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ABSTRACT

Software product lines (SPLs) are a technique to efficiently develop
families of software products. Code is implemented in functional
features which are composed to individual software variants. SPLs
are oftentimes used in safety-critical systems, which is why func-
tional correctness is more important than ever. As an advanced
approach, deductive verification offers the possibility to verify the
behaviour of software against a formal specification. When deduc-
tive verification is applied for SPLs, it meets the challenges of an
SPLs variability. Since most verification approaches do not scale
for variant-rich product lines, we take up existing approaches of
reuse of proof parts to develop our concept of partial proofs. We
split proofs into a feature-specific and a product-specific part. The
feature-specific part is only proven once for all products enabling
advanced proof reuse. We implement our concept of partial proofs
in the tool VarCorC and evaluate it on three case studies. We found
that both the number of proof steps and the verification time can
be reduced by using partial proofs. Further, we determine a trend of
increasing improvements of verification costs for large-scale SPLs.

KEYWORDS

software product lines, deductive verification, formal methods

1 INTRODUCTION

Functional correctness of software is a major concern, especially
for safety-critical systems, where bugs can have severe conse-
quences [29]. Usually, testing is the first choice to check the func-
tional correctness of code. However, testing is often not sufficient
as it cannot show the absence of errors [24]. One advanced op-
tion to guarantee behavioural correctness is deductive verifica-
tion [15, 17, 18, 45]. Deductive verification is a formal method used
to prove that a program satisfies a specified behaviour.

Deductive verification can also be used to verify the correct-
ness of configurable systems [26, 44] such as software product lines
(SPLs) [33]. SPLs aim to create families of related software products
by using variable code structures. A family is defined with features
which implement a certain functionality or behaviour. Feature mod-
els are used to organize the relationships and dependencies of fea-
tures in a tree pattern [33]. The selection of a certain set of features is

called feature configuration and leads to an individual software prod-
uct [20]. Deductive verification can be used to guarantee the func-
tional correctness of SPLs using formal specifications. With feature-
based specifications [3], the code implementing a feature is specified
with individual contracts consisting of a pre- and a postcondition
defined in first-order logic. Product-based verification [41] verifies
the correctness of every software product individually with respect
to its specification. For that, the specification of an individual soft-
ware product is built by combining the specifications of all features
that implement the desired product.

Due to the exponential explosion of the number of products
in a product line, product-based verification does not scale as the
verification costs increase rapidly [23, 41]. Existing work on reduc-
ing the verification costs for SPLs split product-based proofs into
multiple parts to enable reuse of common proof parts [12, 25, 26].
The existing approaches split the verification at method-call level
as method-calls can implement variability. However, variability can
also be present in specifications where variability is defined using
dependencies on the software product considered at verification
time [23]. To the best of our knowledge, dependencies in the speci-
fication have never been considered as a splitting point for proofs
although they offer further possibilities to reduce the verification
costs of product-based verification.

In this paper, we address this research gap and propose our
concept of partial proofs to split the verification in two parts with
respect to the corresponding formal specification. We divide proofs
into a feature-specific part and a product-specific part. The feature-
specific part does not depend on a certain software product. Thus,
it is not necessary to execute this part for every software product
individually. Instead, the feature-specific part can be used as a
basis to continue the product-specific proof. With that, we aim to
reduce the verification time and proof steps needed to verify SPLs
in contrast to existing product-based verification.

For tool support and to evaluate our approach, we implement
partial proofs in the tool VarCorC [9, 35]. VarCorC supports the
Correctness-by-Construction-based [24] implementation and verifi-
cation of SPLs. The correctness of an SPL is verified using deductive
verification in the tool KeY [1]. We evaluate partial proofs regarding
feasibility and whether they can reduce the verification costs of
SPLs in contrast to existing product-based verification. We find sig-
nificant improvements in the number of proof steps and determine
a trend of decreasing verification times for variant-rich SPLs.
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In summary, we make the following contributions:
• We propose partial proofs to split the verification of SPLs into
a feature-specific and a product-specific part. The feature-
specific part is only executed once for all software products.
It is used as a basis for product-specific proofs.

• We provide tool support for partial proofs in the tool Var-
CorC.

• We evaluate partial proofs regarding feasibility and improve-
ment of the verification time and proof steps needed for the
verification of SPLs in contrast to existing product-based
verification using three case studies.

