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A B S T R A C T

Managers in electric utilities face the disruption of their conventional business model of selling electricity
per kilowatt-hour for invariant prices. However, the forthcoming widespread uptake of sustainable energy
technologies – such as rooftop solar, batteries, heat pumps and electric vehicles – by residential customers
also represents a chance for local utilities to diversify their service portfolio. To appropriately market these
technologies to households, utilities need data on consumers. In this paper, we present a novel data-driven
service bundle recommendation model incorporating technologies and tariffs for residential customers based on
individual household data. We validate the model in a case study and quantify the utility of sharing different
levels of household data. We find substantial synergies of flexible sustainable technologies and time-varying
tariffs, leading to higher cost reductions for customers than tariff-switching alone that can be recommended
based on easy-to-obtain data. This demonstrates a large potential for energy service bundle marketing by local
utilities. The presented Machine Learning recommendation models enable more reliable recommendations than
a naive benchmark. Our research thus demonstrates the potential of data-driven utility marketing strategies
that focus on service bundling and the integration of customers’ energy consumption data.
1. Introduction

The worldwide transition of energy systems forces electricity re-
tailers to fundamentally change their business model. The traditional
business model relies to a large extend on selling electricity for an in-
variant per-kilowatt-hour (kWh) tariff. This model is disrupted by new
competitors and the proliferation of rooftop solar photovoltaics (PV)
and home battery storage systems, with some scholars and practitioners
projecting a ‘‘utility death spiral’’ [1]. However, cost reductions in sus-
tainable energy technologies like solar PV, battery storage, heat pumps
(HPs) and battery electric vehicles (EVs), together with improvements
in information and computation technology and novel time-varying
tariffs also represent a chance for power retail companies. They enable
retailers to diversify their product and service portfolio, thus differen-
tiating their offer in a highly competitive market and unlocking new
revenue opportunities [2].

For retail customers, tariff switching commonly comes at the cost
of searching for information, comparing offers and filling out contracts.
Furthermore, tariff switching comes with an uncertainty of whether the
switch will prove economically beneficial. These costs are set off by
relatively small savings that can be achieved by tariff switching [2–
6]. A bundle recommendation tool can decrease the switching costs
and at the same time increase the potential savings for customers.
In the bigger picture, this can lead to an increased adoption and use
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of system-beneficial time-varying electricity tariffs, smart meters and
energy technologies that substitute fossil fuel based power generation,
heaters and vehicles. This can yield large societal benefits by reducing
system costs and emissions [2].

In summary, electricity retailers, their customers and society as
a whole might benefit strongly from the combined, recurring and
customized sales of bundles of electricity tariffs and electric technolo-
gies. This poses the challenge to design a corresponding recommenda-
tion tool for energy service bundles that unlocks reliable cost savings
for customers and recurring cross-selling opportunities for electricity
retailers.

To this end, we present a novel Machine Learning classification
model for recommending cost-minimal service bundles of technology
leases and tariffs to residential customers. A bundle includes a one-year
subscription to an electricity tariff and an optional one-year leasing
contract of different energy technologies. The model uses household
characteristics and sparse historical data as inputs. The preceding label-
ing of the data set with the optimal tariff-technology combinations is
done based on a smart home energy management system optimization.
We apply this approach to a set of 292 households from London, UK
to demonstrate its performance. Our results show considerable saving
opportunities for customers compared to past studies, which focused
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on tariff switching alone. The best recommendation model achieves
a mean accuracy of 75% and thus largely improves the accuracy of
recommendations compared to a designed naive benchmark. Most in-
terestingly, we find that high customer savings can already be achieved
with input data that is easy to obtain. Acquiring high resolution smart
meter data does improve recommendations, but only by a margin. This
encourages the practical application of the developed approach.

The remainder of this study proceeds as follows: In Section 2, we
provide a structured overview of related research and identify an im-
portant lack of bundle recommendation research in the energy context.
In Section 3, we present the methodology, including the optimization
of technology operation under different set-ups, subsequent label gener-
ation and finally, the classification algorithms used for recommending
service bundles. In Section 4, we introduce the data set used in the case
study, including data on electricity consumption, mobility, electricity
prices and weather. In Section 5, we present the case study results.
These results and methodical limitations are discussed in Section 6.
Additionally, implications and potential extensions are sketched out.
Finally, in Section 7, we summarize the main scientific conclusions and
practical implications for electricity retail managers.

2. Related work

In this chapter, we outline research on decision support systems in
the context of sustainable energy consumption and on recommendation
tools for energy services. Furthermore, we briefly introduce the product
bundling literature. Based on this review, we derive the addressed
research gap.

Decision support systems intended to increase various forms of sus-
tainability have a long research tradition (e.g. [7]). Particularly, there
is a variety of studies on decision support systems in the power sector.
In fact, Geelen et al. [8] propose to design services that facilitate the
switch to renewable technology. In that regard, it is important to note
that it has been shown that decision support systems increase decision
quality [9] and are thus the right tool to aid non-experts in the tran-
sition to a more sustainable energy consumption. Similarly, Liu et al.
[10] have recently pointed out that Machine Learning should be applied
to increase situational awareness in an energy system dominated by
uncertain intermittent renewable generation to improve its integration.
Many of the corresponding decision support system applications try
to address said inherent uncertainty caused by renewable generation
and changing demand patterns. For instance, Ghiassi-Farrokhfal et al.
[11] describe a model that reduces the risk of contracting so-called
power purchase agreements, which entitle the buyer to future uncertain
renewable generation at a fixed price. In principle and on a high
level of abstraction, the underlying problem is similar to what we are
proposing: Ensuring that a longer-term commitment in an intermittent
energy system is beneficial to the investor. Other authors focus on
the management of uncertainty by using decision support systems on
a larger scale. Chang [12] propose a decision support system for the
management of partly renewable energy systems. Similarly, Mattiussi
et al. [13] propose a decision support tool based on multi-objective
optimization for the management of large industrial energy systems.
The authors categorize their system as model-driven according to the
typology of Power [14]. Other model-driven decision support tools
in the industrial context are proposed, for instance, by Allaoui et al.
[15] to increase the sustainability of supply chains over a network
of suppliers or by Porzio et al. [16] to make individual industrial
process such as steel production more sustainable. In contrast, as there
is often a lack of data availability for the power consumption of private
households, we rely on what Power [14] coins a knowledge-driven
approach, because our recommendations are based on knowledge of
the correct labels of other consumers.

It is noteworthy that several papers propose decision support sys-
tems for subsets of the problem that we describe in this study. However,
similar to Geelen et al. [8], we argue that the technological level
2

(i.e., heat pumps replacing gas heating) needs to be connected to the
service level (i.e., heat-as-a-service rather than selling an appliance)
taking a more holistic approach while acknowledging the realities of
data availability (i.e., high resolution energy consumption data might
not be available) and customer engagement (i.e., low knowledge on
energy technology). For instance, Sianaki et al. [17] and Eguiarte
et al. [18] develop decision support tools that are meant to encourage
manual demand response, i.e., a manual change in the consumption
pattern triggered by an external signal. However, this not only requires
the installation of a smart meter, it has also been shown that such
manual demand response is likely not persistent [19]. There are several
studies that focus on decision support regarding one specific technology
out of the set of technologies that we consider comprehensively in
this study. For instance, Kontopoulou et al. [20] propose a decision
support system that recommends the switch to electric mobility based
on driving profiles. Further studies on decision support systems for
electric mobility include grid-friendly charging [21] or the installation
of charging infrastructure [22]. Others have proposed decision support
systems to suggest building retrofits including HVAC updates [23] or
to choose the right battery storage technology for non-experts [24].

There is relatively little research on decision support systems for
the choice of residential energy services such as heating, power and
individual mobility services. These are particularly challenging to ana-
lyze due to the small set of products that can be combined, relatively
high transaction volume per purchase, and low purchasing frequency
of heating appliances, PV panels, EVs or batteries compared to other
goods. These might be the reasons why, so far, no study has examined
service bundle recommendation in the context of electricity retailing.
Instead, studies on energy service recommendation have focused on the
question whether customers should keep or switch their electricity tariff
and what the corresponding savings are.

