arXiv:2105.04169v2 [cs.CV] 5 Jul 2021

PillarSegNet: Pillar-based Semantic Grid Map Estimation using Sparse
LiDAR Data

Juncong Feil2, Kunyu Peng?, Philipp Heidenreich!, Frank Bieder?, and Christoph Stiller

Abstract—Semantic understanding of the surrounding envi-
ronment is essential for automated vehicles. The recent publi-
cation of the SemanticKITTI dataset stimulates the research
on semantic segmentation of LiDAR point clouds in urban
scenarios. While most existing approaches predict sparse point-
wise semantic classes for the sparse input LiDAR scan, we
propose PillarSegNet to be able to output a dense semantic grid
map. In contrast to a previously proposed grid map method,
PillarSegNet uses PointNet to learn features directly from the
3D point cloud and then conducts 2D semantic segmentation in
the top view. To train and evaluate our approach, we use both
sparse and dense ground truth, where the dense ground truth
is obtained from multiple superimposed scans. Experimental
results on the SemanticKITTI dataset show that PillarSegNet
achieves a performance gain of about 10% mloU over the
state-of-the-art grid map method.

I. INTRODUCTION

Understanding the surroundings perceived by multiple on-
boarding sensors is crucial in many autonomous systems such
as automated vehicles. To achieve reliable scene understand-
ing, automated vehicles are typically equipped with com-
plementary sensors such as cameras, LiDARs, and radars.
As one of the key tasks in scene understanding, semantic
segmentation associates each pixel of an image or point in
a LiDAR point cloud with a semantic class. While image-
based semantic segmentation has been well studied, less
research in semantic segmentation of LiDAR point clouds
has been conducted due to the lack of publicly available
datasets for this task. To close this gap, SemanticKITTI [1]
has recently been published as the first large-scale dataset
for semantic scene understanding using LiDAR. In contrast
to conventional camera images, LiDAR point clouds provide
more precise distance measurements of the 3D world and
preserve the geometric information of objects, empowering
a better understanding of the 3D surroundings.

While most existing approaches [2], [3], [4] predict point-
wise semantic scores from the sparse LiDAR point cloud,
Bieder et al. [5] transform the sparse LiDAR point cloud into
a multi-layer grid map representation to obtain a dense top-
view segmentation of the LIDAR measurements. In Fig. 1, we
exemplarily show a semantically annotated 3D point cloud
and a corresponding dense top-view segmentation result. We
note that such a dense semantic grid map representation is
valuable information for subsequent processing in automated
vehicles. In particular, as an advancement of conventional
occupancy grid maps, it can be advantageous to further
distinguish free-space areas such as road, sidewalk, or terrain,
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Fig. 1: Instead of predicting point-wise semantic scores from
the sparse input LiDAR data, our approach outputs a dense
top-view semantic grid map (bottom left). To enable the
training, we generate sparse ground truth (bottom right) from
a semantically annotated 3D point cloud (top), and dense
ground truth (bottom middle) by superimposing multiple
labeled scans.

and occupied areas such as parked vehicles, buildings, or
vegetation.

Since the hand-crafted grid map feature extraction in [5]
can result in a potential information loss, we propose to use
PointNet [6] to learn features directly from the point cloud
and avoid this potential information loss. In this paper, we
propose a novel end-to-end method named PillarSegNet to
approach dense semantic grid map estimation using sparse
LiDAR data. PillarSegNet takes a sparse single sweep LiIDAR
point cloud as input and subdivides it into a set of pillars in
the ground plane. The raw point data in the generated pillars
is then fed into a simplified PointNet to extract pillar-wise
features, which are scattered back into the top view and form
a pseudo image. This pseudo image is then further consumed
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by a modified U-Net to predict a dense semantic grid map.

We train and evaluate PillarSegNet on the SemanticKITTI
dataset. To this end, we not only transform the point-wise
labels in a single sweep into sparse ground truth represented
by 2D grid map, but also accumulate multiple neighbouring
labelled scans to obtain dense ground truth. The dense labels
enables a proper evaluation of the dense prediction produced
by PillarSegNet. In addition to the learned pillar features,
we further study the benefit of fusing occupancy information
obtained via ray-casting. Experimental results show that our
approach outperforms the state-of-the-art grid map method
by a significant margin in term of mloU.