2 BACKGROUND & MOTIVATING EXAMPLE

In this section, we present background on SPLs and introduce the
IntegerList product line which we use throughout this paper to
illustrate concepts of SPLs as well as our concept of partial proofs.

2.1 Software Product Lines

Software product line engineering is a technique to implement a set
of software products variably. Depending on the desired functional-
ity, the user can add features which implement certain characteris-
tics and behaviours to a common code base [2]. The dependencies
of features are modelled in feature models which are organized in
a tree structure. The selection of features results in a feature con-
figuration [5] which represents an individual software product. In
Figure 1, we present the feature model of the SPL IntegerList [38].
The product line implements a list to which integers can be added. In
certain configurations, the list is sorted increasingly or decreasingly.
In this product line, the root feature IntegerList is abstract and does
not contain an implementation. Abstract features are used for or-
ganizational purposes. All other features are concrete features and
implement functionality. Feature Base is the only mandatory fea-
ture. Features Limited and Sorted are optional. Features Increasing
and Decreasing are organized in an alternative-group, i.e., exactly
one of them has to be selected as soon as the parent-feature Sorted
is selected. Further concepts are and-groups (all children have to
be selected) and or-groups (at least one child has to be selected).

Feature-Oriented Programming. To implement software families by
reusing code, we use the principles of feature-oriented program-
ming (FOP) [34]. In FOP, a feature module [2, 5] is implemented
for each concrete feature of an SPL which contains classes, fields,
and methods implementing the desired functionality of the corre-
sponding feature. To receive a certain software product, feature
modules are composed regarding the considered feature configura-
tion. As a class or method can be implemented in more than one
feature module, the availability of classes and methods has to be

Figure 1: Feature model of the IntegerList product line [30].

ensured. Specific for FOP is the keyword original. It can be used
in the implementation of a method to call the implementation of
a previous feature. Principally, an original-call behaves similar to
super-calls in Java, but the binding depends on the selected features.
The order in which the implementations are called depends on the
feature order which is usually defined together with the feature
model [7, 34].

2.2 Software Product Line Specification

In the literature, there are various techniques to specify SPLs. Thüm
et al. [41] defined a set of specification techniques after analyzing
more than 100 research articles concerning the specification of
SPLs. In this paper, we focus on feature-based specifications [3].
They can be used to define the functionality of a single feature
without making explicit references to other features. For that, every
method is specified individually. This results in highmaintainability.
Changes do not have to be propagated through all products, as the
specifications are reused across the products of an SPL. For that,
the keyword \original can be used in specifications. It references
the specification of the same method from another feature.

In Figure 2, we present the implementations of the features Base
and Sorted of the IntegerList product line to facilitate feature-based
specifications and the keyword \original. The specifications of
the methods are listed as JML-annotations. Feature Base consist of
a method push which adds a given integer newTop to array data.
The specification consists of a precondition (indicated by the key-
word requires) and a postcondition (indicated by the keyword
ensures). As there are no conditions, the precondition is true and
always satisfied. For the postcondition, we use two predicates stat-
ing that (1) array data contains the new element and (2) array data
contains all elements that have been in the array prior the execu-
tion of the method.1 Feature Sorted also contains a method push. It
extends the functionality of feature Base by sorting array data after
adding a new element. Depending on whether feature Increasing
or feature Decreasing is selected, array data is sorted increasingly
or decreasingly calling an implementation of method sort. In the
implementation, we use an original-call to call another implemen-
tation of this method, e.g., the implementation from feature Base. In
general, the called method depends on the selected features and the
feature order. The variability implemented with the original-call is
defined in the specification of method push from feature Sorted. We
use the keyword \original in the pre- and postcondition to refer
to the conditions of the method that was called in the implementa-
tion. Further, we require array data to be sorted prior and after the
execution of the method. When using the keyword \original, we
have to compose the specifications of multiple implementations to
build the specification of a certain product. In general, the composi-
tion process can be handled in different ways [42]. In this paper, we
use the composition technique explicit contract refinement where
the keyword is replaced by the original specification directly [39].

