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ABSTRACT
14:2:1 phases enable permanent magnets with excellent magnetic properties. From an application viewpoint, saturation polarization, Curie
temperature, and anisotropy constant are important parameters for the magnetic 14:2:1 phases. Novel chemical compositions that represent
new 14:2:1 phases require especially maximum saturation magnetization values at application-specific operating temperatures to provide
maximum values for the remanence and the maximum energy density in permanent magnets. Therefore, accurate knowledge of the satu-
ration magnetization Ms is important. Ms gets affected by chemical composition in a twofold way, with chemical composition significantly
influencing both magnetic moments and crystal structure parameters. Therefore, for magnetic 14:2:1 phases, we have developed a regression
model with the aim to predict the saturation magnetization in [μB/f.u.] at room temperature directly from the chemical composition as input
features. The dataset for the training and testing of the model is very diverse, with literature data of 143 unique phases and 55 entries of
repeated phases belonging to the ternary, quaternary, quinary, and senary alloy systems. Substitutionally dissolved elements are heavy and
light rare earth elements, transition metals, and additional elements. The trained model is a voting regressor model with different weights
assigned to four base regressors and has generalized well, resulting in a low mean absolute error of 0.8 [μB/f.u.] on the unseen test set of 52
phases. This paper could serve as the basis for developing novel magnetic 14:2:1 phases from chemical composition.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0171922

I. INTRODUCTION

Sintered magnets based on the intermetallic phase Fe14Nd2B
are currently the strongest class of permanent magnets. Due to their
high remanence, coercivity, and maximum energy density, they are
widely used in the motors of electrical vehicles or in the generators
of wind turbines.

In such sintered magnets, besides the microstructure,
the chemical composition of the hard magnetic 14:2:1 phase
(TM14RE2B; TM = transition metal, RE = rare earth, B = boron) is
primarily responsible for the outstanding magnetic properties. If sol-
ubility permits, elemental substitutes may occupy regular TM and/or
RE sites in the 14:2:1 crystal lattice.1–6 A comprehensive under-
standing of solubility limits and of substitutional and interstitial

sites can offer new directions for 14:2:1 compositional design to
meet application-specific magnetic properties.

Exceptional intrinsic magnetic properties of the 14:2:1 phase
(saturation polarization Js > 1.2 T, magnetocrystalline anisotropy
K1 > 106 J/m3) are prerequisites for large remanences and coer-
civities, respectively. In RE-TM intermetallics, the high saturation
polarization Js and Curie temperature Tc of the transition met-
als (TM = Fe, Co) are combined with the high magnetocrystalline
anisotropy K1 of the rare-earth metals (RE = Nd, Pr, Sm).

Besides the Curie temperature,7–9 the saturation magnetization
Ms or saturation polarization Js (Js = μ0Ms, μ0: vacuum permeability)
of the 14:2:1 phase is therefore an important property for applica-
tions. The magnetization is usually reported in the literature using
the unit [μB/f.u.] (μB: Bohr magneton, f.u.: formula unit). The unit
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[μB/f.u.] can be easily converted into [emu/g] (cgs). For the engineer-
ing of devices, the unit Tesla [T] (SI) is common. For the conversion
from [emu/g] to [T], mass density is needed.

Due to Hund’s rule, there is an antiparallel coupling between
the 3d spins of TM and the 4f spins of RE. For compounds with light
RE (Pr, Nd, Pm, Sm, Eu, and Gd), the negative coupling of spins
leads to a parallel alignment of RE and TM moments and ferromag-
netic temperature behavior (larger Js values). For compounds with
heavy RE (Tb, Dy, Ho, Er, Tm, and Yb), the negative coupling of
spins leads to an antiparallel alignment of RE and TM moments
and ferrimagnetic temperature behavior (smaller Js values). For
RE without the 4f moment (La, Ce, Lu, Y, Th), Fe sublattices are
ferromagnetically coupled.1,5 Furthermore, different magnetic con-
tributions may occur in saturation magnetization: The mean Fe
moments in Fe14RE2B are around 2.2 μB/atom, and the mean Co
moments in Co14RE2B are 1.4 μB/atom.1,5