In summary, the main contributions of our work are:

1) We propose a novel end-to-end approach to be able to
output a semantic grid map given a sparse single LiDAR
sweep.

2) We conduct experiments and quantitative comparisons
on the SemanticKITTI dataset to prove the effectiveness of
our approach.

3) We perform a comprehensive analysis on the semantic
segmentation performance using different feature inputs and
data augmentation techniques through an ablation study.

II. RELATED WORK
A. Point Cloud Representation

3D LiDAR point clouds are unstructured, irregular and
sparse, making it challenging to process them. In the domain
of automated driving, it is common to represent 3D point
clouds in the top view. Such representation has several advan-
tages including scale invariance and minimal occlusions. To
obtain a top-view representation, there are two main groups
of methods: grid mapping and learning-based methods.

Grid mapping. Grid mapping approaches, first introduced
in [7] are widely used in robotics. The commonly used 2D
occupancy grid map encodes the occupancy probability for
each evenly spaced grid cell on the ground plane. Since the
mapping of 3D measurements to 2D implies a loss of infor-
mation in the height, [8] further divides the 3D world into a
set of 3D voxels and encodes the occupancy information for
each voxel to obtain 3D occupancy grid maps. In addition
to occupancy, other features such as intensity, density and
observations can also be derived to form multi-layer grid
maps [9]. In contrast to irregular point sets, the image-like
data structure of grid maps enables the use of powerful
convolutional operations in deep learning. Therefore, grid
maps are utilized in variety of machine learning applications,
e.g. object detection [9] and motion estimation [10]. Despite
being computationally efficient, grip mapping suffers from
an information bottleneck due to the hand-crafted feature
extraction, generally leading to a suboptimal performance.
For instance, the detection performance for small objects such
as pedestrians is noticeably limited in [9].

Learning-based. Since the introduction of PointNet [6],
learning-based methods have emerged as prominent alterna-
tives for hand-crafted feature engineering. PointNet is an end-
to-end neural network that learns point-wise features from the
input point set, demonstrating impressive results on indoor

3D object classification and semantic segmentation. Voxel-
Net [ 1] partitions the point cloud into equally spaced voxels
and adopts PointNet in novel voxel feature encoding (VFE)
layers to learn voxel-wise features. The obtained features
are then processed with 3D and 2D convolutions for object
detection. PointPillars [12] improves the inference speed by
discretizing the point cloud into a set of pillars so that the
3D convolution can be eliminated. Pillar features are further
used in different perception tasks, e.g. sensor fusion [13] and
ground plane estimation [!4], showing promising results. In
this paper, we exploit pillar features for semantic grid map
estimation. Although PointNet is able to encode point cloud
features very well, we note that occupancy features cannot
be learned from the data, as they are obtained via ray-casting
and employ an inverse sensor model. Thus, we optionally use
occupancy features to enrich the point cloud features for a
better performance.

B. Image Semantic Segmentation

Image-based semantic segmentation networks are widely
used in autonomous vehicles and significant progress is
being made in that field. As a pioneering work, FCN [15]
adopts fully convolutional layers and stacks them in an
encoder-decoder fashion with skip connections, enabling the
combination of coarse and fine features at different levels.
U-Net [16] builds upon the concept of FCN but uses a
larger number of feature channels allowing the propogation
of context information to higher resolution layers. The family
of DeepLab [17] uses atrous convolutions and atrous spatial
pyramid pooling modules to enlarge field-of-views and im-
prove the contextual understanding. In this work, we use a
modified U-Net by removing the input convolution block as
a trade-off between efficiency and performance.

C. Point Cloud Semantic Segmentation

For point-wise segmentation of LiDAR data, many ap-
proaches map the point cloud onto a top-view image in
order to benefit from the progress made in image semantic
segmentation. RangeNet++ [2] transforms the input point sets
into spherical images and uses 2D convolutions for semantic
segmentation. Triess et al. [3] propose a scan unfolding
method and a cyclic padding mechanism to reduce systematic
point occlusions during the spherical projection in [2]. In-
stead of using range images, GnDNet [ |4] encodes features in
grid-based representation using PointNet for segmenting the
ground points. In a recent work, Bieder et al. [5] transform
3D LiDAR data into a multi-layer grid map representation
to approach an efficient dense top-view segmentation of
point clouds. Nevertheless, it suffers from information loss
when generating grid maps and thus performs poor on small
objects.

