192 × 192 × 64, each voxel being 0.5m in size, where each voxel
uses binary to indicate if it’s occupied. We create targets by voxelizing the fusion of depth maps
from the depth camera and point clouds from the LiDAR. The loss function we used for voxels
is the Scene-Class Affinity Loss (SCAL) [10] Lv proposed by Cao et al. This loss function
combines Precision, Recall, and Specificity to enable the network to better understand Semantic
Scene Completion (SSC).

Stochastic State Distribution

we make predictions by estimating the prior distribution of the stochastic state (Section 4.3). The
prior distribution without observations should approximate the posterior distribution based on
observations. We employ the KL balancing loss LKL introduced in Dreamer V2 [41] as the loss
between these two distributions. This loss encourages the prior to more aggressively match the
posterior, rather than having both distributions move towards each other symmetrically.

30

4.4 Decoder and Training Loss

Finally, all losses are combined by:

Ltotal =
∑︁
𝑖

𝜆𝑖 (𝜆imgL𝑖
img + 𝜆pcd(L𝑖

pcd, xyz + L𝑖
pcd, r) + 𝜆vL𝑖

v) + LKL [4.6]

Where 𝜆s are weighting factors for balancing the contributions of different loss components, and
𝑖 is the downsampling rate. This comprehensive approach, by addressing multiple modalities
and scales, aims to robustly train the model to understand and reconstruct the complex nature of
real-world environments.

4.4.4 Extra Outputs

Although our model is designed to reconstruct unsupervised data, so that can train on any large
fleet dataset, the latent states generated by our transition model (Section 4.3.2) can be flexibly
determined by the desired output modality. Additionally, the decoder’s heads can be readily altered
to accommodate different types of data. Consequently, our model can also be effortlessly adapted
to produce other types of outputs with labels.

For instance, our model can output semantic segmentation of images, with cross entropy as
the loss. Similarly, the bird’s-eye-view semantic segmentation [48, 98, 74] can also be generated,
which is an abstract representation of the vehicle environment, again using cross entropy as the
loss. Furthermore, the model is also capable of generating policies (accelerate, brake and steering)
for imitation learning [48, 20, 151].

31

4 Method

32

5 Experiment Setup

In this chapter, we present how we set up experiments to evaluate our model. Starting with the
dataset we employed, we describe how we collected the data, the pre-processing we did on the data
and how we established the training and testing sets. Subsequently, we explain what experiments
we have performed and the purpose of the experiments. Next comes the parameter settings for
training and the metrics for the evaluation. Finally is some implementation details.

5.1 Dataset

5.1.1 Simulation Environment CARLA

Collecting driving data in the real world is expensive and difficult, so we turned to CARLA [27],
a popular driving simulator environment, for data collection. CARLA has build-in a variety
of urban, suburban, and rural maps, as well as various traffic participants, providing a detailed
driving environment, including streets, buildings, pedestrians, vehicles, etc., so that can simulate
the complexity of the real world. Moreover, CARLA supports a wide range of virtual sensors,
allowing for the arbitrary placement of necessary sensors and the automatic generation of precise
annotations. CARLA offers the user a high degree of freedom to customise the maps, environmental
weather, the type and number of pedestrians and vehicles, etc.

5.1.2 Data Collection

We used a pre-trained expert reinforcement learning agent, Roach [151, 48], as the autopilot in
CARLA to collect data. Compared to CARLA’s built-in autopilot [27], Roach operates more
diversely. We followed the typical sensor setup of autonomous vehicles [32, 129]: a front-facing
stereo camera and a 360-degree LiDAR (Appendix ?? provides specific settings for the sensors).
While the vehicle navigates in CARLA, we collected data at a frequency of 10FPS. For each frame,
we saved the following types of data: RGB images I𝑡 ∈ R3×600×960 (Figure 5.1a) and depth maps

(a) RGB Image (b) Depth Map (c) Point Cloud (d) Route Map

Figure 5.1: Collected data. (a) RGB images and (b) Depth map from the stereo camera; (c) Point cloud from
LiDAR, shown in height heat map; (d) Route map shows the planned route in BEV

33

5 Experiment Setup

D𝑡 ∈ R3×600×960 (Figure 5.1b) from the stereo camera; point clouds P𝑡 ∈ R≤60,000×3 (Figure 5.1c)
derived from the 64-line LiDAR; route maps route𝑡 ∈ R1×64×64 (Figure 5.1d) showing the planned
route in the BEV perspective; the vehicle’s current speed 𝑣𝑡 ∈ R in m/s; and the actions a𝑡 ∈ R2

applied to ego-vehicle, which includes two values - the first for acceleration in [−1, 1], negative for
braking, positive for acceleration) and the second for steering in [−1, 1], where negative for left,
positive for right).

5.1.3 Data Pre-Processing

The collected data underwent some preprocessing:

Image

The collected images from CARLA have a resolution of 600 × 960. Following MILE’s [48]
operation, we cropped them to 320 × 832 to discard unimportant areas like the sky. During the
training phase, normalization and augmentation operations like blurring, sharpening, and jittering
are applied to the input images with a certain probability.

LiDAR Point Cloud

In CARLA, the point cloud is stored in a left-handed coordinate system with the LiDAR as the
origin, specifically with forward as the positive x-axis, right as the positive y-axis, and up as the
positive z-axis. We converted this into a right-handed coordinate system with the ego-vehicle as
the origin, i.e. reversed the direction of the y-axis:

𝑥vehicle

𝑦vehicle

𝑧vehicle

1


=


1 0 0 𝑙f

0 −1 0 −𝑙r
0 0 1 𝑙u

0 0 0 1


·


𝑥carla

𝑦carla

𝑧carla

1


[5.1]

where (𝑥, 𝑦, 𝑧) is the coordinate of the point with the subscript indicating which coordinate system
it belongs to. (𝑙f, 𝑙r, 𝑙u) represents the offset of the LiDAR in the front, upper, and right directions
relative to the ego-vehicle. When mapping point clouds to range view images, all values are
normalised to [-2, 2], and the size of range view image is 64 × 1024.

Voxel Grid with Depth Map and Lidar Point Cloud

CARLA stores depth values by codifying them with RGB channels, and they could be decoded
back into actual depth values in meters using the following equation:

D =
(R + G × 256 + B × 2562)

2563 − 1
× 1000 [5.2]

34

5.1 Dataset

Figure 5.2: The Visualization of Voxel Grid.

The point cloud in camera coordinates was then obtained by converting it with the following
formulas:

𝑥camera =
(𝑢 − 𝑐𝑥) · 𝑧camera

𝑓

𝑦camera =
(𝑣 − 𝑐𝑦) · 𝑧camera

𝑓

𝑧camera = D(𝑢, 𝑣)

𝑓 =
𝑊

2 tan(FOV·𝜋
360)

[5.3]

where (𝑢, 𝑣) is the pixel coordinate in the depth map, (𝑥camera; 𝑦camera, 𝑧camera) represents this pixel
in camera coordinate system; (𝑐𝑥 , 𝑐𝑦) denotes the camera’s optical center, which is typically at the
center of the depth map, i.e. (𝑊2 ,

𝐻
2); 𝑓 is the focal length of the camera, calculated from the field

of view (FOV), which is represented in angles.

Subsequently, we transformed this point cloud into the ego vehicle’s coordinate system via the
equation below: 

𝑥vehicle

𝑦vehicle

𝑧vehicle

1


=


0 0 1 𝑐f

−1 0 0 −𝑐r

0 −1 0 𝑐u

0 0 0 1


·


𝑥camera

𝑦camera

𝑧camera

1


[5.4]

where (𝑙f, 𝑙r, 𝑙u) denotes the offset of the stereo camera in the front, upper, and right directions
relative to the ego-vehicle.

Finally, the LiDAR point cloud and depth map point cloud are merged and voxelized. The voxel
grid volume is 192 × 192 × 64, with each voxel being a 0.5m cube. The ego vehicle is placed at
the center of the xy-plane but offsets downwards by 20 voxels in the z-direction, so the coordinate
of the ego vehicle in the voxel grid is (96, 96, 12) and the final voxel grids actually contain objects
in the horizontal range (-48m, 48m) and vertical range (-6m, 26m) relative to the vehicle.

35

5 Experiment Setup

(a) Town 01 (b) Town 02 (c) Town 03

(d) Town 04 (e) Town 05 (f) Town 06

Figure 5.3: The Maps of Different Towns in CARLA [27, 13].
(a) Town 01: A small town with many T-intersections, including a river and some commercial
and residential buildings.
(b) Town 02: A similar town to Town 01, but simpler.
(c) Town 03: A large city with complex traffic routes such as a roundabout, multi-lane intersec-
tions, underpasses, etc.
(d) Town 04: A small town in the mountains with short streets and an ’8’-shaped highway
winding through the mountains.
(e) Town 05: A square grid city with a bridge, and many crossroads.
(f) Town 06: A town with four long multi-lane highways accompanied by Michigan Lefts [132].

5.1.4 Training Set

The training set is collected across four different towns and four weather conditions. The towns
are Town 01, Town 03, Town 04, and Town 06 (as described in Figure 5.3). The four weather
conditions include Clear Noon, Wet Noon, Hard Rain Noon, and Clear Sunset. The autopilot
operated unplanned in each town, resulting in random driving routes. We conducted 25 runs in
each town, each lasting 300 seconds with randomly selected weather conditions. Therefore, in
total, we conducted 100 runs across the four towns, equivalent to 8.3 hours, collecting 300,000
frames of data.