With the advancement of data-driven approaches, the shift in
the paradigm for material design has been widely driven by mate-
rials informatics. Over the last decades, there has been a significant
rise in the use of machine learning (ML) techniques to predict the
material’s magnetic properties and accelerate the process of new
composition search.9–13 Concerning saturation magnetization Ms,
there are ML-based regression models developed for the prediction
of Ms for hard magnetic phases, such as for rare earth lean inter-
metallic REA12X compounds by Möller et al.11 (RE is either Ce or Nd
and A is one among Mn, Fe, Co, Ni, Ti, V, Cr, Cu, Zn, Al, Si, or P, and
X is either B, C, or N). Giaremis et al.,14 on the other hand, used an
artificial neural network (ANN) to capture the relation between the
structure of the Sm–Co permanent magnet and its saturation mag-
netization, and Wang et al.15 developed an ML-based approach for
predicting the saturation magnetization in Fe-based soft magnets.
Other works on using data-driven approaches for predicting Ms are
for phases other than 14:2:1 magnetic phases.16,17 However, minimal
research has been performed on applying the ML to predict intrinsic
properties such as density and Curie temperature Tc using the ele-
mental composition as features for 14:2:1 magnetic phases.9,18 The

attempt to predict the saturation magnetization for the 14:2:1 mag-
netic phase from chemical compositional features using ML-based
approaches is the scope of this paper.

II. METHODOLOGY
A. Materials database

The materials database consists of literature data on 198 mag-
netic 14:2:1 phases and corresponding saturation magnetization Ms
values in [μB/f.u.] measured at room temperature reported in dis-
tinct literature sources such as Herbst1 and Burzo.5 These phases
comprise a specific combination of the 28 elements shown in
Fig. 1(b). The dataset’s Ms values in terms of [μB/f.u.] range from
5 to 35, as shown in Fig. 1(a). The dataset also has some phases with
reported Ms values differing from one literature to the other, and
such phases are treated as duplicates or repeated phases. This dif-
ference in the reported values for the same phase could be due to
multiple reasons, such as using different measuring equipment or
varying experimental conditions. As a pre-processing step, the ele-
mental composition (C) was extracted for each phase in the dataset
and correlated with the corresponding Ms values. The extracted ele-
mental composition is composed of continuous variables serving as
the input feature to train the supervised ML regression model with
an expected output of Ms. Among the 198 phases in the dataset,
28 unique elements are obtained; hence, the feature vector size for
the ML model is 28 with 1 target value. For example, the Fe14Nd2B1
phase has a feature vector with 14 elements of Fe, 2 elements
of Nd, 1 element of B, and the remaining 25 elements (features)
as zero.

Furthermore, as seen in Table I, the dataset comprises phases
with different components ranging from three (ternary) to six
(senary). The dataset of 198 magnetic 14:2:1 phases has 143 unique
phases and 55 repeated phases. The training data have 103 unique
and 43 repeated phases, which are further split into the train and
validation sets using the K-fold (K = 5) cross-validation method to

FIG. 1. Dataset containing 198 phases of 14:2:1 type. (a) Frequency distribution of saturation magnetization values in the dataset. (b) Frequency distribution of 28 elements
observed across the dataset. The unique and repeated phases in the dataset are identified and highlighted in both distribution plots.
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TABLE I. Number of phases of 14:2:1 type in the dataset categorized into differ-
ent alloy systems. From three component system (ternary) to six component system
(senary).

Alloy system Number of phases in the dataset

Ternary 35
Quaternary 121
Quinary 40
Senary 2

evaluate the learning model’s performance. The unseen test set has
52 phases with 40 unique phases to evaluate the performance of the
trained model.