III. METHOD

An overview of the PillarSegNet pipeline is presented in
Fig. 2. PillarSegNet takes a sparse single-sweep 3D point
cloud as input and predicts a dense semantic grid map in the
top view. It consists of two main blocks, a point cloud feature
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Fig. 2: PillarSegNet pipeline overview. Given a sparse single-sweep 3D point cloud, PillarSegNet first encodes pillar features
and optional occupancy features in two parallel streams. The pillar features are encoded using a PointNet, whereas the
occupancy features are encoded from an observability map as a result of a model-based ray-casting. Then, an encoder-decoder
network is used to predict a dense semantic grid map from the aggregated features. Note that the depicted prediction is

filtered by the observability map to exclude occluded areas.

encoding using parallel pillar and occupancy networks, and
a dense semantic segmentation using an encoder-decoder
network. The details of each block will be presented in the
following sections.

A. Point Cloud Feature Encoding

In the SemanticKITTI dataset, each LiDAR point in the
raw point cloud is represented by (z,y, z,7), where z, ¥,
and z are the 3D coordinates and 7 indicates the reflectance.
In this work, we consider two kinds of feature encodings
obtained from the point cloud: pillar features and occupancy
features.

Pillar Features. To learn pillar features, the input point
cloud is first discretized into a set of pillars in the ground
plane, where pillar is a special voxel without an exten-
sion bound in the z axis. For each LiDAR point with
(z,y, z,r) encoding in pillars, we follow PointPillars [12] to
further augment it with its offsets from the arithmetic mean
(Az., Ay.,Az.) of all points in the pillar and its offsets
from the pillar center (Axzp, Ay,, Azp). The dimension of
the resulting point encoding thus becomes D = 10. We pre-
define the number of pillars per point cloud (P) and the
number of points per pillar (N) to create an input tensor
of fixed size (P, N, D). To this end, we randomly sample
the points if a pillar has more than N points, or apply zero
padding to populate the tensor when a point cloud has less
than P pillars or a pillar has too few points.

Each point in pillars is then consumed by a simplified
PointNet that consists of a linear layer, BatchNorm and
ReLU, outputing a tensor of size (P, N,C'). Then, a max
operation along the N axis is applied to create an output
tensor of size (P,C), where each pillar-wise feature is
represented by a tensor of size (C). Finally, all pillar-wise
features are scattered back to the pillar locations to create a
top-view representation of size (W, H,C), where W and H
denote the width and height of the grid, corresponding to z
and y direction, respectively.

Occupancy Features. During the measurement process,
the detected LiDAR points are the result of a physical ray-
casting. When representing the LiDAR points using pillar
features, one fundamentally neglects the hidden model in-
formation of observability, including information on free
space and occupied areas [8]. However, we argue that the
observability information might be beneficial for the dense
top-view segmentation. Hence, we further extract occupancy
features and consider to incorporate them in an additional
input stream.

In this paper, the grid map framework in [5] is adopted to
generate a single-channel observability map, which indicates
the number of transmissions in a grid cell. The observability
map is able to represent occupancy information in the 2D
grid. We further apply a 3 x3 convolutional layer on it to learn
2D occupancy features of size (W, H, Q). Considering the
possible information loss in the height during grid mapping,
we also discretize the point cloud into a 3D voxel grid
and encode the occupancy probability for each 3D voxel
through ray-casting and voxel traversal [18]. In this way,
we get a multi-channel map which represents 3D occupancy
information and use it to replace the observability map.
Similarly, the voxel map is convolved by 3 x 3 filters to
create 3D occupancy features of size (W, H, Q).

Feature Aggregation. We adopt the concatenation op-
eration to aggregate pillar features and occupancy features
from the two input streams. The concatenation operation is
simple yet effective for fusing different features [13]. After
concatenation, we obtain aggregated point cloud features of
size (W, H,C + Q).

B. Dense Semantic Segmentation

To obtain the dense semantic segmentation of the input
point cloud features, we use an encoder-decoder network,
followed by a segmentation head.

Encoder-Decoder Network. In this work, we use a mod-
ified U-Net which has an encoder-decoder architecture for
feature extraction [16]. The encoder module gradually halves



the spatial size of feature maps and captures higher semantic
information, while the decoder module gradually upsamples
feature maps and recovers the spatial information. U-Net
also introduces skip connections between the aforementioned
modules to combine semantic and spatial information. We
modify the vanilla U-Net by removing the input convolution
block since the aggregated input point cloud features already
correspond to a high dimensional feature space. This reduces
computational and memory overhead with a negligible loss
of performance.