5.1.5 Validation Set

To comprehensively validate our model performance, we established three datasets: Diverse Town
Diverse Weather, Same Town Diverse Weather, and Same Town Same Weather.

36

5.2 Training Parameters

DDTDW: Diverse Town Diverse Weather

In this set, we introduced two new towns (Town 02 and Town 05 as shown in Figure 5.3) and four
new weather conditions (Soft Rain Sunset, Wet Sunset, Cloudy Noon, Mid Rain Sunset). Thus,
this validation set represents a completely different scenario from the training set. The introduction
of this dataset aims to evaluate our model’s ability to perform with a complete domain shift.

DSTDW: Same Town Diverse Weather

This dataset maintains the same towns as in the training set but uses different weather conditions
(Soft Rain Sunset, Wet Sunset, Cloudy Noon, Mid Rain Sunset). The autopilot in this set follows
a planned path predefined by CARLA AD Leaderboard [14]. The main objective of this dataset
is to assess our model’s performance in the face of minor environmental changes, evaluating its
generalization capabilities and robustness [7].

DSTSW: Same Town Same Weather

This set has the same towns and weather conditions as the training set. The driving route is also
predetermined. The purpose is to evaluate the efficacy of representation learning (RL) of our model
in familiar situations [7].

5.2 Training Parameters

We sampled data in the training set at 0.2s seconds intervals to create training sequences. For
experiments without voxel reconstruction, we used sequences of length 12 frames as training input.
For experiments that included voxel reconstruction, we reduced the sequence length to 6 due to
speed and memory constraints. Each training session was performed on a 40G A100 GPU with
50,000-100,000 iterations and a batch size of 16. We optimised using the AdamW optimiser [75]
with a learning rate of 10−4 and a weight decay of 0.01.

For training, we treated all input sequences as known data. For validation, for experiments without
voxel reconstruction, the first 6 frames are the receptive field, which serves as given observations
feeding into the network, and the last 6 frames are the future horizon, which serves as a ground truth
for the prediction reconstruction. For voxel reconstruction, a combination of 4 frames of receptive
field plus 2 frames of future horizon was used. Receptive field frames were used to evaluate the
reconstruction and future horizon frames were used to evaluate the prediction.

5.3 Metrics

For evaluating the performance of our network in various reconstruction tasks, we employed spe-
cific metrics for each modality:

37

5 Experiment Setup

Camera

We used the Peak Signal-to-Noise Ratio (PSNR) as the metric for images. PSNR is an established
measure in image processing that indicates the fidelity of the reconstructed image compared to
the original. A higher PSNR value generally signifies better reconstruction quality, reflecting the
completeness of the information retained in the reconstructed image.

LiDAR

The Chamfer Distance (CD), which is lower is better, was chosen as the metric for point cloud
reconstruction. The Chamfer Distance is a common metric measuring the average nearest distance
between points in the reconstructed point cloud and the corresponding points in the ground truth. It
effectively quantifies the accuracy of the spatial positions of the points in the reconstructed cloud.

3D Voxel Occupancy

For the voxel occupancy reconstruction task, we used Intersection over Union (IoU), Precision,
and Recall as the metrics. These metrics are widely used in classification and segmentation tasks.
IoU measures the overlap between the predicted voxel occupancy and the ground truth, providing a
sense of overall accuracy. Precision reflects the proportion of correctly predicted occupied voxels
in relation to all voxels predicted as occupied. Recall indicates the proportion of actual occupied
voxels that were correctly identified by the model. All of them are higher is better.

Table 5.1: The Abbreviations for different Methods

Module Abbreviation Description

Image Encoder
WOB

With Out BEV: Section 4.1.1
Only extracting image features by ResNet

WBM
With BEV Mapping: Section 4.1.1
Converting image features to BEV space

Point Cloud Encoder
RV

RangeView: Section 4.1.2
Mapping point clouds into range view images

PP
PointPillars: Section 4.1.2
Using PointPillars for point clouds feature extraction

Fusion Method

AVG
AVeraGing: Section 4.2.1
Fusion with simple averaging

FCL
Fully Connected Layer: Section 4.2.2
Fusion with fully connected layer

TFE
TransFormer Encoder: Section 4.2.3
fusion with Transformer encoder

38

5.4 Experiments

Table 5.2: The Combinations of Different Methods. The left are fusion methods and the upper are encoders
WOB + RV WOB + PP WBM + RV WBM + PP

AVG × ×
FCL × × × ×
TFE × × × ×

5.4 Experiments

As described in Chapter 4, we implemented a variety of methods across the various modules of
our model and reconstructed 3D voxel occupancy in addition to the images and point clouds used
as inputs. We therefore wished to test the impact of these different schemes on the performance of
the model. We have set up the following experiments.

5.4.1 Different Combinations with 1D latent states

In this experiment, we evaluate the impact of different encoders for images and point clouds, as
well as various fusion methods, on reconstruction and prediction performance. We only tested the
case when the transition model was used in the 1d version and the reconstruction of voxels was not
performed. In Table 5.1 we defined some abbreviations to denote the different methods in order to
easier description later, and Table 5.2 shows the combinations we have tested.

5.4.2 3D Voxel Occupancy

For 3D voxel occupancy reconstruction, we would like to know whether pre-trained weights trained
only on camera and LiDAR data can aid voxel reconstruction training. Conversely, we are also
interested in whether voxel reconstruction can influence the quality of reconstruction of camera
and LiDAR data.

Based on our previous experimental results, we chose the combination of WOB+RV+TFE for
the experiment of voxel reconstruction. We trained this model for 50,000 steps only with image
and point cloud reconstruction to obtain the pre-trained weights, and then conducted the following
experiments:

Pre-Trained weights Frozen (PTF)

we used the pre-trained weights for voxel reconstruction training. But we froze the network parts
where these weights are applied. This means the network parts with pre-trained weights would
not be trained, only the weights of the voxel decoder could be updated. This setting enables us to
evaluate the effect of fine-tuning only the voxel-specific elements of the model while maintaining
the remaining network unchanged. In other words, all encoders and the transition model were
constant in this training, we can determine if the model has already learned any information about
the geometric features of the world solely from camera and LiDAR data.

39

5 Experiment Setup

Pre-Trained weights Open (PTO)

we started training also with pre-trained weights but allowed all parts of the network, including
the pre-trained sections and voxel decoder to update their weights. Through this experiment, we
can comprehend the impact of pre-trained weights on the learning process when the entire network
adjusts and develops during training.

WithOut Pre-trained weights (WOP)

we didn’t use any pre-trained weights, instead, trained the entire network from scratch. This pro-
vides a baseline to understand the impact of using pre-trained weights versus training entirely from
the beginning.

5.4.3 2D Latent State with Voxel

As we adapted our model to 2d latent state, we are interested to compare the performance difference
between it and the 1d latent state. Because of time constraints, we selected only the WOB+RV+TFE
combination, which performed well in the 1d version, to experiment the 2d version. We compared
it with the 1d versions in terms of its ability to reconstruct and predict the image, point cloud and
voxels.

5.5 Implementation Details

We used pre-trained 18-layer ResNet from PyTorch Image Models (timm) [131] as Backbone to
extract features. While mapping the image features to BEV, 37 discrete depths were assigned and
the size of the BEV feature map was 48 × 48 with 0.8m per pixel. When using PointPillars, it
created pillars containing 5 pixels per meter in the horizontal range [-48m, 48m], i.e. 480 × 480
pillars. The output feature dimension of PointPillars is 32. The Transformer encoder and decoder
were implemented with 8 heads, 6 layers and 384 feature dimensions. More detailed network
parameters are placed in Appendix A.3.

40

6 Evaluation

In the subsequent sections, we evaluate the experiments that we presented in Chapter 5. Through
these experiments, we analysed the advantages and disadvantages of various encoders and fusion
methods in the hope of identifying the optimal model architecture. We also explore the impact
of pre-training on voxel reconstruction and the voxel reconstruction task on other aspects of the
model’s performance. We then compared the use of the 2d latent state with the 1d version. Finally,
we analysed some additional factors and the dataset we used.

6.1 Combinations with 1D latent states

The first is a comparison of different combinations of encoder and fusion methods with 1d states.
We evaluate different model architectures by comparing the ability of the models to reconstruct
and imagine the two observed inputs under different environmental conditions.

6.1.1 Image Reconstruction and Prediction

Figure 6.1 demonstrates the quality of the reconstructed and predicted images for the different
architectures of the model for the 3 environmental conditions. It is clear that as the similarity
between the test and training environments decreased, the performance of all models underwent a
different degree of degradation. Among them, in the dataset with different weather in completely
different towns, the models showed significant overfitting. Whereas for shifts in weather conditions
only, the models can do some level of migration. It can also be noticed that different models showed
similar gaps in prediction and reconstruction.

For the image encoders, using only ResNet for feature extraction (WOB) is significantly better
than performing an additional BEV mapping (WBM). Obviously, some information will be lost
in the process of mapping image features into BEV space, which will affect the reconstruction
performance. For the point cloud encoders, range view methods (RV) overall outperformed Point-
Pillars (PP), but PP combined with WOB showed a little advantage in reconstruction under weather
shifts only. For the feature fusion approaches, the Transformer-based fusion method (TFE) showed
an advantage in the representation learning of the exact same environment (DSTSW), where the
WOB_RV_TFE combination performed the best. However, in migration learning with changing
environments (DSTDW and DDTDW), the overfitting tendency of the Transformer was more severe,
and the fully connected layer fusion (FCL) performed better. This may be due to the more complex
structure and the larger number of parameters of the Transformer. Whereas simple averaging
(AVG) performed the worst in all situations.