Recommendation tools are a means to reduce the information over-
load associated to the task of choosing from different (complex) op-
tions [25], which is particularly important in the energy domain where
many households lack the necessary domain knowledge to make deci-
sions [26]. Several papers have addressed the question of tariff selec-
tion as an isolated problem and often while assuming extensive data
availability. For instance, Arora and Taylor [4] estimate probability
densities for residential electricity consumption based on a broad data
set from Ireland to derive static electricity cost estimates (i.e., not
assuming any behavior change) under different time-varying tariffs.
Similarly, vom Scheidt et al. [6] estimate the static benefits of tariff
switching based on a data set from Illinois. They show that a purely
naive approach of recommending tariffs based on short observed time
series of consumption data is not suitable. Tostado-Véliz et al. [27]
formulate an optimization problem for selecting the optimal tariff
assuming full availability of high-resolution consumption data. They
demonstrate their approach on one fictive household with one day of
consumption but do not do out of sample testing, which makes their
approach unsuitable as a decision support system. Ramchurn et al.
[28] and Fischer et al. [29] develop individual consumption forecasts
and on that basis, recommend specific electricity tariffs. Fischer et al.
[29] additionally point out that manual demand response necessary to
respond appropriately to some temporal tariff structures is perceived
to outweigh possible savings, making automated control necessary.
This is particularly important as customers appear to be particularly
risk-averse when switching tariffs [30], which might require some
form of insurance to not fall behind the status quo. Furthermore, there
is a variety of studies that propose collaborative filtering for tariff
selection [5,31–34]. These approaches all have in common that they
assume extensive data availability down to the appliance level, do
not test out of sample and disregard the recommendation of tariff-
appliance combinations. The latter is specifically noted as an important
extension by Zhang et al. [5]. Other authors point out that tariff
selection cannot be treated as a static problem as changing economic

signals also induce a change in behavior [35]. An approach that is based
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on similar reasoning as this study is presented by Mabuggwe and Morsi
[36]. It presents a simple rule-based recommendation tool based on the
Pecan Street dataset that helps in estimating expected savings based on
characteristics of the load profile and appliance endowment. However,
some of the features used in the model are very specific and not easily
obtained, the reported expected savings are very coarse, the dynamics
of demand response are only addressed by reporting a range of possible
savings and the authors do not perform an out-of-sample evaluation.

Electricity tariff recommendation becomes particularly relevant
with a progressing electrification of household energy demand allowing
to market additional energy services such as smart meters, electric
vehicles and corresponding charging points just to name a few. As
pointed out by Zhang et al. [5], electrification is a major driver to
make time-dependent electricity tariffs more attractive as it increases
potential savings. Accordingly, our research focuses on a holistic view
of household energy consumption considering various energy services.
Service bundling is an active field of research, which is particularly
popular for virtual goods with zero or very low marginal costs [37].
However, it is also used for physical goods [38]. Bundling describes
a marketing strategy, in which two or more goods are combined
to increase the customers’ utility and thereby to increase the sales
volume [39]. The underlying idea is that combining products can
lead to a total utility that is equal or greater than the sum of the
individual product utilities, which is the case for our energy service
approach. The corresponding recommendations are often based on
customers’ historical purchase data or their relationship to or similarity
with other users (i.e. collaborative filtering). For instance, Deng et al.
[40] present a recommendation model for a consumer goods shopping
website exploiting the social network structure of the website. Bai
et al. [41] combine a decision support tool for consumer product
retailers to create bundles with a recommendation tool to advertise
these bundles to consumers. Pathak et al. [42] address personalized
bundle generation and recommendation on video game distribution
platforms. Chen et al. [43] acknowledge the difficulty of recommending
bundles in an environment with a limited number of user-bundle
transactions. They approach this problem by using item embeddings
to approximate the bundle, while in this study, we employ a physical
simulation approach as the personal utility for energy services can to
some extent be based on costs. An overview of bundle recommendation
research is provided in [44]. The authors list the cold start problem as
a major issue, which describes the fact that upon bundle creation, no
users have interacted with this product type. We overcome this issue
by using a physical simulation approach that allows us to estimate the
bundle utility for households. To the best of our knowledge, this is the
first conceptualization and evaluation of a bundle recommendation for
energy services.

In summary, past energy service recommendation research has fo-
cused on plain tariff switching. Studies have shown that savings are
often too low to motivate consumers to switch, if no demand response
or only manual demand response is considered. This strongly motivates
to expand the existing scope of tariff recommendation to energy service
bundles consisting of tariffs and sustainable energy technologies like
solar PV, batteries, HPs and EVs and to include automated demand
response from those technologies. This notion is further supported by
the finding that the ability to perform automated demand response has
a positive effect on the willingness to adopt time-varying tariffs [45]. In
the case of EVs, this effect has been shown to be strongest right after
the EV purchase, which further motivates a joint recommendation of
technology and tariff [46]. Additionally, the accuracy of recommenda-
tions and the insurance against losses is important, as customers are
risk-averse and fear negative consequences of their choices [46].

In conclusion, there is a broad stream of research on decision
support tools aimed at increasing sustainable energy consumption.
However, studies often focus on isolated topics (e.g. electricity tariff
switching), instead of taking a holistic approach towards household
3

energy consumption including the recommendation of energy service
bundles. This is particularly damaging as several authors have found
that savings from tariff switching alone are often not sufficient to
encourage a behavioral shift. At the same time, the recommendation
of bundles of energy services has yet to be addressed. Additionally,
manual demand response is perceived to reduce utility beyond possible
savings and therefore, the focus of corresponding recommendations has
to be the value of automated demand response. This creates specific
challenges as the unique characteristics of PV, batteries, HPs and EVs
need to be captured in a model.

Furthermore, many studies assume extensive data availability and
do not evaluate their approaches sufficiently. However, it is more
reasonable to assume that little to no consumption data is available
for specific households upon the recommendation. In this regard, it is
important to differentiate between easy-to-obtain data – such as yearly
consumption or sun-facing roof angle – and potentially valuable but
hard-to-get data such as high-resolution load data.

To address these gaps, we present and evaluate a data-driven de-
cision support tool for the recommendation of energy service bundles
based on different levels of detail of customer data. This is specifi-
cally necessary as non-expert users are often overwhelmed by options
regarding their energy consumption. The approach assumes that all
recommended bundles address the same energy needs of the customers,
i.e. their needs for electricity, heating and mobility and that differences
in utility are a consequence of the bundles’ costs. The objective of
the recommendation system is consequently to recommend the bundle
with the lowest annual costs for each individual customer based on
household and consumption characteristics. In this study, we analyze
the impact of household characteristics and data availability on the
quality of the recommendations, thus contributing to research and
practice.

3. Methodology

In this section, the study’s methodology is presented which is aimed
at recommending cost minimal energy service bundles. A bundle nec-
essarily consists of a heating technology, a mobility technology, an
electricity tariff and optionally of a solar PV plant and a battery stor-
age. Importantly, the subscription period of the recommended service
bundle is one year: All technologies are leased for the duration of one
year and the contract period of the tariff is also one year. Leasing
concepts for heating or PV are currently developing [47], while they
are well-established for metering and vehicles. Fig. 1 shows the overall
methodology. First, the sample set is generated. Second, the operation
of various technology and tariff combinations in a household’s home
energy management system is optimized. Third, the resulting optimal
operation costs and additional capital costs are used to generate the
class labels for all samples. The class samples are the optimal service-
tariff bundles for each household (e.g., real-time tariff with EV). Fourth,
we develop and evaluate Machine Learning models that recommend
optimal tariff-service bundles, i.e., derive the optimal class of each
sample a priori, only using easy-to-obtain customer data and, in an
alternative scenario, additional historical high-resolution consumption
data.

3.1. Sample set generation

Many traditional recommender systems rely on large data sets from
frequent customer transactions [44] and try to identify a bundle that
delivers maximum value to a customer. Due to the cold-start problem
(compare Section 2), traditional approaches are inadequate for our use
case. Instead, innovative approaches are needed to create a labeled data
set. Therefore, we conduct a dedicated smart home energy management
optimization to create samples and labels.

This study is carried out on the basis of data from individual house-
holds. Each household is characterized by a) an empirical electricity

load profile that comprises its electricity base consumption without
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Fig. 1. Method overview.
Table 1
Morphological box of externally given circumstances.

Parameter Values

Azimuth No solar possible 90◦ 180◦ 270◦

Driving routine Non-commuter Commuter
Vehicle EV impossible EV possible
Heating HP impossible HP possible

additional appliances such as HPs and EVs over two years at an hourly
resolution and b) an empirical driving profile that captures the exact
driving behavior over one week in a 15-min resolution. In addition,
each household has individual characteristics that influence whether it
can adopt a certain energy technology.

The most important distributed energy technologies include rooftop
solar PV for the on-site generation of sustainable electricity, electric
heating and electric vehicles for the direct use of electricity for domestic
heating and mobility needs and home batteries for the local storage of
electricity (see [48]). These technologies are therefore considered in the
case study. The relevant household parameters thus include the general
binary technical feasibility of an electric vehicle or electric heating
in a household. For example, it could be infeasible for customers to
adopt an EV because they live in an apartment and have no charging
option. Besides these two parameters, households are characterized by
the binary availability and azimuth (East, South, or West) of the house’s
rooftop and the driving routine type (existence of a commuter in the
household or not). Table 1 summarizes these external parameters. By
combining all given load profiles with all potential external parameter
combinations, we expand and diversify the original data set and the
number of samples, which enables us to derive more insights about the
determining factors of optimal tariff-service bundles.

Since the mere feasibility of a certain technology does not automat-
ically mean that its use is cost-optimal for a household, we explore
a number of different bundle options for each household under the
given external restrictions. Each bundle includes an electricity tariff, a
heating technology (heat pump vs. gas heating), a mobility technology
(EV vs. combustion engine car) and can include an optional roof-
top solar PV system and an optional home battery storage. The tariff
options include the four most common kinds of electricity tariffs in
research and practice. These are a standard flat tariff, a time-of-use
tariff with two price levels (TOU-2), a time-of-use tariff with three
price levels (TOU-3) and a real-time pricing (RTP) tariff. While flat
tariffs represent the predominant reference tariff for most residential
customers [2], RTP tariffs link consumers’ electricity prices directly to
4

Table 2
Morphological box of service bundle design options.