2.3 Software Product Line Verification

An SPL can be verified using different approaches [41]. Besides
type checking [21] and model checking [16], SPLs can be verified

1The keyword \old in the postcondition references the value of the provided variable
prior the execution of the method.
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feature: Sorted

feature: Base

Figure 2: Implementation of features Base and Sorted of the

IntegerList product line including JML-specifications [30].

with respect to a formal specification using symbolic execution and
deductive verification [12, 46]. In general, we are able to define a
Hoare-triple [4, 19] {P} C {Q} with a precondition P, some code C,
and a postcondition Q for every implemented method. The triple
can be understood in such a way that if the precondition is fulfilled
prior the execution of the code, the method will terminate and
the postcondition will be satisfied afterwards [19, 27]. A Hoare-
triple can be translated to a dynamic logic-formula in the form of
P → [C] Q [12, 28]. With that, we are able to use the proof rules
of the sequent calculus to verify the correctness of a method. The
set of applicable rules is extended by JavaDL [1] to support the
verification of Java-programs as well as individually defined proof
rules. The process of applying different proof rules can be visualized
in a proof tree which is to be read from the bottom to the top. Only
if all branches of a proof tree can be closed, the verification is
successful.

In Figure 3, we show an exemplary proof tree for method push
from feature Sorted of the IntegerList product line for an exem-
plary configuration. As proofs usually get very large, we only show
an excerpt of the proof tree. At the very bottom, we start with a
dynamic logic-formula representing the Hoare-triple of method
push. The formula is defined with respect to the code and speci-
fication shown in Figure 2. It is extended by a set of constraints
to ensure that array data is initialized. Based on this formula, the
proof rules mentioned in the previous paragraph are applied. For
example, proof rule notLeft is applied which shifts the negated
constraint data != null to the succedent of the implication [1]. Af-
terwards, proof rule andLeft is applied which splits the operands of
the and-clause of the precondition in multiple individual precondi-
tions [1]. Further proof rules are applied until all goals are closed.
In the course of the proof, we also resolve all dependencies (i.e., the
keyword \original). The inserted definitions depend on a certain

configuration and vary for each software product. Thus, the proof
has to be executed individually for each software product. This
technique is called product-based verification and is the most intu-
itive verification technique for SPLs [41]. However, product-based
verification does not scale for SPLs implementing a high number of
software products due to the exponentially exploding verification
effort.

When analyzing the proof tree presented in Figure 3, we note
that the application of the first proof rules does not depend on a
particular configuration as no dependencies have been resolved. For
the given proof, the keyword \original is the only dependency,
but is not resolved in the first given proof steps and likely not in a
few more. As we do not resolve dependencies up to a certain point
in the proof, this set of proof rules is the same for every proof and is,
thus, executed multiple times unnecessarily. This causes avoidable
verification costs.

3 STATE OF THE ART

Using product-based verification, every product of an SPL is veri-
fied individually. This does not scale for variant-rich SPLs. Using
family-based verification [10, 43], one superimposed meta-product
is generated and verified. This meta-product contains the code and
specification of all features of an SPL and is able to simulate every
software variant. The successful verification of the meta-product
implies the correctness of every software product regarding the
individual specification. Thüm et al. [43] presented this approach
for feature-oriented SPLs implemented in Java and specified using
JML. The authors could save 85% of the verification time for the
considered case study in contrast to product-based verification.
However, family-based verification has the major disadvantage that
with every change in code or specification, the meta-product has
to be re-generated and, thus, also re-verified [41].

Feature-based verification [40] is a modular approach to verify
the correctness of SPLs. Using FOP, every feature is implemented
in a feature module which reduces the verification effort when
functionality or specification of a feature change. Only the con-
cerned feature module has to be proven again. Nevertheless, feature-
based verification is insufficiently expressive due to the interac-
tions between features. An implementation may call methods from
other features or even depend on the behaviour of another imple-
mentation [13]. To enable a sufficient feature-based verification,
Knüppel et al. [23] combined feature-based verification with family-
based verification in their approach of FeFaLution. Building partial
proofs for every feature and reusing them for the verification of
feature interactions yields to a performant verification of a com-
plete system. The results of FeFaLution unveil reuse potential, but
struggle with a substantial overhead when verifying smaller case
studies.

A compositional approach that aims to reuse code and its proofs
from the beginning are trait-based languages. Trait-based languages
have also been applied to implement SPLs [8]. A trait is a class-
independent set of methods which is factored for a certain purpose
but can be reused in a completely different context [37]. Damiani
et al. [14] proposed a proof system for deductive verification of
trait-based languages. This modularity allows flexible adaption and,
thus, fine-grained reuseability.
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\original & sorted(data) & data != null & data.length >= 0 ⇒ {original(data); sort(data);} (\original & sorted(data))
notLeft

...

close

andLeft

...
\original, sorted(data), data.length >= 0 ⇒ data = null, {original(data); sort(data);} (\original & sorted(data))

\original & sorted(data) & data.length >= 0 ⇒ data = null, {original(data); sort(data);} (\original & sorted(data))

*

...
close

*

...