41

6 Evaluation

20,000 40,000 60,000

12

13

14

15

16

17

PS
N

R
(C

am
er

a)
↑

SameTownSameWeather

WBM_RV_AVG
WBM_PP_AVG
WOB_RV_FCL
WOB_PP_FCL
WBM_RV_FCL
WBM_PP_FCL
WOB_RV_TFE
WOB_PP_TFE
WBM_RV_TFE
WBM_PP_TFE

20,000 40,000 60,000

SameTownDiverseWeather

20,000 40,000 60,000

DiverseTownDiverseWeather

20,000 40,000 60,000

12

13

14

15

16

17

PS
N

R
(C

am
er

a)
↑

20,000 40,000 60,000 20,000 40,000 60,000

Reconstruction

Prediction

Figure 6.1: Evaluation of different model architectures with the quality of reconstructed and predicted images
in 3 validation sets. The validation set is introduced in Section 5.1.5. The upper texts identify the
validation set for each column. The first row is reconstruction and the second row is prediction.
PSNR is used as a metric of image quality, which higher means better. The combinations of
methods and their abbreviations are presented in Section 6.1, Tables 5.1 and 5.2. The line
styles indicate the image encoders, the markers indicate the point cloud encoders, and the colors
indicate the fusion methods.

Overall, for the tasks of image reconstruction and prediction, image encoders without BEV map-
ping (WOB) outperform BEV mapping (WBM). Using the range view (RV) to process point clouds
is overall better than PointPillars (PP). Transformer fusion (TFE) and fully connected layer fusion
(FCL) each have their own advantages and disadvantages.

6.1.2 Point Cloud Reconstruction and Prediction

Examination of Figure 6.2 reveals that in the point cloud reconstruction and prediction, no overfit-
ting was exhibited during weather changes (DSTDW), while the performance dropped significantly
during town changes (DDTDW). This is understandable because the laser reflections of the point
cloud do not react much to weather changes compared to the images where the weather can sig-
nificantly affect its color space. In contrast, the generated point clouds are completely different in
different cities.

42

6.1 Combinations with 1D latent states

20,000 40,000 60,000

1.6

1.8

2.0

2.2

2.4

2.6

C
ha

m
fe

rD
ist

an
ce

(L
id

ar
)↓

SameTownSameWeather
WBM_RV_AVG
WBM_PP_AVG
WBM_RV_FCL
WBM_PP_FCL
WOB_RV_TFE
WOB_PP_TFE
WBM_RV_TFE
WBM_PP_TFE

20,000 40,000 60,000

SameTownDiverseWeather

20,000 40,000 60,000

DiverseTownDiverseWeather

20,000 40,000 60,000

1.6

1.8

2.0

2.2

2.4

2.6

C
ha

m
fe

rD
ist

an
ce

(L
id

ar
)↓

20,000 40,000 60,000 20,000 40,000 60,000

Reconstruction

Prediction

Figure 6.2: Evaluation of different model architectures with the reconstruction of point cloud in 3 validation
sets. The Chamfer Distance is used for comparison, which lower indicates better.

For image encoders, BEV mapping (WBM) no longer showed a significant disadvantage, and
even occasionally led. It shows that mapping image features to BEV space somewhat affects the
model’s understanding of spatial features. For the point cloud encoder, PointPillars (PP) was again
at a significant disadvantage. This is probably because reconstructing the point cloud is done by
reconstructing the range view image of the point cloud. For feature fusion, it is similar to the image
task. Simple averaging fusion (AVG) remained at the bottom of the list, while the Transformer
(TFE), compared to the fully connected layer (FCL), once again leads in the validation set of the
same towns with the same weathers (DSTSW) and lags behind in the validation set of the same
towns with different weathers (DSTDW).

In general, point cloud reconstruction and prediction did not perform much differently from image
reconstruction and prediction. However, the point cloud prediction and reconstruction are less
sensitive to weather shifts, and the Transformer shows more severely overfitting cases in both.

43

6 Evaluation

20,000 40,000 60,000

0.025

0.030

0.035

0.040

0.045

0.050

K
L

Lo
ss

(D
ist

rib
ut

io
n)

↓

SameTownSameWeather
WBM_RV_AVG
WBM_PP_AVG
WOB_RV_FCL
WOB_PP_FCL
WBM_RV_FCL
WBM_PP_FCL
WOB_RV_TFE
WOB_PP_TFE
WBM_RV_TFE
WBM_PP_TFE

20,000 40,000 60,000

SameTownDiverseWeather

20,000 40,000 60,000

DiverseTownDiverseWeather

Figure 6.3: Evaluation of different model architectures with the KL balancing loss between the posterior and
prior distributions of stochastic states.

6.1.3 Distribution of Stochastic States

As can be seen in Figure 6.3, the models with the different architectures performed similarly for
the validation set with the same towns and the same weathers (DSTSW). This suggests that the
proximity of the prior to the posterior distribution of the stochastic state does not depend on the
way the model acquires features. And under the remaining two different levels of domain shift
(DSTDW and DDTDW), the Transformer again showed overfitting.

Based on the above analyses of the plots for each evaluation metric, we can conclude that the
combination of directly using ResNet to extract image features without BEV mapping (WOB),
projecting the point cloud to range view followed by feature extraction (RV), and fusing the fea-
tures using Transformer (TFE) gives the best comprehensive performance for reconstruction and
prediction of both observation inputs in the representation learning situation (DSTSW).

6.2 with 3D Voxel Occupancy Reconstruction

Due to severe overfitting on the Same Town Same Weather validation set, we no longer evaluate
the experiments with voxel reconstruction on this validation set. As discussed above, the model
with the WOB_RV_TFE combination has the best performance, so for the experiments on voxels,
we use the model with this architecture.

6.2.1 Impact on 3D Voxel Occupancy

As we observe Figure 6.4, we can see that the model trained without using pre-trained weights
(WOP) has close performance in both DSTSW and DSTDW for all three metrics, indicating that it
can maintain its performance even when migrating to weather-different environments. Whereas
the other two models trained with pre-trained weights (PTF and PTO) both performed better in
DSTSW than in DSTDW.

44

6.2 with 3D Voxel Occupancy Reconstruction

20,000 40,000 60,000

0.18

0.20

0.22

0.24

IoU ↑

20,000 40,000 60,000

0.30

0.35

0.40

0.45

0.50

0.55

0.60
Precision ↑

PTF (STDW)
PTF (STSW)
PTO (STDW)
PTO (STSW)
WOP (STDW)
WOP (STSW)

20,000 40,000 60,000
0.25

0.26

0.27

0.28

0.29

0.30

0.31

Recall ↑

20,000 40,000 60,000

0.18

0.20

0.22

0.24

20,000 40,000 60,000

0.30

0.35

0.40

0.45

0.50

0.55

0.60

20,000 40,000 60,000

0.26

0.28

0.30

Reconstruction

Prediction

Figure 6.4: Evaluation of the impact of 50,000 steps pre-training with images and point clouds on 3D voxel
occupancy reconstruction and prediction. We evaluated on DSTSW and DSTDW.The purple line
shows the baseline trained from the sketch, the orange line indicates that pre-trained weights
were used and the weights were kept open for update, and the blue line indicates that the weights
were frozen.

Comparing the metrics of using pre-trained weights and open training (PTO) and trained from
scratch (WOP), the PTO showed an advantage in the early stage of training, which indicates that the
pre-trained weights already contain some of the spatial structured features, which can be helpful to
the training of voxel reconstruction.

However, in the later stages of training, in contrast to the PTO model in IoU and Recall, which kept
the lead, the WOP model accomplished a reversal in Precision. This indicates that the WOP model
performs more conservatively compared to the boldness of the PTO model for voxel occupancy
grid prediction.

Finally, looking at the pre-trained weights with frozen (PTF), although it is lower than the other
two in all the metrics, its performance rises after a period of training with only the Voxel Decoder,
which again validates the fact that the network partially fuses the image and point cloud features to
form the spatial voxel features when trained with only them.

45

6 Evaluation

20,000 40,000 60,000
14

15

16

17

PSNR (Camera) ↑

20,000 40,000 60,000

1.6

1.8

2.0

2.2

2.4

2.6

Chamfer Distance (Lidar) ↓

20,000 40,000 60,000

14.0

14.5

15.0

15.5

16.0

with Voxel (STDW)
with Voxel (STSW)
without Voxel (STDW)
without Voxel (STSW)

20,000 40,000 60,000

1.6

1.8

2.0

2.2

2.4

2.6

Reconstruction

Prediction

Figure 6.5: Evaluation of the impact of 3D voxel occupancy reconstruction on the quality of the image and
point cloud reconstruction and prediction. We evaluated on DSTSW and DSTDW. The orange line
represents training with voxel reconstruction while the blue line indicates without.

6.2.2 Impact on Image and Point Cloud

From Figure 6.5, it can be noticed that for the image reconstruction task, the introduction of the
voxel reconstruction hindered the reconstruction of the image. In contrast, for the rest of the tasks,
i.e. the image prediction and the point cloud reconstruction and prediction, there was a small
improvement in the performance of the model after the inclusion of voxel reconstruction. Clearly,
the voxel reconstruction can affect the reconstruction and prediction of images and point clouds.
And whether the impact is good or bad depends on the specific task.

6.3 2D Latent State

It is clear from Figure 6.6 that the model with 2D latent states has a crushing advantage over the 1D
version in all missions. And on the Diverse Town Diverse Weather validation set DDTDW, where
the 1D version model commonly encounters overfitting problems, the 2D version’s performance is
only reduced compared to itself but no overfitting and is even on par with the performance of the
1D version model in DSTSW and DSTDW. This indicates that the 2D version model has very good
generalisation and robustness.

