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Abstract

Urban Green Space management requires a multi-dimensional, evidence-
based approach to effectively balance social, environmental, and economic
objectives. City administrators currently lack a data-driven framework for
allocating resources during constraint scenarios, leading to subjective deci-
sions. Existing literature lacks objective solutions for managing city-scale
green spaces, each with its distinct characteristics. Another challenge is
handling varied spatial scales required for urban applications. This study
proposes a novel goal programming-based model for urban green space man-
agement wherein multiple benefit objectives, such as conserving sequestered
carbon in trees and enhancing quality and accessibility of parks, as well as
handling demand constraints on available resources like water and person-
nel, are included. The proposed method was demonstrated in two cities with
diverse conditions, Berlin and Melbourne, and evaluated on various bene-

fit metrics, such as allocated green space units, resources consumed, and
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goals achieved. The model was analyzed with resource allocation decisions
and goals at different spatial scales. The highest benefit achievement and
resource allocation were observed when resources were allocated at the sub-
district scale with a city-level target. Alternatively, setting targets at the
district level provided a more even resource distribution; however, at the
cost of reduced overall benefits. Results show that the proposed method in-
creased the total benefits gained while effectively balancing conflicting goals
and constraints. Additionally, it allows incorporating the city’s preferences
and priorities, offering a scalable solution for informed decision-making in
varied urban applications. Depending on data availability, this approach
can be scaled to other cities, including additional benefits and resource con-

straints as required.

Keywords: Urban green, green space management, resource allocation,

goal programming, sustainable cities, decision support
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1. Introduction

Cities often face challenges related to resource constraints. Critical project
resources such as personnel, commodities, equipment, and funding are lim-
ited and in competition with other uses or projects. Consequently, decision-
makers must prioritize resource allocation to fulfil the distinct needs of the
city and its residents. For example, a city dealing with a budget constraint
might need to allocate limited funds between essential services like infras-
tructure development and welfare schemes for the needy. Prioritizing one
theme, such as offering free entry to public recreational spaces for encourag-
ing its usage, could lead to decreased funding for maintaining or developing
new spaces, conflicting with the broader goal of ensuring its universal access
in the long run. City administrators deal with this difficulty of prioritiz-

ing spending decisions and making trade-offs between competing demands
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for scarce resources [55]. Similar to cities, the management of Urban Green
Space (UGS) also encounters the challenge of resource allocation with multi-
ple, often conflicting, objectives, such as increasing green spaces while devel-
oping compact cities [78]. This challenge is compounded by the involvement
of various stakeholders from departments of garden, road, forestry, waste and
civic society groups [35, 23]. Moreover, the increasing pressure on resource
availability, such as funding cuts, personnel shortages, and reduced water
supply due to expected droughts from climate change, will further exacer-
bate this problem. Current decision-making processes often rely on limited
data, physical inspections, and subjective assumptions, excluding the com-
prehensive assessment of trade-offs and the resulting impact on costs and
benefits of the decision.

Reliable field data is critical for UGS planning, management, and decision-
making [53]. The World Health Organisation (WHO) also highlighted the
need for a multi-dimensional evaluation of UGS interventions to assist munic-
ipalities in making evidence-based decisions [88]. Moreover, WHO guidelines
suggest that public UGS of at least 0.5-1 ha should be accessible within a 300-
metre distance to all city residents [88]. Providing universal access to green
and public spaces is part of the United Nations Sustainable Development
Goal target 11.7 as well [83]. As a result, access to green spaces becomes an
important indicator for the management. However, expansion of newer UGS
spaces to meet the increased demand might not always be possible due to

resource constraints. For instance, in a survey conducted in 2020 across 12
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cities in the United States, 83% of the cities reported an increase in visita-
tion to natural areas, while 72% experienced decreased capacity to manage
them due to severe shortages of seasonal staff [67]. Similarly, increasing the
number of trees and UGS areas to meet a city’s greening targets will further
strain water sources, especially in drought-prone regions [75]. Consequently,
taking into account the costs and benefits associated with a particular re-
source allocation strategy and its impact on the city’s UGS and the resource
conditions, becomes crucial before its implementation.

Multi-criteria decision-making (MCDM) methods have been extensively
used to assist decision-makers in situations involving multiple stakeholders,
criteria, and conflicting objectives [41]. These methods first derive feasible
alternatives under given constraints that meet the preferences of decision-
makers. Subsequently, the performance of all alternatives is evaluated to
generate a decision that fulfills conditions and maximizes objectives [64]. In
certain approaches, the alternatives are predefined by the user, and max-
imization is achieved for the given options. MCDM has been applied for
decision-making in a large spectrum of domains, such as disaster management
[63], water allocation [77], urban sustainability [27], facility management [39],
and reservoir control [86]. However, existing multi-criteria approaches have
limitations in addressing urban challenges, especially in handling trade-offs
and conflicts among various criteria (both quantitative and qualitative), as
well as dealing with large-scale problems with numerous constraints and cri-

teria.
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Different types of approaches have been proposed to improve the man-
agement of UGS. For example, optimization-based methods for location al-
location [11], machine learning-based techniques for the optimal allocation
of UGS [50], crowd-sourcing-based participatory management [53, 80], GIS-
based methods for prioritizing tree planting sites based on criteria for need
and suitability [49], and organizational-based strategies like the place-keeping
process [26, 11]. While existing literature, such as [49], [58], and [59], has
used MCDM to address the challenge of prioritizing new tree plantations,
the prioritization of existing UGS has not been studied. Furthermore, while
benefit parameters have been included, resource constraints, such as water
and personnel, are also not covered.

As a result, the research study aims to answer the following research ques-
tion:

Can the resource allocation decisions for managing UGS in constrained sce-
narios be optimized using an MCDM approach?