Figure 3: Excerpt of a proof tree to verify the correctness of method push from feature Sorted of the IntegerList product line.

A further alternative to FOP is delta-oriented programming [36].
A core module that is implementing a certain product can be mod-
ified by applying delta modules which change the functionality,
e.g., by adding or removing fields or methods. Bruns et al. [11]
proposed an approach of delta-oriented slicing to receive a more
performant verification technique. With delta-oriented slicing, the
authors determined which parts of the proof of a core module have
to be re-proven for a software variant to which deltas were applied.
Beckert and Klebanov [6] published an evenmore basic rule-by-rule
reuse algorithm when repeating proofs for a corrected implementa-
tion iteratively until a successful verification is achieved. For every
execution, the proof rules of the previous proof are checked and
applied again, if the setting is the same or similar.

Partial proofs allow proof reuse for product-based verification [22,
25, 26]. Splitting proofs at method-call level allows to handle re-
solving these method-calls in different ways, depending on which
method is called. Based on partial proofs, proof plans split verifi-
cation tasks into smaller proofs [26]. These smaller proofs can be
reused across the verification of different method variants. Using
proof graphs, a wide range of possible partial proofs is uncovered,
proofs can be split in an almost infinite set of small proofs. Reusing
as much proof parts as possible, the verification costs for SPLs can
be reduced. Proof repositories [12] aim to optimize the verification
of method-calls and, thus, reduce the verification costs of SPLs. A
proof repository contains the bindings of method-calls with a called
implementation and states which bindings could already be proven
successfully. This information enables a high level of reuse.

However, the existing approaches of splitting proofs focus on
the variability implemented in the code by only using method-
calls as variation points. To the best of our knowledge, no existing
approach considers the variability defined in the specification for
splitting proofs. To close this research gap, we propose our concept
of splitting proofs into a feature-specific part and a product-specific
part using the dependencies of specifications.

4 SOFTWARE PRODUCT LINE VERIFICATION

WITH PARTIAL PROOFS

Given an SPL, the verification of its methods regarding their spec-
ifications requires high effort. In Section 2.3, we determined un-
necessarily executed proof parts consisting of proof rules that are
the same for all configurations when using product-based verifi-
cation. The application of identical proof rules in multiple proofs
causes avoidable costs. As none of the approaches presented in the
previous section is able to prevent those proof rules from being
applied repetitively in every proof, we take up approaches of partial

proofs [23, 25, 26] and adapt them for our purposes to be able to
handle product-independent proofs and reduce verification costs.

We propose our concept of partial proofswhich split proofs in two
parts. To be able to distinguish the parts, we introduce the following
naming convention: the feature-specific part of a partial proof is
called proof start. The second part is product-specific and called
proof completion. A set of applied proof rules is identical for every
proof that is conducted in the context of product-based verification
of a method. This set of proof rules builds the proof start. As we
do not resolve dependencies, the proof start has to be executed
only once for all software products and can be reused across the
verification of each software product. After performing the proof
start, the proof is continued for every software product individually
in proof completions. Proof completions are similar to existing
product-based verification, except that we use the proof start as a
basis. Dependencies are resolved, and the proof is continued until
it either closes or not. In the following, we present both proof start
and proof completion in detail using the example of method push
from feature Sorted of the IntegerList product line introduced in
Section 2.

4.1 Feature-Specific Proof Start

In this section, we introduce the feature-specific proof start of
partial proofs in detail. In a proof start, we want to limit ourselves
to the treatment of explicit clauses, i.e., the parts of a specification
not containing feature dependencies to other features. With that,
we ensure that proof starts do not depend on a particular software
product, thus are valid for all products, and need to be performed
only once for each feature.

To illustrate the concept of proof starts, in Figure 4a, we present
the general verification process of proof starts. At first, the starting
Hoare-triple is translated to dynamic logic (see Section 2.3). After-
wards, the proof rules of the sequent calculus are applied to verify
the specification. In difference to product-based verification, we
do not apply proof rules to resolve dependencies in the proof start.
With that, we are not able to close the proof as it gets stuck at some
point where no more proof rules can be applied. At this point, the
proof start is interrupted and saved to serve as the basis for the
proof completions.