46

6.3 2D Latent State

20,000 40,000 60,000

14

16

18
PS

N
R

(C
am

er
a)

↑

SameTownSameWeather

20,000 40,000 60,000

SameTownDiverseWeather

20,000 40,000 60,000

DiverseTownDiverseWeather

20,000 40,000 60,000

1.5

2.0

2.5

C
ha

m
fe

rD
ist

an
ce

(L
id

ar
)↓

20,000 40,000 60,000 20,000 40,000 60,000

20,000 40,000 60,000

0.16

0.18

0.20

0.22

0.24

Io
U

(V
ox

el
)↑

20,000 40,000 60,000 20,000 40,000 60,000

20,000 40,000 60,000

0.4

0.5

0.6

0.7

Pr
ec

is
io

n
(V

ox
el

)↑

20,000 40,000 60,000 20,000 40,000 60,000

20,000 40,000 60,000

0.175

0.200

0.225

0.250

0.275

Re
ca

ll
(V

ox
el

)↑

20,000 40,000 60,000 20,000 40,000 60,000

2D_WOB_RV_TFE
1D_WOB_RV_TFE
1D_WOB_PP_TFE
1D_WBM_RV_TFE
1D_WBM_PP_TFE
1D_WBM_RV_FCL
1D_WBM_PP_FCL

Figure 6.6: Evaluation of the model with 2D latent states compared to 1D.

47

6 Evaluation

Although the main purpose of this experiment was to evaluate the performance of the 2D la-
tent state model, we also found an interesting phenomenon in it. PointPillars (PP) shows a very
good ability in voxel reconstruction compared to its terrible performance in image and point cloud
reconstruction. It suggests that the strength of PointPillars lies in the extraction of spatial geometric
features.

6.4 Extra Experiments

We also performed some additional experiments to further understand our model. The following
experiments were all conducted with the 2d hidden state version of the model that had previously
performed the best.

6.4.1 Near-Field

Point clouds captured from LiDAR are characterised by being dense near and sparse far away.
We therefore want to evaluate the accuracy of our model in reconstructing the point cloud in the
near-field. The range of our original point cloud is 100m. We selected the horizontal range [-20m,
20m] and vertical range [-2m, 6m] as the near-field, and calculated the chamfer distance between
the reconstructed point cloud and the ground truth in this field. For the voxel reconstruction, we
also calculated the metrics within the near-field. For the original 192 × 192 × 64 voxels with ego
vehicle centre coordinates of 96 × 96 × 12 (Section 5.1.3), we selected voxels within the voxel
coordinate range [48, 144], [48, 144], [8, 24] for the calculation. This corresponds to [-24m, 24m]
horizontally and [-2m, 6m] vertically around the ego vehicle. The results in Table 6.1 showed that
the reconstruction accuracy of the point cloud and voxels is much better in the near-field range than
in the far-field.

Table 6.1: The Performance of Point Cloud and Voxel Reconstruction in Nearfield. Testing reconstruction
task under the validation set DSTSW via 2D latent state model.

CD ↓ IoU ↑ Precision ↑ Recall ↑
original 0.989 0.247 0.767 0.267
nearfield 0.379 0.491 0.810 0.555

6.4.2 Failure with CrossEntropy Loss for Voxel Occupancy

For the voxel reconstruction loss, we also tried to use cross entropy, a very common loss in
classification tasks. We found that using it in voxel reconstruction leads to training failure very
easily. It may be because the gap between positive and negative samples in the voxel grid is too
large. In voxels, most of them are empty, i.e., negative samples.

6.4.3 BEV Reconstruction

Although our model focuses on the reconstruction of observed sensor data and 3D voxel occupancy,
we also adapt our model to output other modalities like BEV as described in Section 4.4.4.

48

6.4 Extra Experiments

0 20,000 40,000 60,000 80,000
0.0

0.2

0.4

0.6

0.8
Road
Lane marking
Vehicle
Pedestrian
Green light
Yellow light
Red light and stop sign
mean

Figure 6.7: The IoU for all categories in BEV reconstruction on the same town same weather validation set.

Therefore, we tested the performance of the 2D version model in reconstructing the BEV image.
The BEV image is given in the form of semantic segmentation (as shown in Figure 6.9) and contains
seven categories: road, lane marking, vehicle, pedestrian, green light, yellow light, red light and
stop sign [151, 48]. Figure 6.7 shows the growth of IoU for these categories with an increasing
number of training steps on the validation set DSTSW. The quality of the reconstruction is very
excellent for the road, which occupies a large area, and also good for large or stable objects like
vehicles and lane marking. However, it does not perform well for pedestrians and traffic signals,
which are small dynamic targets. As can be seen in Figure 6.9 the model actually recognises and
reconstructs these small targets, but their shape and position cannot be accurately reconstructed,
resulting in small IoU values.

20,000 40,000 60,000 80,000

14

15

16

17

18

19

PS
N

R
(C

am
er

a)
↑

SameTownSameWeather

20,000 40,000 60,000 80,000

SameTownDiverseWeather

20,000 40,000 60,000 80,000

DiverseTownDiverseWeather
with BEV (Prediction)
with BEV (Reconstruction)
with Voxel (Prediction)
with Voxel (Reconstruction)

20,000 40,000 60,000 80,000
1.00

1.25

1.50

1.75

2.00

2.25

C
ha

m
fe

rD
ist

an
ce

(L
id

ar
)↓

20,000 40,000 60,000 80,000 20,000 40,000 60,000 80,000

Figure 6.8: Comparison of the impact of the BEV reconstruction and Voxel reconstruction.

49

6 Evaluation

(a) BEV target (b) BEV reconstruction

Figure 6.9: The Example of BEV Semantic Segmentation.

We also compared the quality of the reconstruction of images and point clouds when performing
BEV reconstruction with that when performing voxel reconstruction in the validation set DSTSW.
The results are shown in Figure 6.8. BEV reconstruction enhanced image reconstruction but was
not as helpful as voxel reconstruction in point cloud reconstruction. This is intuitive that BEV
provides semantic information and requires the model to enhance the learning of object features,
whereas voxels motivate the model to favour the learning of spatial geometric features.

6.4.4 Dataset Evaluation

The quality of the dataset also plays a very important role in the training of neural networks. In
our experiments, we found that vehicles often stop in place and the model reconstructs a far better
image when the vehicle is stationary than when the vehicle is moving. Therefore, we made statistics
on the speed of the ego vehicle in our collected dataset so that we can collect data and train the
model better in the future. Figure 6.10 shows the distribution of vehicle speeds on the training and
validation sets. We can find that the percentage of speeds in 0m/s reaches more than 40%. Such a
large percentage of the stationary state is what we do not want.

−2 0 2 4 6 8 10
speed

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ili

ty

dataset

Training Set

(a) Training Set

−2 0 2 4 6 8 10
speed

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ili

ty

dataset

DTDW
STDW
STSW

(b) Validation Set

Figure 6.10: The speed distribution in Dataset.

50

6.4 Extra Experiments

Table 6.2: The Performance under Different Ego Vehicle Speeds
PSNR ↑ CD ↓ IoU ↑ Precision ↑ Recall ↑

total 18.572 0.989 0.247 0.767 0.267
< 4m/s 19.817 1.010 0.252 0.796 0.269
> 4m/s 16.881 0.957 0.240 0.725 0.264

We also counted the difference in performance exhibited by the model for vehicle speeds less
than 4m/s and greater than 4m/s. Table 6.2 presents the statistics, using the best 2D version
model from previous experiments for reconstruction tests under the validation set DSTSW. The
performance is significantly better when the ego vehicle is near a standstill.

51

6 Evaluation

52

7 Conclusion and Outlook

In the final chapter, we summarize our work. First, We reiterate our contributions, review the
results, present our conclusions, and then analyse limitations. Subsequently, we give the direction
for improvement and the possible future works.

7.1 Conclusion

There are two objectives for us: One is to adapt traditional world models performing at low res-
olution to accommodate high-resolution camera sensors and integrate data from LiDAR sensors,
allowing the model to extract environmental information from both modalities and enhance its
understanding of the surroundings. Another is, that we aimed to generate geometric 3D voxel
occupancy to aid the model in its representation of spatially structured information.

To achieve these goals, we began with the encoders, implementing two types for image inputs:
direct use of ResNet and additional BEV mapping; and two types for point clouds: range view map-
ping and PointPillar feature extraction. We examined the impact of different encoder combinations
on performance. For feature fusion, we designed three different schemes: simple averaging fusion,
fully connected layer fusion, and Transformer-based fusion. To adapt to these fusion schemes and
enhance the latent state’s representation ability of the environment, we improved the transition
model with a transformer decoder to use 2D latent states.

Our experiments revealed that the absence of BEV mapping and the use of range view best
preserved the original information. Feature mapping to BEV and PointPillars could not retain
the original information effectively. For sensor feature fusion, the Transformer was effective,
but its performance dropped more clearly when shifted to unfamiliar environments. Switching
to 2D latent states significantly improved performance. Higher-dimensional states could clearly
learn more environmental features and transfer well when the environment changes, indicating
that a larger state search space is beneficial for transfer learning. Additionally, the incorporation
of voxel reconstruction indeed enhanced the model’s learning of spatial information. The voxel
experiments demonstrated PointPillars’ capability to extract spatial information. Although it lost
some metadata information, it captured more spatial information. Further experiments comparing
with BEV reconstruction showed that adding voxel reconstruction indeed enhanced the model’s
understanding of spatial geometry, but at the cost of losing some image color information.

