KIT | KIT-Bibliothek | Impressum | Datenschutz

Ensuring Data Privacy in AC Optimal Power Flow with a Distributed Co-Simulation Framework

Dai, Xinliang ORCID iD icon 1; Kocher, Alexander ORCID iD icon 1; Kovačević, Jovana 1; Dindar, Burak ORCID iD icon 1; Jiang, Yuning; Jones, Colin N.; Çakmak, Hüseyin ORCID iD icon 1; Hagenmeyer, Veit ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

During the energy transition, the significance of collaborative management among institutions is rising, confronting challenges posed by data privacy concerns. Prevailing research on distributed approaches, as an alternative to centralized management, often lacks numerical convergence guarantees or is limited to single-machine numerical simulation. To address this, we present a distributed approach for solving AC Optimal Power Flow (OPF) problems within a geographically distributed environment. This involves integrating the energy system Co-Simulation (eCoSim) module in the eASiMOV framework with the convergence-guaranteed distributed optimization algorithm, i.e., the Augmented Lagrangian based Alternating Direction Inexact Newton method (ALADIN). Comprehensive evaluations across multiple system scenarios reveal a marginal performance slowdown compared to the centralized approach and the distributed approach executed on single machines -- a justified trade-off for enhanced data privacy. This investigation serves as empirical validation of the successful execution of distributed AC OPF within a geographically distributed environment, highlighting potential directions for future research.


Download
Originalveröffentlichung
DOI: 10.48550/arXiv.2402.01001
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 01.02.2024
Sprache Englisch
Identifikator KITopen-ID: 1000168156
HGF-Programm 37.12.02 (POF IV, LK 01) Design,Operation & Digitalization of the Future Energy Grids
Verlag arxiv
Serie Computer Science: Distributed, Parallel, and Cluster Computing
Schlagwörter Augmented Lagrangian based Alternating Direction Inexact Newton method, co-simulation, data privacy, distributed AC OPF, energy systems integration.
Nachgewiesen in arXiv
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page