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Abstract5

Urban Green Space management requires a multi-dimensional, evidence-

based approach to effectively balance social, environmental, and economic

objectives. City administrators currently lack a data-driven framework for

allocating resources during constraint scenarios, leading to subjective deci-

sions. Existing literature lacks objective solutions for managing city-scale

green spaces, each with its distinct characteristics. Another challenge is

handling varied spatial scales required for urban applications. This study

proposes a novel goal programming-based model for urban green space man-

agement wherein multiple benefit objectives, such as conserving sequestered

carbon in trees and enhancing quality and accessibility of parks, as well as

handling demand constraints on available resources like water and person-

nel, are included. The proposed method was demonstrated in two cities with

diverse conditions, Berlin and Melbourne, and evaluated on various bene-

fit metrics, such as allocated green space units, resources consumed, and
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goals achieved. The model was analyzed with resource allocation decisions

and goals at different spatial scales. The highest benefit achievement and

resource allocation were observed when resources were allocated at the sub-

district scale with a city-level target. Alternatively, setting targets at the

district level provided a more even resource distribution; however, at the

cost of reduced overall benefits. Results show that the proposed method in-

creased the total benefits gained while effectively balancing conflicting goals

and constraints. Additionally, it allows incorporating the city’s preferences

and priorities, offering a scalable solution for informed decision-making in

varied urban applications. Depending on data availability, this approach

can be scaled to other cities, including additional benefits and resource con-

straints as required.

Keywords: Urban green, green space management, resource allocation,6

goal programming, sustainable cities, decision support7
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1. Introduction17

Cities often face challenges related to resource constraints. Critical project18

resources such as personnel, commodities, equipment, and funding are lim-19

ited and in competition with other uses or projects. Consequently, decision-20

makers must prioritize resource allocation to fulfil the distinct needs of the21

city and its residents. For example, a city dealing with a budget constraint22

might need to allocate limited funds between essential services like infras-23

tructure development and welfare schemes for the needy. Prioritizing one24

theme, such as offering free entry to public recreational spaces for encourag-25

ing its usage, could lead to decreased funding for maintaining or developing26

new spaces, conflicting with the broader goal of ensuring its universal access27

in the long run. City administrators deal with this difficulty of prioritiz-28

ing spending decisions and making trade-offs between competing demands29
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for scarce resources [55]. Similar to cities, the management of Urban Green30

Space (UGS) also encounters the challenge of resource allocation with multi-31

ple, often conflicting, objectives, such as increasing green spaces while devel-32

oping compact cities [78]. This challenge is compounded by the involvement33

of various stakeholders from departments of garden, road, forestry, waste and34

civic society groups [35, 23]. Moreover, the increasing pressure on resource35

availability, such as funding cuts, personnel shortages, and reduced water36

supply due to expected droughts from climate change, will further exacer-37

bate this problem. Current decision-making processes often rely on limited38

data, physical inspections, and subjective assumptions, excluding the com-39

prehensive assessment of trade-offs and the resulting impact on costs and40

benefits of the decision.41

Reliable field data is critical for UGS planning, management, and decision-42

making [53]. The World Health Organisation (WHO) also highlighted the43

need for a multi-dimensional evaluation of UGS interventions to assist munic-44

ipalities in making evidence-based decisions [88]. Moreover, WHO guidelines45

suggest that public UGS of at least 0.5-1 ha should be accessible within a 300-46

metre distance to all city residents [88]. Providing universal access to green47

and public spaces is part of the United Nations Sustainable Development48

Goal target 11.7 as well [83]. As a result, access to green spaces becomes an49

important indicator for the management. However, expansion of newer UGS50

spaces to meet the increased demand might not always be possible due to51

resource constraints. For instance, in a survey conducted in 2020 across 1252
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cities in the United States, 83% of the cities reported an increase in visita-53

tion to natural areas, while 72% experienced decreased capacity to manage54

them due to severe shortages of seasonal staff [67]. Similarly, increasing the55

number of trees and UGS areas to meet a city’s greening targets will further56

strain water sources, especially in drought-prone regions [75]. Consequently,57

taking into account the costs and benefits associated with a particular re-58

source allocation strategy and its impact on the city’s UGS and the resource59

conditions, becomes crucial before its implementation.60

Multi-criteria decision-making (MCDM) methods have been extensively61

used to assist decision-makers in situations involving multiple stakeholders,62

criteria, and conflicting objectives [41]. These methods first derive feasible63

alternatives under given constraints that meet the preferences of decision-64

makers. Subsequently, the performance of all alternatives is evaluated to65

generate a decision that fulfills conditions and maximizes objectives [64]. In66

certain approaches, the alternatives are predefined by the user, and max-67

imization is achieved for the given options. MCDM has been applied for68

decision-making in a large spectrum of domains, such as disaster management69

[63], water allocation [77], urban sustainability [27], facility management [39],70

and reservoir control [86]. However, existing multi-criteria approaches have71

limitations in addressing urban challenges, especially in handling trade-offs72

and conflicts among various criteria (both quantitative and qualitative), as73

well as dealing with large-scale problems with numerous constraints and cri-74

teria.75
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Different types of approaches have been proposed to improve the man-76

agement of UGS. For example, optimization-based methods for location al-77

location [11], machine learning-based techniques for the optimal allocation78

of UGS [50], crowd-sourcing-based participatory management [53, 80], GIS-79

based methods for prioritizing tree planting sites based on criteria for need80

and suitability [49], and organizational-based strategies like the place-keeping81

process [26, 11]. While existing literature, such as [49], [58], and [59], has82

used MCDM to address the challenge of prioritizing new tree plantations,83

the prioritization of existing UGS has not been studied. Furthermore, while84

benefit parameters have been included, resource constraints, such as water85

and personnel, are also not covered.86

As a result, the research study aims to answer the following research ques-87

tion:88

Can the resource allocation decisions for managing UGS in constrained sce-89

narios be optimized using an MCDM approach?90

The research scope includes (1) identifying a suitable MCDM approach91

for optimizing urban resource allocation in constrained scenarios; (2) consid-92

ering the necessary adaptations for its application to UGS management; (3)93

identifying the required model parameters and relevant public datasets for its94

quantification; (4) implementing the optimization model for decision-making95

on prioritization; (5) assessing the model’s performance on various benefit96

metrics; and (6) evaluating the impact of different scenario conditions on97

decision-making.98
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The research approach includes identifying the appropriate method for99