The research scope includes (1) identifying a suitable MCDM approach
for optimizing urban resource allocation in constrained scenarios; (2) consid-
ering the necessary adaptations for its application to UGS management; (3)
identifying the required model parameters and relevant public datasets for its
quantification; (4) implementing the optimization model for decision-making
on prioritization; (5) assessing the model’s performance on various benefit
metrics; and (6) evaluating the impact of different scenario conditions on

decision-making.
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The research approach includes identifying the appropriate method for
optimizing resource allocation decisions, considering factors such as com-
plexity, adaptability, and the ability to handle trade-offs and uncertainties.
Accordingly, the proposed model is an extension of the goal programming
(GP) model that can support varying inputs, constraints, and targets at dif-
ferent spatial scales. The model was tested in two case-study cities, and its
performance under various constraints was evaluated and compared with a
baseline reference scenario.

This research achieves two main outcomes. The first outcome is the
development of a model that optimizes the decision-making of prioritiza-
tion under different constraint scenarios. The model is scalable to handle
city-scale datasets, capable of addressing trade-offs and conflicts, and incor-
porates decision-makers’ preferences. It is also adaptable to various cost-
benefit parameters to address the resource allocation problem in varying
spatial conditions. The second outcome is the provision of insights to aid
city administrators in making informed decisions regarding resource alloca-
tion and budgeting, especially under constraint scenarios. Additionally, the
findings will assist in planning and maintaining both existing and new street
trees and parks.

The paper is organized as follows: First, a literature review describes
the various MCDM methodologies and research gaps in the context of UGS
management applications. Based on this, GP is chosen as the basis of the

methodology. This is followed by the modelling approach section, which
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discusses the model parameters and its implementation in a Python-based
model. In the case study section, the results of applying the model to data
from Berlin and Melbourne are discussed. The final two sections present the

discussion and conclusions.

2. Literature Review
2.1. MCDM approaches

MCDM is an effective tool for solving decision-making problems with
conflicting objectives [28]. Numerous optimization methods based on math-
ematical models, expert judgments, and heuristics have been developed to
solve MCDM problems. These methods can be categorized based on whether
the decision-maker implicitly provides plausible solutions (Multi-Attribute
Decision Making (MADM)) and whether their preferences are taken into ac-
count during the decision-making process (Multi-Objective Decision Making
(MODM)) [41]. MCDM methods have been used to address varied types of
problems, such as prioritization, selection, allocation, optimization, schedul-
ing, routing, and management. The commonly used MCDM methods include
linear programming (LP), non-linear programming, integer programming,
dynamic programming, goal programming (GP), weighted product model
(WPM), Analytical Hierarchy Process (AHP), Multi-Attribute Utility The-
ory (MAUT), and Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS). These methods can be further classified as analytical
methods if they are quantitative and based on mathematical models or as

interactive methods if they constantly involve human judgment and prefer-
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ences. The selection of the suitable MCDM method for the UGS management
application is done based on the requirements of the problem. Since, in UGS
management, the problem involves multiple resource constraints, a desired
benefits target to be achieved, decision-maker’s preference, and there are no
preset solutions available. Therefore, the chosen method should be of the
MODM type to ensure that the solution is considered from a continuous
space.

Several studies have implemented MCDM approaches to address vari-
ous aspects of UGS planning and management, including location, layout,
design, function, and size of UGS [46]. This has been done with respect
to varied objectives such as public accessibility, UGS quality, heat island
mitigation, runoff regulation, carbon offset, and enhancing biodiversity [58].
For instance, [48] utilized a multi-objective programming method to deter-
mine the required quantity of UGS for achieving a specified level of carbon
offset. Meanwhile, [46] implemented spatial optimization for UGS layout
planning, considering equitable distribution and conversion costs as decision
criteria. [33] devised a regression-based optimization strategy for UGS plan-
ning, focusing on accessibility and quality as primary targets. Using an LP
approach, [57] determined the optimal distribution of green spaces at the
district level, considering spatial conditions. Similarly, [58] utilized an LP
model to pinpoint optimal locations for maximizing overall benefits derived
from urban greening. Later, they proposed a multi-objective optimization

framework to prioritize tree planting scenarios based on current and future
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ecosystem services [59]. However, these studies primarily concentrated on
benefits maximization and didn’t consider associated management costs in
decision-making. Furthermore, as evident, their scope was limited to new
plantations, and the planning and management of existing UGS haven’t been

considered by any of the studies.
2.2. Resource allocation problem

In resource allocation problems, the aim is to distribute the available re-
sources and maximize the achievement of the desired objectives. A large
number of optimization algorithms have been developed and applied to ob-
tain optimal resource allocation. For example, [61] integrated MCDM with
GIS for participatory renovation of urban areas, [19] used a Markov decision
process for a communication system, [69] implemented a fish swarm algo-
rithm to distribute cloud resources, and [70], [10] proposed a game theoretic
approach to allocate defense resources. All of the referred studies were based
on the utilitarian principle, focusing on benefit maximization. Accordingly,
that objective has been adopted for this study as well.

Figure 1 presents a summary of relevant literature, classified based on
study methodology and application. It can be observed that a larger number
of studies use MCDM methods to obtain an optimal resource allocation strat-
egy. However, the application of these techniques in UGS management has
been scarce. Furthermore, even for UGS, most studies have focused solely
on planting strategies. No studies were discovered that apply these methods

to manage existing UGS, especially in resource-constrained conditions.
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Figure 1: Classification of relevant literature with current study focus is highlighted.

101 Nevertheless, each of these existing methods has certain limitations. Most
12 of these optimization approaches aim for feasible solutions. However, in
13 resource-constrained scenarios, achieving a feasible solution might not al-
104 ways be possible. Additionally, strictly adhering to the objective function
105 may result in no solution or inferior utilization of available resources. Since
s both LP and GP provide solutions over continuous space and can incorpo-
17 rate resource constraint conditions, those two were considered as prospective
s approaches. LP has the limitation of optimizing a single objective function
199 with numerous linear constraints. However, in real-life problems, multiple
200 conflicting objectives are often present, making LP inadequate for such ap-

200 plications. Unlike LP, where a decision-maker can only have one objective
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function, GP can handle multiple goals simultaneously [62]. Furthermore,
while LP allows for a fixed goal, in GP, the goal is considered only as the
initial target. This allows flexibility for the decision-maker to compromise
on the solution in case of competing goals [56]. Therefore, GP was a suitable

option for addressing the described problem.
2.3. Goal Programming

GP is an MCDM approach based on determining a satisfactory solution
to multi-goal decision-making problems. [9] pioneered GP, which was later
expanded upon by [43], [8], [34], [76], and [79]. Researchers have developed
various GP variants for a variety of problem types and use-case applications.
The major variations are listed in Table 1 to showcase the applicability of
existing variants. From these variants, each basic variant could be used in
conjunction with a special case. GP has been extensively applied in different
planning and operational applications such as finance [42], healthcare [52, 74],
software development [38], water use [4], and reservoir operation [47].

