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Vectorial analogues of Cauchy’s surface area formula
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Abstract. Cauchy’s surface area formula says that for a convex body K in
n-dimensional Euclidean space, the mean value of the (n−1)-dimensional
volumes of the orthogonal projections of K to hyperplanes is a constant
multiple of the surface area of K. We prove an analogous formula, with
the volumes of the projections replaced by their moment vectors. This
requires to introduce a new vector-valued valuation on convex bodies.
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1. Introduction. Cauchy’s surface area formula is probably the first result in a
branch later named integral geometry. The n-dimensional version of Cauchy’s
formula says that

S(K) =
1

κn−1

∫

Sn−1

Vn−1(K|u⊥) du

for each convex body K (a nonempty, compact, convex set) in Euclidean space
R

n. Here K|u⊥ is the image of K under the orthogonal projection to the linear
subspace u⊥ orthogonal to the unit vector u. By S(K) we denote the surface
area of K and by Vk the k-dimensional volume. Further,

∫
Sn−1 f(u) du always

denotes integration over the unit sphere Sn−1 with respect to the spherical
Lebesgue measure, and κk is the volume of the k-dimensional unit ball (ωk =
kκk is its surface area). For proofs of more general projection formulas, we
refer to [14, p. 301] and [16, p. 222] or [6, Chap. 5].

Classical integral geometry, as it can be found, e.g., in the books by Had-
wiger [3, Chap. 6] and Santaló [11] (see also [14, Sect. 4.4]), exhibits, for ex-
ample, intersection theorems such as the kinematic formulas and the Crofton
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formulas, mainly for real-valued valuations on convex bodies. Integral geomet-
ric formulas for vector-valued functionals were investigated in [4,10,12]. An
extensive theory of integral geometric intersection formulas for tensor valued
valuations, also with values in spaces of measures, was developed in [2,5,7–
9,13,15]. We also refer to the survey article [1].

While the classical integral geometry of real-valued functionals also con-
sidered projections, the mentioned investigations of tensor valuations are re-
stricted to intersections. It seems that not even such a simple question as the
following vector-valued analogue of Cauchy’s surface area formula has been
answered. First we recall (e.g., from [14, Sect. 5.4.1]) that for a convex body
K ⊂ R

n and for k ∈ {dim K, . . . , n}, the moment vector zk+1(K) is defined
by

zk+1(K) :=
∫

K

xHk(dx),

where Hk is the k-dimensional Hausdorff measure (the lower index indicates
the degree of homogeneity). The question is then whether the integral

∫

Sn−1

zn(K|u⊥) du

can be expressed by familiar functionals of K. It turns out that, compared to
the cases dealing with intersections, additional tensor valuations are required.
After introducing these, we shall give an answer to the question in Theorem 1.

2. Preliminaries, and a result. We work in n-dimensional Euclidean vector
space R

n (with origin o) and use its scalar product 〈· , ·〉 to identify the space
with its dual space. Thus, we identify a vector x ∈ R

n with the linear functional
〈x, ·〉. By T

r we denote the real vector space (with its usual topology) of
symmetric r-tensors (tensors of rank r ∈ N0) on R

n. The elements of T
r

are symmetric r-linear functionals on R
n. The symmetric tensor product of

a ∈ T
r and b ∈ T

s is denoted by a · b = ab and is an element of T
r+s.

In particular, for x ∈ R
n, we write xr := x · · · x (r factors); we then have

xr(a1, . . . , ar) = 〈x, a1〉 · · · 〈x, ar〉 for a1, . . . , ar ∈ R
n.

Let K ∈ Kn, where Kn denotes the set of convex bodies in R
n. Its volume

can be written as

Vn(K) =
∫

K

dx, (1)

where
∫

f(x) dx indicates integration with respect to the Lebesgue measure
on R

n. This motivates one to define a symmetric r-tensor by

Ψr(K) :=
1
r!

∫

K

xrdx, K ∈ Kn.
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The factor before the integral is for convenience, and we have Ψ1(K) =
zn+1(K). For zn+1, we get the polynomial expansion

zn+1(K + λBn) =
n∑

j=0

(
n

j

)
λjqj(K)

(see [14, (5.95)]), where Bn is the unit ball of Rn and λ ≥ 0. The vector-valued
coefficients qj can be represented by

qj(K) =
1
n

∫

∂K

x Cn−j(K,dx)

for j ≥ 1 (whereas q0 = zn+1). See [14, (5.98)], and note that the curvature
measure Cm(K, ·) is concentrated on the boundary of K. In particular (by [14,
(4.31)]), if K has nonempty interior, then

q1(K) =
1
n

∫

∂K

xHn−1(dx). (2)

Let Kn
o denote the set of convex bodies K ∈ Kn with o ∈ int K. Alterna-

tively to (1), for K ∈ Kn
o , the volume of K can also be written as the integral

of the cone-volume measure of K over the unit sphere Sn−1. The cone-volume
measure of K ∈ Kn

o is defined by

VK(ω) := Hn

⎛
⎝ ⋃

x∈τ(K,ω)

[o, x]

⎞
⎠ , ω ∈ B(Sn−1).