B. Machine learning models
Using the supervised learning approach, different ML regres-

sion models—namely the linear Huber regressor (HR),19 tree-based
approaches such as Random forest (RF),20 Gradient boosting (GB),21

Extreme gradient boosting (XGB),22 Adaptive boosting with a deci-
sion tree as a base learner (AB-DT),23 Multi-layer perceptron
(MLP)24 based on the artificial neural network, and weighted Vot-
ing regressor25 (VR)—were trained and evaluated for performance
on the validation set. Table II shows the optimized parameters of
the different ML regressor models. Based on the performance of
each model on the validation set, HR, RF, MLP, and AB-DT were
considered base regressors for constructing a VR model. Note that
the target property of magnetic saturation must be a continuous
smooth function of substitutional chemical compositions. However,
the inductive nature of base learners such as the tree-based regres-
sors RF, GB, XGB, and AB-DT generates the step function, which
is sometimes discontinuous,26 while others (HR and MLP) tend
to be a smooth continuous function. Nevertheless, VR combines
the output from each base learner by taking the average, which
leads to a smoother and continuous functional approximation when
compared to individual base learner prediction.

Additionally, VR has the advantage that it can potentially over-
come the drawbacks of individual base regressors to reduce the
variance and leverage their strengths to strategically generalize well
compared to stand-alone base learners. Though HR is robust to out-
liers and RF is good at capturing non-linear relationships, they have
drawbacks in that they are prone to overfitting when intricate depen-
dencies in data are not well captured by them.19,20 MLP, with its

complex transformation abilities, is sensitive to hyperparameter tun-
ing. AB-DT’s strength to enhance generalization ability by assigning
more weight to data with higher errors has the drawback that it is
sensitive to noise if decision trees are too complex.23,24

The performance evaluation of the regression model is possi-
ble using different metrics, of which mean absolute error (MAE),
root mean squared error (RMSE), and correlation coefficient (R2)
are widely used metrics for comparing the regression model’s per-
formance. Each metric has its own importance and drawbacks;
therefore, a combination of multiple metrics provides unbiased
information on model performance,

MAE =
1
m

m

∑

j=1
∣yj − ŷj ∣

RMSE =

¿

Á
ÁÀ

1
m

m

∑

j=1
(yj − ŷ j)

2

R2
= 1 −

∑
m
j=1 (yj − pk)

2

∑
m
j=1 (ŷ j − pk)

2

Here, m stands for the number of samples in the dataset, ŷ j is the jth

target value, yj is the predicted value for the jth sample, and pk is the
mean target value of all samples in the dataset.

The base regressors for the VR can either have a uniform or
non-uniform weightage. The VR’s final output is the average of the
weighted predictions from the base regressors. If each base regres-
sor has equal weightage, then it is a uniform VR; if weights vary,
then it is a non-uniform weighted VR (NU-VR). As we have base
regressors of different natures that include linear, tree-based, and
ANN, using uniform VR would not be effective.27,28 Figure 2 shows
the working of the VR with four base regressors for Ms prediction
from a given feature vector (f ) extracted from the input chemical
composition (C).

For a given input (C), each base regressor Fi(f ) predicts an out-
put that gets multiplied by the assigned weight (wi). VR calculates
the average weighted prediction from each base regressor to obtain
the final output Ms,

Predicted Ms

=
FHR( f )∗w1 + FRF( f )∗w2 + FMLP( f )∗w3 + FAB−DT( f )∗w4

(w1 +w2 +w3 +w4)

i f w1 = w2 = w3 = w4(uniform VR).

TABLE II. The optimized parameters of the different regressors used for the magnetic saturation predicting model. The optimized parameters are obtained after performance
evaluation on the 5-fold cross-validation split.