optimizing resource allocation decisions, considering factors such as com-00

plexity, adaptability, and the ability to handle trade-offs and uncertainties.01

Accordingly, the proposed model is an extension of the goal programming02

(GP) model that can support varying inputs, constraints, and targets at dif-03

ferent spatial scales. The model was tested in two case-study cities, and its04

performance under various constraints was evaluated and compared with a05

baseline reference scenario.06

This research achieves two main outcomes. The first outcome is the07

development of a model that optimizes the decision-making of prioritiza-08

tion under different constraint scenarios. The model is scalable to handle09

city-scale datasets, capable of addressing trade-offs and conflicts, and incor-10

porates decision-makers’ preferences. It is also adaptable to various cost-11

benefit parameters to address the resource allocation problem in varying12

spatial conditions. The second outcome is the provision of insights to aid13

city administrators in making informed decisions regarding resource alloca-14

tion and budgeting, especially under constraint scenarios. Additionally, the15

findings will assist in planning and maintaining both existing and new street16

trees and parks.17

The paper is organized as follows: First, a literature review describes18

the various MCDM methodologies and research gaps in the context of UGS19

management applications. Based on this, GP is chosen as the basis of the20

methodology. This is followed by the modelling approach section, which21
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discusses the model parameters and its implementation in a Python-based22

model. In the case study section, the results of applying the model to data23

from Berlin and Melbourne are discussed. The final two sections present the24

discussion and conclusions.25

2. Literature Review26

2.1. MCDM approaches27

MCDM is an effective tool for solving decision-making problems with28

conflicting objectives [28]. Numerous optimization methods based on math-29

ematical models, expert judgments, and heuristics have been developed to30

solve MCDM problems. These methods can be categorized based on whether31

the decision-maker implicitly provides plausible solutions (Multi-Attribute32

Decision Making (MADM)) and whether their preferences are taken into ac-33

count during the decision-making process (Multi-Objective Decision Making34

(MODM)) [41]. MCDM methods have been used to address varied types of35

problems, such as prioritization, selection, allocation, optimization, schedul-36

ing, routing, and management. The commonly used MCDMmethods include37

linear programming (LP), non-linear programming, integer programming,38

dynamic programming, goal programming (GP), weighted product model39

(WPM), Analytical Hierarchy Process (AHP), Multi-Attribute Utility The-40

ory (MAUT), and Technique for Order of Preference by Similarity to Ideal41

Solution (TOPSIS). These methods can be further classified as analytical42

methods if they are quantitative and based on mathematical models or as43

interactive methods if they constantly involve human judgment and prefer-44

6
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ences. The selection of the suitable MCDMmethod for the UGS management45

application is done based on the requirements of the problem. Since, in UGS46

management, the problem involves multiple resource constraints, a desired47

benefits target to be achieved, decision-maker’s preference, and there are no48

preset solutions available. Therefore, the chosen method should be of the49

MODM type to ensure that the solution is considered from a continuous50

space.51

Several studies have implemented MCDM approaches to address vari-52

ous aspects of UGS planning and management, including location, layout,53

design, function, and size of UGS [46]. This has been done with respect54

to varied objectives such as public accessibility, UGS quality, heat island55

mitigation, runoff regulation, carbon offset, and enhancing biodiversity [58].56

For instance, [48] utilized a multi-objective programming method to deter-57

mine the required quantity of UGS for achieving a specified level of carbon58

offset. Meanwhile, [46] implemented spatial optimization for UGS layout59

planning, considering equitable distribution and conversion costs as decision60

criteria. [33] devised a regression-based optimization strategy for UGS plan-61

ning, focusing on accessibility and quality as primary targets. Using an LP62

approach, [57] determined the optimal distribution of green spaces at the63

district level, considering spatial conditions. Similarly, [58] utilized an LP64

model to pinpoint optimal locations for maximizing overall benefits derived65

from urban greening. Later, they proposed a multi-objective optimization66

framework to prioritize tree planting scenarios based on current and future67

7
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ecosystem services [59]. However, these studies primarily concentrated on68

benefits maximization and didn’t consider associated management costs in69

decision-making. Furthermore, as evident, their scope was limited to new70

plantations, and the planning and management of existing UGS haven’t been71

considered by any of the studies.72

2.2. Resource allocation problem73

In resource allocation problems, the aim is to distribute the available re-74

sources and maximize the achievement of the desired objectives. A large75

number of optimization algorithms have been developed and applied to ob-76

tain optimal resource allocation. For example, [61] integrated MCDM with77

GIS for participatory renovation of urban areas, [19] used a Markov decision78

process for a communication system, [69] implemented a fish swarm algo-79

rithm to distribute cloud resources, and [70], [10] proposed a game theoretic80

approach to allocate defense resources. All of the referred studies were based81

on the utilitarian principle, focusing on benefit maximization. Accordingly,82

that objective has been adopted for this study as well.83

Figure 1 presents a summary of relevant literature, classified based on84

study methodology and application. It can be observed that a larger number85

of studies use MCDMmethods to obtain an optimal resource allocation strat-86

egy. However, the application of these techniques in UGS management has87

been scarce. Furthermore, even for UGS, most studies have focused solely88

on planting strategies. No studies were discovered that apply these methods89

to manage existing UGS, especially in resource-constrained conditions.90

8
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Figure 1: Classification of relevant literature with current study focus is highlighted.

Nevertheless, each of these existing methods has certain limitations. Most91

of these optimization approaches aim for feasible solutions. However, in92

resource-constrained scenarios, achieving a feasible solution might not al-93

ways be possible. Additionally, strictly adhering to the objective function94

may result in no solution or inferior utilization of available resources. Since95

both LP and GP provide solutions over continuous space and can incorpo-96

rate resource constraint conditions, those two were considered as prospective97

approaches. LP has the limitation of optimizing a single objective function98

with numerous linear constraints. However, in real-life problems, multiple99

conflicting objectives are often present, making LP inadequate for such ap-00

plications. Unlike LP, where a decision-maker can only have one objective01

9
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function, GP can handle multiple goals simultaneously [62]. Furthermore,02

while LP allows for a fixed goal, in GP, the goal is considered only as the03

initial target. This allows flexibility for the decision-maker to compromise04

on the solution in case of competing goals [56]. Therefore, GP was a suitable05

option for addressing the described problem.06

2.3. Goal Programming07

GP is an MCDM approach based on determining a satisfactory solution08

to multi-goal decision-making problems. [9] pioneered GP, which was later09

expanded upon by [43], [8], [34], [76], and [79]. Researchers have developed10

various GP variants for a variety of problem types and use-case applications.11

The major variations are listed in Table 1 to showcase the applicability of12

existing variants. From these variants, each basic variant could be used in13

conjunction with a special case. GP has been extensively applied in different14

planning and operational applications such as finance [42], healthcare [52, 74],15