Due to its capability to efficiently find feasible solutions, flexibility in
managing multiple competing goals, and ease of use, GP has found extensive
application in addressing resource allocation challenges as well. Resource-
allocation focused studies also cover diverse domains such as healthcare [37],
fleet management [85, 71, 32], urban regeneration [56], logistics [45, 12], en-
ergy strategies [2], and more. Several researchers have also used GP to ad-
dress challenges pertaining to UGS management. For instance, [55] utilized

GP to determine a sustainable development pathway, with a central focus
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on accommodating decision-makers’ preferences. [68] presented a GP-based
model for the optimal selection of a tree improvement program. Similarly,
[22] developed a GP model for evaluating forest plans, considering multiple
spatial scales from a regional level down to a stand level through aggrega-
tion. The ability of GP to adapt and be flexible makes it a valuable tool for
managing different types of resources.

GP is based on the principle of getting as close to the decision makers’
goals as possible. Accordingly, it aims to minimize the underachievement
of each goal using deviation variables. The primary distinction between GP
and other MCDM approaches is that it seeks to satisfy rather than optimize
the objective [36]. Therefore, GP is especially suitable for handling trade-
offs between multiple conflicting goals. Moreover, the priority order for the
goals can be established by either weighing or ranking them. The GP model
includes two types of constraints: system and goal constraints. Systems,
or hard constraints, describe actual capabilities and are therefore limiting,
whereas goals, or soft constraints, indicate desired aims to be accomplished
and are thus flexible. The basic formulation of the GP model is presented in
equations (1)—(3). Overachievement is represented by the positive deviation
variable d*, whereas underachievement is represented by the negative d~.
The model allows for G goals, indexed as g = 1,2,..G, and x is the decision
variable that belongs to the feasible region F, consisting of points that satisfy
all the constraints. The decision maker sets an achievable target, ¢,, for each

goal, and the achieved value of the goal is represented by f(x). Finally,
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the objective function minimizes the sum of deviations to maximize goal

achievement.

mind:Zd;+d; (1)

g=0
fg(:v)—kd;—d;:tg,g:l,...(}, r€F (2)
drd->0, g=1,..G (3)

Table 1: Major Goal Programming variants (Source: [36])

Variant Application

Normal Based on minimizing the sum of all deviations
Lexicographic Pre-defined priority levels (When no trade-off comparisons)
Weighted Assigned weights to the goals (Trade-offs)

Chebyshev Based on maximal deviation from any goal

Special Cases

Fuzzy For uncertainty in goal weights or target values.
Integer Restricted to take only discrete values
Fractional One or more goal of the form a/b
Non-standard Preference Non-linear penalty function

Objective bounds One or more constraints are rigid

Interval A range of target to be satisfied

However, the current variants of GP do not have the capability to ac-
commodate varying input characteristics. Each UGS is unique in terms of
its demands and the benefits it provides. This is different from industrial or
financial sectors, where the inputs required for the production of each unit
and the corresponding value of the output produced are relatively constant.

Additionally, there is a significant gap in incorporating spatial and temporal

12
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variations in the constraints and goals. While the availability of immobile
resources required to meet the demand could differ among city districts, the
benefits of public infrastructure should be evenly available to everyone in the
city. Therefore, in urban management, it is necessary to have the flexibility
to set goals or constraints for each neighborhood or district. Moreover, as
mentioned earlier, research on the application of GP for resource allocation
in cities has been inadequate and completely absent for UGS. Therefore, an
extended GP variant is necessary to effectively address the requirements of

urban applications, especially UGS management.
3. Methodology

The methodology aims to develop a multi-criteria decision support system
for determining UGS prioritization under resource constraint conditions. It
implements a utilitarian-based approach to prioritize UGS based on maximiz-
ing benefit achievement. The following subsections describe each component

of the system and its implementation in more detail.
3.1. Modeling framework

Figure 2 presents the overall framework of the decision-making model.
The model comprises three modules: Estimating cost, estimating benefits
and resource allocation. The outputs of the first two modules are used to
make prioritization decision in the third module. It is to be noted that while
the cities consist of a variety of UGS [87], for this study, they are grouped

into two major categories. First, street trees consisting of all trees alongside

13
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playgrounds, urban forests, and farms within city boundaries.
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| Prioritisation |
AN 2

Resource Allocation

Public User Intermediate e \ Final
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Figure 2: Modeling framework for prioritizing UGS in resource constrained scenarios.

3.1.1. Estimating demand parameters

The literature highlights the importance of supplying necessary water
resources and emphasizes the critical role that local management play in
maintaining the performance of UGS [25, 7]. In their research, [87] emphasize
that experienced urban forestry staff are critical for the successful governance
of UGS. Accordingly, two input demands were chosen to demonstrate the
integration of management needs as a cost factor into the resource allocation
decision-making framework: water and personnel. In the context of a street

tree, water demand refers to the total amount of water (in mm) required

14
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annually to sustain an individual tree, while for a park, it refers to the sum of
water demand for trees and the landscape area. Similarly, personnel demand
refers to the total amount of physical work (in hours) required annually
to carry out maintenance tasks, such as watering, cutting, pruning, litter
cleaning, and the application of fertilizers. Estimates for street trees are
made at the tree scale, while in the case of parks, it is the aggregated total
of all the trees in the park as well as the total landscape area. To estimate
species-wise annual water demand, a linear time-series-based model was used.
The model, based on soil water balance and the Water Use Classifications
of Landscape Species (WUCOLS) approach, estimates weekly water demand
using publicly available data on tree species, soil type, and current/future
weather conditions. The detailed methodology of the aforementioned water
estimation model is described in [73].