Base regressor Optimized parameters

HR Epsilon: 1.35; max_iter: 200; alpha: 0.0001
RF max_depth: 100; n_estimators: 100; criterion: mae; bootstrap: True
GB n_estimator: 50; max_depth: 20; min_samples_leaf: 2; min_samples_split: 8
XGB Objective: reg:squarederror; learning_rate: 0.05; max_depth: 100; alpha: 0.8; n_estimators: 100
AB-DT Learning_rate: 0.01; n_estimators: 50; estimator: DecisionTreeRegressor(max_depth:10)
MLP Activation: relu; hidden_layer_sizes: (50, 30); max_iter: 300; solver: lbfgs; tol: 0.0001; alpha: 0.0001
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FIG. 2. Voting regressor pipeline for the Ms prediction model from the chemical
composition. The average of the predicted Ms from the four base regressors with
respective weights is considered the final output from the voting regressor.

There are different approaches for calculating the weightage, and
it is mainly split into two categories: performance-based27,29–32 and
rank-based weights.33,34 The performance-based approach consid-
ers the normalized performance values of each base learner as its
weight. In a rank based approach, based on the cross-validation
score, each base learner is assigned a rank. A better performing
model is assigned the highest rank, implying more weightage. The
approaches for weight calculation are common for both classifica-
tion and regression tasks. The proposed approach considers both
performance-based weights measured using the R2 score and MAE
and a rank-based weight measured using the RMSE on the validation
set to obtain an optimized weight for each of the four shortlisted base
regressors using the grid search techniques.

III. RESULTS
A. ML model training and cross-validation

Table III shows the performance of the trained regression mod-
els on the validation set using RMSE, MAE, and R2 metrics. The
base regressors HR, RF, MLP, and AB-DT considered for the voting
regressor have validation errors of 1.08, 0.80, 0.71, and 0.75 [μB/f.u.]
using MAE as metric and 1.17, 1.17, 1.09, and 1.08 [μB/f.u.] using the
RMSE as metric, respectively. The other regression models, such as
GB and XGB, have validation errors of 1.50 and 1.16 [μB/f.u.] using
MAE and 1.90 and 1.61 [μB/f.u.] using RMSE as metrics, respec-
tively. The voting regressor model using the base regressors was
constructed with uniform and non-uniform weights. For uniform

TABLE III. Performance comparison between the different base regressor models
and weighted regressor models in terms of coefficient of fit (R2), root mean squared
error (RMSE), and mean absolute error (MAE) on the validation dataset having
29 phases.

Regression models R2 RMSE MAE

Huber regressor (HR) 0.97 1.17 1.08
Random forest (RF) 0.97 1.17 0.80
Gradient boosting (GB) 0.93 1.90 1.50
Extreme gradient boosting (XGB) 0.91 1.61 1.16
Multi-layer perceptron (MLP) 0.96 1.09 0.71
Decision tree + adaptive boosting (AB-DT) 0.98 1.08 0.75
VR-non-uniform weight (NU-VR) 0.97 1.07 0.72
VR-uniform weight (U-VR) 0.94 1.16 0.79

FIG. 3. Non-uniform weighted voting regressor model fitting of the saturation mag-
netization on the training set (in blue color) containing 117 phases in terms of mean
absolute error (MAE) and R2 score and on an independent validation subset (in red
color) of 29 phases from one of the 5 folds.

weighted VR, all four base regressors were assigned an equal weigh-
tage of 1; for non-uniform weighted VR, base regressors HR, RF,
MLP, and AB-DT were assigned weightage of 0.89, 0.94, 0.95, and
0.96, respectively.

The uniform weighted VR has a validation error of 0.79 and
1.16 [μB/f.u.] using MAE and RMSE, respectively. For the same val-
idation set, the non-uniform weight VR resulted in an error of 0.72
and 1.07 [μB/f.u.] using MAE and RMSE, respectively. The valida-
tion error using the uniform weighted VR resulted in an average
deviation of 3%, whereas the non-uniform weighted VR is less than
3%. Due to the superior performance of non-uniform weighted VR
(NU-VR), it has been considered for further testing. Figure 3 shows
the performance of the trained model NU-VR on a training set of
117 phases combined with the validation set of 29 phases against
the reference values from different literature sources for one of the 5
folds. A low overall MAE of 0.72 [μB/f.u.] and a good fit of 0.97 using
the R2 score were measured for the training and validation sets. The
model fits the dataset well and results in an absolute error of less than
2 [μB/f.u.] for most phases and a relatively higher error of more
than 2 [μB/f.u.] for 3 phases out of 143 phases. The phases
Fe10CoAl3Nd2B, Fe14Nd1.6Er0.4B, and Fe14Nd1.5Tb0.5B have an
absolute error of 5.16, 2.6, and 2.49 [μB/f.u.], respectively.