software development [38], water use [4], and reservoir operation [47].16

Due to its capability to efficiently find feasible solutions, flexibility in17

managing multiple competing goals, and ease of use, GP has found extensive18

application in addressing resource allocation challenges as well. Resource-19

allocation focused studies also cover diverse domains such as healthcare [37],20

fleet management [85, 71, 32], urban regeneration [56], logistics [45, 12], en-21

ergy strategies [2], and more. Several researchers have also used GP to ad-22

dress challenges pertaining to UGS management. For instance, [55] utilized23

GP to determine a sustainable development pathway, with a central focus24

10
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on accommodating decision-makers’ preferences. [68] presented a GP-based25

model for the optimal selection of a tree improvement program. Similarly,26

[22] developed a GP model for evaluating forest plans, considering multiple27

spatial scales from a regional level down to a stand level through aggrega-28

tion. The ability of GP to adapt and be flexible makes it a valuable tool for29

managing different types of resources.30

GP is based on the principle of getting as close to the decision makers’31

goals as possible. Accordingly, it aims to minimize the underachievement32

of each goal using deviation variables. The primary distinction between GP33

and other MCDM approaches is that it seeks to satisfy rather than optimize34

the objective [36]. Therefore, GP is especially suitable for handling trade-35

offs between multiple conflicting goals. Moreover, the priority order for the36

goals can be established by either weighing or ranking them. The GP model37

includes two types of constraints: system and goal constraints. Systems,38

or hard constraints, describe actual capabilities and are therefore limiting,39

whereas goals, or soft constraints, indicate desired aims to be accomplished40

and are thus flexible. The basic formulation of the GP model is presented in41

equations (1)–(3). Overachievement is represented by the positive deviation42

variable d+, whereas underachievement is represented by the negative d−.43

The model allows for G goals, indexed as g = 1,2,..G, and x is the decision44

variable that belongs to the feasible region F, consisting of points that satisfy45

all the constraints. The decision maker sets an achievable target, tg, for each46

goal, and the achieved value of the goal is represented by f(x). Finally,47

11
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the objective function minimizes the sum of deviations to maximize goal48

achievement.49

min d =
n∑

g=0

d+g + d−g (1)

50

fg(x) + d+g − d−g = tg , g = 1, ...G , x ∈ F (2)
51

d+g , d
−
g ≥ 0 , g = 1, ...G (3)

Table 1: Major Goal Programming variants (Source: [36])

Variant Application

Normal Based on minimizing the sum of all deviations
Lexicographic Pre-defined priority levels (When no trade-off comp
Weighted Assigned weights to the goals (Trade-offs)
Chebyshev Based on maximal deviation from any goal

Special Cases

Fuzzy For uncertainty in goal weights or target values.
Integer Restricted to take only discrete values
Fractional One or more goal of the form a/b
Non-standard Preference Non-linear penalty function
Objective bounds One or more constraints are rigid
Interval A range of target to be satisfied

However, the current variants of GP do not have the capability to ac-52

commodate varying input characteristics. Each UGS is unique in terms of53

its demands and the benefits it provides. This is different from industrial or54

financial sectors, where the inputs required for the production of each unit55

and the corresponding value of the output produced are relatively constant.56

Additionally, there is a significant gap in incorporating spatial and temporal57

12
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variations in the constraints and goals. While the availability of immobile58

resources required to meet the demand could differ among city districts, the59

benefits of public infrastructure should be evenly available to everyone in the60

city. Therefore, in urban management, it is necessary to have the flexibility61

to set goals or constraints for each neighborhood or district. Moreover, as62

mentioned earlier, research on the application of GP for resource allocation63

in cities has been inadequate and completely absent for UGS. Therefore, an64

extended GP variant is necessary to effectively address the requirements of65

urban applications, especially UGS management.66

3. Methodology67

The methodology aims to develop a multi-criteria decision support system68

for determining UGS prioritization under resource constraint conditions. It69

implements a utilitarian-based approach to prioritize UGS based on maximiz-70

ing benefit achievement. The following subsections describe each component71

of the system and its implementation in more detail.72

3.1. Modeling framework73

Figure 2 presents the overall framework of the decision-making model.74

The model comprises three modules: Estimating cost, estimating benefits75

and resource allocation. The outputs of the first two modules are used to76

make prioritization decision in the third module. It is to be noted that while77

the cities consist of a variety of UGS [87], for this study, they are grouped78

into two major categories. First, street trees consisting of all trees alongside79

13
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roads, and second, parks consisting of trees and the area in public parks,80

playgrounds, urban forests, and farms within city boundaries.81

Figure 2: Modeling framework for prioritizing UGS in resource constrained scenarios.

3.1.1. Estimating demand parameters82

The literature highlights the importance of supplying necessary water83

resources and emphasizes the critical role that local management play in84

maintaining the performance of UGS [25, 7]. In their research, [87] emphasize85

that experienced urban forestry staff are critical for the successful governance86

of UGS. Accordingly, two input demands were chosen to demonstrate the87

integration of management needs as a cost factor into the resource allocation88

decision-making framework: water and personnel. In the context of a street89

tree, water demand refers to the total amount of water (in mm) required90

14
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annually to sustain an individual tree, while for a park, it refers to the sum of91

water demand for trees and the landscape area. Similarly, personnel demand92

refers to the total amount of physical work (in hours) required annually93

to carry out maintenance tasks, such as watering, cutting, pruning, litter94

cleaning, and the application of fertilizers. Estimates for street trees are95

made at the tree scale, while in the case of parks, it is the aggregated total96

of all the trees in the park as well as the total landscape area. To estimate97

species-wise annual water demand, a linear time-series-based model was used.98

The model, based on soil water balance and the Water Use Classifications99

of Landscape Species (WUCOLS) approach, estimates weekly water demand00

using publicly available data on tree species, soil type, and current/future01

weather conditions. The detailed methodology of the aforementioned water02

estimation model is described in [73].03

The most common types of laborers needed for UGS management are04

cleaners, gardeners (for pruning, pest management, and fertilizer applica-05

tion), and truck drivers (to transport the leaf litter). In the absence of06

primary datasets related to the personnel management of UGS, reliance on07

secondary sources becomes imperative. This approach is deemed suitable08

since deriving the required staff from the existing actual staff might not be09

accurate. Typically, cities recruit staff based on factors such as the city’s10

population or the availability of funds [1]. To estimate the necessary person-11

nel demand, we considered two parameters: the estimated time required for12

each activity and the desired frequency of these activities based on estab-13

15
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lished best practices guidelines. These activities are discussed in more detail14

by [30], [31], [20], and [44]. Accordingly, the estimations used for the per-15

sonnel required to maintain a single street tree or a 0.01 ha area are shown16

in Table 2. A single personnel works for 1349 hours annually in Germany17

and 1707 hours annually in Australia [60]. As a result, one personnel staff in18

Germany may handle around 415 street trees or a 4.15 ha park area, while19

in Australia, they may handle around 525 street trees or a 5.25 ha park area.20

Moreover, the decision-makers could vary this input based on management21

preference and local needs.22

Table 2: Estimating personnel demand for UGS management for a single street tree or
0.01 ha of park area