Segmentation Head. After the encoder-decoder network,
a set of 1 x 1 convolutions is performed in the segmentation
head to output logits for the classes in the training data.
During inference, a softmax function is applied over the
unbounded logits to provide softmax probabilities for each
grid cell.

Loss Function. Due to the heavy class imbalance in the
SemanticKITTI dataset, we adopt the weighted cross entropy
loss to optimize the model. The weights for the classes are
defined by considering the class distribution of the ground
truth. The weighted cross entropy loss can be calculated as:

M
i (Ayilogg; +(1—=A) (1 —y;)log(1—5;)), (1)

i=1

Eseg =

where y; and ¢;, respectively, denote the label and softmax
probability for pixel i, A is the class-specific weighting
coefficient, and M indicates the total number of labeled
pixels in the ground truth map. We choose a coefficient of
2 for class vehicle and 8 for classes pedestrian, two-wheel
and rider, when utilizing the sparse ground truth for training.
When the dense ground truth is adopted, the coefficient for
class vehicle is modified to 5. The default coefficients for the
remaining classes are set to 1.

IV. TRAINING AND EXPERIMENTS

In this section, we introduce the dataset used to train and
validate our approach together with the experimental setup.

A. Dataset

We evaluate our approach on the SemanticKITTI dataset
[11, [19], which is based on a subset of the KITTI odometry
dataset sequences, and contains accurate pose information
and semantic labels for each LiDAR point. As in [1], [5], we
use sequences 00-07 and 09-10 for training and sequence 08
for validation. In this case, the training and validation sets
contain 19130 and 4071 LiDAR scans, respectively. To tackle
the under-representation of rare classes, we apply the same
merging of 19 into 12 classes as in [5], which also enables
a fair comparison. In particular, we map the classes car
truck and other-vehicle to vehicle, the classes motorcyclist
and bicyclist to rider, the classes bicycle and motorcycle to
two-wheel, the classes traffic-sign, pole and fence to object,
and the classes other-ground and parking to other-ground.
All unlabeled pixels are not considered when optimizing the
model.

B. Ground Truth Generation

Sparse Ground Truth Generation. To obtain the top-
view sparse ground truth, we first rasterize a point-wise
labelled point cloud into grid cells. For each grid cell, we
count the number of points for each of the 12 classes. The
semantic class k; for grid cell ¢ is then determined through
a weighted argmax operation:

k; = argmax (win; k) , 2)
ke[l,K]

where K is the number of classes, n; j, denotes the number of
points of class k inside grid cell ¢, and wy, is the weighting
factor for class k. For traffic participant classes including
vehicle, person, rider and two-wheel, we choose a factor of 5.
To ignore the class unlabeled, we set the corresponding factor
to 0. For all remaining classes, we use a factor of 1. Grid
cells without any assigned points are labeled as unlabeled. An
example of a sparse ground truth map is depicted in Fig. 1.
Dense Ground Truth Generation SemanticKITTI con-
tains consecutive LiDAR scans with accurate pose informa-
tion, which allows the generation of dense ground truth by
superimposing multiple labeled scans. For each scan of a
sequence, we first collect a set of neighbouring point clouds
with a sensor distance |Ap,.| smaller than twice the farthest
point distance d, while limiting the maximal amount of scans
to 40. With the provided poses, the selected point clouds
are then transformed to the LiDAR coordinate system of
the current scan. To avoid aliasing of moving objects during
aggregation, we only aggregate points that belong to static
objects. For moving objects, we only use information from
the current scan. We follow the process used for sparse
ground truth generation to create dense ground truth maps.
An example of a dense ground truth map is shown in Fig. 1.

C. Implementation Details

PillarSegNet takes a sparse single LiDAR sweep as in-
put and outputs semantic probabilities for the 12 classes
described in Section IV-A. We implement PillarSegNet based
on the OpenPCDet codebase'. For all experiments, we crop
the input point cloud at [(—50,50), (—25,25), (—2.5,1.5)]
meters along x, y, z axes respectively. When generating
pillars, we use a pillar grid size of 0.12 m?2, number of pillars
P = 30000, and number of points per pillar N = 20. The
channels of the pillar-wise feature learned by PointNet is de-
fined as C' = 64. The grid cell for generating the observability
map and the voxel for encoding the 3D occupancy map have
the same zy resolution as the pillar, while the voxel has
a z resolution of 0.2 meters. The occupancy features after
convolutions have (J = 16 channels.