The most common types of laborers needed for UGS management are
cleaners, gardeners (for pruning, pest management, and fertilizer applica-
tion), and truck drivers (to transport the leaf litter). In the absence of
primary datasets related to the personnel management of UGS, reliance on
secondary sources becomes imperative. This approach is deemed suitable
since deriving the required staff from the existing actual staff might not be
accurate. Typically, cities recruit staff based on factors such as the city’s
population or the availability of funds [1]. To estimate the necessary person-
nel demand, we considered two parameters: the estimated time required for

each activity and the desired frequency of these activities based on estab-
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lished best practices guidelines. These activities are discussed in more detail
by [30], [31], [20], and [44]. Accordingly, the estimations used for the per-
sonnel required to maintain a single street tree or a 0.01 ha area are shown
in Table 2. A single personnel works for 1349 hours annually in Germany
and 1707 hours annually in Australia [60]. As a result, one personnel staff in
Germany may handle around 415 street trees or a 4.15 ha park area, while
in Australia, they may handle around 525 street trees or a 5.25 ha park area.
Moreover, the decision-makers could vary this input based on management
preference and local needs.

Table 2: Estimating personnel demand for UGS management for a single street tree or
0.01 ha of park area

Input (hours/week) Frequency (week/year) Total demand (hours/year)

Cleaner 0.05 13 0.65
Gardener 0.1 13 1.3
Driver 0.025 52 1.3

3.25 hours/year

3.1.2. Estimating benefit parameters

While various environmental, social, and economic advantages are as-
sociated with UGS, three have been selected to illustrate the inclusion of
benefits as a factor in a resource allocation decision-making framework: ac-
cessibility, quality, and carbon sequestration. Accessibility and quality ben-
efits are estimated for all parks, as the trees in parks collectively provide

not only environmental benefits but also high social benefits. In contrast,
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carbon sequestration is derived as a benefit from street trees since they act
individually, with the primary focus on environmental benefits.

Accessibility is a custom-built indicator that quantifies a specific park’s
role in providing urban residents with access to green space, as recommended
by the WHO. It is calculated as a weighted average of the building coverage
score (Sc) and the essentiality score (Sg). The first component, S, mea-
sures the number of residences that benefit from a specific park. The second
component, Sg, measures the significance of a specific park in ensuring acces-
sibility to nearby residences. Similarly, the quality of UGS is defined as its
cumulative performance on area size (Sq.a), greenness (Sq ), noise (Sqn),
and safety (Sqs). Accordingly, parks with a larger area, a higher density of
trees located in districts with lower average noise levels, and fewer reported
crime events are typically rated high in quality scores. Both accessibility and
quality are derived as scores between 0 to 10 using min-max normalization
(re-scaling) of the underlying features. The detailed approach for calculat-
ing benefit parameters for parks is outlined in [72]. Since there is a positive
correlation between the size of the tree and the amount of carbon captured
by the tree [81, 51], the sequestered carbon for each street tree is calculated
from its species type and diameter size according to the method in [84].
3.1.8. Spatial analysis

Given that management decisions cannot be practically implemented at
an individual tree level, it is necessary to group trees and parks into larger

units. To assess the influence of spatial resolution on decision-making, the

17



353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

analysis is conducted in three different configurations. The first case involves
allocating resources at the district level while establishing targets at the city
level. The second case involves allocating resources at the sub-district (or
cluster) level with city-level targets. Finally, the third case involves allocating
resources at the sub-district level while establishing targets at the district

level.

3.1.4. Prioritization Model

The objective of the GP model is to prioritize resource allocation to street
trees and UGS to maximize total benefits with available resources. As a re-
sult, the criteria are to maximize carbon sequestration in street trees, overall
accessibility attained by the UGS, and UGS quality.

The sets, parameters, and variables utilized in the optimization model are
listed in Table 3. The sets feature a complete and prioritized collection of
park and street trees and a set of districts and sub-districts. The parameters
include four components: cost, benefit, available resources, and targets. The
value of the cost and benefit parameters are derived using various public
datasets and for available resources and target can be obtained from the
decision maker’s inputs. The variables stores the deviation and decision
variables as model’s intermediate and final results, respectively.

The objective function of the model is given in equation (4) where the
purpose is to minimize the weighted sum of all deviation variables at a given
spatial scale. This objective function is subject to soft and hard constraints.

As can be seen, both the optimization function and constraints utilize two
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Table 3: Notation of sets, parameters, and variables used in the optimization model.

Sets

G Set of urban parks (g € G)

G, Set of prioritized urban parks (G, C G)
S Set of street trees (s € 5)

Sy Set of prioritized street trees (S, C S)
L Set of Spatial locations (I € L)
Parameters

wdemand Water demand of unit ¢

pemand Personnel demand of unit i

|} available Total water available for irrigation
pavailable Total personnel available for management
pgarbon Carbon sequestration benefit of unit 7
bgeeess Accessibility benefit of unit i

pruatity Quality benefit of unit ¢

Bearbon Target carbon sequestration benefit
Baceess Target accessibility benefit

Bauality Target quality benefit

Variables

ra; Resource allocation decision for unit ¢
dl Deviation from carbon sequestration goal
d2 Deviation from accessibility goal

d3 Deviation from quality goal

D Total deviation for all goals
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summation functions. The first summation function aggregates the individ-
ual prioritized units (street tree or park) with varying input characteristics,
including water demand, personnel demand, access benefit, quality benefit,
and carbon sequestration benefit. The second summation function aggregates
all the prioritized units within a selected spatial location, either a sub-district
or district. The soft constraints given in equations (5)—(7) drives the model
to attain the expected level of benefit targets (Bcarbon paccess pauality)  The
hard constraints given in equations (8) and (9) ensure that the resource de-
mand does not exceed the available resources during the constraint scenario.
Lastly, the equations (10)—(12) define the prioritized sets and the feasible
values for the decision variable. Accordingly, the resource allocation decision
(74.4) is binary in nature and the choice of allocating resources is solely made
for complete allocation. As a result, a partial allocation at a unit level is not
allowed in the model. Moreover, if a park spreads across multiple districts
or sub-districts, then it is included in the region with the highest overlap of
area.
Minimize

dllﬂ' d2l,i d3l,z’
D= Z(Z Wy * Bcarbon + Z W2 * Baccess + ws * Bquality) (4)

leL  iesp i€gp

The optimization function aims to minimize D, the weighted sum of deviation
variables d1, d2, and d3. Since all the deviations are in different units, they
are normalized using their respective benefit targets before summing them

up. The weights w1, w2, and w3 are used to prioritize carbon sequestration,
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access, and quality goals and depend on the city’s preference. Soft constraints