We present an excerpt of the proof tree of the proof start of
method push from feature Sorted of the IntegerList product line in
Figure 5. Basically, the starting formula is the same as for existing
product-based verification (cf. Figure 3). Also, the first applied proof
rules are similar to product-based verification. However, we do not
resolve dependencies as well as method- and original-calls that are
part of the code to be verified as they may depend on a particular
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Generation of starting 

Hoare-triple

Proof stops & 

is saved

Execution of start proof

(a) Verification process of

feature-specific proof start.

[Proofs executed for all 
configurations]

Determination of next feature 

configuration

Proof start is loaded

Calculation of valid feature 

configurations

[Proofs not executed 
for all configurations]

Completion of proof

(b) Verification process of product-

specific proof completions.

Figure 4: Verification process with partial proofs.

configuration, too. As soon as we cannot apply any more proof
rules, the proof is interrupted and saved.

In Figure 5, we also show how existing product-based verification
would have continued. As an example, the proof rule originalPre
would have been applied to resolve the keyword \original in the
premise of the implication. In this case, the precondition of the
implementation from feature Base was used. This would be the case
for a feature configuration {Base, Sorted, Increasing}. Finally, the
proof start results in an incomplete proof that is independent of a
particular software product and can thus be reused.

4.2 Product-Specific Proof Completion

In the following, we present proof completions which handle the
verification of software products individually using the previously
executed proof start as a basis. Reusing the proof start is already
the main difference to existing product-based verification: the proof
completion does not start with a formula defined in dynamic logic,
but the previously executed incomplete proof tree of the proof start.
To explain the details of proof completions, we show the verification
process of proof completions in Figure 4b. As known from existing
product-based verification, at first, all valid feature configurations
with this method are calculated. Afterwards, proofs are executed for
each configuration individually. For that, the previously performed
proof start is continued.

In Figure 6, we show an exemplary proof completion for the fea-
ture configuration {Base, Sorted, Increasing}. After loading the proof
start, the first applied proof rules consider dependencies, method-,
or original-calls as there were no other rules that could be applied
earlier. In the provided example, we apply proof rule originalPre
to resolve the keyword \original of the implication’s premise.
In this case, the precondition of method push from feature Base
is inserted. For other configurations, other preconditions may be
chosen, depending on the selected features. Eventually, the inserted

specification is composed of different constraints because of multi-
ple refinements of specifications (see Section 2.2). In the context of
this paper, method- and original-calls are replaced by the contract
of the called method (method contracting [39]).

At the beginning of every proof completion, at least one de-
pendency or method-call is resolved with a specification which
depends on the considered software product. In general, it does
not matter which dependency or method-call is resolved first. Like-
wise, it is usually not of major importance whether only a single
or multiple dependencies, method-, or original-calls are resolved
right after the start of a proof completion. Generally, this depends
on the proof strategy that is used for the proof completion. After
resolving one or more dependencies, the proof is conducted as
in existing product-based verification. Remaining dependencies,
method-, and original-calls are resolved in the course of the proof
completion. Finally, every proof completion either closes or not.
For each successfully closed proof, the method is proven for the
considered configuration. If all proofs are closed successfully, the
method is proven for all valid configurations.

4.3 Soundness of Partial Proofs

Our concept of partial proofs consisting of a feature-specific proof
start and product-specific proof completions is sound by construc-
tion. Product-based verification can be represented by product-
specific proof completions which are based on a single feature-
specific proof start and vice versa. The soundness of partial proofs
is captured in the following theorem.

Theorem 1. Let PL(FM) be an SPL with its features organized in
a feature model FM, a set of valid feature configurations CF(PL(FM)),
and a set of methods M building the implementation. Further, let
PBV(m𝑓 , c) be the product-based verification of a method m from
feature f for a feature configuration c. Let PS(m𝑓 ) be a proof start of
a method m from feature f and PC(m𝑓 , c) be a proof completion for
method m from feature f based on a feature configuration c. Then, for
each method m𝑓 ∈ M with f ∈ FM, the following holds:

∀𝑐𝑖 ∈ 𝐶𝐹 (𝑃𝐿(𝐹𝑀)) : 𝑃𝐵𝑉 (𝑚𝑓 , 𝑐𝑖 ) iff (𝑃𝑆 (𝑚𝑓 ) 𝑎𝑛𝑑 𝑃𝐶 (𝑚𝑓 , 𝑐𝑖 ))

Proof. Every product-based proof can be cut in two parts, so that the
first does not depend on the considered feature configuration. Vice
versa, each pair of proof start and proof completion can be combined
to a product-based proof. □

4.4 Discussion

In general, the usefulness of partial proofs depends on the code and
specification of a method. A method whose specification contains
no or only a few dependencies, e.g., the keyword \original, but
contains a large number of feature-specific constraints, is more
likely to benefit from partial proofs than a method whose specifica-
tion contains a high proportion of dependencies. This is due to the
fact that in the latter case, fewer proof rules can be applied in the
proof start, as it cannot proceed without resolving dependencies at
an early point of time. This results in low improvements of the veri-
fication costs. The same applies for method- and original-calls. The
more calls are implemented in a method, the earlier the proof start
comes to an end, since product-specific continuation is required.
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\original & sorted(data) & data != null & data.length >= 0 ⇒ {original(data); sort(data);} (\original & sorted(data))
notLeft

...
...

\original & sorted(data) & data.length >= 0 ⇒ data = null, {original(data); sort(data);} (\original & sorted(data))

\original & sorted(data) & [...] ⇒ {original(data); sort(data);} (\original & sorted(data) & [...])
...

[pre(Base.push)] & sorted(data) & [...] ⇒ {original(data); sort(data);} (\original & sorted(data) & [...])
originalPre

--- proof interrupted and saved ---

Figure 5: Excerpt of the proof tree for a proof start to verify the correctness of method push from feature Sorted of the IntegerList

product line.

\original & sorted(data) & [...] ⇒ {original(data); sort(data);} (\original & sorted(data) & [...])

[pre(Base.push)] & sorted(data) & [...] ⇒ {original(data); sort(data);} (\original & sorted(data) & [...])
originalPre

--- proof start loaded ---

[pre(Base.push)] & sorted(data) & [...] ⇒ {original(data); sort(data);} ([post(Base.push)] & sorted(data) & [...])
originalPost

…

close
*

...
close

*

...

...

Figure 6: Excerpt of an exemplary proof completion for method push from feature Sorted of the IntegerList product line for the

feature configuration {Base, Sorted, Increasing}.

On the contrary, a method that does not have any dependencies
in code and specification only has to be verified one time in general.
Such a method does not depend on a certain software product,
performing the proof start does not result in an interruption due to
missing applicable proof rules, but a closed proof. Thus, performing
proof completions is not necessary.

5 TOOL SUPPORT

For the evaluation of our concept, we extend the Eclipse-pluginVar-
CorC [10, 35] which allows the implementation and verification of
SPLs using Correctness-by-Construction (CbC) [24] to incrementally
implement software using formal refinement rules. VarCorC offers
a graphical and a textual editor to implement individual methods.
Every method is specified with its own feature-based specifica-
tion defined in dynamic logic for Java (JavaDL) [10] which can be
verified with respect to an implementation using product-based
verification and the tool KeY [1]. KeY is used to perform deduc-
tive verification automatically using the proof rules of the sequent
calculus.

To support partial proofs, we split the general verification pro-
cess. When triggering a proof start, we translate the starting Hoare-
triple to dynamic logic and pass it to KeY as known from existing
product-based verification. In addition, we pass the set of proof
rules, that must not be applied by KeY. These are the rules that
resolve dependencies. Further, we prohibit resolving method- and
original-calls. KeY performs a proof start and returns to VarCorC,
as soon as no more proof rules can be applied. This state of the
proof is saved by VarCorC as an unfinished proof and is thus avail-
able for the execution of the proof completions. For that, we first
calculate all valid feature configurations. A valid feature configura-
tion corresponds to the underlying feature model and contains the
method to be proven. After calculating the configurations, the proof

start is loaded by VarCorC for each configuration individually and
passed to KeY. On this basis, KeY executes the proof completions.

6 EVALUATION

Using VarCorC and three case studies, we evaluate our concept
regarding feasibility and improvements of the verification costs of
SPLs in contrast to product-based verification. For that, we define
the following research questions:

RQ1: Is it possible to perform partial proofs to verify the

correctness of SPLs in VarCorC?