Finally, our analysis of the dataset revealed that the model performed better in static and near-
field spaces.

53

7 Conclusion and Outlook

Overall, we successfully achieved our goals of sensor fusion and reconstructing 3D voxel oc-
cupancy. Our improved model with a 2D latent state space significantly enhanced the model’s
representational capabilities.

7.2 Outlook

Firstly, it is regrettable that due to time constraints, our experiments were not as comprehensive as
desired. All our comparisons regarding sensor encoders and fusion methods were conducted under
the condition of 1D latent states without voxel reconstruction. In future research, we can continue
to experiment with the performance of encoders and fusion methods under 2D latent states and
with voxel reconstruction. This will give us a more comprehensive comparison of them and gain a
better understanding of the strengths and weaknesses of these encoders and fusion methods as well
as their impact on different aspects.

Secondly, our analysis of the dataset also revealed serious shortcomings in our dataset. Sub-
sequently, we need to further improve the collection of our dataset, such as trying to replace it
with a better-performing autopilot, or collecting a larger dataset and then randomly discarding
some samples with lower speeds to achieve speed balance. In addition, we can also try training on
real-world data.

Observing the reconstruction results (Figure 7.2), the model has poor reconstruction ability for
dynamic objects and experiences issues with blurring, incorrect reconstructions, and viewpoint
mismatch. In future work, the latent state space and decoders need to be further strengthened. We
can try swapping in the recently impressive diffusion models in image reconstruction to improve
reconstruction quality.

In addressing these issues, we should aim to refine our model’s understanding of dynamic and
complex environments, enhance the quality of reconstructions, and ultimately push closer to more
realistic and effective world models. These improvements will not only benefit the theoretical
understanding of these systems but also their practical applicability in real-world scenarios.

54

7.2 Outlook

Figure 7.1: Some Reconstruction Failures. From left to right, from top to bottom: 1) pedestrian missing; 2)
incorrect object; 3) blurring; 4) viewpoint mismatch. Reprinted from our previous paper [7].

55

7 Conclusion and Outlook

Figure 7.2: Visualization of the point cloud, image and 3D voxel Occupancy Predictions. Given several
receptive frames of history observation to do predictions. The left column represents the last
frame of observation, and we show the prediction of futures in 0.2𝑠, 0.8𝑠 and 1.8𝑠 on the right.
The top row of each modality is the ground truth, while the bottom is the decoded prediction.
Reprinted from our previous paper [7]

56

A Appendix

A.1 Sensor Settings

attribute value description
Camera

fov 110 Horizontal field of view in degrees.
width 960 Image width in pixels.
height 600 Image height in pixels.

location [1, 0, 2] [x, y, z] offset to ego vehicle in meters
rotation [0, 0, 0) rotation alone [x, y, z] axis to ego vehicle in rads

LiDAR
location [1, 0, 2] [x, y, z] offset to ego vehicle in meters
rotation [0, 0, 0] rotation alone [x, y, z] axis to ego vehicle in rads
channels 64 Number of lasers.

range 100 Maximum distance to measure/ray cast in meters
rotation_frequency 10 LIDAR rotation frequency (same as collection FPS)
points_per_second 60,000 Points generated by all lasers per second.

upper_fov 10 Angle in degrees of the highest laser.
lower_fov -30 Angle in degrees of the lowest laser.

Table A.1: The settings of sensors in CARLA with descriptions. Note: the coordinate here is the left-hand
coordinate of ego_vehicle

A.2 Dataset Settings

Town 01 Town 02 Town 03 Town 04 Town 05 Town 06
Training Set

num of vehicles [80, 160] \ [40, 100] [100, 200] \ [80, 160]
num of walkers [80, 160] \ [40, 100] [40, 120] \ [40, 120]

Validation Set
num of vehicles 120 70 70 150 120 120
num of walkers 120 70 70 80 120 80

Table A.2: The number of zombie vehicles and walkers in each Town on each set

57

A.3 Parameters in Model

parameter value description
BEV Mapping

size [48, 48] height and width of feature map in pixels
resolution 0.8 meters/pixel

offset forward -64 the offset of ego vehicle to center in pixels
frustum bound 37 how many depth to estimate.
sparse count 10 only topk depth used to calculate features

PointPillars
num input 8 features of each point (x, y, z, xc, yc, zc, xp, yp)

num_features [32, 32] feature dimension of middle layer and output
min x -48 pillars range in -x axes, in meters
max x 48 pillars range in x axes, in meters
min y -48 pillars range in -y axes, in meters
max y 48 pillars range in y axes, in meters

pixels per meter 5 pixels per meter
Rang View

h 64 height in pixels, related to lidar channels
w 1024 width in pixels

Transformer Encoder
d_model 384 feature dimensions of tokens

num_layers 6 number of encoder layers
n_heads 8 number of attention block

drop 0.1 dropout rate
Transformer Decoder

d_model 384 feature dimensions of tokens
num_layers 6 number of decoder layers

n_heads 8 number of attention block
drop 0.1 dropout rate

Table A.3: The Parameters of the Networks

58

B List of Figures

2.1 World Model. reprinted from [38]. 3

2.2 Variational Autoencoder (VAE) compared to Autoencoder (AE). 4

2.3 Visualization of MDN-RNN. reprinted from [38]. 4

2.4 Visualization of Recurrent State Space Model (RSSM). Adapted from [40, 39]. . 5

2.5 Structure of Gated Recurrent Unit (GRU). 6

2.6 degradation phenomena. reprinted from [44]. 7

2.7 A building block of residual learning. Reprinted from [44]. 8

2.8 ResNet-18 compared to VGG-19. Adapted from [44]. 9

2.9 The illustration of range view projection. Adapted from [29, 61]. 10

2.10 The structure of Transformer. Reprinted from [121]. 11

2.11 Attention. (a) and (c) are reprinted from [121]. 12

4.1 The pipeline of our model. Reprinted from [7]. 21

4.2 The BEV Mapping in LSS. Reprinted from [86]. 22

4.3 The Illustration of PointPillars. Reprinted from [63]. 23

4.4 The Illustration of Simple Averaging Fusion (top) and Fully Connected Layer
Fusion (bottom). 24

4.5 The Illustration of Transformer Fusion. 25

4.6 The Visualization of Transition Model. (left) With observation. (right) Without
observation . 26

4.7 Estimate Stochastic State Distribution with Transformer Decoder. Take the example
of accepting observation features as input and reconstructing images, point clouds,
and voxels. 28

5.1 Collected data. (a) RGB images and (b) Depth map from the stereo camera; (c)
Point cloud from LiDAR, shown in height heat map; (d) Route map shows the
planned route in BEV . 33

5.2 The Visualization of Voxel Grid. 35

59

5.3 The Maps of Different Towns in CARLA [27, 13]. (a) Town 01: A small town
with many T-intersections, including a river and some commercial and residential
buildings. (b) Town 02: A similar town to Town 01, but simpler. (c) Town 03: A
large city with complex traffic routes such as a roundabout, multi-lane intersections,
underpasses, etc. (d) Town 04: A small town in the mountains with short streets
and an ’8’-shaped highway winding through the mountains. (e) Town 05: A square
grid city with a bridge, and many crossroads. (f) Town 06: A town with four long
multi-lane highways accompanied by Michigan Lefts [132]. 36

6.1 Evaluation of different model architectures with the quality of reconstructed and
predicted images in 3 validation sets. The validation set is introduced in Sec-
tion 5.1.5. The upper texts identify the validation set for each column. The first
row is reconstruction and the second row is prediction. PSNR is used as a metric
of image quality, which higher means better. The combinations of methods and
their abbreviations are presented in Section 6.1, Tables 5.1 and 5.2. The line styles
indicate the image encoders, the markers indicate the point cloud encoders, and the
colors indicate the fusion methods. 42

6.2 Evaluation of different model architectures with the reconstruction of point cloud
in 3 validation sets. The Chamfer Distance is used for comparison, which lower
indicates better. 43

6.3 Evaluation of different model architectures with the KL balancing loss between the
posterior and prior distributions of stochastic states. 44

6.4 Evaluation of the impact of 50,000 steps pre-training with images and point clouds
on 3D voxel occupancy reconstruction and prediction. We evaluated on DSTSW

and DSTDW.The purple line shows the baseline trained from the sketch, the orange
line indicates that pre-trained weights were used and the weights were kept open
for update, and the blue line indicates that the weights were frozen. 45

6.5 Evaluation of the impact of 3D voxel occupancy reconstruction on the quality of
the image and point cloud reconstruction and prediction. We evaluated on DSTSW

and DSTDW. The orange line represents training with voxel reconstruction while
the blue line indicates without. 46

6.6 Evaluation of the model with 2D latent states compared to 1D. 47
6.7 The IoU for all categories in BEV reconstruction on the same town same weather

validation set. 49
6.8 Comparison of the impact of the BEV reconstruction and Voxel reconstruction. . 49
6.9 The Example of BEV Semantic Segmentation. 50
6.10 The speed distribution in Dataset. 50

7.1 Some Reconstruction Failures. From left to right, from top to bottom: 1) pedestrian
missing; 2) incorrect object; 3) blurring; 4) viewpoint mismatch. Reprinted from
our previous paper [7]. 55

60

7.2 Visualization of the point cloud, image and 3D voxel Occupancy Predictions. Given
several receptive frames of history observation to do predictions. The left column
represents the last frame of observation, and we show the prediction of futures in
0.2𝑠, 0.8𝑠 and 1.8𝑠 on the right. The top row of each modality is the ground truth,
while the bottom is the decoded prediction. Reprinted from our previous paper [7] 56

61

62

C List of Tables

2.1 Architectures of ResNet with the different number of layers. Reprinted from [44]. 9

5.1 The Abbreviations for different Methods . 38
5.2 The Combinations of Different Methods. The left are fusion methods and the upper

are encoders . 39

6.1 The Performance of Point Cloud and Voxel Reconstruction in Nearfield. Testing
reconstruction task under the validation set DSTSW via 2D latent state model. . . . 48

6.2 The Performance under Different Ego Vehicle Speeds 51

A.1 The settings of sensors in CARLA with descriptions. Note: the coordinate here is
the left-hand coordinate of ego_vehicle . 57

A.2 The number of zombie vehicles and walkers in each Town on each set 57
A.3 The Parameters of the Networks . 58

63

64

D Bibliography

[1] M. Atzmon, H. Maron, and Y. Lipman. Point convolutional neural networks by extension
operators. ACM TOG, 37(4), 2018.