Service Design options

Tariff Flat TOU-2 TOU-3 RTP
PV PV system No PV system
Heating Heat pump Gas heating
Mobility Electric vehicle Combustion engine vehicle
Storage Battery storage No storage

wholesale prices and thus incorporate both the risk of increased bills,
and the chance for reduced bills [6,49]. Under TOU tariffs, the price
levels are determined in advance and repeated at different times of the
day, days of the week, or seasons and act as a proxy of RTP tariffs.
Table 2 summarizes these bundle design options.

3.2. Optimization

To determine the costs of operating different tariff-service bundles
for a household, we model the technology operating strategy as a
mixed-integer linear program. The optimization problem minimizes the
costs under each of the possible electricity tariffs that result from serv-
ing a given electricity consumption profile and the electricity demands
of the HP and the EV, if applicable. For this purpose, the optimization
makes use of the temporal flexibility of the applied technologies. Our
optimization model is executed for all possible combinations of external
characteristics and potential technologies. For example, if the external
circumstances forbid usage of an EV, only bundles without EVs are
considered in the optimization for the given household. In this case,
we add the additional cost for gasoline to the bundle based on the
driving distance of the household and average London gasoline prices
(for details, see Section 4.3). If a heat pump is not applicable, we add
costs for natural gas according to current retail prices in London (for
details, see Section 4.3). For modeling purposes, we assume perfect
foresight within one day, as there are various well-performing methods
for short-term forecasting of electricity generation, loads and prices
[50,51], car trips [52] and weather [53]. Besides, electricity prices for
customers are often known in advance if based on day-ahead wholesale
prices (like in our RTP tariff) or fixed for longer periods (like in the flat
and TOU tariffs). We furthermore assume no manual demand response
(e.g. switching on the dishwasher at a certain time of the day), because
transaction costs of behavioral change can render manual demand re-
sponse non-profitable and empirical programs have found substantially
higher electricity demand elasticity for households with automated
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technology [54]. Capital costs (i.e., costs for leasing the technology) are
included in the optimization by choosing the overall cheapest bundle
consisting of operation and technology costs (for further information
see Section 3.3).

The optimization uses an hourly time resolution and is performed
over an entire year, for each of the two considered years individually
(to find the different labels for the two years). The objective function
minimizes the sum of the costs for meeting the electricity demand over
all hours within the respective year (see Eq. (1)). Here, 𝑔𝑟𝑖𝑑𝑑𝑒𝑚𝑎𝑛𝑑ℎ is
the amount of externally sourced electricity in hour ℎ in kWh. It is mul-
tiplied with the price of one kWh of electricity 𝑒𝑝𝑡𝑎𝑟𝑖𝑓𝑓ℎ , which depends
on the type of tariff and hour ℎ. The model considers compensation
for the feed-in of PV-generated electricity, where 𝑠𝑢𝑝𝑝𝑙𝑦ℎ is the amount
of electricity in kWh fed into the grid in hour ℎ and 𝑒𝑝𝑓𝑒𝑒𝑑𝑖𝑛−𝑡𝑎𝑟𝑖𝑓𝑓 is
the invariable feed-in tariff in £/kWh.1 This compensation is subtracted
from the costs of externally sourced electricity.

min
8759
∑

ℎ=0
𝑔𝑟𝑖𝑑𝑑𝑒𝑚𝑎𝑛𝑑ℎ ⋅ 𝑒𝑝

𝑡𝑎𝑟𝑖𝑓𝑓
ℎ − 𝑔𝑟𝑖𝑑𝑠𝑢𝑝𝑝𝑙𝑦ℎ ⋅ 𝑒𝑝

𝑓𝑒𝑒𝑑𝑖𝑛−𝑡𝑎𝑟𝑖𝑓𝑓 (1)

The total hourly electricity demand consists of the inelastic base
electricity use 𝑐𝑏𝑎𝑠𝑒ℎ , the electricity consumed by the heat pump 𝑐ℎ𝑝ℎ ,
the electricity needed for charging the electric vehicle 𝑐ℎ𝑒𝑣ℎ and the
battery storage 𝑐ℎ𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ and the part of the solar plant’s generation that
is fed into the grid 𝑔𝑟𝑖𝑑𝑠𝑢𝑝𝑝𝑙𝑦ℎ. Constraint (2) guarantees that the total
energy demand in every hour ℎ within the one-year period is met by
the sum of the purchased electricity 𝑔𝑟𝑖𝑑𝑑𝑒𝑚𝑎𝑛𝑑ℎ, the solar PV based
self-generation 𝑝𝑣ℎ and the energy discharged from the battery storage
unit 𝑑𝑐𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ . It therefore ensures that electricity demand and supply
are always balanced. Moreover, the equation ensures that PV based
electricity is either directly consumed, fed into the household battery
for later use, or fed into the grid at a fixed feed-in compensation. For all
bundles without electric heating or electric mobility, we add the costs
of the non-electric alternatives to the total cost after the optimization,
i.e. natural gas for bundles with gas heating and gasoline for bundles
with internal combustion engine vehicles.

𝑐𝑏𝑎𝑠𝑒ℎ + 𝑐ℎ𝑝ℎ + 𝑐ℎ𝑒𝑣ℎ + 𝑐ℎ𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ + 𝑔𝑟𝑖𝑑𝑠𝑢𝑝𝑝𝑙𝑦ℎ
≤ 𝑝𝑣ℎ + 𝑑𝑐ℎ𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ + 𝑔𝑟𝑖𝑑𝑑𝑒𝑚𝑎𝑛𝑑ℎ, ∀ℎ ∈ [0, 8759]

(2)

In Constraints (3) and (4), the charging state of the EV 𝑠𝑡𝑎𝑡𝑒𝑒𝑣ℎ is
defined and constrained. 𝑒𝑣𝑏𝑖ℎ−1 is a binary parameter and determines
if charging of the battery is possible in hour ℎ − 1. This is the case, if
the EV is parked at home throughout the entire hour. For each hour
in which the EV leaves for a trip, the required energy for that trip is
specified via 𝑑𝑐ℎ𝑒𝑣ℎ . In hours in which the EV does not leave for a trip,
the required energy 𝑑𝑐ℎ𝑒𝑣ℎ is zero.

𝑠𝑡𝑎𝑡𝑒𝑒𝑣ℎ = 𝑠𝑡𝑎𝑡𝑒𝑒𝑣ℎ−1 − 𝑑𝑐ℎ𝑒𝑣ℎ−1 + 𝑒𝑣𝑏𝑖ℎ−1 ⋅ 𝑐ℎ
𝑒𝑣
ℎ−1, ∀ℎ ∈ [1, 8759] (3)

As it is assumed that the EV is only charged at home, 𝑠𝑡𝑎𝑡𝑒𝑒𝑣0 always
needs to be sufficiently high to provide the energy for the entire
following trip (Constraint (4)).

𝑠𝑡𝑎𝑡𝑒𝑒𝑣ℎ ≥ 𝑑𝑐ℎ𝑒𝑣ℎ , ∀ℎ ∈ [0, 8759] (4)

At time ℎ = 0, the charging level of the car’s battery storage starts
at 𝑠𝑡𝑎𝑡𝑒𝑒𝑣0 = 0 (Constraint (5)).

𝑠𝑡𝑎𝑡𝑒𝑒𝑣0 = 0 (5)

The stationary battery storage’s behavior is similarly described in
Constraints (6) to (9). 𝑠𝑡𝑎𝑡𝑒𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ is the battery storage’s state of charge
at hour ℎ and depends on the charge and discharge amounts 𝑐ℎ𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ−1
and 𝑑𝑐ℎ𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ−1 in the previous time period ℎ − 1 and the previous state

1 Note that, because the electricity consumption data set is from London,
K (see Section 4.1), we perform all financial calculations in British Pounds.
5

e

of charge. In the first hour, the initial charging state 𝑠𝑡𝑎𝑡𝑒𝑠𝑡𝑜𝑟𝑎𝑔𝑒0 of the
attery storage is zero. Simultaneous charging and discharging of the
attery is forbidden. This is important to ensure that negative prices in
he RTP tariff are not unrealistically exploited. 2

𝑡𝑎𝑡𝑒𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ = 𝑠𝑡𝑎𝑡𝑒𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ−1 + 𝑐ℎ𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ−1 − 𝑑𝑐ℎ𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ−1 , ∀ℎ ∈ [1, 8759] (6)

𝑡𝑎𝑡𝑒𝑠𝑡𝑜𝑟𝑎𝑔𝑒0 = 0 (7)

𝑐ℎ𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ ≤ 𝑠𝑡𝑎𝑡𝑒𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ , ∀ℎ ∈ [0, 8759] (8)

ℎ𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ ⋅ 𝑑𝑐ℎ𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ = 0, ∀ℎ ∈ [0, 8759] (9)