RQ2: Do partial proofs reduce the number of proof steps

needed for proofs in VarCorC?

RQ3: Do partial proofs reduce the verification time needed

for proofs in VarCorC?

RQ1 addresses the feasibility of partial proofs. To answer this re-
search question, we perform partial proofs for the methods of three
case studies. For every implemented method, we execute both proof
start and proof completions. After executing the proof start, we
check the applied proof rules for the absence of rules resolving
dependencies as they must not be resolved in the proof start (see
Section 4.1). Further, we check whether all proof completions could
be closed successfully.

We perform a performance evaluation of the verification of meth-
ods using partial proofs in comparison to product-based verification
which is used in VarCorC so far. We take a look at the number of
proof steps that have to be applied to verify a method (see RQ2)
as well as the verification time (see RQ3). We execute three proofs
for every method implemented: First, the proof start. Second, proof
completions for all valid configurations. Third, we verify every
method using product-based verification. After collecting all per-
formance data, we perform a comparison of the proof steps and the
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time spend for the verification. We compare the sum of proof start
and proof completions with the data of product-based verification.

6.1 Subject Systems & Setup

To answer our research questions, we use three case studies. Besides
the IntegerList product line (IL), we use the SPLs BankAccount (BA)
and Elevator (E). The BankAccount product line [10, 43] implements
basic functionality of a bank account such as withdrawals, trans-
actions, limits, and checking the account balance. It was extended
to support hourly limits for withdrawals. The Elevator product
line [10, 32] simulates an elevator which can be moved, called from
different floors, and entered by persons. In Table 1, we present
general information on the structure of the case studies. Further,
we present the numbers of original-calls as well as the numbers of
specifications containing dependencies.

The evaluation is performed on a computer equipped with an
11th Gen. Intel Core i7-1185G7 with 3.00 GHz, 16.0 GB RAM, and
Windows 10 Home (64bit). To take time variations as well as mea-
surement inaccuracies into account, we run each proof ten times
and calculate the median of the collected data for further evaluation.
In total, we perform 25.389 proofs split on a set of 56 methods. For
every method, we provide the sum of the proof steps and verifica-
tion time of all valid configurations. Thus, the proof steps collected
for proof completions of partial proofs contain the steps of the exe-
cuted proof start once and the additional steps of the completions
for every valid configuration.

6.2 Results and Discussion

We divide this section according to the research questions defined.

RQ1: Is it possible to perform partial proofs to verify the

correctness of SPLs in VarCorC?

To evaluate our concept regarding feasibility, we verified all meth-
ods of the case studies IntegerList, BankAccount, and Elevator using
partial proofs. We executed both proof start and proof completions
for every method. Further, we checked whether the proof start is
interrupted before any dependencies are resolved. As none of the
proof starts contains proof rules resolving dependencies, we receive
proofs that do not depend on a specific configuration. Resolving the
dependencies in the proof completions is successful. KeY was able
to close the proof completions for all configurations for all methods.
As all dependencies are resolved correctly with their corresponding

IntegerList BankAccount Elevator

#Features 5 6 4
#Configurations 6 16 8
#Classes 1 3 4
#Methods 5 13 38

#original-calls 2 7 4

#Specifications with 5 16 9dependencies
Table 1: Overview of the case studies IntegerList, BankAc-

count, and Elevator product line and their characteristics.

definition and every proof completion could be closed successfully,
it is possible to perform partial proofs in VarCorC.

RQ2: Do partial proofs reduce the number of proof steps

needed for proofs in VarCorC?

The results of the evaluation of the proof steps is shown in Figure 7.
We present the improvement achieved by using partial proofs in
contrast to product-based verification grouped by feature and case
study. For the number of proof steps, we receive consistent results.
Except for one, the number of proof steps has decreased for all
features by up to 90%. This is due to the set of proof rules that is ap-
plied only once for all product variants in the proof start. With that,
we prevent these proof rules to be applied multiple times. However,
we receive low improvements for some features and even a dete-
rioration of the number of proof steps for one feature. This is due
to the strategy of KeY, which forces to apply as many proof rules
as possible before interrupting the proof start. This strategy may
result in the application of proof rules that would not be applied at
product-based verification which produces an overhead of applied
rules. This problem was already discussed in literature, but is not
solved so far [25, 31]. Nevertheless, the use of partial proofs overall
reduces the verification costs regarding proof steps significantly.