Here τ(K,ω) is the set of boundary points of K at which there exists an
outer unit normal vector of K belonging to ω, [o, x] is the closed segment with
endpoints o and x, and B(Sn−1) denotes the σ-algebra of Borel sets in Sn−1.
It is known (see, e.g., [14, p. 501]) that

VK(ω) =
1
n

∫

ω

hK(u)Sn−1(K,du)

=
1
n

∫

Rn×ω

〈x, u〉Θn−1(K,d(x, u)),

where hK is the support function of K, Sn−1(K, ·) is its surface area measure,
and Θn−1(K, ·) is a support measure of K (see [14, Sect. 4.2]). For the last
equality, we refer to [14, (4.11)] and the simple observation that hK(u) = 〈x, u〉
for (x, u) in the support of the measure Θn−1(K, ·). From these representa-
tions, it is clear that VK is a measure-valued valuation (see [14, Thm. 4.2.1]).
Moreover, the integral representations are well defined for all convex bodies.

The preceding discussion suggests to define a symmetric r-tensor functional
by

Υr(K) :=
∫

Sn−1

ur VK(du), K ∈ Kd
o .
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For general convex bodies K ∈ Kd, it is consistent to define Υr : Kn → T
r by

Υr(K) :=
1
n

∫

Sn−1

hK(u)ur Sn−1(K,du)

=
1
n

∫

Rn×Sn−1

〈x, u〉ur Θn−1(K,d(x, u)). (3)

Just as the Ψr, also the Υr are rotation covariant, continuous tensor-valued
valuations. But the translation behavior is different. We know (see [14, (5.104)])
that, for t ∈ R

n,

Ψr(K + t) =
r∑

j=0

1
j!

Ψr−j(K)tj ,

where Ψr−j(K)tj is a symmetric tensor product. On the other hand, if we
define a translation invariant r-tensor by

Ξr(K) :=
1
n

∫

Sn−1

ur Sn−1(K,du)

for K ∈ Kn, then

Υr(K + t) = Υr(K) + Ξr+1(K)(t),

where the symmetric (r + 1)-tensor Ξr+1(K) is applied to the vector t, which
results in a tensor of rank r.

Considering that Υ0(K) is the volume of K and that

1
n

∫

Sn−1

hK1(u)S(K2, . . . , Kn,du) = V (K1,K2, . . . , Kn)

(where S(K2, . . . , Kn, ·) is the mixed area measure of K2, . . . , Kn) is the mixed
volume of K1, . . . , Kn and hence is symmetric in its arguments, one may ask
whether also ∫

Sn−1

hK1(u)urS(K2, . . . , Kn,du) (4)

is symmetric in K1, . . . , Kn. That this is in general not the case can be seen
from the fact that, for r = 1, the vector∫

Sn−1

hK(u)u S(Bn, . . . , Bn,du)

is proportional to the Steiner point of K (as follows from [14, (1.31)]), whereas∫

Sn−1

hBn(u)u S(K,Bn, . . . , Bn,du)

is always equal to o by [14, (5.30)].
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Since (4) is not symmetric in K1, . . . , Kn, we introduce a symmetric tensor
functional Υ(r) : (Kn)n → T

r by

Υ(r)(K1, . . . , Kn) :=
1
n

n∑
i=1

1
n

∫

Sn−1

hKi
(u)ur S(K1, . . . , Ǩi, . . . , Kn,du),

where Ǩi means that Ki is omitted.
We have mentioned tensor valuations of rank higher than necessary for the

following since we hope to come back to them later.
We can now state the vectorial counterpart to Cauchy’s surface area for-

mula.

Theorem 1. For K ∈ Kn,∫

Sn−1

zn(K|u⊥) du =
nκn−1

n + 1
(nq1(K) − Υ1(K)).

The functional q1 is a special mixed moment vector, that is, we have
n

n + 1
q1(K) = z(K[n], Bn).

The mixed moment vectors z : (Kn)n+1 → R
n are symmetric and multilinear

in each of their n + 1 arguments (see [14, Section 5.4.1]). The choice K =
λ1K1 + · · · + λnKn with λ1, . . . , λn ≥ 0 in Theorem 1, polynomial expansion,
and comparison of the coefficients of λ1 · · · λn yield the following consequence.