The use of the heat pump is defined in Constraints (10) to (14).
onstraint (10) ensures that the heating demand of each day (ℎ𝑑𝑘) is
lways met. The heat generation in every hour of the corresponding
ay is ℎ𝑝ℎ. It depends primarily on the outdoor temperature, which is
eflected in the coefficient of performance 𝐶𝑂𝑃ℎ, as the efficiency of air
eat pumps is lower at lower outside temperatures (Constraint (13)).
or reasons of simplification, we assume that the heat pump runs on
ull capacity, when active. Heat generation therefore always generates

power consumption equal to the heat pump’s maximum capacity
𝑝_𝑐𝑎𝑝 for every heating hour (Constraint (12)). Whether heating takes
lace in hour ℎ is described by the binary variable ℎ𝑒𝑎𝑡𝑏𝑖ℎ. Losses in
he switch-on and switch-off processes are not taken into account. To
educe the potential impact of this limitation, Constraint (11) ensures
hat heating is always performed consecutively within a day. In other
ords, the heat pump is only activated once a day and then generates

he entire heat needed for the day. 𝑛ℎ𝑒𝑎𝑡ℎ specifies how many hours
f heating are necessary with a start in hour ℎ to fulfill the daily heat
emand ℎ𝑑𝑘. Heating storage is implicitly considered and is assumed
o be operated such that the generated heat energy is distributed over
he corresponding day.
24𝑘+23
∑

ℎ=24𝑘
ℎ𝑒𝑎𝑡𝑝𝑟𝑜𝑑ℎ ≥ ℎ𝑑𝑘, ∀𝑘 ∈ [0, 364] (10)

ℎ+𝑛ℎ𝑒𝑎𝑡ℎ
∑

𝑥=ℎ
ℎ𝑒𝑎𝑡𝑏𝑖𝑥 ≥ 𝑛ℎ𝑒𝑎𝑡ℎ ⋅ (ℎ𝑒𝑎𝑡𝑏𝑖ℎ − ℎ𝑒𝑎𝑡𝑏𝑖ℎ−1), ∀ℎ ∈ [1, 8752] (11)

ℎ𝑝
ℎ = ℎ𝑒𝑎𝑡𝑏𝑖ℎ ⋅ ℎ𝑝_𝑐𝑎𝑝𝑎, ∀ℎ ∈ [0, 8759] (12)

𝑒𝑎𝑡𝑝𝑟𝑜𝑑ℎ = 𝐶𝑂𝑃ℎ ⋅ 𝑐
ℎ𝑝
ℎ , ∀ℎ ∈ [0, 8759] (13)

𝑝0 = 0 (14)

The grid feed-in cannot be larger than the electricity generated by
he solar PV system (Constraint (15)). Technical data and constraints
f the electric vehicle and battery storage are incorporated through
onstraints (16) to (19).

𝑟𝑖𝑑𝑠𝑢𝑝𝑝𝑙𝑦ℎ ≤ 𝑝𝑣ℎ, ∀ℎ ∈ [0, 8759] (15)

𝑡𝑎𝑡𝑒𝑒𝑣ℎ ≤ 𝑠𝑡𝑎𝑡𝑒𝑒𝑣𝑚𝑎𝑥, ∀ℎ ∈ [0, 8759] (16)

𝑐ℎ𝑒𝑣ℎ ≤ 𝑐ℎ𝑒𝑣𝑚𝑎𝑥, ∀ℎ ∈ [0, 8759] (17)

2 Note that we are assuming a perfect round-trip efficiency of 100% for
he battery. This is an abstraction from reality. However, in this paper, we
re intending to provide a proof-of-concept for a recommendation tool for
lectricity tariff-service bundles. While the labels themselves might change
ver time as technology improves and electricity prices shift, the proposed
ethod remains a valid approach, even though the models might have to

e retrained. Small deviations of the assumptions from reality are therefore
ot diminishing the validity of the results of our study. It remains a subject
f future work to test how the feature importance changes with changing

nvironmental variables.
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Table 3
Tuned XBG hyperparameters.

Hyperparameter Values

Learning rate 0.001, 0.01, 0.1
Minimum child weight 1, 4, 7
Maximum depth 3, 6, 9

𝑠𝑡𝑎𝑡𝑒𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ ≤ 𝑠𝑡𝑎𝑡𝑒𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑚𝑎𝑥 , ∀ℎ ∈ [0, 8759] (18)

ℎ𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ ≤ 𝑐ℎ𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑚𝑎𝑥 , ∀ℎ ∈ [0, 8759] (19)

Finally, the mathematical domain of all variables is set in Con-
traints (20)–(23).

𝑝𝑣ℎ, 𝑠𝑡𝑎𝑡𝑒
𝑒𝑣
ℎ , 𝑠𝑡𝑎𝑡𝑒𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ , 𝑔𝑟𝑖𝑑𝑑𝑒𝑚𝑎𝑛𝑑ℎ, 𝑔𝑟𝑖𝑑𝑠𝑢𝑝𝑝𝑙𝑦ℎ, 𝑐ℎ, 𝑐ℎ

𝑒𝑣
ℎ ,

𝑐ℎ𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ , 𝑐ℎℎ𝑝ℎ , 𝑑𝑐ℎ𝑒𝑣ℎ , 𝑑𝑐ℎ𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ , ℎ𝑒𝑎𝑡𝑝𝑟𝑜𝑑ℎ ≥ 0, ∀ℎ ∈ [0, 8759]
(20)

𝑒𝑣𝑏𝑖ℎ, ℎ𝑒𝑎𝑡𝑏𝑖ℎ,∈ {0, 1} ∀ℎ ∈ [0, 8759] (21)

ℎ𝑑𝑘 ≥ 0, ∀𝑘 ∈ [0, 364] (22)

ℎ𝑒𝑎𝑡ℎ ∈ N, ∀ℎ ∈ [0, 8752] (23)

.3. Label generation

Within the optimization, only the operating costs are considered.
o arrive at the final total cost for each bundle, two additional steps
re needed. First, capital costs for the used technologies (i.e., costs for
easing the technology) are incorporated (see Section 4.3). Second, for
undles that include non-electric alternative technologies, fuel costs
re added to allow full comparability. If an electric vehicle or a heat
ump are not included in a bundle in the optimization, costs for natural
as and gasoline have to be added to the extent that the same heat
oad and driving mileage can be covered. This makes the bundles fully
omparable in regards to their costs. Based on this cost comparison,
he households’ cost-minimal tariff-service bundles are derived. Each
ousehold’s lowest-cost bundle then represents that household’s label
or the subsequent classification.

.4. Service bundle recommendation

The derived labels serve as output vector and ground truth of the
ecommendation models. Based on specific, limited input features, the
ecommendation models aim to recommend the cost-minimal bundle.
ere, the recommendation of technologies means that they should be

eased for the following year and the recommendation of a tariff means
hat it should be contracted for the following year.

We develop two models, namely an XGBoost model (XGB) and a
eed-forward artificial neural network model (ANN). We assess the
odels in regards to statistical performance by calculating their accu-

acy and in regards to economic performance, by calculating the mean
nnual costs for customers. Along these two metrics, the models are
ompared to the theoretically optimal result and to a naive bench-
ark that simply recommends the most frequent optimal tariff-service

undle.
XGBoost is a gradient boosting based ensemble technique that has

erformed well in many Machine Learning challenges and delivers
omparatively good results on different problem types, including on
mbalanced data sets like in our case as shown in Section 5.1 [55–57].

detailed description of the XGB model can be found in [56]. We tune
hree important hyperparameters via a grid search. The parameters and
he tested values are displayed in Table 3.

ANN models are used in many data analytics applications in the
6

nergy context [50]. For the ANN in our study, we use an architecture T
Table 4
Tuned ANN hyperparameters.

Hyperparameter Values

Learning rate 0.001, 0.01, 0.1
Batch size 32, 64, 128
Number of units in dense layer 10, 30, 50

with one hidden layer with a relu activation function and an output
layer with a softmax activation function. We use the Adam optimizer
and the categorical crossentropy loss function. Three hyperparameters
are tuned using grid search, as shown in Table 4.

After comparing the performance of the two models, we select the
one with better economic performance and use it to compare model
performance under different feature subsets (see Section 4.4). For the
comparison, we train that model once on only the basic easy-to-obtain
data and once on the full data set including basic data, weather data,
and four-week excerpts of smart meter data at an hourly resolution. The
goal of that comparison is to identify the value of different data types.

4. Data

This chapter describes the data used within the case study in detail.

4.1. Electricity consumption profiles

The residential electricity consumption data comes from the Low
Carbon London project [58]. It includes electricity consumption profiles
of 324 households at half-hourly resolution from 2012 to 2013.3 Since
only private households are considered in our case study, we discard
32 outlier load profiles with an unusual low (below 1000 kWh) or high
(above 10,000 kWh) annual consumption in the first year’s data set.
This results in a final data set of 292 electricity consumption profiles.
As described in Section 3.2, these electricity consumption profiles form
the basis for the construction of a total data set of 9344 households.
Fig. 2 shows the average daily electricity consumption in both years. A
clear seasonality can be observed, with higher electricity consumption
in the colder seasons. The data patterns are similar over the two years,
with the second year showing an increased level in the first months
of the year. The distribution of annual electricity consumption per
household is presented in Fig. 9 in the Appendix A, also showing great
resemblances over both years.