During training, multiple data augmentation techniques,
namely random flip, random rotation, random scaling and
random translation, are applied to prevent the network from
overfitting on the training data. In random flip, every LiDAR
point is flipped along the x or y axis by a 50% chance.
Random rotation means that we rotate every point around
the upright z axis by an uniformly distributed angle between

Uhttps://github.com/open-mmlab/OpenPCDet
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TABLE I: Quantitative results on

the SemanticKITTI validation set.
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Mode Method £ | | | | | | [ | [ |
Bieder et al. [5] 39.8 | 69.7 0.0 0.0 0.0 858 603 259 728 151 689 9.9 69.3
Sparse Train  Pillar 551 | 795 158 258 51.8 895 700 389 806 255 728 381 727
Sparse Eval Pillar + 2D Occupancy | 553 | 82.7 203 245 513 900 712 365 813 283 704 385 69.0
Pillar + 3D Occupancy | 56.2 | 83.8 195 248 518 90.1 723 369 815 282 721 417 715
Bieder et al. [5] 32.8 | 433 0.0 0.0 0.0 843 514 229 547 108 51.0 6.3 68.6
Sparse Train  Pillar 37.5 | 45.1 0.0 0.1 3.3 827 575 297 646 140 585 255 689
Dense Eval Pillar + 2D Occupancy | 384 | 52.5 0.0 0.2 3.0 85.6  60.1 29.8  65.7 16.1 56.7 262 645
Pillar + 3D Occupancy | 38.9 | 53.3 0.0 0.1 5.0 86.1 60.5 29.8 65.1 164 567 28.1 662
Dense Train Pillar 42.8 | 70.3 5.4 6.0 8.0 890.8 657 340 659 163 612 235 679
Dense Eval Pillar + 2D Occupancy | 44.1 | 72.8 7.4 4.7 10.2  90.1 66.2 324 67.8 174 63.1 27.6 692
) Pillar + 3D Occupancy | 44.6 | 73.1 7.8 6.0 100 89.7 657 303 683 184 650 304 70.8

(=%, +7) radians. In random scaling, every point is scaled
by a scalar sampled from a uniform distribution between
(0.95, 1.05). Random translation means that every point is
shifted by (Az, Ay, Az), where Az, Ay and Az are sampled
independently from normal distributions N (0, o). We set o
as (5, 5, 0.05) meters for (Az, Ay, Az) respectively. When
taking occupancy features as input, we apply respective data
augmentation techniques on the input occupancy map to
make pillar and occupancy features consistent.

The network is trained from scratch using the Adam
optimizer [20] with an initial learning rate of 0.001, and
weight decay of 0.01. The training lasts 30 epochs with a
mini-batch size of 2.

V. RESULTS
A. Quantitative Analysis
Metrics. We use the commonly applied Intersection over

Union (IoU) [21], or Jaccard index, to evaluate the perfor-
mance quantitatively. The IoU for class k is calculated by

TPy
TPy + FPy 4+ FNg ’

where TPy, FPy, and FNy, respectively, correspond to the
number of true positive, false positive, and false negative
predictions.

To assess the overall performance, we compute the mean
IoU (mloU) by

IoUy = 3)

K
mloU = % Z IoUy. 4)
k=1

Experimental Results. We train the network in two
modes, namely Sparse Train and Dense Train, according to
which ground truth is used. The former considers the sparse
ground truth, which is obtained from single sweep, whereas
the latter considers the dense ground truth, which is obtained
by aggregating multiple sweeps. For each experiment using
Sparse Train mode, we use two approaches for evaluation:
Sparse Eval and Dense Eval, in order to achieve a fair
comparisons with the method in [5]. The former considers

the sparse ground truth for metrics calculation, whereas the
latter considers the dense ground truth, and additionally
filters the predictions with the observability map to exclude
occluded areas. Note that we only evaluate the Dense Train
experiments by the Dense Eval approach.