Input (hours/week) Frequency (week/year) Total demand (hour

Cleaner 0.05 13

Gardener 0.1 13

Driver 0.025 52

3.25 hour

3.1.2. Estimating benefit parameters23

While various environmental, social, and economic advantages are as-24

sociated with UGS, three have been selected to illustrate the inclusion of25

benefits as a factor in a resource allocation decision-making framework: ac-26

cessibility, quality, and carbon sequestration. Accessibility and quality ben-27

efits are estimated for all parks, as the trees in parks collectively provide28

not only environmental benefits but also high social benefits. In contrast,29
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carbon sequestration is derived as a benefit from street trees since they act30

individually, with the primary focus on environmental benefits.31

Accessibility is a custom-built indicator that quantifies a specific park’s32

role in providing urban residents with access to green space, as recommended33

by the WHO. It is calculated as a weighted average of the building coverage34

score (SC) and the essentiality score (SE). The first component, SC, mea-35

sures the number of residences that benefit from a specific park. The second36

component, SE, measures the significance of a specific park in ensuring acces-37

sibility to nearby residences. Similarly, the quality of UGS is defined as its38

cumulative performance on area size (SQ,A), greenness (SQ,G), noise (SQ,N),39

and safety (SQ,S). Accordingly, parks with a larger area, a higher density of40

trees located in districts with lower average noise levels, and fewer reported41

crime events are typically rated high in quality scores. Both accessibility and42

quality are derived as scores between 0 to 10 using min-max normalization43

(re-scaling) of the underlying features. The detailed approach for calculat-44

ing benefit parameters for parks is outlined in [72]. Since there is a positive45

correlation between the size of the tree and the amount of carbon captured46

by the tree [81, 51], the sequestered carbon for each street tree is calculated47

from its species type and diameter size according to the method in [84].48

3.1.3. Spatial analysis49

Given that management decisions cannot be practically implemented at50

an individual tree level, it is necessary to group trees and parks into larger51

units. To assess the influence of spatial resolution on decision-making, the52
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analysis is conducted in three different configurations. The first case involves53

allocating resources at the district level while establishing targets at the city54

level. The second case involves allocating resources at the sub-district (or55

cluster) level with city-level targets. Finally, the third case involves allocating56

resources at the sub-district level while establishing targets at the district57

level.58

3.1.4. Prioritization Model59

The objective of the GP model is to prioritize resource allocation to street60

trees and UGS to maximize total benefits with available resources. As a re-61

sult, the criteria are to maximize carbon sequestration in street trees, overall62

accessibility attained by the UGS, and UGS quality.63

The sets, parameters, and variables utilized in the optimization model are64

listed in Table 3. The sets feature a complete and prioritized collection of65

park and street trees and a set of districts and sub-districts. The parameters66

include four components: cost, benefit, available resources, and targets. The67

value of the cost and benefit parameters are derived using various public68

datasets and for available resources and target can be obtained from the69

decision maker’s inputs. The variables stores the deviation and decision70

variables as model’s intermediate and final results, respectively.71

The objective function of the model is given in equation (4) where the72

purpose is to minimize the weighted sum of all deviation variables at a given73

spatial scale. This objective function is subject to soft and hard constraints.74

As can be seen, both the optimization function and constraints utilize two75
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Table 3: Notation of sets, parameters, and variables used in the optimization model.

Sets

G Set of urban parks (g ∈ G)
Gp Set of prioritized urban parks (Gp ⊆ G)
S Set of street trees (s ∈ S)
Sp Set of prioritized street trees (Sp ⊆ S)
L Set of Spatial locations (l ∈ L)

Parameters

wdemand
i Water demand of unit i

pdemand
i Personnel demand of unit i
W available Total water available for irrigation
P available Total personnel available for management
bcarboni Carbon sequestration benefit of unit i
baccessi Accessibility benefit of unit i

bqualityi Quality benefit of unit i
Bcarbon Target carbon sequestration benefit
Baccess Target accessibility benefit
Bquality Target quality benefit

Variables

rai Resource allocation decision for unit i
d1 Deviation from carbon sequestration goal
d2 Deviation from accessibility goal
d3 Deviation from quality goal
D Total deviation for all goals
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summation functions. The first summation function aggregates the individ-76

ual prioritized units (street tree or park) with varying input characteristics,77

including water demand, personnel demand, access benefit, quality benefit,78

and carbon sequestration benefit. The second summation function aggregates79

all the prioritized units within a selected spatial location, either a sub-district80

or district. The soft constraints given in equations (5)–(7) drives the model81

to attain the expected level of benefit targets (Bcarbon,Baccess,Bquality). The82

hard constraints given in equations (8) and (9) ensure that the resource de-83

mand does not exceed the available resources during the constraint scenario.84

Lastly, the equations (10)–(12) define the prioritized sets and the feasible85

values for the decision variable. Accordingly, the resource allocation decision86

(ra,i) is binary in nature and the choice of allocating resources is solely made87

for complete allocation. As a result, a partial allocation at a unit level is not88

allowed in the model. Moreover, if a park spreads across multiple districts89

or sub-districts, then it is included in the region with the highest overlap of90

area.91

Minimize92

D =
∑

lϵL

(
∑

iϵsp

w1 ∗
d1l,i

Bcarbon
+
∑

iϵgp

w2 ∗
d2l,i

Baccess
+ w3 ∗

d3l,i
Bquality

) (4)

The optimization function aims to minimize D, the weighted sum of deviation93

variables d1, d2, and d3. Since all the deviations are in different units, they94

are normalized using their respective benefit targets before summing them95

up. The weights w1, w2, and w3 are used to prioritize carbon sequestration,96
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access, and quality goals and depend on the city’s preference. Soft constraints97

(goals/benefits):98

∑

lϵL

∑

iϵsp

bcarbonl,i + d1 = Bcarbon (5)

The achieved carbon sequestration benefits are the sum of the sequestered99

carbon by all the prioritized trees in all the prioritized spatial sections of the00

city. Given that Bcarbon represents the target, d1 indicates any underachieve-01

ment from this carbon storage target.02

∑

lϵL

∑

iϵgp

baccessl,i + d2 = Baccess (6)

The achieved access benefits result from the sum of access score provided03

by individual parks in all prioritized spatial sections of the city. Given that04