4.2. Electricity tariffs

The electricity tariffs applied within this study are designed based
on the wholesale electricity prices on the day-ahead market in the
UK in 2018 and 2019 [59]. The data sets have an hourly resolution.
This subsection provides a short overview of how the electricity tariffs
for this analysis are engineered. A more detailed description can be
found in Appendix B. Importantly, all tariffs are designed to be revenue
neutral for utilities ceteris paribus (i.e., before demand response), as full
cost recovery is a key principle in tariff design [6,49,60].

The electricity price of the flat tariff 𝑒𝑝𝑓𝑙𝑎𝑡 is designed by calculating
the sum of hourly wholesale prices 𝑤𝑝𝑑,ℎ – with 𝑑 being the day of the
year and h being the hour of the day – weighted by the average hourly
electricity consumption of all consumption profiles in the correspond-
ing hour 𝑦𝑑,ℎ, divided by the total annual consumption. This results in
a flat tariff 𝑒𝑝𝑓𝑙𝑎𝑡𝑡 of 0.059 £/kWh for the first year and 0.045 £/kWh
for the second year.

3 2012 was a leap year and thus includes data from February 29th. To
chieve better transferability and generalization of the data, the year is treated
s if it was not a leap year and the corresponding 29.02.2012 data are deleted.
he half-hourly data are transformed into hourly values.
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Fig. 2. Daily electricity consumption of a hypothetical average household over the
course of a year.

Fig. 3. Distribution of variable unit prices over electricity tariffs in the first year.

For TOU-2 and TOU-3, the tariffs are determined as weighted
averages of wholesale prices and electricity consumption within the
daily recurring time window.

For the TOU-2 tariff, there are two price levels, i.e. ‘‘low’’, between
11 pm–5 am and ‘‘high’’, between 6 am–10 pm, with prices of 0.05
£/kWh (0.037 £/kWh in the second year) and 0.062 £/kWh (0.048
£/kWh in the second year), respectively.

For the TOU-3 there are three price levels, i.e. ‘‘low’’ between 11
pm–5 am, ‘‘high’’ from 6 am–3 pm and again from 9 pm–10 pm and
‘‘peak’’, between 4 pm–8 pm, with prices of 0.05 £/kWh (0.037 £/kWh
in year two), 0.057 £/kWh (0.044 £/kWh) and 0.073 £/kWh (0.056
£/kWh), respectively.

The last tariff to determine is the RTP tariff 𝑒𝑝𝑟𝑡𝑝𝑡 . Here, wholesale
rices at every hour of the year 𝑤𝑝𝑡 are directly passed on to the
onsumers.

Once these wholesale based electricity tariffs are determined, grid
ees, policy charges and other charges are added in order to receive the
inal end-user prices. In many geographies, this includes a fixed annual
r monthly charge and a volumetric per-kWh charge. Therefore, we add
fixed charge of 94 £ per year, based on the actual charge in London in
019 [61] and a volumetric charge of 0.0936 £ (0.1183 £ in year two),
hosen so that the flat tariff is equal to the average variable unit price
n the UK in 2018 and 2019, respectively [61]. Figs. 3 and 4 display
he distribution of the final electricity unit prices for each tariff type in
he first and second year, respectively.
7

Fig. 4. Distribution of variable unit prices over electricity tariffs in the second year.

4.3. Technology data

In this subsection, the techno-economic data regarding the different
energy technologies are described.

Photovoltaics

The data on electricity generation from PV systems is simulated
based on Renewables.ninja [62], using historical data on PV electricity
generation in London in 2012 and 2013 with an hourly resolution. A
standard tilt of 25 degrees is assumed and a standard system size of 7.48
kWp is chosen, based on the average PV capacity per system installed in
Great Britain in 2020 [63]. The azimuth is varied according to Table 1,
resulting in three different electricity generation profiles.4

Battery storage

The size of the battery storage is adjusted to the average electricity
consumption of the households considered here, which lies under 4000
kWh. Following the approach by Henni et al. [64], this results in an
assumed battery capacity 𝑠𝑡𝑎𝑡𝑒𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑚𝑎𝑥 of 6 kWh. The battery’s maximum
charging capacity equals the standard charging power in the UK grid
of 𝑐ℎ𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑚𝑎𝑥 = 3 kWh.

Heating

For serving the customers’ needs for space heating and warm water,
we consider an electric air-to-water heat pump with a standard power
𝑃𝐻𝑃 of 9 kW [65]. The total heating demand of households can be
estimated based on the households’ annual electricity consumption in
the first year and can be distributed over the year based on outdoor
temperature. Thus, on heating days (i.e., days with a daily average
temperature of under 12 ◦C [66]), the heat pump has to meet space
heating and hot water demand, whereas on non-heating days it only
has to meet hot water demand.5

4 Following the procedure for the electricity consumption data, the data for
ebruary 29th, 2012 is deleted.

5 More details can be found in Appendix C.
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Mobility

For meeting the customers’ mobility needs, we consider an EV
with current technical data, i.e., a battery capacity 𝑠𝑡𝑎𝑡𝑒𝑒𝑣𝑚𝑎𝑥 of 50
kWh, a maximum charging power of 11 kWh 𝑐ℎ𝑒𝑣𝑚𝑎𝑥 and an electricity
consumption of 20 kWh per 100 km [67]. In order to simulate the
electricity demand of an electric vehicle, it is necessary to take mobility
profiles of the households into account, which include the distances
traveled, times and durations of trips by car. Since the respective
mobility information of the households is not available, it is constructed
based on empirical data from Ecke et al. [68]. In order to differentiate
between different driving patterns, we use a commuter and a non-
commuter driving profile for each power consumption profile (see
Table 1).6

Capital and leasing costs

For generating the final labels, capital costs of the technologies
need to be added to the operational costs before determining the cost-
minimal bundles. In cases where a time-varying electricity tariff (TOU
or RTP) is applied, the use of a smart meter is necessary. For this
technology, residential customers are assumed to pay a typical annual
fee of 51 £ per year in line with Gausden [69]. For a 7–8 kW PV
system, the average capital costs in 2020 were 9071 £ [70].7 These
costs are discounted over the assumed lifetime of twenty years [71],
assuming a weighted average cost of capital (WACC) of 4%. Similarly,
the capital costs for the 6 kWh sized storage are estimated to be 2400 £,
following IRENA International Renewable Energy Agency [72]. These
costs are annualized based on a lifetime of ten years and a WACC of
4%. Unlike PV and battery, the heat pump is a substitute for an existing
technology, in most cases conventional gas heating. Since similar costs
can be assumed for both kinds of technologies, no additional acquisition
costs for the heat pump are assumed. Similarly, it can be assumed that
an electric vehicle is a substitute for a conventional vehicle. Since the
capital costs of an electric vehicle are often still higher than those of a
combustion engine car, we include additional capital costs of 4000 £,
based on [73,74]. Moreover, since this case study assumes charging of
the EV at home, the installation of a wallbox is necessary. This results in
additional costs of 1400 £ (500 £ material costs and 900 £ installation
costs), based on [75,76]. The total additional capital costs of 5400 £
are discounted over ten years with a WACC of 4% and the discounted
annual rates are added to the optimization results, correspondingly.

Reference technology operation costs

To enable a fair comparison, the operation costs of alternative, non-
electrical technologies for heating and mobility need to be included at
a level that meets the same needs for heating and driving.

The heating costs of a gas heater can be calculated based on the
average natural gas prices in London in 2018 and 2019 mapped to the
two considered years [77]. Similarly to the electricity cost, they consist
of a fixed yearly price and a variable unit price. This leads to yearly
fixed costs of 92.51 £ for each household supplemented by operating
costs of 0.0389 £/kWh in the first year and fixed costs of 99.29 £ with
a unit price of 0.0394 £/kWh in the second year. The costs of operating
an internal combustion engine vehicle are based on the average London
gasoline prices of 2020 of 1.14 £/liter [78] and an average consumption
of 7.8 liters per 100 km [79].

6 More details can be found in Appendix D.
7 Using a EUR:GBP conversion rate of 1:0.854.
8
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4.4. Machine learning input data

The Machine Learning models are trained based on various input
features, i.e., features that can be categorized into three groups.

The first group consists of easy-to-obtain basic data. This includes
he households’ external parameters, i.e. azimuth of roof, driving rou-
ine (i.e., the binary variable describing the existence of at least one
ommuting person in the household), annual electricity consumption,
nnually driven distance by car and binary feasibility of EV and HP, as
efined in Table 1.

The second group contains weather data from London [58]. We use
emperature, visibility and wind speed data at an hourly resolution. For
ach of the three, we calculate the monthly mean, standard deviation,
aximum and median value.

The third group consists of smart meter data that customers can
hoose to make accessible to the retailer in order to enable them
o make better recommendations ("collaborative data"). These data
omprise hourly smart meter readings. To utilize those time-series
ata, we engineer the following features: the mean, standard devia-
ion, maximum and median consumption of the complete time series.
dditionally, the mean, maximum and standard deviation for the hour-

o-hour difference are calculated and included in the feature set. Lastly,
he mean for each hour of the day is aggregated to capture daily
atterns.