B. ML model testing on unseen test compositions
On the unseen test set, the trained model resulted in an error

of 0.77 and 0.88 [μB/f.u.] using MAE and RMSE, respectively. The
resulting error would mean the average deviation from the trained
model is 3%. The low error on the unseen test set confirms that the
model has generalized well to the dataset. Furthermore, the model’s
performance on the repeated and unique phases in the unseen test
set was calculated. Figure 4 shows the performance of the trained
model NU-VR on the unseen test set. For the 40 unique phases,
an MAE of 0.8 and an RMSE of 0.9 [μB/f.u.] have been obtained.
The model’s performance on the 12 repeated phases among the
52 phases in the unseen test resulted in a low MAE of 0.7 and
RMSE of 0.8 [μB/f.u.]. Note that the repeated 12 phases in the
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FIG. 4. Non-uniform weighted voting regressor model predictions on an unseen
test set (52 phases). The test set contains 39 unique and 13 repeated phases
taken from independent literature sources that were not part of the training set.

unseen test set are obtained from the different literature sources that
have reported slightly different Ms values. Only one unique phase
has an absolute error of more than 2 [μB/f.u.] and has been iden-
tified as Fe12Cu2Y2B. The remaining 51 phases have an absolute
error of less than 2 [μB/f.u.], with most having an error of less than
1 [μB/f.u.].

C. Application of the trained model to compare
the measured and predicted saturation polarization

Magnetic saturation polarization is often calculated from the
measured or experimental saturation magnetization and density
using the physical formula, depending on the units of the measured
Ms. Most works in the literature report the measured Ms value in
[μB/f.u.] or emu, which requires the density in [g/cm3] to calculate
the Js [T] using the physical formula provided in the literature,1,5

Js =
m∗ ρ∗ 4π

10 000

m =
Ms ∗ 9.274∗10−24

(∑A)∗1.6605∗10−27

Here, m refers to the saturation magnetization in emu/g, ρ is den-
sity in [g/cm3], and Ms is saturation magnetization in [μB/f.u.].
Moreover, A is the formula mass of the 14:2:1 phase.

Js can also be calculated from Ms using another physical for-
mula reported in the literature,1,5 provided Ms has been measured
or reported in Ampere per meter [A/m],

Js = μ0∗Ms

where Ms is saturation magnetization measured in [A/m] and μ0 is
vacuum permeability in [Vs/Am].

Using the developed model to predict the Ms, Js can be calcu-
lated for the phases whose density ρ has been measured or reported
in the literature. Similarly, using the approach suggested by Kini
et al.18 for the density prediction model using chemical composi-
tion, the density can be predicted for the alloys whose Ms in [μB/f.u.]

FIG. 5. Compares the calculated saturation polarization Js [T] predicted from the
trained machine learning models and literature values. The phases are catego-
rized into 14:2:1 phases containing heavy rare earth (in blue color), light rare earth
(in green color), and mixed (heavy and light combined) rare earth metals (in red
color). The calculated Js in [T] is obtained using the saturation magnetization Ms

in [μB/f.u.] and density ρ in [g/cm3].

has already been reported in the literature for calculating the Js. Note
that the developed model for Ms prediction and the existing density
prediction model from Kini et al.18 have been trained on different
chemical compositions that resulted in a different chemical elemen-
tal feature vector. Therefore, to predict Ms, or the density of the
unknown phase, the input feature, which is the chemical composi-
tion, should be within the feature space of the chemical compositions
that were used for training the models.