[2] X. Bai, Z. Hu, X. Zhu, Q. Huang, Y. Chen, H. Fu, and C.-L. Tai. TransFusion: Robust
LiDAR-Camera Fusion for 3D Object Detection with Transformers. In CVPR, 2022.

[3] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2), 1994.

[4] C. M. Bishop. Mixture density networks. 1994.

[5] C. M. Bishop. Neural networks for pattern recognition. Oxford university press, 1995.

[6] D. Bogdoll, L. Bosch, T. Joseph, H. Gremmelmaier, Y. Yang, and J. M. Zöllner. Exploring
the Potential of World Models for Anomaly Detection in Autonomous Driving. In IEEE
Symp. Comp. Intell., 2023.

[7] D. Bogdoll, Y. Yang, and J. M. Zöllner. MUVO: A Multimodal Generative World Model for
Autonomous Driving with Geometric Representations. arXiv preprint arXiv:2311.11762,
2023.

[8] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
OpenAI Gym, 2016.

[9] Q. Cai, Y. Pan, T. Yao, C.-W. Ngo, and T. Mei. ObjectFusion: Multi-modal 3D Object
Detection with Object-Centric Fusion. In ICCV, 2023.

[10] A.-Q. Cao and R. De Charette. MonoScene: Monocular 3D Semantic Scene Completion.
In CVPR, 2022.

[11] A.-Q. Cao and R. de Charette. SceneRF: Self-Supervised Monocular 3D Scene Reconstruc-
tion with Radiance Fields. In ICCV, 2023.

[12] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End-to-End
Object Detection with Transformers. In A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm,
editors, ECCV, 2020.

[13] CARLA team. 3rd. Maps and navigation - CARLA Documentation. https:

//carla.readthedocs.io/en/0.9.13/core_map/#non-layered-maps, 2023. Ac-
cessed: 2023-12-28.

65

https://carla.readthedocs.io/en/0.9.13/core_map/#non-layered-maps
https://carla.readthedocs.io/en/0.9.13/core_map/#non-layered-maps

[14] CARLA team. CARLA Autonomous Driving Leaderboard. https://leaderboard.
carla.org, 2023. Accessed: 2023-12-28.

[15] A. Carlson, M. S. Ramanagopal, N. Tseng, M. Johnson-Roberson, R. Vasudevan, and K. A.
Skinner. CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural Representations.
Rob. Aut. Lett., 8(5), 2023.

[16] L. Chang and D. Y. Tsao. The code for facial identity in the primate brain. Cell, 169(6),
2017.

[17] C. Chen, Y.-F. Wu, J. Yoon, and S. Ahn. Transdreamer: Reinforcement learning with
transformer world models. arXiv preprint arXiv:2202.09481, 2022.

[18] J. Chen, S. E. Li, and M. Tomizuka. Interpretable End-to-End Urban Autonomous Driving
With Latent Deep Reinforcement Learning. IEEE Trans. Intell. Transp. Sys., 23, 2022.

[19] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas,
and I. Mordatch. Decision Transformer: Reinforcement Learning via Sequence Modeling.
arXiv:2106.01345, 2021.

[20] K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz, and A. Geiger. TransFuser: Imitation with
Transformer-Based Sensor Fusion for Autonomous Driving. IEEE TPAMI, 2022.

[21] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using RNN encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078, 2014.

[22] comma.ai. Commavq: A dataset of tokenized driving video and a GPT model, 2023.

[23] Y. Cui, R. Chen, W. Chu, L. Chen, D. Tian, Y. Li, and D. Cao. Deep learning for image
and point cloud fusion in autonomous driving: A review. IEEE Trans. Intell. Transp. Sys.,
23(2), 2021.

[24] F. Deng, J. Park, and S. Ahn. Facing Off World Model Backbones: RNNs, Transformers,
and S4. In NeurIPS, 2023.

[25] J. Deng, S. Shi, P. Li, W. Zhou, Y. Zhang, and H. Li. Voxel R-CNN: Towards High
Performance Voxel-based 3D Object Detection. In AAAI, 2021.

[26] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An Image is Worth
16x16 Words: Transformers for Image Recognition at Scale. In ICLR, 2020.

[27] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open urban
driving simulator. In Conf. Rob. Learn., 2017.

[28] A. Elluswamy. Occupancy Networks. CVPR Workshop on Autonomous Driving, 2023.

66

https://leaderboard.carla.org
https://leaderboard.carla.org

[29] L. Fan, X. Xiong, F. Wang, N. Wang, and Z. Zhang. Rangedet: In defense of range view for
lidar-based 3d object detection. In ICCV, 2021.

[30] J. W. Forrester. Counterintuitive behavior of social systems. Theory and decision, 2(2),
1971.

[31] Z. Gao, Y. Mu, R. Shen, C. Chen, Y. Ren, J. Chen, S. E. Li, P. Luo, and Y. Lu. Enhance
Sample Efficiency and Robustness of End-to-end Urban Autonomous Driving via Semantic
Masked World Model. In NeurIPSW, 2022.

[32] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The kitti dataset.
International Journal of Robotics Research (ĲRR), 2013.

[33] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural
networks. In AISTATS, 2010.

[34] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial nets. NIPS, 27, 2014.

[35] B. Graham, M. Engelcke, and L. V. D. Maaten. 3D Semantic Segmentation with Submanifold
Sparse Convolutional Networks. In CVPR, 2018.

[36] A. Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

[37] A. Gu, K. Goel, and C. Re. Efficiently Modeling Long Sequences with Structured State
Spaces. In ICLR, 2021.

[38] D. Ha and J. Schmidhuber. Recurrent world models facilitate policy evolution. In NeurIPS,
2018.

[39] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to Control: Learning Behaviors by
Latent Imagination. In ICLR, 2020.

[40] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning
Latent Dynamics for Planning from Pixels. In Int. Conf. Mach. Learn., 2019.

[41] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba. Mastering Atari with Discrete World Models.
In ICLR, 2021.

[42] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering Diverse Domains through World
Models. arXiv:2301.04104, 2023.

[43] K. He and J. Sun. Convolutional neural networks at constrained time cost. In CVPR, 2015.

[44] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In
CVPR, 2016.

67

[45] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. NeurIPS, 33, 2020.

[46] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8),
1997.

[47] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,
and H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

[48] A. Hu, G. Corrado, N. Griffiths, Z. Murez, C. Gurau, H. Yeo, A. Kendall, R. Cipolla, and
J. Shotton. Model-Based Imitation Learning for Urban Driving. In NeurIPS, 2022.

[49] A. Hu, L. Russell, H. Yeo, Z. Murez, G. Fedoseev, A. Kendall, J. Shotton, and G. Corrado.
GAIA-1: A Generative World Model for Autonomous Driving. arXiv:2309.17080, 2023.

[50] J. S. K. Hu, T. Kuai, and S. L. Waslander. Point Density-Aware Voxels for LiDAR 3D Object
Detection. In CVPR, 2022.

[51] K. Huang, B. Shi, X. Li, X. Li, S. Huang, and Y. Li. Multi-modal Sensor Fusion for Auto
Driving Perception: A Survey. arXiv:2202.02703, 2022.

[52] Y. Huang, W. Zheng, Y. Zhang, J. Zhou, and J. Lu. Tri-Perspective View for Vision-Based
3D Semantic Occupancy Prediction. In CVPR, 2023.

[53] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Int. Conf. Mach. Learn., 2015.

[54] M. Janner, Q. Li, and S. Levine. Offline Reinforcement Learning as One Big Sequence
Modeling Problem. In NeurIPS, 2021.

[55] X. Jia, P. Wu, L. Chen, J. Xie, C. He, J. Yan, and H. Li. Think Twice before Driving:
Towards Scalable Decoders for End-to-End Autonomous Driving. In CVPR, 2023.

[56] H. Jiang, T. Cheng, N. Gao, H. Zhang, W. Liu, and X. Wang. Symphonize 3D Semantic
Scene Completion with Contextual Instance Queries. arXiv:2306.15670, 2023.

[57] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adver-
sarial networks. In CVPR, 2019.

[58] G. B. Keller, T. Bonhoeffer, and M. Hübener. Sensorimotor mismatch signals in primary
visual cortex of the behaving mouse. Neuron, 74(5), 2012.

[59] S. W. Kim, , J. Philion, A. Torralba, and S. Fidler. DriveGAN: Towards a Controllable
High-Quality Neural Simulation. In CVPR, 2021.