RQ3: Do partial proofs reduce the verification time needed

for proofs in VarCorC?

In RQ3, we considered the verification time used by KeY. In Figure 8,
we show the improvement of the verification time achieved by
using partial proofs in contrast to product-based verification. The
results are not as clear as the results concerning proof steps. For the
IntegerList, the time needed for the verification increased. Verifying
the BankAccount and Elevator product lines, we receive mixed
results. Thus, we cannot make a general statement regarding the
improvement of the verification time.

Nevertheless, we found trends when looking at the results verify-
ing single methods. Methods of features that have to be proven for
a high number of configurations show better results than methods
that have to be proven for a low number of configurations. This can
be seen most clearly at the results of the BankAccount product line.

Figure 7: Improvement of the number of proof steps for par-

tial proofs in contrast to product-based verification.
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Figure 8: Improvement of verification time for partial proofs

in contrast to product-based verification.

Methods from feature BankAccount have to be proven for 16 con-
figurations and show the highest improvements. On the contrary,
the time for verifying the methods from features DailyLimit and
HourlyLimit, which only have to be proven for eight configurations,
deteriorate. For the Elevator product line, methods from feature
Base (eight valid configurations) have significantly better results
than methods from the other features (four valid configurations).
For the IntegerList product line, the trend is not that clear but still
visible. The verification time of the method from feature Base (six
valid configurations) has deteriorated the least. Methods that have
to be verified less often, for example methods from features Increas-
ing and Decreasing (two valid configurations each), show a much
higher deterioration in verification time.

In all case studies, the main difference in verification time be-
tween the features comes from the number of configurations. For
visualization, we show improvements of the verification time in
relation to the number of valid configurations for the methods of all
case studies in Figure 9. The more configurations have to be taken
into account for the proof of a method, the higher the improvement
of the verification time. We can justify this trend with the decreased
proof effort. Using partial proofs, certain proof rules are applied
once in the proof start. The time needed for those rules is saved
for the proof completions and, thus, increases with the number of
proof completions executed. Nevertheless, the verification time of
methods with a low number of configurations deteriorates. This is
due to the proof start, which has to be stored and loaded by KeY.
This process takes much more time than loading an empty proof
as it is done for product-based verification. It requires a certain
number of configurations such that the time saved by applying
fewer proof rules exceeds the loading time of proofs in KeY and,
thus, an improvement of the verification time is recorded. For the
case studies used in the evaluation, we find a break-even point of
about eight configurations to receive improvements in the verifica-
tion time. However, due to the limited scope of the evaluation, this
number is not generalizable. We conclude that although verification
time has not improved consistently across the case studies, the use
of partial proofs is worthwhile in terms of verification time for
product lines with many products.

Figure 9: Improvement of verification time using partial

proofs in relation to the number of valid feature configu-

rations.

6.3 Threats to Validity

Even though we have conducted and documented the evaluation
with the greatest care, there are threats to the validity of the results.

Internal validity. The evaluation was executed manually in large
parts. All proofs were triggered by hand but performed by KeY fully
automatically. The proof steps and the verification time have been
taken manually from the proof-report of KeY. All data was collected
with utmost care and double-checked to exclude transmission errors.
However, errors may have crept in that we did not take into account.
This factor must be considered when discussing the results of the
evaluation.

External validity. The case studies we used for the evaluation do
not reflect the scope of SPLs used in the industry commonly. Due to
limited resources and existing implemented, specified, and verified
SPLs, our evaluation is not representative for large-scale SPLs. Fur-
ther, the evaluation required detailed observation and monitoring
which is why we performed it with smaller case studies.

7 CONCLUSION

In this paper, we presented our concept of partial proofs to improve
the verification of SPLs. Splitting proofs in a feature-specific proof
start and a product-specific proof completion is an alternative to
existing product-based verification approacheswhere every product
is verified individually. Using the tool VarCorC, we evaluated our
concept regarding feasibility and improvements of the verification
costs. We found improvements of the number of proof steps needed
for partial proofs compared to product-based verification. Further,
we determined a trend of improvements of the verification time for
SPLs implementing a high number of products. To consolidate the
trend of improvements in verification time for large-scale SPL, the
evaluation could be extended by evaluating larger case studies in the
future. In addition, an empirical study between partial proofs and
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state of the art verification approaches, e.g. the feature-family-based
verification with FeFaLution [23], could determine the significance
of partial proofs.
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