Baccess is the target, d2 represents any underachievement in access reached05

compared to the target.06

∑

lϵL

∑

iϵgp

bqualityl,i + d3 = Bquality (7)

Similarly, the achieved quality benefits result from the sum of the quality07

scores of individual parks in all prioritized spatial sections of the city. Given08

that Bquality is the target, d3 represents any underachievement in quality09

attained compared to the target10

Hard constraints (resource constraints/costs):11

∑

iϵsp

wdemand
i +

∑

iϵgp

wdemand
i ≤ W available (8)
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Due to restrictions on the availability of water in any city, the fulfilled water12

demand should not exceed the budget allocated for green space irrigation.13

Therefore, the sum of water demand from prioritized trees and prioritized14

parks should be less than the available water.15

∑

iϵsp

pdemand
i +

∑

iϵgp

pdemand
i ≤ P available (9)

Similarly, the availability of personnel for management activities is also lim-16

ited. Therefore, the sum of personnel demand from prioritized trees and17

prioritized parks should be less than the available personnel18

sp = ra,i ∗ S ∀ i ϵ I (10)

sp denotes the set of prioritized street trees, and S represents the entire set19

of street trees in the city. The binary decision variable ra,i indicates whether20

a specific street tree is prioritized.21

gp = ra,i ∗G ∀ i ϵ I (11)

Similarly, gp denotes the set of prioritized parks, and G represents the entire22

set of parks in the city. The binary decision variable ra,i indicates whether a23

specific park is prioritized.24

ra,i ϵ (0, 1) ∀ i ϵ I (12)

As mentioned earlier, the binary decision variable ra,i takes the value of 0 to25
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indicate that a particular unit is not prioritized, and 1 to signify prioritization26

with allocated resources.The solution of the model will yield an array of (0,1),27

indicating whether a particular UGS should be prioritized or not.28

The aforementioned model has been implemented in Python language29

(Version 3.10) using a web-based interactive computing service, Google Co-30

lab [29]. The CP-SAT solver from OR-Tools v9.5, an open-source library31

developed by Google, was used to implement and solve the optimization32

model in Python [65]. Additionally, QGIS, an open-source GIS software,33

was used for the purpose of analysing and plotting the allocation result. The34

program initializes by importing the cost and benefit data, which is estimated35

as described in 3.1.1 and 3.1.2, respectively, or using the data provided by36

the user. The demand and benefit data is then aggregated at district or37

sub-district level depending on the scale of analysis.38

3.2. Study area39

The described model has been applied to case studies in Berlin, Ger-40

many, and Greater Melbourne, Australia, to showcase its applicability under41

diverse conditions. The selection of the two cities was guided by several42

factors, including the availability of open data, diversity in city conditions,43

familiarity with the geographical locations and social conditions, access to44

garden authorities, and consideration of the challenges faced by the cities.45

While Berlin has an evenly distributed population and UGS throughout the46

city, Melbourne has a dense population within its city boundary and a vary-47

ing distribution of UGS. Moreover, inner Melbourne mostly consists of street48
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trees and small parks, whereas the suburban region has large parks and ur-49

ban forests. Additionally, the quality of data availability varies between the50

two regions. In Greater Melbourne, tree inventory data is maintained by51

individual councils for each district and is not entirely published under open52

data initiatives. Similarly, the noise map of Melbourne is also not available53

as open data. Accordingly, case studies from two diverse geographical and54

on-field conditions will illustrate the handling of different urban situations.55

3.2.1. Berlin City56

Berlin, the largest and capital city of Germany, spans an area of 89157

km2 and has a population of 3.6 million people. It is recognized as a high-58

density city with an average population density of about 4200 residents per59

square kilometer [24]. Situated along the Spree river, Berlin has a temperate60

seasonal climate. In terms of green space, the city boasts an impressive61

number of trees, approximately 80 per kilometer, totaling around 431,00062

trees throughout the city. These trees encompass more than 50 different63

species, with lime, maple, oak, plane, and chestnut being the most prevalent64

genera, accounting for over 75% of the total street trees. The city allocates65

an annual budget of approximately 37 million Euros for the maintenance of66

existing street trees, with an expenditure of around 2,500 Euros for planting a67

new tree and maintaining it for the first three years [66]. In spite of spending68

heavily on maintenance, the city has witnessed a reduction in the number69

of total trees over last 5 years. Figure 3a presents a snapshot of the tree70

distribution in the City of Berlin, where the color intensity represents the71

24



Journal Pre-proof

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4
 Jo
ur

na
l P

re
-p

ro
of

tree density per district. The tree inventory dataset includes details such72

as tree location, year of plantation, age, crown size, tree height, diameter,73

and species information. As the methodology adopted for the estimation of74

tree-sequestered carbon requires the diameter size of the trees, only those75

trees (∼75%) for which this information was available were included in the76

analysis.77

3.2.2. Melbourne City78

Melbourne is the capital of the state of Victoria and the second-most79

populous city in Australia, with around 5 million inhabitants and a city80

area of 9,993 km2. The mean population density in the city is about 50381

residents/km2. Greater Melbourne is an urban agglomeration consisting of82

Melbourne (inner city of around 37 km2) and 30 local municipalities (outer83

city). The city extends along the Yarra River and experiences a temperate84

climate known for its abrupt changes. Melbourne has more than 80,000 trees85

in the inner city region, valued at around 800 million$ [16]. The city also86

maintains a register of exceptional trees (currently 279 trees) that are on87

private land but need protection due to their natural or heritage significance88

[14]. Additionally, more than 3000 trees are planted annually to enhance the89

canopy cover and improve the diversity among tree species. As street tree90

data is limited for the rest of Greater Melbourne, both street trees and parks91

were included for the inner city, but only parks were included as UGS for92

the outer city. The most common tree genera in the city include Eucalyptus,93

Acacia, Ulmus, Platanus, and Corymbia. The tree inventory dataset includes94
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tree location, scientific and common name, year of plantation, tree maturity,95

and diameter. Figure 4a presents a snapshot of the park distribution in96

Greater Melbourne and the street trees in inner Melbourne considered in this97

analysis. Similar to Berlin, only trees with available diameter information98

(∼40%) were included.99

3.3. Data and other inputs00

The meteorological dataset, which includes data on evapotranspiration01

and past and future precipitation, was obtained from the German weather02

service DWD [21] and the Bureau of Meteorology Victoria [6] to estimate the03

water demand of street trees and parks. Furthermore, the WUCOLS dataset04

[82], as well as the soil maps from the Federal Institute for Geosciences and05

Natural Resources [5] and the City of Melbourne [17], were used as input06

data for the time series model employed for water demand estimation. To07

obtain tree-specific information such as tree type, species, diameter, and dis-08