(goals/benefits):

Z Z blcgrbon +dl = Bcarbon (5)

leL iesp

The achieved carbon sequestration benefits are the sum of the sequestered
carbon by all the prioritized trees in all the prioritized spatial sections of the
city. Given that B%" represents the target, d1 indicates any underachieve-
ment from this carbon storage target.

SO b 4 o — s (6)

leL iegy
The achieved access benefits result from the sum of access score provided
by individual parks in all prioritized spatial sections of the city. Given that
B®ce5% is the target, d2 represents any underachievement in access reached
compared to the target.

SO 4 g = pretts 7)

leL iegp
Similarly, the achieved quality benefits result from the sum of the quality
scores of individual parks in all prioritized spatial sections of the city. Given
that By is the target, d3 represents any underachievement in quality
attained compared to the target

Hard constraints (resource constraints/costs):

E wlgdemand + § wzdemand § W(wazlable (8)

1€Sp i€gp
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Due to restrictions on the availability of water in any city, the fulfilled water
demand should not exceed the budget allocated for green space irrigation.
Therefore, the sum of water demand from prioritized trees and prioritized

parks should be less than the available water.

Zp?emand + Zp;iemand < Pavailable (9)

i€Sp i€gp

Similarly, the availability of personnel for management activities is also lim-
ited. Therefore, the sum of personnel demand from prioritized trees and

prioritized parks should be less than the available personnel

Sp=Ta;i*S Viel (10)

sp denotes the set of prioritized street trees, and S represents the entire set
of street trees in the city. The binary decision variable 7, ; indicates whether

a specific street tree is prioritized.
Gp=Ta;i*xG YViel (11)

Similarly, g, denotes the set of prioritized parks, and G represents the entire
set of parks in the city. The binary decision variable r,; indicates whether a

specific park is prioritized.
re; € (0,1) Viel (12)

As mentioned earlier, the binary decision variable r,; takes the value of 0 to
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indicate that a particular unit is not prioritized, and 1 to signify prioritization
with allocated resources.The solution of the model will yield an array of (0,1),
indicating whether a particular UGS should be prioritized or not.

The aforementioned model has been implemented in Python language
(Version 3.10) using a web-based interactive computing service, Google Co-
lab [29]. The CP-SAT solver from OR-Tools v9.5, an open-source library
developed by Google, was used to implement and solve the optimization
model in Python [65]. Additionally, QGIS, an open-source GIS software,
was used for the purpose of analysing and plotting the allocation result. The
program initializes by importing the cost and benefit data, which is estimated
as described in 3.1.1 and 3.1.2, respectively, or using the data provided by
the user. The demand and benefit data is then aggregated at district or

sub-district level depending on the scale of analysis.
3.2. Study area

The described model has been applied to case studies in Berlin, Ger-
many, and Greater Melbourne, Australia, to showcase its applicability under
diverse conditions. The selection of the two cities was guided by several
factors, including the availability of open data, diversity in city conditions,
familiarity with the geographical locations and social conditions, access to
garden authorities, and consideration of the challenges faced by the cities.
While Berlin has an evenly distributed population and UGS throughout the
city, Melbourne has a dense population within its city boundary and a vary-

ing distribution of UGS. Moreover, inner Melbourne mostly consists of street
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trees and small parks, whereas the suburban region has large parks and ur-
ban forests. Additionally, the quality of data availability varies between the
two regions. In Greater Melbourne, tree inventory data is maintained by
individual councils for each district and is not entirely published under open
data initiatives. Similarly, the noise map of Melbourne is also not available
as open data. Accordingly, case studies from two diverse geographical and

on-field conditions will illustrate the handling of different urban situations.

3.2.1. Berlin City

Berlin, the largest and capital city of Germany, spans an area of 891
km? and has a population of 3.6 million people. It is recognized as a high-
density city with an average population density of about 4200 residents per
square kilometer [24]. Situated along the Spree river, Berlin has a temperate
seasonal climate. In terms of green space, the city boasts an impressive
number of trees, approximately 80 per kilometer, totaling around 431,000
trees throughout the city. These trees encompass more than 50 different
species, with lime, maple, oak, plane, and chestnut being the most prevalent
genera, accounting for over 75% of the total street trees. The city allocates
an annual budget of approximately 37 million Euros for the maintenance of
existing street trees, with an expenditure of around 2,500 Euros for planting a
new tree and maintaining it for the first three years [66]. In spite of spending
heavily on maintenance, the city has witnessed a reduction in the number
of total trees over last 5 years. Figure 3a presents a snapshot of the tree

distribution in the City of Berlin, where the color intensity represents the
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tree density per district. The tree inventory dataset includes details such
as tree location, year of plantation, age, crown size, tree height, diameter,
and species information. As the methodology adopted for the estimation of
tree-sequestered carbon requires the diameter size of the trees, only those
trees (~75%) for which this information was available were included in the

analysis.