For the Machine Learning task, the data set is split into training,
alidation and test sets. This split is done in two dimensions, i.e. by
ear and customers. All training and validation takes place on data
f the first year. The subsequent evaluation takes place on data of
he second year. We control that all household samples with the same
nderlying inelastic electricity consumption profile are assigned to only
ne of the three data sets (training, validation, or test) to prevent
he models from learning patterns between customers that are based
n the same basic consumption profile. Under this limitation, 70% of
ustomers are randomly assigned to the training set, 15% are assigned
o the validation set and 15% are assigned to the test set. We repeat the
rocess of data splitting, model training and evaluation three times, to
ross-validate our results.

The models are executed on a Windows computer with Intel i7 core,
.80 GHz and 16 GB RAM. The average computation time for training,
alidating and testing is 164 s for the XGB model and 169 s for the
NN model, respectively.

. Results

In this chapter, the results of the optimization and of the recommen-
ation tool are presented.

.1. Smart home energy management results — label distribution

We first evaluate the distribution of the resulting cost minimal
ariff-service bundles amongst customers.

.1.1. Bundle frequency
The combination of the four potential technology options (each

f them binary) with the four potential tariffs means that 64 bundle
abels are generally possible. However, most of these bundles are never
ptimal and thus do not occur as a label. Within the first year’s
ptimal solution, 17 different service bundles appear (23 in the second
ear). The most common bundle is a flat tariff in combination with no
echnology, with 3932 cases (42.08%) in the first year and 4433 cases
47.44%) in the second year. This large share is driven by the fact that
e deliberately design and include customer samples for whom it is
xternally impossible to install PV panels or use a EV or a heat pump
see Section 3.1). The second most common bundle with 1710 (18.30%)
ases (1751 or 18.74% in year 2) features the use of an RTP tariff in
ombination with an electric vehicle. The third most frequent bundle
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Fig. 5. Frequency of optimal bundles.
constitutes the application of a heat pump under the RTP tariff with
1513 customers (16.19%) in year 1 and 516 customers (5.52%) in year
2. An overview of these and all further bundles and their occurrences
can be found in Fig. 5.

5.1.2. Individual technology and tariff frequency
Regarding the different technologies, the installation of a PV plant,

independent of its azimuth, is part of the most profitable service
bundle in 18.8% (27.8% in the second year) of the possible cases. Of
these cases, about half include a south-facing PV system and about
a quarter each include east and west facing orientation, respectively.
The considerable increase in the second year is driven by higher grid
electricity prices which render self-generation more attractive. The
electric vehicle is part of the optimal bundle in roughly 70% of the
cases in which it is externally possible, in both years. The majority
of these cases belongs to customers with commuter driving profiles,
which indicates that differentiating regarding driving profile types can
be relevant for optimal bundle selection. The heat pump installation
is part of the optimal bundle in 70.6% (49.5% in the second year)
of the possible cases. The substantial drop in the second year is due
to a higher median electricity price and smaller standard deviation,
which renders the heat pump less financially attractive compared to its
conventional alternative. This shows the value of automated demand
response and the potential of time-varying tariffs. The installation of a
battery storage is always possible and occurs in 14.8% (22.9%) of the
cases. In the vast majority of these cases, the battery is combined with
a PV system, which hints at the saving potential from self-consumption.
Nevertheless, in 7.75% (15.15%) of the cases in which a battery is used,
it is used without a PV system, but with the RTP tariff. In these cases,
the advantage of the battery storage results solely from charging it with
grid electricity in low-price hours that is later supplied to the customer
behind the meter.

The standard flat tariff finds application in 42.6% (48.8%) of the
most profitable service bundles. 57.4% (50.6%) and thus the majority
of cases, contain the RTP-tariff. This shows the high potential of this
electricity tariff. While in most cases, the combined usage of technolo-
gies renders the RTP tariff beneficial, in a few cases (0.43% in year 1
and 0.26% in year 2), the customer’s electricity consumption profile
alone allows the household to benefit from the RTP tariff even without
additional technologies. Besides, it becomes evident that the TOU tariffs
are not attractive in this model setting. TOU-2 and TOU-3 are not part
9

of any cost-optimal bundle in the first year. In the second year, all tariffs
occur, but TOU tariffs only occur in 0.61% of the optimal bundles.8

5.1.3. Effects of bundling on technology selection
To isolate the effect of combining electricity tariffs and technologies

in bundles on the optimal recommendation, we compare these results
to a scenario in which the given flat tariff is the only possible tariff
option. This artificial limitation leads to results that differ in varying
degrees from the tariff-service bundle recommendations. In the absence
of time-varying tariffs, PV systems are chosen in 23.8% (36.6%) of
the cases, constituting a small, but considerable increase. Batteries find
application in 11.2% (11.8%) of the most profitable service bundles,
constituting a small decrease. Notably, the use of batteries now takes
place exclusively in combination with an installed PV system, since
the absence of time-varying prices prohibits other applications than
maximization of self-consumption. The absence of time-varying prices
furthermore decreases the occurrence of EVs in the optimal bundle
from roughly 70% to 65% in both years and the occurrence of heat
pumps (which have even more flexibility) to 32.5% (22.0% in the
second year) from 70.6% (49.5%) of cases, which constitutes a strong
reduction. In summary, these comparisons demonstrate the synergies
between innovative tariffs and distributed energy technologies and
strongly motivate their bundled recommendation.

5.1.4. Label distribution
The retrieved optimal bundle for each household is also the label for

the subsequent Machine Learning classification task. The distribution of
labels is imbalanced, because some labels occur much more frequently
than others. In particular, it can be a challenge (or even impossible) to
adequately recommend bundles that only occur rarely or not at all in
the training set of year 1.

5.2. Service bundle recommendation

This subsection presents the recommendation results of the case
study. In the first paragraph, the performance of the applied Machine
Learning methods is analyzed and compared to the naive benchmark

8 In practice, additional factors such as transaction costs, simplicity and
acceptance might increase the attractiveness of TOU tariffs, compared to RTP.
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Fig. 6. Boxplot of the individual cost changes through bundle recommendation, compared to status quo (XGB algorithm with the full feature set including basic easy-to-obtain
data, weather data, and smart meter data as input features).
and the optimal result both in terms of accuracy and financial impli-
cations. In the second paragraph, the performance regarding different
input feature subsets is analyzed. In the third and fourth paragraph, the
economic and statistical performance of the method across customers
groups is analyzed in order to evaluate the method’s applicability
to various types of customers and to uncover possibilities for future
research.

The performance is statistically evaluated with the accuracy metric,
as it is the most intuitive measure to understand a classifier’s perfor-
mance. As the underlying data set is imbalanced, the accuracy must
be evaluated in comparison to a baseline model for which we use a
naive predictor. Besides accuracy, the mean economic performance is
evaluated.

5.2.1. Comparison of methods
First, we compare the performance of the four methods, i.e. the two

Machine Learning methods, the naive benchmark and the optimum.
The calculated mean energy costs (economic evaluation) and the classi-
fication accuracies are given in Table 5. The optimal hyperparameters
for each model can be found in Appendix E. The table shows that
the XGB model and the ANN model outperform the naive classifier
regarding classification accuracy (as a reminder: the naive benchmark
is the recommendation of the default bundle, i.e. no technology and
flat tariff). The ANN model achieves 73% accuracy, the XGB model
75% and the naive benchmark 56%. Besides, both Machine Learning
models achieve cost reductions, compared to the naive benchmark. The
ANN model achieves mean annual energy costs reductions of 316 £,
while the XGB model even results in savings of 337 £. Economically,
the models perform close to the theoretical optimum, with a delta of
13 £ (XGB) and 34 £ (ANN) compared to the optimal bundles. This
represents a very good economic performance, even if accuracies are
not too close to 100%. A potential reason for this is that the costs of
some sub-optimal bundles are close to those of the optimal bundle.
An analysis of the individual customers’ cost changes (see boxplot in
Fig. 6) shows that the vast majority of customers benefits from the
recommender algorithm, compared to staying on the default bundle.
Some customers can save multiple thousand pounds per year. Out of
the minority of customers that receive sub-optimal recommendations,
some experience increased costs, with a maximum increase of 254.77
pounds per year. This represents a risk that might prevent risk-averse
10
Table 5
Accuracy and mean annual energy costs for different methods.

Method Mean energy cost Classification accuracy

Naive benchmark 2972 £ 56%
ANN 2656 £ 73%
XGB 2635 £ 75%
Optimum benchmark 2622 £ 100%

residential customers from following a recommendation. To address
this, an energy utility could therefore offer a cost stability guarantee to
all customers and internally balance the cost reductions and increases
while promoting the sustainability gain to its customers. Given that
the average gains greatly outweigh the average losses, this is still
economically beneficial for the utility.