tribution, the city tree inventory available through the open-data initiatives09

of Berlin [3] and Melbourne [18] was used.10

4. Results11

In scenarios of sufficient resource availability, the resource demands of all12

trees could be met. However, in resource-constrained situations, prioritiza-13

tion becomes crucial to determine which trees and parks should be allocated14

resources. The results demonstrate how the prioritization of various districts15

or sub-districts occurs using the proposed goal-programming based model16
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under a given resource constraint scenario. The green-marked regions in17

the city denote regions where all UGS should be prioritized for resource al-18

location, while the orange-marked region signifies those not prioritized. A19

resource constraint scenario of 20% reduction in the available resources is20

analyzed for both the case-study cities. For this particular analysis, the ac-21

cess and quality targets are set at the mean score of 8 and 6, respectively.22

Higher targets are set for access since the existing targets of WHO and UN23

SDG focus exclusively on providing higher access to a sufficient quantity of24

UGS without any specific targets related to the quality of those spaces or for25

carbon sequestration [83].26

The results for the three cases of Berlin are presented in the Figure 3.27

In the first case (see Figure 3b), resources are allocated at the district scale28

with city-scale goals. Here, 59 out of 96 districts received allocations, fulfill-29

ing the resource demand in the green-marked districts. In the second case30

(see Figure 3c), resource allocation is at the sub-district scale with city-scale31

goals. The third case (see Figure 3d) illustrates each district’s performance in32

goal achievement when resources are allocated at the sub-district scale with33

district-scale targets. Since in this case each district has an individual goal,34

the model aims to minimize the deviation for each district. Consequently,35

resources are allocated to each district. However, due to insufficient resources36

to meet the entire demand of all districts, some districts will still experience37

underachievement of their goals. Unlike the binary response obtained in the38

previous two cases, resource allocation is done in each district to maximize39
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goal achievement. For this case, districts are categorized as achieved if the40

goal is met, underachieved if the goal achievement is below the target, and41

overachieved if it exceeds the target. It can be observed that some districts42

experience overachievement, especially when large parks within those dis-43

tricts are fully prioritized, potentially surpassing the predefined or expected44

targets, set at a score of 8 for access and 6 for quality.45

(a) (b)

(c) (d)

Figure 3: (a) Snapshot of the street trees in Berlin with the intensity of colour indicating
the tree density in the district (Source: [3]) (b) Case-1 Berlin: Resource allocation decision
at district spatial scale with city-level goals. (c) Case-2 Berlin: Resource allocation decision
at sub-district spatial scale with city-level goals. (d) Case-3 Berlin: Goal achievement in
each district with district-level goals.

Similar to the Berlin case, the green-marked city districts in Figure 446
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(a) (b)

(c) (d)

Figure 4: (a) Snapshot of the parks in Greater Melbourne and street trees in the inner city
(Source: [18]) (b) Case-1 Melbourne: Resource allocation decision at district spatial scale
with city-level goals. (c) Case-2 Melbourne: Resource allocation decision at sub-district
spatial scale with city-level goals. (d) Case-3 Melbourne: Goal achievement in each district
with district-level goals.
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represent the districts in Melbourne where all UGS are prioritized for al-47

locating resources. Figure 4b presents the first case wherein resources are48

allocated at the district scale (divided according to localities) with goals set49

at the city scale. In this case, 231 out of 266 districts were prioritized. Fig-50

ure 4c presents the second case wherein resource allocation is done at the51

sub-district scale (divided according to zip codes) with goals set at the city52

scale. In this case, 440 out of 527 sub-districts were prioritized. Figure 4d53

presents the third case wherein resource allocation is done at the sub-district54

scale, but the targets are set at the district scale instead of the city scale.55

As a result, resources are allocated to each district, but the achievement of56

goals varies depending on the allocation and the resource availability. As57

explained in subsubsection 3.1.2, the access score is determined by the num-58

ber of people benefiting from a particular UGS. Consequently, UGS located59

on the outskirts of the city generally exhibit lower access scores compared60

to those situated in areas with a higher population density. While this is61

partially mitigated by the higher quality of UGS on the periphery compared62

to inner-city UGS, the overall prioritization still favors inner-city UGS. This63

preference is evident in the results from Melbourne, where several districts64

on the periphery did not receive prioritization. This contrasted with Berlin,65

where the relatively even distribution of the population resulted in a different66

prioritization pattern.67

Water demand and personnel demand are costs associated with the man-68

agement of each UGS, so it is critical to evaluate how much cost is involved69
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in implementing a particular strategy. Similarly, street trees allocated and70

parks allocated are indirect benefits that will determine the direct benefits71

desired by a decision-maker, i.e., achieved accessibility, achieved quality, and72

retained sequestered carbon upon implementing a particular strategy. Based73

on this principle, several benefits metrics were calculated and Table 4 pro-74

vides a performance summary of resource allocation strategies across various75

benefit metrics.76

Table 4: Performance on various benefit metrics under given constraints.

Berlin Melbourne

No Parameter City-level target District-level target City-level target District-level target

Districts Cluster Cluster Districts Cluster Cluster

(Case-1) (Case-2) (Case-3) (Case-1) (Case-2) (Case-3)

1 Water consumed (%) 94.28 97.35 95.17 96.56 98.72 97.3
2 Personnel consumed (%) 91.69 93.86 90.84 95.85 98.22 96.44
3 Street trees allocated (%) 84.15 92.23 81.22 89.6 94.37 87.7
4 Parks allocated (%) 92.46 89.74 94.59 90.12 88.46 92.28
5 Access score achieved 7.9 8.3 7.8 8.1 8.7 8
6 Quality score achieved 7.3 7.7 7.1 8.8 8.9 8.8
7 Carbon sequestered (%) 86.94 93.29 87.70 91.5 97.35 90.20
8 Heritage trees allocated (%) - - - 95.8 95.8 97.1
8 Model run time (mins) 35 50 80 30 40 65

The metrics water consumed and personnel consumed describe the re-77

sources used from the total available. They are calculated as the percentage78

of water allocated to the prioritized UGS from the available 80% water dur-79

ing the resource constraint scenario, and similarly for personnel allocation.80

Street trees allocated and parks allocated represent the resources receiving81

the required management inputs for sustenance. These metrics are calcu-82

lated as the percentage of street trees and parks that received management83

support from the total considered in the analysis. Access achieved and qual-84
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ity achieved describe the achievement of access and quality targets. These85

metrics are measured as the mean accessibility score or quality score of the86

prioritized or allocated parks. As previously mentioned, each of these scores87

falls within a range from 0 to 10, with 10 representing the highest score.88

Carbon sequestered presents the percentage of stored carbon that will con-89

tinue to remain stored due to the allocated street trees. This is calculated90

as the percentage of carbon stored in the prioritized trees against the car-91

bon stored in all trees. Heritage trees allocated is the percentage of heritage92