Out of the 143 unique phases in the dataset for the Ms pre-
diction model, there are 24 unique phases whose density and Ms
values have both been reported in the literature. These 24 phases
belong to ternary, quaternary, and quinary alloy systems. Note that
for these 24 phases, the literature sources for reported Ms and den-
sity are different, implying that the calculated Js values may have
some degree of error due to differences in experimental setup or sub-
jective error. Ideally, the Js value calculated using the Ms and density
from the literature source should match the Js value calculated from
the predicted Ms and density values from the respective trained ML
model.

Comparing the resulting Js from the literature and predicting
them would serve as a physics-based or human-in-loop sanity check
for the dataset used for training the ML models. Figure 5 compares
the calculated Js in [T] using Ms in [μB/f.u.] and density in [g/cm3]
from literature sources and the trained model. Depending on the
presence of the rare earth (RE) element, 24 phases are categorized
into heavy RE, light RE, and mixed RE. An average absolute devia-
tion of 2%, 2%, and 3% was seen among the phases with light RE,
mixed RE, and heavy RE. A maximum deviation of 0.1 T was seen
among the 24 phases tested.

IV. DISCUSSION
The dataset for the Ms prediction model is diverse, with phases

belonging to different alloy systems and phases with different rare
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FIG. 6. Example of the reported magnetic saturation [μB/f.u.] at room temperature
for the repeated magnetic 14:2:1 phases in the dataset collected from the various
literature sources. For each repeated phase, the deviation of phases from their
mean value is calculated, and a maximum deviation of 5% is observed.

earth elements. Furthermore, the repeated phases reported differ-
ent Ms values in [μB/f.u.] for the same chemical composition, and it
has been primarily due to the different measurement methods and
equipment, errors in measurement, and considerable deviation in
the ambient temperature for conducting experiments. In the litera-
ture sources, the reported Ms values are measured using saturation
law or with a vibrating sample magnetometer (VSM) or extrac-
tion magnetometer at different external fields such as 1.0–8.0 T and
varying ambient temperatures between 295 and 305 K.

Figure 6 shows the magnetic saturation in [μB/f.u.] for the
repeated magnetic 14:2:1 phases in the training and test sets for
seven different phases. There are some other repeated phases in
the dataset apart from the seven phases shown in Fig. 6, but for
explanation, we have chosen phases that are repeated in varying
numbers. The phases Fe14Ho2B appear twice, Fe14Gd2B, Fe14Pr2B,
and Co14Nd2B four times, Fe14Y2B five times, and Fe14Nd2B six
times in the dataset. The highest standard deviation among repeated
phases is 2 [μB/f.u.] for Fe14Nd2B, and the least is 0.1 [μB/f.u.] for
Fe14Ho2B. Since these phases are from different literature sources,
they have the same chemical composition (input features) but dif-
ferent Ms values. The mean value of repeated phases is calculated,
and the deviation of each repeated phase from its mean value is
noted. The maximum deviation of 5% was for the Fe14Nd2B. For
other repeated phases, the deviation is less than 5%. If the range or
spread of the reported Ms value for a given phase is high, resulting in
clusters, then the model learns the optimal Ms value from the cluster
with more repeated phases using a majority vote. However, suppose
there is no possibility of forming clusters for reported Ms values
for a given phase. In that case, the model learns the optimal Ms
value such that it has the least error concerning most of the repeated
phases. Moreover, the iterative learning characteristic of most of
the ML models ensures that the presence of outliers in repeated
phases does not influence the decision-making process of the
ML model.

A. Generalization ability of the trained model
The base regressors considered for constructing the voting

regressor model include parametric and non-parametric models.

Among the base regressors, RF and AB-DT are tree-based mod-
els, HR is a linear model, and MLP is an artificial neural network
capable of learning non-linear functions. With such diverse base
regressors, assigning equal weightage to each one is difficult as they
differ greatly in the learning process. Therefore, unequal weights
have been assigned to obtain a smoother and continuous function
to have a generalized and robust model that has proven to fit the
dataset better than using a uniform VR.