5.2.2. Comparison of feature subsets
Second, we compare the performance of using different feature sub-

sets. As described in Section 4.4, there is a different level of difficulty
in obtaining different features. Therefore, the performance with and
without hard-to-obtain features is crucial to understanding their value.
Table 6 shows the performance of the XGB model based on the basic
easy-to-obtain features, added weather features and added smart meter
high-resolution consumption features which the household can share
with the energy retailer. While the XGB model achieves an accuracy
of 75% when using all features, it achieves 74% without the smart
meter data. Given that the naive classifier achieves an accuracy of
56%, the results imply that most of the correct classifications beyond
the majority class are made possible by data that is easy to obtain.
A detailed feature importance analysis confirms this. Fig. 7 shows
that even if all features are available to the algorithm, the six most
important features for a correct classification are the total electricity
consumption in the previous year, the driving routine, the externally
given feasibility of technologies and the azimuth of the solar plant.
Only the seventh most important feature is based on smart meter data.
Moreover, the mean costs with and without harder to obtain features
differ by only 2 £, as Table 6 shows. This indicates that smart meter
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Fig. 7. Feature importance: F score of the seven most important features.
Table 6
Accuracy and mean energy costs of the XGB model with different input feature sets.

Features Mean energy cost Classification accuracy

Naive benchmark 2972 £ 56%
Basic 2637 £ 74%
Basic + weather + smart meter 2635 £ 75%
Optimum benchmark 2622 £ 100%

data provides little additional value for a correct classification and for
savings on average.9

5.2.3. Comparison of customer subsets
In addition, we conduct a detailed analysis of how different cus-

tomers are affected by the recommendation. As Fig. 8 displays, the
recommendation algorithms achieve savings that are close to the op-
timum, across all customer groups. The absolute savings vary among
groups. The savings are largest for customers that can lease an EV
and smallest for those who cannot. Similar differences, although to a
smaller magnitude, can be found between customers that can adopt
heat pumps and PV and those who cannot. Having the potential to
install these energy technologies unlocks higher potential savings, that
are reliably identified and recommended by the Machine Learning
algorithms. Another interesting aspect is that cost reductions are sub-
stantially larger for households with commuters. This is due to the
higher annual driving mileage of such households that makes EVs more
financially attractive, since they have lower operating costs than cars
with a combustion engine. Interestingly, the finding that algorithms can
already unlock most of the potential savings with the basic input data
alone is not only true on average (compare Table 6), but stable across
all observed customer groups. This is a very promising finding for
practical application, since no extensive and expensive acquisition of
weather and smart meter data is necessary for any subset of customers.

9 Adding weather data alone to the basic data results in the same costs and
ccuracy as using just the basic data. Therefore, weather data alone does not
rovide any additional value, as is to be expected.
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6. Discussion

In this section, the results of this study and its limitations are dis-
cussed, proposals for future work are given and practical implications
are presented.

In summary, the proposed Machine Learning methods recommend
bundles to customers that are better suited for them than the status
quo. This performance is expressed by higher accuracy and lower
mean costs from those models than from the naive recommender.
An in-depth analysis of the results uncovers that basic input data is
sufficient to achieve good performance across all customer groups.
The most important input features are the household’s total electricity
consumption of the previous year, the annual driving mileage and the
general possibility to install heat pumps, EVs and PV plants in the given
household. Few customers receive wrong recommendations and thus
experience an increase in costs. The risk of being among those few neg-
atively impacted customers could deter people from following the given
recommendations and thus hamper the distribution of innovative tariffs
and technologies. This is especially relevant since previous studies have
found that residential electricity customers are on average risk-averse
(compare [46]). To cater for the risk attitude of customers, future work
should investigate in more detail the option of a cost guarantee – also
known as bill protection – for households, offered by the utility. The
utility could apply established methods from the insurance industry to
perform internal hedging of individual customers’ gains and losses. This
represents an interesting pathway towards practical implementability
of this research.

In Section 2 we discussed that past studies on electricity tariff
recommendation usually assume extensive data availability for their
models. Given that we find that easy-to-obtain data is sufficient to fore-
cast cost-reducing tariff-service bundles in most cases, these approaches
is called into question and we need to hypothesize on the causal
factors for this observation. However, this might be comparing apples
and oranges. Tariff recommendation without technology that greatly
impacts the electricity consumption needs to be done on a much more
detailed level. For instance, frequently using an electric vehicle auto-
matically makes a RTP tariff more attractive. It is therefore probable
that more detailed data is simply necessary for tariff recommendation
in cases with only residential baseload demand. Furthermore, we are
unaware of any other study that considers the factor importance for
recommending electricity tariffs. Therefore, it is also one inherent



Applied Energy 353 (2024) 122137F. vom Scheidt and P. Staudt
Fig. 8. Mean cost difference compared to status quo bundle (i.e. naive benchmark), by customer subset.
contribution of this study to suggest important features to decide over
optimal tariff-service bundles for households.

Regarding the key limitations of this study, one can differentiate
data limitations and methodological limitations.

The study is based on a data set that is subject to several limitations.
All households are assumed to make use of a private car and the driving
profiles are randomly assigned to the households. It is recommended
to collect and use actual household specific data regarding power con-
sumption, mobility behavior and heating demand in future work. For
all technologies, assumptions and simplifications are made that might
in some cases not be directly transferable to reality. Among others,
the individual empirical heat consumption behavior of households is
not taken into account when calculating heating requirements. Instead,
average values are used. In doing so, different insulation and heat losses
of the households are also not taken into account. Additionally, the
technology costs assumed here are based on current state-of-the-art
data and might vary in the future and be different in other geogra-
phies. Future work could expand our approach by including customized
sizing of technologies based on household characteristics like number
of inhabitants, house insulation, etc. Sensitivity analyses are recom-
mended to be conducted in future work varying technology costs and
their WACC. The generated labels are presumably highly dependant
on the applied regulation. Consequently, changes in regulation or the
application to other countries make it necessary to retrain the models.
Transferring previously trained models to new settings can overcome
these problems [80].

An analysis of the classification accuracy across classes unveils that
the Machine Learning algorithms XGB and ANN perform specifically
well for the larger classes, i.e. recommend those bundles reliably which
are optimal for many customers in the training data. However, the
algorithms have difficulties assigning the correct label to the smallest
classes, i.e., those with only few instances. In particular, very rare
classes are mostly falsely classified as one of the four most frequent
classes (for an exemplary confusion matrix, see Appendix F). Un-
covering this phenomenon helps making recommendations for future
research, as this phenomenon is a typically problem for Machine Learn-
ing algorithms when applied to imbalanced data sets. It is therefore
recommended to apply well understood counter measures, such as
oversampling, undersampling, and acquisition of larger data sets, in
future extensions of this study or practical implementation.
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However, the specific suitability of the chosen algorithms also is
subject to future research. We have chosen these two algorithms as they
are frequently used in the energy research domain [50]. Furthermore,
as the results are close to the optimum (see Fig. 8), we refrained from
testing further methods as a complete review of available classification
methods is out of the scope of this paper. However, other classification
methods could be superior in identifying rare classes. Furthermore,
we do not explore ensemble methods in detail beyond the use of the
XGB algorithm. A well-crafted approach using ensemble learners might
also be superior in terms of identifying rare classes. Therefore, as we
cannot claim superiority of our methods, this remains an interesting
topic for future research. In this study, provide a proof-of-concept that
is independent of these limitations.

The optimization and recommendation methods are also subject
to limitations. Our study only takes automated demand response into
account for the electricity consumption of newly installed technology.
In addition, we focus on costs as the only metric for identifying optimal
tariff-service bundles and for making recommendations. Transaction
costs and behavioral considerations that might influence customers’ de-
cisions [81,82] are ignored. Manual demand response is neglected, as
it typically represents a smaller potential than the automated demand
response of technologies such as electric vehicles and heat pumps in our
study. As Schneider and Sunstein [54] point out, it can be beneficial
to use RTP tariffs for technologies with automated demand response
and in parallel TOU tariffs for all manually operated electricity con-
sumption. Such manual demand response could be modeled according
to Gottwalt et al. [3] in future expansions of this study.

7. Conclusions

Our results demonstrate the benefits of energy service bundles
that combine time-varying electricity tariffs with flexible sustainable
technologies. Moreover, we demonstrate the value of corresponding
recommendation systems. We find considerable saving potentials that
by far exceed the savings that customers can achieve from tariff switch-
ing alone. The availability of time-varying electricity tariffs makes
energy technologies more financially attractive for many households.
In the vast majority of cases, the optimal bundles do not only include
a change of tariff.

In detail, our results show that the developed Machine Learning
recommendation models achieve accuracies of 73%–75% and thus
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outperform the naive benchmark (56%). Similarly, they achieve better
economic performance, by reducing mean energy costs to 2635–2656 £,
compared to 2972£ under the naive benchmark. On a single customer
level, the recommendation models enable savings for the vast majority
of customers, especially for those that have the potential to install a
heat pump, or a PV plant, or use an electric vehicle and for those that
have a commuter living in the household. In order to cater for risk-
averse customers who fear cost increases, we propose a bill protection
mechanism to be offered by the energy utility.

Moreover, we find that the proposed models can achieve these cost
reductions largely by using data that is easy to obtain. The data with
the highest feature importance are the total electricity consumption
of the previous year and the annual driving mileage. Using additional
granular smart meter data does improve the results across all observed
customer groups, but only by a margin. This finding supports the
practical applicability of the proposed method.