(exceptional) trees that will remain conserved under the given prioritization93

from the total heritage trees in the city. Lastly, model run time represents94

the total time taken to run the entire model, including the three sub-modules95

described earlier.96

Benefit metrics provide several insights into the prioritization recom-97

mended by the model. In Case-1, for Berlin, more parks received allocation98

than street trees, whereas, for Melbourne, the allocation was quite similar for99

both. This difference is likely due to the distribution of street trees through-00

out the entire city in Berlin, whereas, in the case of Melbourne, they are01

concentrated only in the inner city. Nevertheless, as observed, up to 8.31%02

(mean = 5.40%) of resources are left undistributed. The minimum resource03

required for each non-priority district is higher than the remaining resources;04

therefore, they cannot be allocated any resource. Consequently, all street05

trees and parks in those districts will remain without any resources, despite06

some resources being left in the city. Since the benefit target for access07
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was set higher than for quality, parks will have higher priority. However,08

in Case-2, street trees received a higher allocation because, at a higher spa-09

tial resolution, resources are distributed among a greater number of regions,10

leaving fewer resources for each sub-district. Additionally, since each unit11

of parks requires more resources, this will favor street trees. As a result,12

an improvement in resource utilization can also be observed for both cities.13

In this case, only up to 6.14% (mean = 2.96%) of resources are left undis-14

tributed. With the increase in resource allocation, the total UGS allocation15

also improved in Case-2 compared to Case-1.16

The overall benefits show improvement when goals are established at the17

district level instead of the city level (Case 3). In this case, as the benefit18

target aimed at maximizing access and quality achievement for each district,19

the prioritization highly favored the parks. As seen in Figure 3d and Fig-20

ure 4d, each district receives a portion of resources, and therefore, no region21

remains unmanaged. While this improves the uniformity in distribution, the22

allocation to trees reduced in this case, as some resources also went into man-23

aging previously not prioritized districts. In cases with a higher allocation24

of resources to parks, the mean access and quality scores are observed to be25

lower. This occurs because prioritizing a larger number of parks will also26

include parks that perform lower on these scores. As expected, higher car-27

bon sequestration is observed in cases with a higher allocation of resources to28

street trees. Especially in Melbourne, where all street trees are concentrated29

in the inner city and most of those districts got prioritized, the street trees30
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allocation and achievement of the carbon target are relatively much higher31

than in Berlin. The heritage trees metric was calculated only for Melbourne32

since the city has a special focus on preserving these trees. Lastly, the model33

run time increased as we increased the spatial resolution of the analysis and34

the number of constraints.35

5. Discussion36

The proposed extended GP model addresses the need for methods that37

can prioritize UGS while managing multiple resource constraints, such as38

water resources and personnel limitations. It leads to solutions that are not39

only feasible but also balance the achievement of multiple goals. In both the40

cases of Berlin and Melbourne, it can be observed that the benefit metrics41

improve when resource allocation is done at a sub-district spatial scale (Case-42

2) compared to when it is done at the district scale (Case-1). This is likely due43

to the criterion of absolute allocation. When optimization is done at a lower44

spatial resolution, the total number of street trees and UGS is much higher45

in a single unit. As a result, the cumulative management demands of each46

unit are comparatively higher, and the optimal or near-optimal result suffers47

from this aggregation. Therefore, under a resource constraint scenario, the48

number of district units that can be allocated resources is relatively lower.49

Moreover, when the allocation pattern is analyzed in comparison to the tree50

distribution in the city, many of the non-allocated sub-districts lie in the high51

tree density areas. It is critical to emphasize that since partial allocation is52
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not considered, some of the resources are left unused. Therefore, the gained53

benefits can likely be further improved by including partial allocation.54

While case-1 bounds the prioritization by a lower spatial scale, case-355

forces goal fulfillment in each district. Therefore, decision-makers aiming56

for a resource-efficiency-oriented distribution should opt for allocation at the57

sub-district level since, among all three, it offers the highest model flexibility58

to choose the UGS for prioritization. While case-3 is better suited for a goal-59

oriented prioritization approach, as the focus is higher on the achievement60

of goals across the city than on benefit maximization. The benefits gained61

increase as the spatial resolution increases. For the decision-maker, this62

implies that the distribution of resources using smaller hubs is better. In such63

cases, a smaller group of resource-intensive UGS can be targeted. However, if64

the decision is made at a district level to allocate resources to all UGS within65

the district, it would cover UGS with a varied range of demands and benefits.66

Nevertheless, higher spatial resolution not only exponentially increases the67

computation efforts for the model but also raises implementation complexity68

in the field, requiring different management applications for each region. It69

might be feasible to apply in the future using an IoT-based micro-irrigation70

system. Secondly, the district-level target approach is more appropriate since71

it does not leave any district completely disadvantaged and provides a more72

uniform resource allocation across the city. Therefore, this is suitable for73

cities like Berlin, where the population distribution is more uniform.74

Moreover, to assess improvements in goal achievement, a comparison is75
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conducted with a baseline scenario. In the absence of a prioritization stan-76

dard or framework available for the cities, decision-makers are unable to77

distinguish between higher and lower beneficial trees or parks and higher or78

lower resource-intensive tree species. Consequently, a symmetrical distribu-79

tion of resources must be made, considering all trees and parks in all districts80

equally based on the availability of resources. In the event of a 20% reduc-81

tion in available resources, the resources will be sufficient to meet the annual82

management demands of 80% of the total UGS. In such a case, over the large83

iterations, the benefits achieved will be proportionate as well.84

However, with GP model-based prioritization, the allocation surpasses85

80% in all three scenarios for both street trees and parks. This is achieved86

by the model favoring UGS with lower resource demands per unit of benefits87

provided. As a result, resource-intensive UGS receive reduced management88

support. This prioritization strategy enables cities to attain greater bene-89

fits even under constrained scenarios. It’s crucial to note that these results90

are based on available public data. Since the open tree inventory lacked91

essential data for some trees, updating the missing data could potentially92

alter management requirements, recommendations, and GP-based decision-93

making. Consequently, future research should focus on addressing these data94

gaps.95

The review of the existing city plans also indicated a critical gap in the96

urban greening strategies of both cities. The city of Berlin has developed97

a Landscape Program to ensure sufficient availability of recreational areas98
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for people and the needs of wild animals and plants in the future [54]. This99