3.2.2. Melbourne City

Melbourne is the capital of the state of Victoria and the second-most
populous city in Australia, with around 5 million inhabitants and a city
area of 9,993 km?. The mean population density in the city is about 503
residents/km?. Greater Melbourne is an urban agglomeration consisting of
Melbourne (inner city of around 37 km?) and 30 local municipalities (outer
city). The city extends along the Yarra River and experiences a temperate
climate known for its abrupt changes. Melbourne has more than 80,000 trees
in the inner city region, valued at around 800 million$ [16]. The city also
maintains a register of exceptional trees (currently 279 trees) that are on
private land but need protection due to their natural or heritage significance
[14]. Additionally, more than 3000 trees are planted annually to enhance the
canopy cover and improve the diversity among tree species. As street tree
data is limited for the rest of Greater Melbourne, both street trees and parks
were included for the inner city, but only parks were included as UGS for
the outer city. The most common tree genera in the city include Eucalyptus,

Acacia, Ulmus, Platanus, and Corymbia. The tree inventory dataset includes

25



495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

tree location, scientific and common name, year of plantation, tree maturity,
and diameter. Figure 4a presents a snapshot of the park distribution in
Greater Melbourne and the street trees in inner Melbourne considered in this
analysis. Similar to Berlin, only trees with available diameter information

(~40%) were included.
3.3. Data and other inputs

The meteorological dataset, which includes data on evapotranspiration
and past and future precipitation, was obtained from the German weather
service DWD [21] and the Bureau of Meteorology Victoria [6] to estimate the
water demand of street trees and parks. Furthermore, the WUCOLS dataset
[82], as well as the soil maps from the Federal Institute for Geosciences and
Natural Resources [5] and the City of Melbourne [17], were used as input
data for the time series model employed for water demand estimation. To
obtain tree-specific information such as tree type, species, diameter, and dis-
tribution, the city tree inventory available through the open-data initiatives

of Berlin [3] and Melbourne [18] was used.
4. Results

In scenarios of sufficient resource availability, the resource demands of all
trees could be met. However, in resource-constrained situations, prioritiza-
tion becomes crucial to determine which trees and parks should be allocated
resources. The results demonstrate how the prioritization of various districts

or sub-districts occurs using the proposed goal-programming based model
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under a given resource constraint scenario. The green-marked regions in
the city denote regions where all UGS should be prioritized for resource al-
location, while the orange-marked region signifies those not prioritized. A
resource constraint scenario of 20% reduction in the available resources is
analyzed for both the case-study cities. For this particular analysis, the ac-
cess and quality targets are set at the mean score of 8 and 6, respectively.
Higher targets are set for access since the existing targets of WHO and UN
SDG focus exclusively on providing higher access to a sufficient quantity of
UGS without any specific targets related to the quality of those spaces or for
carbon sequestration [83].

The results for the three cases of Berlin are presented in the Figure 3.
In the first case (see Figure 3b), resources are allocated at the district scale
with city-scale goals. Here, 59 out of 96 districts received allocations, fulfill-
ing the resource demand in the green-marked districts. In the second case
(see Figure 3c), resource allocation is at the sub-district scale with city-scale
goals. The third case (see Figure 3d) illustrates each district’s performance in
goal achievement when resources are allocated at the sub-district scale with
district-scale targets. Since in this case each district has an individual goal,
the model aims to minimize the deviation for each district. Consequently,
resources are allocated to each district. However, due to insufficient resources
to meet the entire demand of all districts, some districts will still experience
underachievement of their goals. Unlike the binary response obtained in the

previous two cases, resource allocation is done in each district to maximize
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goal achievement. For this case, districts are categorized as achieved if the
goal is met, underachieved if the goal achievement is below the target, and
overachieved if it exceeds the target. It can be observed that some districts
experience overachievement, especially when large parks within those dis-
tricts are fully prioritized, potentially surpassing the predefined or expected

targets, set at a score of 8 for access and 6 for quality.

Distribution (Street trees)
1302 - 1388
11388 - 2609

Prioritisation
A = Yes
INo

= 6928 - 13989

Goal achievement
3 Overachieved
A [ Achieved

A Prioritisation
ives = Underachieved

=INo

(©) (d)

Figure 3: (a) Snapshot of the street trees in Berlin with the intensity of colour indicating
the tree density in the district (Source: [3]) (b) Case-1 Berlin: Resource allocation decision
at district spatial scale with city-level goals. (c) Case-2 Berlin: Resource allocation decision
at sub-district spatial scale with city-level goals. (d) Case-3 Berlin: Goal achievement in
each district with district-level goals.

Similar to the Berlin case, the green-marked city districts in Figure 4
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Prioritisation
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©INo

(c) (d)

Figure 4: (a) Snapshot of the parks in Greater Melbourne and street trees in the inner city
(Source: [18]) (b) Case-1 Melbourne: Resource allocation decision at district spatial scale
with city-level goals. (c¢) Case-2 Melbourne: Resource allocation decision at sub-district
spatial scale with city-level goals. (d) Case-3 Melbourne: Goal achievement in each district
with district-level goals.
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represent the districts in Melbourne where all UGS are prioritized for al-
locating resources. Figure 4b presents the first case wherein resources are
allocated at the district scale (divided according to localities) with goals set
at the city scale. In this case, 231 out of 266 districts were prioritized. Fig-
ure 4c presents the second case wherein resource allocation is done at the
sub-district scale (divided according to zip codes) with goals set at the city
scale. In this case, 440 out of 527 sub-districts were prioritized. Figure 4d
presents the third case wherein resource allocation is done at the sub-district
scale, but the targets are set at the district scale instead of the city scale.
As a result, resources are allocated to each district, but the achievement of
goals varies depending on the allocation and the resource availability. As
explained in subsubsection 3.1.2, the access score is determined by the num-
ber of people benefiting from a particular UGS. Consequently, UGS located
on the outskirts of the city generally exhibit lower access scores compared
to those situated in areas with a higher population density. While this is
partially mitigated by the higher quality of UGS on the periphery compared
to inner-city UGS, the overall prioritization still favors inner-city UGS. This
preference is evident in the results from Melbourne, where several districts
on the periphery did not receive prioritization. This contrasted with Berlin,
where the relatively even distribution of the population resulted in a different
prioritization pattern.