[60] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

68

[61] L. Kong, Y. Liu, R. Chen, Y. Ma, X. Zhu, Y. Li, Y. Hou, Y. Qiao, and Z. Liu. Rethinking
range view representation for lidar segmentation. In ICCV, 2023.

[62] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolu-
tional neural networks. NeurIPS, 25, 2012.

[63] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beĳbom. PointPillars: Fast
Encoders for Object Detection From Point Clouds. In CVPR, 2019.

[64] Y. LeCun. A Path Towards Autonomous Machine Intelligence. OpenReview:BZ5a1r-kVsf,
2022.

[65] M. Leinweber, D. R. Ward, J. M. Sobczak, A. Attinger, and G. B. Keller. A sensorimotor
circuit in mouse cortex for visual flow predictions. Neuron, 95(6), 2017.

[66] X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao, and
L. He. LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-
Modal Fusion. In CVPR, 2023.

[67] X. Li, Y. Zhang, and X. Ye. DrivingDiffusion: Layout-Guided multi-view driving scene
video generation with latent diffusion model. arXiv preprint arXiv:2310.07771, 2023.

[68] Y. Li, Y. Chen, X. Qi, Z. Li, J. Sun, and J. Jia. Unifying Voxel-based Representation with
Transformer for 3D Object Detection. In NeurIPS, 2022.

[69] Y. Li, Z. Yu, C. Choy, C. Xiao, J. M. Alvarez, S. Fidler, C. Feng, and A. Anandkumar.
Voxformer: Sparse voxel transformer for camera-based 3d semantic scene completion. In
CVPR, 2023.

[70] Z. Li, Z. Yu, D. Austin, M. Fang, S. Lan, J. Kautz, and J. M. Alvarez. FB-OCC: 3D
Occupancy Prediction based on Forward-Backward View Transformation. In CVPRW,
2023.

[71] T. Liang, H. Xie, K. Yu, Z. Xia, Z. Lin, Y. Wang, T. Tang, B. Wang, and Z. Tang. BEVFusion:
A Simple and Robust LiDAR-Camera Fusion Framework. In NeurIPS, 2022.

[72] F. Liu, H. Liu, A. Grover, and P. Abbeel. Masked Autoencoding for Scalable and General-
izable Decision Making. In NeurIPS, 2023.

[73] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In ICCV, 2021.

[74] Z. Liu, H. Tang, A. Amini, X. Yang, H. Mao, D. L. Rus, and S. Han. BEVFusion: Multi-Task
Multi-Sensor Fusion with Unified Bird’s-Eye View Representation. In ICRA, 2023.

[75] I. Loshchilov and F. Hutter. Decoupled Weight Decay Regularization. In ICLR, 2018.

69

[76] Y. Man, L.-Y. Gui, and Y.-X. Wang. BEV-Guided Multi-Modality Fusion for Driving
Perception. In CVPR, 2023.

[77] P. Mattes, R. Schlosser, and R. Herbrich. Hieros: Hierarchical Imagination on Structured
State Space Sequence World Models. arXiv preprint arXiv:2310.05167, 2023.

[78] R. Miao, W. Liu, M. Chen, Z. Gong, W. Xu, C. Hu, and S. Zhou. OccDepth: A Depth-Aware
Method for 3D Semantic Scene Completion. arXiv:2302.13540, 2023.

[79] V. Micheli, E. Alonso, and F. Fleuret. Transformers are Sample-Efficient World Models. In
ICLR, 2022.

[80] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf:
Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

[81] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss. Rangenet++: Fast and accurate lidar
semantic segmentation. In IROS, 2019.

[82] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In
Int. Conf. Mach. Learn., 2010.

[83] M. Pan, J. Liu, R. Zhang, P. Huang, X. Li, L. Liu, and S. Zhang. RenderOcc: Vision-Centric
3D Occupancy Prediction with 2D Rendering Supervision. arXiv:2309.09502, 2023.

[84] M. Pan, L. Liu, J. Liu, P. Huang, L. Wang, S. Zhang, S. Xu, Z. Lai, and K. Yang. UniOcc:
Unifying Vision-Centric 3D Occupancy Prediction with Geometric and Semantic Rendering.
In CVPRW, 2023.

[85] S. Pang, D. Morris, and H. Radha. Fast-CLOCs: Fast Camera-LiDAR Object Candidates
Fusion for 3D Object Detection. In WACV, 2022.

[86] J. Philion and S. Fidler. Lift, Splat, Shoot: Encoding Images from Arbitrary Camera Rigs
by Implicitly Unprojecting to 3D. In ECCV, 2020.

[87] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas. Frustum pointnets for 3d object detection
from rgb-d data. In CVPR, 2018.

[88] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In CVPR, 2017.

[89] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. NeurIPS, 30, 2017.

[90] Y. Qin, C. Wang, Z. Kang, N. Ma, Z. Li, and R. Zhang. SupFusion: Supervised LiDAR-
Camera Fusion for 3D Object Detection. In ICCV, 2023.

[91] R. Q. Quiroga, L. Reddy, G. Kreiman, C. Koch, and I. Fried. Invariant visual representation
by single neurons in the human brain. Nature, 435(7045), 2005.

70

[92] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning Transferable Visual Models
From Natural Language Supervision. In Int. Conf. Mach. Learn., 2021.

[93] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron,
M. Gimenez, Y. Sulsky, J. Kay, J. T. Springenberg, T. Eccles, J. Bruce, A. Razavi, A. Ed-
wards, N. Heess, Y. Chen, R. Hadsell, O. Vinyals, M. Bordbar, and N. de Freitas. A
Generalist Agent. In Trans. Mach. Learn. Research, 2022.

[94] C. B. Rist, D. Emmerichs, M. Enzweiler, and D. M. Gavrila. Semantic Scene Completion
using Local Deep Implicit Functions on LiDAR Data. In IEEE TPAMI, 2021.

[95] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image
synthesis with latent diffusion models. In CVPR, 2022.

[96] D. E. Rumelhart, G. E. Hinton, R. J. Williams, et al. Learning internal representations by
error propagation, 1985.

[97] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. ĲCV,
115, 2015.

[98] H. Shao, L. Wang, R. Chen, H. Li, and Y. Liu. Safety-Enhanced Autonomous Driving Using
Interpretable Sensor Fusion Transformer. In Conf. Rob. Learn., 2022.

[99] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li. PV-RCNN: Point-Voxel
Feature Set Abstraction for 3D Object Detection. In CVPR, 2020.

[100] S. Shi, L. Jiang, J. Deng, Z. Wang, C. Guo, J. Shi, X. Wang, and H. Li. PV-RCNN++: Point-
Voxel Feature Set Abstraction With Local Vector Representation for 3D Object Detection.
ĲCV, 131(2), 2023.

[101] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo. Convolutional LSTM
network: A machine learning approach for precipitation nowcasting. NeurIPS, 28, 2015.

[102] C. Sima, W. Tong, T. Wang, L. Chen, S. Wu, H. Deng, Y. Gu, L. Lu, P. Luo, D. Lin, and
H. Li. Scene as occupancy. In ICCV, 2023.

[103] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

[104] V. A. Sindagi, Y. Zhou, and O. Tuzel. MVX-Net: Multimodal voxelnet for 3D object
detection. In ICRA. IEEE, 2019.

[105] J. T. Smith, A. Warrington, and S. Linderman. Simplified State Space Layers for Sequence
Modeling. In The Eleventh International Conference on Learning Representations, 2022.

71

[106] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Int. Conf. Mach. Learn., 2015.

[107] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser. Semantic Scene
Completion from a Single Depth Image. In CVPR, 2017.

[108] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway networks. arXiv preprint
arXiv:1505.00387, 2015.

[109] R. S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM
Sigart Bulletin, 2(4), 1991.

[110] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015.

[111] M. Tan and Q. Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In Int. Conf. Mach. Learn. PMLR, 2019.

[112] M. Tan and Q. Le. Efficientnetv2: Smaller models and faster training. In Int. Conf. Mach.
Learn. PMLR, 2021.

[113] Z. Tan, Z. Dong, C. Zhang, W. Zhang, H. Ji, and H. Li. OVO: Open-Vocabulary Occupancy.
arXiv:2305.16133, 2023.

[114] H. Tang, Z. Liu, S. Zhao, Y. Lin, J. Lin, H. Wang, and S. Han. Searching Efficient 3D
Architectures with Sparse Point-Voxel Convolution. In A. Vedaldi, H. Bischof, T. Brox, and
J.-M. Frahm, editors, ECCV, 2020.

[115] Z. Teed and J. Deng. Raft: Recurrent all-pairs field transforms for optical flow. In ECCV,
2020.

[116] Z. Teed and J. Deng. Droid-slam: Deep visual slam for monocular, stereo, and rgb-d
cameras. NeurIPS, 34, 2021.

[117] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and L. J. Guibas. Kpconv:
Flexible and deformable convolution for point clouds. In ICCV, 2019.

[118] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In
IROS, 2012.

[119] S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel, T. Erez, T. Lillicrap,
N. Heess, and Y. Tassa. dm_control: Software and tasks for continuous control. Software
Impacts, 6, 2020.

[120] A. van den Oord, O. Vinyals, and k. kavukcuoglu. Neural Discrete Representation Learning.
In NeurIPS, volume 30, 2017.

72

[121] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is All you Need. In NeurIPS, volume 30, 2017.

[122] S. Vora, A. H. Lang, B. Helou, and O. Beĳbom. Pointpainting: Sequential fusion for 3d
object detection. In CVPR, 2020.