The low MAE and RMSE for the phases in the validation dataset
suggest that the model did well in generalizing the diverse dataset
with different alloy systems. However, despite the low prediction
error of the trained non-uniform weighting VR model, there has
been a noticeable difference in the MAE and RMSE values. RMSE
penalizes the phases with high error and suggests the presence of
outliers or phases on which the model did not fit well. A relatively
higher RMSE of 1.07 [μB/f.u.] than MAE of 0.72 [μB/f.u.] on the val-
idation set is due to the presence of three phases, Fe10CoAl3Nd2B,
Fe14Nd1.6Er0.4B, and Fe14Nd1.5Tb0.5B, that have an absolute error of
more than 2 [μB/f.u.], of which Fe10CoAl3Nd2B resulted in an abso-
lute error of 5.16 [μB/f.u.]. In the training set, the phases where the
iron (Fe) element is substituted by different percentages of Co and
Al elements occur only three times.

Figure 7 shows that a higher amount of aluminum (Al) in
the phase has a negative impact and could lead to a low Ms value.
The Al substitutes 3 out of 4 elements of Fe in Fe10CoAl3Nd2B. It
has a higher negative impact on the prediction, leading to a lower
Ms value of 19.94 [μB/f.u.] as compared to the ground truth of
25.1 [μB/f.u.]. However, including more such phases in the training
set could assist the learning model in generalizing better. The pres-
ence of such phases in lower numbers in a dataset is challenging as
they lie on the solubility limit’s boundary and require more training
phases to capture the data fit.

Figure 7 shows the feature importance plot calculated using the
SHapley Additive exPlanations (SHAP)35 method, with the SHAP
value indicating the importance of the individual element. Since the
base learners for the VR model have linear, non-linear, and tree-
based models, a model-agnostic approach is recommended to get

FIG. 7. Global feature importance plot for the trained weighted voting regressor
obtained using the SHAP method. The feature importance values are mean abso-
lute SHAP values; green indicates a positive impact, and red suggests a negative
impact on the Ms prediction.
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FIG. 8. Comparison between the predicted (colored data points) and reported
(black points) Ms from an unseen source for the Fe14−xXxNd2B1 (X = additional
elements). The trained model has predicted the magnetic saturation for the higher
substitution of elements (Co, Al, Mn, and Si) within the solubility limits.

feature importance. Note that the plot shows only the top 11 out
of 28 features used for model development and explains the trained
model’s behavior but not data distribution. The color green indi-
cates a positive impact, whereas red indicates a negative impact on
the model’s prediction. For example, if a phase has Nd, Fe, and Si,
then Nd and Fe would cause the model to predict a high Ms value,
whereas Si would tend to lower the Ms value prediction, and this
effect is proportional to the percentage of each element in the phase.
This also agrees well with the experimental results shown in Fig. 8
from Burzo et al.5

The trained model performance on the unseen test set on
unique and repeated phases suggests that the model fits well on a
dataset, showing low MAE and RMSE errors. There has been no
significant difference in the MAE and RMSE values for phases in
the test set. Furthermore, the low MAE of 0.8 [μB/f.u.] on unique
phases indicates that the model is not overfitting and can capture
the relationship between input features and the Ms value. The only
phase that resulted in a higher error is Fe12Cu2Y2B, and it has been
found that this composition is not a single phase due to the limited
solubility of Cu.4

Figure 8 compares the literature reported1,5 and predicted Ms
values for different substitution elements, which include Co, Al, Mn,
and Si. The literature reported values marked in black and pre-
dicted in different colors. The metals Mn and Al have high slopes,
suggesting greater sensitivity than Co or Si.