Water demand and personnel demand are costs associated with the man-

agement of each UGS, so it is critical to evaluate how much cost is involved
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in implementing a particular strategy. Similarly, street trees allocated and
parks allocated are indirect benefits that will determine the direct benefits
desired by a decision-maker, i.e., achieved accessibility, achieved quality, and
retained sequestered carbon upon implementing a particular strategy. Based
on this principle, several benefits metrics were calculated and Table 4 pro-
vides a performance summary of resource allocation strategies across various

benefit metrics.

Table 4: Performance on various benefit metrics under given constraints.

Berlin Melbourne
No Parameter City-level target  District-level target — City-level target — District-level target
Districts ~ Cluster Cluster Districts ~ Cluster Cluster
(Case-1) (Case-2) (Case-3) (Case-1) (Case-2) (Case-3)
1 Water consumed (%) 94.28 97.35 95.17 96.56 98.72 97.3
2 Personnel consumed (%) 91.69 93.86 90.84 95.85 98.22 96.44
3 Street trees allocated (%) 84.15 92.23 81.22 89.6 94.37 87.7
4 Parks allocated (%) 92.46 89.74 94.59 90.12 88.46 92.28
5 Access score achieved 7.9 8.3 7.8 8.1 8.7 8
6 Quality score achieved 7.3 7.7 7.1 8.8 8.9 8.8
7 Carbon sequestered (%) 86.94 93.29 87.70 91.5 97.35 90.20
8  Heritage trees allocated (%) - - - 95.8 95.8 97.1
8 Model run time (mins) 35 50 80 30 40 65

The metrics water consumed and personnel consumed describe the re-
sources used from the total available. They are calculated as the percentage
of water allocated to the prioritized UGS from the available 80% water dur-
ing the resource constraint scenario, and similarly for personnel allocation.
Street trees allocated and parks allocated represent the resources receiving
the required management inputs for sustenance. These metrics are calcu-
lated as the percentage of street trees and parks that received management

support from the total considered in the analysis. Access achieved and qual-
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ity achieved describe the achievement of access and quality targets. These
metrics are measured as the mean accessibility score or quality score of the
prioritized or allocated parks. As previously mentioned, each of these scores
falls within a range from 0 to 10, with 10 representing the highest score.
Carbon sequestered presents the percentage of stored carbon that will con-
tinue to remain stored due to the allocated street trees. This is calculated
as the percentage of carbon stored in the prioritized trees against the car-
bon stored in all trees. Heritage trees allocated is the percentage of heritage
(exceptional) trees that will remain conserved under the given prioritization
from the total heritage trees in the city. Lastly, model run time represents
the total time taken to run the entire model, including the three sub-modules
described earlier.

Benefit metrics provide several insights into the prioritization recom-
mended by the model. In Case-1, for Berlin, more parks received allocation
than street trees, whereas, for Melbourne, the allocation was quite similar for
both. This difference is likely due to the distribution of street trees through-
out the entire city in Berlin, whereas, in the case of Melbourne, they are
concentrated only in the inner city. Nevertheless, as observed, up to 8.31%
(mean = 5.40%) of resources are left undistributed. The minimum resource
required for each non-priority district is higher than the remaining resources;
therefore, they cannot be allocated any resource. Consequently, all street
trees and parks in those districts will remain without any resources, despite

some resources being left in the city. Since the benefit target for access
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was set higher than for quality, parks will have higher priority. However,
in Case-2, street trees received a higher allocation because, at a higher spa-
tial resolution, resources are distributed among a greater number of regions,
leaving fewer resources for each sub-district. Additionally, since each unit
of parks requires more resources, this will favor street trees. As a result,
an improvement in resource utilization can also be observed for both cities.
In this case, only up to 6.14% (mean = 2.96%) of resources are left undis-
tributed. With the increase in resource allocation, the total UGS allocation
also improved in Case-2 compared to Case-1.

The overall benefits show improvement when goals are established at the
district level instead of the city level (Case 3). In this case, as the benefit
target aimed at maximizing access and quality achievement for each district,
the prioritization highly favored the parks. As seen in Figure 3d and Fig-
ure 4d, each district receives a portion of resources, and therefore, no region
remains unmanaged. While this improves the uniformity in distribution, the
allocation to trees reduced in this case, as some resources also went into man-
aging previously not prioritized districts. In cases with a higher allocation
of resources to parks, the mean access and quality scores are observed to be
lower. This occurs because prioritizing a larger number of parks will also
include parks that perform lower on these scores. As expected, higher car-
bon sequestration is observed in cases with a higher allocation of resources to
street trees. Especially in Melbourne, where all street trees are concentrated

in the inner city and most of those districts got prioritized, the street trees
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allocation and achievement of the carbon target are relatively much higher
than in Berlin. The heritage trees metric was calculated only for Melbourne
since the city has a special focus on preserving these trees. Lastly, the model
run time increased as we increased the spatial resolution of the analysis and

the number of constraints.
5. Discussion

The proposed extended GP model addresses the need for methods that
can prioritize UGS while managing multiple resource constraints, such as
water resources and personnel limitations. It leads to solutions that are not
only feasible but also balance the achievement of multiple goals. In both the
cases of Berlin and Melbourne, it can be observed that the benefit metrics
improve when resource allocation is done at a sub-district spatial scale (Case-
2) compared to when it is done at the district scale (Case-1). This is likely due
to the criterion of absolute allocation. When optimization is done at a lower
spatial resolution, the total number of street trees and UGS is much higher
in a single unit. As a result, the cumulative management demands of each
unit are comparatively higher, and the optimal or near-optimal result suffers
from this aggregation. Therefore, under a resource constraint scenario, the
number of district units that can be allocated resources is relatively lower.
Moreover, when the allocation pattern is analyzed in comparison to the tree
distribution in the city, many of the non-allocated sub-districts lie in the high

tree density areas. It is critical to emphasize that since partial allocation is
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not considered, some of the resources are left unused. Therefore, the gained
benefits can likely be further improved by including partial allocation.