In summary, the developed decision support tool can help customers
to find a personalized tariff-service bundle that lets them benefit from
cost savings. At the same time, this increases the diffusion of sustain-
able energy technologies, efficient tariffs and smart meters, which can
be a strong digital support for the energy transition. The proposed
tool may help electricity retailers in their business model transition,
highlighting investments that are beneficial and helping them to profit
from the ongoing decentralization of the energy sector. Based on our
results, we see great potential for further development and application
of Machine Learning based recommendation systems, combining the
recommendation of tariffs and energy services as a bundle.
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Appendix A. Consumption data

Among the electricity consumption profiles, a minimum annual
consumption of 1,026.50 kWh and a maximum value of 9,753.05 kWh
can be observed, in the first year. In the second year, the annual
consumption is between 1,001.91 kWh and 11,500.73 kWh. Fig. 9
displays the distribution of the annual consumption values.
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Appendix B. Electricity tariffs

In the data of 2018, two data points are missing. In 2019, 26 data
points are missing. They are supplemented by linear interpolation.
Fig. 10 shows the distribution of wholesale electricity prices in 2018
across the hours of a day in the form of box plots. Fig. 11 illustrates
the distribution of the same data in 2019. For the application, the price
data of 2018 is linked to the consumption data of 2012 to form the first
year’s data and the 2019 price data is linked to the 2013 consumption
data to form the second year’s data.

Eq. (24) defines the calculation of the electricity price for the flat
tariff 𝑒𝑝𝑓𝑙𝑎𝑡.

𝑝𝑓𝑙𝑎𝑡𝑡 =
∑365

𝑑=1
∑24

ℎ=1 𝑤𝑝𝑑,ℎ ⋅ 𝑦𝑑,ℎ
∑365

𝑑=1
∑24

ℎ=1 𝑦𝑑,ℎ
, 𝑡 ∈ [1, 8760] (24)

For the TOU-2 tariff, the energy prices are determined according
to (25) and (26). Eq. (27) sets the time periods in which these prices
occur.

𝑒𝑝𝑡𝑜𝑢2,𝑙1 =
∑365

𝑑=1(
∑6

ℎ=1 𝑤𝑝𝑑,ℎ ⋅ 𝑦𝑑,ℎ +
∑24

ℎ=23 𝑤𝑝𝑑,ℎ ⋅ 𝑦𝑑,ℎ)
∑365

𝑑=1(
∑6

ℎ=1 𝑦𝑑,ℎ +
∑24

ℎ=23 𝑦𝑑,ℎ)
(25)

𝑒𝑝𝑡𝑜𝑢2,𝑙2 =
∑365

𝑑=1
∑22

ℎ=7 𝑤𝑝𝑑,ℎ ⋅ 𝑦𝑑,ℎ
∑365

𝑑=1
∑22

ℎ=7 𝑦𝑑,ℎ
(26)

𝑒𝑝𝑡𝑜𝑢2𝑡 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑒𝑝𝑡𝑜𝑢2,𝑙1, if 𝑡 ∈ [24𝑘 + 1, 24𝑘 + 6]
⨆

[24𝑘 + 23, 24𝑘 + 24]
with 𝑘 ∈ [0, 364]

𝑒𝑝𝑡𝑜𝑢2,𝑙2, if 𝑡 ∈ [24𝑘 + 7, 24𝑘 + 22]
with 𝑘 ∈ [0, 364]

(27)

The calculation of the three TOU-3 price levels is conducted simi-
larly to the TOU-2, as shown in Eqs. (28), (29) and (30). Eq. (31) sets
the time periods in which these prices occur.

𝑒𝑝𝑡𝑜𝑢3,𝑙1 =
∑365

𝑑=1(
∑6

ℎ=1 𝑤𝑝𝑑,ℎ ⋅ 𝑦𝑑,ℎ +
∑24

ℎ=23 𝑤𝑝𝑑,ℎ ⋅ 𝑦𝑑,ℎ)
∑365

𝑑=1(
∑6

ℎ=1 𝑦𝑑,ℎ +
∑24

ℎ=23 𝑦𝑑,ℎ)
(28)

𝑒𝑝𝑡𝑜𝑢3,𝑙2 =
∑365

𝑑=1(
∑16

ℎ=7 𝑤𝑝𝑑,ℎ ⋅ 𝑦𝑑,ℎ +
∑22

ℎ=20 𝑤𝑝𝑑,ℎ ⋅ 𝑦𝑑,ℎ)
∑365

𝑑=1(
∑16

ℎ=7 𝑦𝑑,ℎ +
∑22

ℎ=20 𝑦𝑑,ℎ)
(29)

𝑒𝑝𝑡𝑜𝑢3,𝑙3 =
∑365

𝑑=1
∑20

ℎ=17 𝑤𝑝𝑑,ℎ ⋅ 𝑦𝑑,ℎ
∑365

𝑑=1
∑20

ℎ=17 𝑦𝑑,ℎ
(30)

𝑒𝑝𝑡𝑜𝑢3𝑡 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑒𝑝𝑡𝑜𝑢3,𝑙1, if 𝑡 ∈ [24𝑘 + 1, 24𝑘 + 6]
⋃

[24𝑘 + 23, 24𝑘 + 24]
with 𝑘 ∈ [0, 364]

𝑒𝑝𝑡𝑜𝑢3,𝑙2, if 𝑡 ∈ [24𝑘 + 7, 24𝑘 + 16]
⋃

[24𝑘 + 21, 24𝑘 + 22]
with 𝑘 ∈ [0, 364]

𝑒𝑝𝑡𝑜𝑢3,𝑙3, if 𝑡 ∈ [24𝑘 + 17, 24𝑘 + 21]
with 𝑘 ∈ [0, 364]

(31)

The last tariff to determine is the RTP tariff 𝑒𝑝𝑟𝑡𝑝𝑡 . Here, wholesale
prices at every hour of the year 𝑤𝑝𝑡 are directly passed on to the
consumers, as shown in Eq. (32).

𝑒𝑝𝑟𝑡𝑝𝑡 = 𝑤𝑝𝑡, 𝑡 ∈ [1, 8760] (32)

Appendix C. Heating

The total heating demand of households can be estimated based on
the number of inhabitants and the size of the living space. Since this
data is not included in the original electricity consumption data set, it
is estimated based on the households’ annual electricity consumption

in the first year, divided by the average electricity consumption in the

https://github.com/PhilippStaudt/UtilityServiceBundlesData
https://github.com/PhilippStaudt/UtilityServiceBundlesData
https://github.com/PhilippStaudt/UtilityServiceBundlesData
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Fig. 9. Distribution of the annual electricity consumption of the households.

Fig. 10. First year’s hourly electricity wholesale prices in the UK throughout the day.

Fig. 11. Second year’s hourly electricity wholesale prices in the UK throughout the day.
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Fig. 12. Exemplary confusion matrix, showing the overclassification of the four most frequent classes.
UK [83,84]. By multiplying the calculated number of inhabitants with
the average apartment size per person in London (33 m2), the living
space of each household is determined [85]. Taking the average annual
heating demand per square meter of 133 kWh/m2a into account, the
annual heating capacity required is determined [86]. For water heat
demand, the average water consumption of 40 liters per person and
day multiplied by the energy needed to heat it up to 40 ◦C [87].

The daily demand for hot water is assumed to be static over the
year. The heating demand for space heating needs to be distributed
over time. For this, we take advantage of historical, hourly resolved,
temperature data from London in 2012 and 2013 [58]. We assume that
space heat is only produced when temperatures are below the heating
limit with a daily average temperature of 12 ◦C (in line with Recknagel
et al. [66]). This leads to 214 heating days in the first year and 202
heating days in the second year. The space heat demand is then equally
distributed over the heating days.

Appendix D. Mobility

For this study, we use mobility data from the German Mobility
Panel [68]. It includes detailed driving profiles of private households in
Germany in everyday life during an ordinary week. The data collection
includes various data of which we use the ID, means of transportation,
day of the week, departure time, distance traveled, arrival time and
trip purpose. We only consider trips for which a car is used as means
of transportation.

From the panel’s extensive data collection, a commuter and a non-
commuter driving profile is randomly assigned to each electricity con-
sumption profile, which creates two synthetic customers for each con-
sumption profile and enables a comparison of the two characteristics. A
driving profile is considered to be a commuter profile if the workplace
is visited at least four times a week. We only consider profiles for which
the parking time of the car at home is always long enough to recharge
15
Table 7
Optimal hyperparameter combinations for XGB.

Data input Learning rate Min. child weight Max. depth

Basic 0.1 4 3
Basic + weather + smart meter 0.1 7 6

Table 8
Optimal hyperparameter combinations for ANN.

Data input Learning rate Batch size # units in dense layers

Basic + weather + smart meter 0.001 50 64

the car sufficiently to complete the subsequent trips until the car returns
home. Finally, the mobility profile is extended to the two year time
frame of the case study, by repeating the driving profiles.

Appendix E. Optimal hyperparameters

See Tables 7 and 8.

Appendix F. Confusion matrix

Fig. 12 shows the false classification of smaller classes as majority
classes. Each row represents a true label and each column represents a
predicted label. The four most frequent classes are labelled.
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