[123] T. Vu, J.-H. Kim, M. Kim, S. Jung, and S.-G. Jeong. MiLO: Multi-task Learning with
Localization Ambiguity Suppression for Occupancy Prediction. In CVPRW, 2023.

[124] Z. Wan, Y. Mao, J. Zhang, and Y. Dai. RPEFlow: Multimodal Fusion of RGB-PointCloud-
Event for Joint Optical Flow and Scene Flow Estimation. In ICCV, 2023.

[125] X. Wang, Z. Zhu, G. Huang, X. Chen, and J. Lu. DriveDreamer: Towards Real-world-driven
World Models for Autonomous Driving. arXiv:2309.09777, 2023.

[126] Y. Wang, Y. Chen, X. Liao, L. Fan, and Z. Zhang. PanoOcc: Unified Occupancy Represen-
tation for Camera-based 3D Panoptic Segmentation. arXiv:2306.10013, 2023.

[127] Y. Wang, Q. Mao, H. Zhu, J. Deng, Y. Zhang, J. Ji, H. Li, and Y. Zhang. Multi-modal 3d
object detection in autonomous driving: a survey. ĲCV, 2023.

[128] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon. Dynamic graph
cnn for learning on point clouds. ACM TOG, 38(5), 2019.

[129] Waymo. Introducing the 5th-generation waymo driver, 2020.

[130] Y. Wei, L. Zhao, W. Zheng, Z. Zhu, J. Zhou, and J. Lu. SurroundOcc: Multi-Camera 3D
Occupancy Prediction for Autonomous Driving. In ICCV, 2023.

[131] R. Wightman. PyTorch Image Models. https://github.com/rwightman/

pytorch-image-models, 2019.

[132] Wikipedia contributors. Michigan left - Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Michigan_left&oldid=

1188685531, 2023. Accessed: 2023-12-28.

[133] F. Wimbauer, N. Yang, C. Rupprecht, and D. Cremers. Behind the Scenes: Density Fields
for Single View Reconstruction. In CVPR, 2023.

[134] B. Wu, A. Wan, X. Yue, and K. Keutzer. Squeezeseg: Convolutional neural nets with
recurrent crf for real-time road-object segmentation from 3d lidar point cloud. In ICRA,
2018.

[135] B. Wu, X. Zhou, S. Zhao, X. Yue, and K. Keutzer. SqueezeSegV2: Improved Model
Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from a
LiDAR Point Cloud. In ICRA, 2019.

73

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://en.wikipedia.org/w/index.php?title=Michigan_left&oldid=1188685531
https://en.wikipedia.org/w/index.php?title=Michigan_left&oldid=1188685531

[136] P. Wu, A. Majumdar, K. Stone, Y. Lin, I. Mordatch, P. Abbeel, and A. Rajeswaran. Masked
trajectory models for prediction, representation, and control. In International Conference
on Machine Learning, 2023.

[137] W. Wu, Z. Qi, and L. Fuxin. Pointconv: Deep convolutional networks on 3d point clouds.
In CVPR, 2019.

[138] Y. Xie, C. Xu, M.-J. Rakotosaona, P. Rim, F. Tombari, K. Keutzer, M. Tomizuka, and
W. Zhan. SparseFusion: Fusing Multi-Modal Sparse Representations for Multi-Sensor 3D
Object Detection. In ICCV, 2023.

[139] C. Xu, B. Wu, Z. Wang, W. Zhan, P. Vajda, K. Keutzer, and M. Tomizuka. Squeezesegv3:
Spatially-adaptive convolution for efficient point-cloud segmentation. In ECCV, 2020.

[140] J. Xu, R. Zhang, J. Dou, Y. Zhu, J. Sun, and S. Pu. RPVNet: A Deep and Efficient
Range-Point-Voxel Fusion Network for LiDAR Point Cloud Segmentation. In ICCV, 2021.

[141] J. Yan, Y. Liu, J. Sun, F. Jia, S. Li, T. Wang, and X. Zhang. Cross Modal Transformer:
Towards Fast and Robust 3D Object Detection. In ICCV, 2023.

[142] X. Yan, J. Gao, J. Li, R. Zhang, Z. Li, R. Huang, and S. Cui. Sparse Single Sweep LiDAR
Point Cloud Segmentation via Learning Contextual Shape Priors from Scene Completion.
In AAAI, 2020.

[143] Y. Yan, Y. Mao, and B. Li. SECOND: Sparsely Embedded Convolutional Detection. Sensors,
18, 2018.

[144] L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, and M.-H. Yang.
Diffusion models: A comprehensive survey of methods and applications. ACM Computing
Surveys, 56(4), 2023.

[145] Z. Yang, Y. Sun, S. Liu, X. Shen, and J. Jia. Ipod: Intensive point-based object detector for
point cloud. arXiv preprint arXiv:1812.05276, 2018.

[146] M. Ye, S. Xu, and T. Cao. HVNet: Hybrid Voxel Network for LiDAR Based 3D Object
Detection. In CVPR, 2020.

[147] Y. Zeng, D. Zhang, C. Wang, Z. Miao, T. Liu, X. Zhan, D. Hao, and C. Ma. LIFT: Learning
4D LiDAR Image Fusion Transformer for 3D Object Detection. In CVPR, 2022.

[148] L. Zhang, Y. Xiong, Z. Yang, S. Casas, R. Hu, and R. Urtasun. Learning Unsupervised
World Models for Autonomous Driving via Discrete Diffusion. arXiv:2311.01017, 2023.

[149] W. Zhang, G. Wang, J. Sun, Y. Yuan, and G. Huang. STORM: Efficient Stochastic Trans-
former based World Models for Reinforcement Learning. In NeurIPS, 2023.

[150] Y. Zhang, Z. Zhu, and D. Du. OccFormer: Dual-path Transformer for Vision-based 3D
Semantic Occupancy Prediction. arXiv:2304.05316, 2023.

74

[151] Z. Zhang, A. Liniger, D. Dai, F. Yu, and L. Van Gool. End-to-End Urban Driving by
Imitating a Reinforcement Learning Coach. In ICCV, 2021.

[152] Z. Zhang, Z. Zhang, Q. Yu, R. Yi, Y. Xie, and L. Ma. LiDAR-Camera Panoptic Segmentation
via Geometry-Consistent and Semantic-Aware Alignment. In ICCV, 2023.

[153] X. Zhao, Z. Liu, R. Hu, and K. Huang. 3D object detection using scale invariant and feature
reweighting networks. In AAAI, volume 33, 2019.

[154] W. Zheng, W. Chen, Y. Huang, B. Zhang, Y. Duan, and J. Lu. OccWorld: Learning a 3D
Occupancy World Model for Autonomous Driving. arXiv preprint arXiv:2311.16038, 2023.

[155] Y. Zhou and O. Tuzel. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object
Detection. In CVPR, 2018.

75

	1 Introduction
	2 Background
	2.1 World Model
	2.1.1 Vision (V) Model
	2.1.2 Memory (M) Model
	2.1.3 Gated Recurrent Unit (GRU)

	2.2 ResNet
	2.3 range view
	2.4 Transformer
	2.4.1 Attention
	2.4.2 Positional Encoding

	3 Related Work
	3.1 World Model
	3.1.1 RNN-based World Model
	3.1.2 Transformer-based World Model
	3.1.3 High-Resolution Image as Input
	3.1.4 Video Generation
	3.1.5 3D Application

	3.2 Sensor Fusion
	3.2.1 Encoder for Camera and LiDAR
	3.2.2 Fusion Method

	3.3 3D Voxel Reconstruction
	3.3.1 Transformer-based
	3.3.2 Unsupervised Training
	3.3.3 Multi-view

	4 Method
	4.1 Encoder
	4.1.1 Image
	4.1.2 Point Cloud
	4.1.3 Others

	4.2 Sensor Fusion
	4.2.1 Simple Averaging
	4.2.2 Fully Connected Layer
	4.2.3 Transformer

	4.3 Transition Model
	4.3.1 1D Latent States Version
	4.3.2 2D Latent States Adaption

	4.4 Decoder and Training Loss
	4.4.1 2D Decoder for Images and Point Clouds
	4.4.2 3D Decoder for Voxels
	4.4.3 Training Losses
	4.4.4 Extra Outputs

	5 Experiment Setup
	5.1 Dataset
	5.1.1 Simulation Environment CARLA
	5.1.2 Data Collection
	5.1.3 Data Pre-Processing
	5.1.4 Training Set
	5.1.5 Validation Set

	5.2 Training Parameters
	5.3 Metrics
	5.4 Experiments
	5.4.1 Different Combinations with 1D latent states
	5.4.2 3D Voxel Occupancy
	5.4.3 2D Latent State with Voxel

	5.5 Implementation Details

	6 Evaluation
	6.1 Combinations with 1D latent states
	6.1.1 Image Reconstruction and Prediction
	6.1.2 Point Cloud Reconstruction and Prediction
	6.1.3 Distribution of Stochastic States

	6.2 with 3D Voxel Occupancy Reconstruction
	6.2.1 Impact on 3D Voxel Occupancy
	6.2.2 Impact on Image and Point Cloud

	6.3 2D Latent State
	6.4 Extra Experiments
	6.4.1 Near-Field
	6.4.2 Failure with CrossEntropy Loss for Voxel Occupancy
	6.4.3 BEV Reconstruction
	6.4.4 Dataset Evaluation

	7 Conclusion and Outlook
	7.1 Conclusion
	7.2 Outlook

	A Appendix
	A.1 Sensor Settings
	A.2 Dataset Settings
	A.3 Parameters in Model

	B List of Figures
	C List of Tables
	D Bibliography