The experimental results on the full validation set are
presented in Table 1. We first focus on the results obtained in
the Sparse Train mode. Our pillar-based method outperforms
the state-of-the-art grid map method [5] by 15.3% and
5.7% mloU in Sparse Eval and Dense Eval, respectively.
In particular, our method achieves a large IoU improvement
in the Sparse Eval mode for small object classes, such as
person, two-wheel, and rider. These significant performance
gains indicate the superiority of the learned pillar features
over the grid map representation.

In addition to pillar features, we further analyse the role
of 2D and 3D occupancy features in semantic grid map
estimation. By aggregating respective occupancy features,
our method achieves an additional improvement in terms of
mloU performance, where the 3D variant performs slightly
better when compared with the 2D variant. This demonstrates
that the observability information, generated via model-based
ray-casting, can be successfully used to further improve the
performance of semantic grid map estimation.

We now consider the results obtained in the Dense Train
mode. When compared with the Sparse Train mode, training
the network on the dense ground truth leads to notable IoU
improvements for all classes. For the deployment of semantic
grid map estimation, it is thus advisable to leverage dense
labels for better performance. Consistent with our previous
observation, 2D and 3D occupancy information yield close
overall performance gains. Considering the increased compu-
tational overhead when generating the 3D occupancy map, it
is more practical to aggregate 2D occupancy features and
pillar features as a compromise between performance and
computational efficiency.

Inference Time. We measure the inference time of
PillarSegNet on a desktop computer with an Intel i9 CPU and
a Nvidia 2080 Ti GPU. Our pillar-based approach achieves a



Fig. 3: Qualitative results produced by Bieder et al. [5] and our approach on the SemanticKITTI validation set. Our network
is solely based on the Pillar input features and was trained on the dense ground truth. From top to bottom in each column, we
depict the input point cloud, the observability map, the prediction from [5], the prediction from our approach, as well as the
corresponding ground truth. The unobservable areas in each prediction map were filtered out according to the observability
map. In comparison with [5], our approach shows more accurate prediction on vehicles (cases A & B) and small objects,
e.g. two-wheels (cases B & C), Best viewed digitally with zoom.

total runtime of 58 ms. When incorporating 2D occupancy
features, additional 10ms and 6ms are needed for grid
mapping and in the network, respectively.

Ablation Study. We perform thorough ablation experi-
ments to investigate the effect of different data augmentation
techniques in our method. The results are reported in Table II.
Baseline denotes the method that takes pillar features as
input and is trained on the sparse ground truth without any
data augmentations. All experiments are evaluated in the
Sparse Eval mode. We observe that random flip and random
rotation significantly boost the performance with 4.6% gain

in terms of mloU, while random scale contributes to another
0.6% improvement. Unexpectedly, random translation has
a negative effect on the overall performance, presumably,
because it violates the condition that the ego car should
always be in the grid center.

B. Qualitative Analysis

In Fig. 3, we show qualitative results obtained from the ap-
proach proposed by Bieder et al. [5] as well as our approach
which is based on the Pillar features and was trained on
the dense labels. In comparison with the dense ground truth,
our approach accurately segments general road scenes, which



TABLE II: Ablation study for data augmentation techniques
on the SemanticKITTI validation set.

Baseline  Flip Rotate Scale Translate mlIoU [%]
v 50.4
v v 53.0
v v v 55.0
v v v v 55.6
v v v v v 55.1

include the static environment and varying traffic participants.
This demonstrates the ability of our approach for semantic
scene understanding from a sparse single LiDAR scan. For
instance, when compared with the grid map method, our
approach shows more accurate prediction for vehicles (cases
A & B) or small objects (cases B & C), indicating the
superiority of the learning-based feature extraction.

A video showing qualitative results on the full validation
set obtained by our approach is available at:
https://youtu.be/3yidrXBnfo4.

VI. CONCLUSION

In this work, we presented a novel end-to-end approach
named PillarSegNet for semantic grid map estimation based
on sparse LiDAR data. PillarSegNet learns features directly
from the 3D point cloud, aiming to avoid the informa-
tion bottleneck caused by hand-crafted feature engineering.
Experimental results on the SemanticKITTI dataset show
that PillarSegNet outperforms the state-of-the-art grid map
method by a large margin in terms of mloU. We further
incorporate occupancy information obtained via ray-casting
to enhance the overall performance and identify the 2D occu-
pancy information as the best trade-off between performance
and computational efficiency.
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