Furthermore, an attempt has been made to extend the exist-
ing plot from Burzo5 by predicting Ms values for higher substitution
amounts and within the solubility limit. The dotted lines represent
the behavior of Fe14−xXxNd2B1 for increasing substitution amounts
of X elements (Co, Al, Mn, and Si) reported by Burzo.5

B. Effect of aggregation of data based
on the chemical composition

The presence of unique and repeated phases in the dataset pri-
marily provides the model with data that is closely representative
of real-world data and includes variability in measurements from

different sources. Furthermore, aggregating the data using a single
metric such as mean or average would lead to a true Ms value for
some compositions, and for others, this may lead to a high error.9
Figure 6 shows that the deviation error from the mean or aver-
age (metric) value within each repeated phase varies non-uniformly.
This could imply that an alternative metric such as median, mode, or
any custom metric is needed to aggregate the composition where the
metric of mean is not suitable. Suggesting that it is not recommended
to have a single metric for aggregating all the repeated compositions
in the dataset. Note that aggregation based on a single metric would
also induce bias and overfit the model with high variance. It is well
known that the measure of the trained model’s ability to capture the
universal representation of the dataset is based on the predictabil-
ity of the unseen test set,36,37 and the low MAE of 0.88 [μB/f.u.] on
unique and 0.78 [μB/f.u.] on repeated phases in the test set con-
firms that there is no bias toward repeated phases and the model
generalized well. This highlights the importance of the VR model,
which strategically handles the challenges of dataset characteristics
by leveraging the strengths of base learners.

Moreover, with the non-aggregated dataset, the learning model
can capture the composition dependence on an error, and its effect
is being evaluated using the MAE and RMSE. Finally, it must be
noted that the supervised ML model’s learning process is such that
for the duplicate or repeated data points, it learns the optimized tar-
get value, which is close to the cluster of duplicate target values,
by minimizing the error during the training phase. Additionally, in
tree-based base regressor models such as RF and AB-DT in VR, the
effect due to the presence of outliers or noise in the repeated phases
is reduced as they are treated internally.

V. STRENGTHS AND LIMITATIONS
OF THE CURRENT MODEL

The dataset used for developing the model has some composi-
tions with multiple entries (repeated phases) as they have varying Ms
values from different literature sources. The variation in the reported
values for the same composition from such literature sources has
a standard deviation of 2 [μB/f.u.]. Nevertheless, the trained model
could predict values on unseen unique phases with a low MAE of
0.8 [μB/f.u.].

The developed model has been trained on a feature set of 28
elements shown in Fig. 1(b) and compositions within the solubility’s
boundary limits. Therefore, we have noted that phases with a com-
position that lies close to the solubility limit or even outside pro-
duce a comparatively high error. Adding more training samples for
such compositions can significantly improve the model’s prediction
capability.

VI. CONCLUSIONS
1. The model for predicting the Ms values for the magnetic 14:2:1

phases has been developed using the supervised learning
method with chemical composition as input features, result-
ing in a low MAE of 0.8 [μB/f.u.] on the unseen test set, which
accounts for the average deviation of 3% when compared to
the reference values from literature sources.

2. The trained model is a single generalized model for magnetic
14:2:1 phases applicable for ternary to senary alloys having

AIP Advances 14, 015060 (2024); doi: 10.1063/5.0171922 14, 015060-7

© Author(s) 2024

 08 February 2024 09:36:03

https://pubs.aip.org/aip/adv


AIP Advances ARTICLE pubs.aip.org/aip/adv

heavy and light RE that works within the solubility limit of
the 28 elements used for training the model. Furthermore, the
trained model has generalized well on the dataset and does not
get affected by the presence of different heavy and light RE
substituted 14:2:1 phases.

3. The proposed approach of combining parametric and
non-parametric models as base regressors for building a
non-uniform weighted voting regressor model has proven
more effective on diverse datasets involving unique and
repeated phases. Out of 198 phases, only one phase, i.e.,
Fe10CoAl3Nd2B, has resulted in a higher absolute error of
more than 5 [μB/f.u.].

4. The comparison between the Js [T] calculated from the mea-
sured Ms and density values from the literature source and the
predicted values resulted in a MAE of 0.1 T. Such a compari-
son could serve as the basis for developing a physics-informed
ML model or a tool for a sanity check of the dataset used
for training the models, as a higher difference indicates the
possible presence of measuring errors.
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