While case-1 bounds the prioritization by a lower spatial scale, case-3
forces goal fulfillment in each district. Therefore, decision-makers aiming
for a resource-efficiency-oriented distribution should opt for allocation at the
sub-district level since, among all three, it offers the highest model flexibility
to choose the UGS for prioritization. While case-3 is better suited for a goal-
oriented prioritization approach, as the focus is higher on the achievement
of goals across the city than on benefit maximization. The benefits gained
increase as the spatial resolution increases. For the decision-maker, this
implies that the distribution of resources using smaller hubs is better. In such
cases, a smaller group of resource-intensive UGS can be targeted. However, if
the decision is made at a district level to allocate resources to all UGS within
the district, it would cover UGS with a varied range of demands and benefits.
Nevertheless, higher spatial resolution not only exponentially increases the
computation efforts for the model but also raises implementation complexity
in the field, requiring different management applications for each region. It
might be feasible to apply in the future using an IoT-based micro-irrigation
system. Secondly, the district-level target approach is more appropriate since
it does not leave any district completely disadvantaged and provides a more
uniform resource allocation across the city. Therefore, this is suitable for
cities like Berlin, where the population distribution is more uniform.

Moreover, to assess improvements in goal achievement, a comparison is
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conducted with a baseline scenario. In the absence of a prioritization stan-
dard or framework available for the cities, decision-makers are unable to
distinguish between higher and lower beneficial trees or parks and higher or
lower resource-intensive tree species. Consequently, a symmetrical distribu-
tion of resources must be made, considering all trees and parks in all districts
equally based on the availability of resources. In the event of a 20% reduc-
tion in available resources, the resources will be sufficient to meet the annual
management demands of 80% of the total UGS. In such a case, over the large
iterations, the benefits achieved will be proportionate as well.

However, with GP model-based prioritization, the allocation surpasses
80% in all three scenarios for both street trees and parks. This is achieved
by the model favoring UGS with lower resource demands per unit of benefits
provided. As a result, resource-intensive UGS receive reduced management
support. This prioritization strategy enables cities to attain greater bene-
fits even under constrained scenarios. It’s crucial to note that these results
are based on available public data. Since the open tree inventory lacked
essential data for some trees, updating the missing data could potentially
alter management requirements, recommendations, and GP-based decision-
making. Consequently, future research should focus on addressing these data
gaps.

The review of the existing city plans also indicated a critical gap in the
urban greening strategies of both cities. The city of Berlin has developed

a Landscape Program to ensure sufficient availability of recreational areas
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for people and the needs of wild animals and plants in the future [54]. This
initiative involves the creation of new green spaces and a network of connect-
ing paths. Although the program has effectively integrated environmental
goals into planning procedures, it lacks strategies to address challenges in
the event of resource constraints. Similarly, the City of Melbourne recog-
nizes the importance of UGS and has developed a Green Our City Strategic
Action Plan [15] and Open Space for Everyone Strategy [13]. However, the
primary focus remains on increasing new green spaces to meet the growing
demand, enhancing the diversity of tree species, and improving vegetation
health. While acknowledging the extended drought and subsequent water
shortage, a recommendation has been made to plant drought-resistant tree
species and implement stormwater harvesting. Nevertheless, no consideration

has been given to prioritizing existing UGS based on the benefits obtained.
6. Conclusion and Future Research

The proposed GP model allocates limited resources to maximize the so-
cial and environmental benefits obtained from UGS. The reduced availability
of demand parameters, water, and personnel is included to demonstrate the
constraint scenario. However, these parameters can be extended by adding
additional demand parameters, such as the quantity of fertilizer, the num-
ber of trucks, or the available budget. The benefit parameter is calculated
using the custom-built accessibility and quality indicators for parks and the

sequestered carbon indicator for street trees. Nevertheless, these parameters
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can be easily replaced or extended with other benefit parameters, such as
biodiversity, air pollution reduction, or heat mitigation (cooling), depending
on the needs of the city and availability of the accurate data.

The novelty of the study lies in its implementation of a MCDM approach
to address the resource allocation challenge for existing UGS. It introduces
a utilitarian principle-based prioritization using a multi-objective GP model.
The proposed model can accommodate diverse UGS, including parks and
street trees, with varying characteristics, and allows analysis at different
spatial scales. Moreover, it uniquely incorporates accessibility as a goal,
enabling cities to meet UN SDG targets even under resource constraint con-
ditions. Additionally, the framework is scalable, allowing the inclusion of
additional cost and benefit parameters. Lastly, the model was tested in two
cities with diverse conditions regarding data availability, green space density,
population distribution, and local climatic conditions.

It is important to note that the GP-based method, instead of optimizing,
derives a solution that satisfies the goals. Consequently, some resources may
remain unused in the final solution. Additionally, the current approach is
limited to spatial planning of resource allocation and can be extended by
considering temporal aspects. For instance, different temporal goals or con-
straints at various spatial scales could be incorporated. In addition, currently,
constraints are considered at the city level, which can be further extended
to different spatial scales, as was done for the goals in this study. Similarly,

the current model adopts a single-choice goal, allowing the decision-maker
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to set fixed target values for each benefit. This approach can be expanded
to a multi-choice goal, where a range of benefit targets can be specified, as
demonstrated by [40]. As mentioned earlier, more benefits and management
demands can be included to create more realistic trade-off scenarios. Fur-
thermore, it is important to note that the analysis included only around
75% of street trees for Berlin and 40% for Melbourne, for which diameter
information was available in the tree inventory dataset to calculate the se-
questered carbon. As a result, the actual management demand and benefits
obtained from street trees would likely be proportionately higher than the
estimated values. Therefore, further research is needed to address such data
gaps in urban datasets. Moreover, due to a lack of information on personnel
in the public domain, certain assumptions were made in estimating the per-
sonnel demand. However, following the process of the demonstration, these
assumptions can be replaced with factual city data to obtain more accurate
results.

The developed model is a novel approach for UGS management, serving
as an example for urban resource allocation applications. Decision-makers
can utilize this model to make prioritization decisions at various spatial scales
under constraint scenarios. The model is adaptable to include additional de-
mand and benefit parameters based on the availability of relevant datasets.
Moreover, it allows decision-makers to observe the impact of modifying the
priority order of goals and their respective weights on the prioritization de-

cision.
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