initiative involves the creation of new green spaces and a network of connect-00

ing paths. Although the program has effectively integrated environmental01

goals into planning procedures, it lacks strategies to address challenges in02

the event of resource constraints. Similarly, the City of Melbourne recog-03

nizes the importance of UGS and has developed a Green Our City Strategic04

Action Plan [15] and Open Space for Everyone Strategy [13]. However, the05

primary focus remains on increasing new green spaces to meet the growing06

demand, enhancing the diversity of tree species, and improving vegetation07

health. While acknowledging the extended drought and subsequent water08

shortage, a recommendation has been made to plant drought-resistant tree09

species and implement stormwater harvesting. Nevertheless, no consideration10

has been given to prioritizing existing UGS based on the benefits obtained.11

6. Conclusion and Future Research12

The proposed GP model allocates limited resources to maximize the so-13

cial and environmental benefits obtained from UGS. The reduced availability14

of demand parameters, water, and personnel is included to demonstrate the15

constraint scenario. However, these parameters can be extended by adding16

additional demand parameters, such as the quantity of fertilizer, the num-17

ber of trucks, or the available budget. The benefit parameter is calculated18

using the custom-built accessibility and quality indicators for parks and the19

sequestered carbon indicator for street trees. Nevertheless, these parameters20
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can be easily replaced or extended with other benefit parameters, such as21

biodiversity, air pollution reduction, or heat mitigation (cooling), depending22

on the needs of the city and availability of the accurate data.23

The novelty of the study lies in its implementation of a MCDM approach24

to address the resource allocation challenge for existing UGS. It introduces25

a utilitarian principle-based prioritization using a multi-objective GP model.26

The proposed model can accommodate diverse UGS, including parks and27

street trees, with varying characteristics, and allows analysis at different28

spatial scales. Moreover, it uniquely incorporates accessibility as a goal,29

enabling cities to meet UN SDG targets even under resource constraint con-30

ditions. Additionally, the framework is scalable, allowing the inclusion of31

additional cost and benefit parameters. Lastly, the model was tested in two32

cities with diverse conditions regarding data availability, green space density,33

population distribution, and local climatic conditions.34

It is important to note that the GP-based method, instead of optimizing,35

derives a solution that satisfies the goals. Consequently, some resources may36

remain unused in the final solution. Additionally, the current approach is37

limited to spatial planning of resource allocation and can be extended by38

considering temporal aspects. For instance, different temporal goals or con-39

straints at various spatial scales could be incorporated. In addition, currently,40

constraints are considered at the city level, which can be further extended41

to different spatial scales, as was done for the goals in this study. Similarly,42

the current model adopts a single-choice goal, allowing the decision-maker43
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to set fixed target values for each benefit. This approach can be expanded44

to a multi-choice goal, where a range of benefit targets can be specified, as45

demonstrated by [40]. As mentioned earlier, more benefits and management46

demands can be included to create more realistic trade-off scenarios. Fur-47

thermore, it is important to note that the analysis included only around48

75% of street trees for Berlin and 40% for Melbourne, for which diameter49

information was available in the tree inventory dataset to calculate the se-50

questered carbon. As a result, the actual management demand and benefits51

obtained from street trees would likely be proportionately higher than the52

estimated values. Therefore, further research is needed to address such data53

gaps in urban datasets. Moreover, due to a lack of information on personnel54

in the public domain, certain assumptions were made in estimating the per-55

sonnel demand. However, following the process of the demonstration, these56

assumptions can be replaced with factual city data to obtain more accurate57

results.58

The developed model is a novel approach for UGS management, serving59

as an example for urban resource allocation applications. Decision-makers60

can utilize this model to make prioritization decisions at various spatial scales61

under constraint scenarios. The model is adaptable to include additional de-62

mand and benefit parameters based on the availability of relevant datasets.63

Moreover, it allows decision-makers to observe the impact of modifying the64

priority order of goals and their respective weights on the prioritization de-65

cision.66
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[56] Nestıcò, A., Elizabeth, C., and Naddeo, V. (2020). Sustainability of11

urban regeneration projects: Novel selection model based on analytic net-12

work process and zero-one goal programming. Land Use Policy, 99:104831–13

104831.14

[57] Neuenschwander, N., Wissen Hayek, U., and Grêt-Regamey, A. (2011).15

Gis-based 3d urban modeling framework integrating constraints and ben-16

efits of ecosystems for participatory optimization of urban green space17

patterns. Proceedings of REAL CORP 2011.18

[58] Nyelele, C. and Kroll, C. N. (2021). A multi-objective decision support19

framework to prioritize tree planting locations in urban areas. Landscape20

and Urban Planning, 214:104172–104172.21

[59] Nyelele, C., Kroll, C. N., and Nowak, D. J. (2022). A comparison of tree22

planting prioritization frameworks: i-tree landscape versus spatial decision23

support tool. Urban Forestry and Urban Greening, 75:127703–127703.24

[60] OECD (2023). Hours worked (indicator).25

47



Journal Pre-proof

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9
 Jo
ur

na
l P

re
-p

ro
of

[61] Omidipoor, M., Jelokhani-Niaraki, M., Moeinmehr, A., Sadeghi-26

Niaraki, A., and Choi, S.-M. (2019). A gis-based decision support sys-27

tem for facilitating participatory urban renewal process. Land Use Policy,28

88:104150–104150.29

[62] Orumie, U. C. and Ebong, D. (2014). A glorious literature on linear30

goal programming algorithms. American Journal of Operations Research,31

04:59–71.32

[63] Pankaj Kant, P. K. M. and Natha, A. R. (2023). Evaluation of decision33

support system for disaster management using multi-criteria decision tech-34

niques: a case study of alappuzha, kerala. Urban, Planning and Transport35

Research, 11(1):2262546.36

[64] Pavan, M. and Todeschini, R. (2009). Multicriteria decision-making37

methods. Elsevier eBooks, pages 591–629.38

[65] Perron, L. and Furnon, V. (2022). Or-tools.39

[66] Pflanzenschutzamt Berlin (2021). Stadtbäume.40
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Multi-criteria  decision  making  framework  for  urban  green  spaces
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application.
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making.

Increased total benefts gained while efectively balancing the conficting
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Supporting  decision-makers  for  budgeting  resources  under  constraint
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Prioritising Urban Green Spaces in Resource Constrained Scenarios
A goal-programming based multi-criteria decision making method to allocate limited water and 
personnel resources while maximizing the benefits obtained from urban green spaces .

The proposed approach can help increase the total benefits gained while effectively balancing the conflicting goals and constraints while 
considering city’s preferences and priorities. 

Increasing spatial resolution (left to right) led to improved resource allocation and goal attainment for the case-study city Berlin, with district-
scale targets yielding more consistent resource allocation than city-scale ones.
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