Corollary 1. Let K1, . . . , Kn ∈ Kn. Then∫

Sn−1

zn(K1|u⊥, . . . , Kn|u⊥) du

= nκn−1

(
z(K1, . . . , Kn, Bn) − 1

n + 1
Υ(1)(K1, . . . , Kn)

)
.

3. Proof of Theorem 1. Both sides of the asserted equation depend continu-
ously on K. Hence we can assume that K ∈ Kn has nonempty interior. Let
∂′K denote the set of all x ∈ ∂K at which the outer unit normal vector νK(x)
of K at x is unique. Then ∂′K is a Borel set, νK is continuous on ∂′K, and
∂K \ ∂′K has Hn−1-measure zero. Moreover, for y ∈ ∂′K and u ∈ Sn−1, the
projection map pu : ∂K → u⊥, y �→ y − 〈y, u〉u, has the Jacobian Jpu(y) =
|〈νK(y), u〉|. For x ∈ relint (K|u⊥), we have p−1

u ({x}) = {y−
u (K,x), y+

u (K,x)}
and pu(y±

u (K,x)) = x. Therefore, we can apply the coarea formula and then
Fubini’s theorem to obtain

2
∫

Sn−1

zn(K|u⊥) du = 2
∫

Sn−1

∫

K|u⊥

xHn−1(dx) du

=
∫

Sn−1

∫

K|u⊥

∫

p−1
u ({x})

pu(y)H0(dy)Hn−1(dx) du
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=
∫

Sn−1

∫

∂K

|〈νK(y), u〉|(y − 〈y, u〉u)Hn−1(dy) du

=
∫

∂K

y

∫

Sn−1

|〈νK(y), u〉|du Hn−1(dy)

−
∫

∂K

∫

Sn−1

|〈νK(y), u〉|〈y, u〉u du Hn−1(dy). (5)

For the first integral in (5), we can use that∫

Sn−1

|〈v, u〉|du = 2κn−1

for all v ∈ Sn−1 and obtain∫

∂K

y

∫

Sn−1

|〈νK(y), u〉|du Hn−1(dy) = 2nκn−1q1(K)

by (2). For the second integral, we need a lemma. For this, we denote by Q
the metric 2-tensor on R

n, that is, Q(x, y) = 〈x, y〉 for x, y ∈ R
n.

Lemma 1. Let n ≥ 2 and v ∈ Sn−1. Then∫

Sn−1

|〈v, u〉|u2 du =
2κn−1

n + 1
(v2 + Q).

Proof. We use a decomposition of spherical Lebesgue measure to get∫

Sn−1

|〈v, u〉|u2 Hn−1(du)

=

1∫

−1

∫

Sn−1∩v⊥

(1 − τ2)
n−3
2

∣∣∣
〈
v, τv +

√
1 − τ2 w

〉∣∣∣
(
τv +

√
1 − τ2 w

)2 Hn−2(dw) dτ

=

1∫

−1

∫

Sn−1∩v⊥

(1 − τ2)
n−3
2 |τ |

(
τ2v2 + 2τ

√
1 − τ2 vw + (1 − τ2)w2

)
Hn−2(dw) dτ

=

1∫

−1

|τ |τ2(1 − τ2)
n−3
2 dτ ωn−1v

2 +

1∫

−1

|τ |(1 − τ2)
n−1
2 dτ

∫

Sn−1∩v⊥

w2 Hn−2(dw) (6)

since ∫

Sn−1∩v⊥

w Hn−2(dw) = o.

Let B(· , ·) denote the Beta function. Then
1∫

−1

|τ |τ2(1 − τ2)
n−3
2 dτ = 2

1∫

0

τ3(1 − τ2)
n−3
2 dτ =

1∫

0

s(1 − s)
n−3
2 ds
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= B

(
2,

n − 1
2

)
=

Γ(2)Γ(n−1
2 )

Γ(n+3
2 )

=
4

n2 − 1
(7)

and
1∫

−1

|τ |(1 − τ2)
n−1
2 dτ =

1∫

0

(1 − s)
n−1
2 ds =

2
n + 1

.

It is known from [15, (24)] that∫

Sn−1∩v⊥

w2 Hn−2(dw) = 2
ωn+1

ω3
Qv⊥ = κn−1(Q − v2), (8)

where Qv⊥ = Q − v2 is the metric tensor of v⊥. Combination of (6)–(8) yields
the assertion. �

Using Lemma 1, we can write the second integral in (5) as∫

∂K

∫

Sn−1

|〈u, νK(y)〉|〈y, u〉u du Hn−1(dy)

=
∫

∂K

∫

Sn−1

|〈u, νK(y)〉|u2(y) du Hn−1(dy)

=
2κn−1

n + 1

∫

∂K

(νK(y)2 + Q)(y)Hn−1(dy)

=
2κn−1

n + 1

∫

∂K

〈νK(y), y〉νK(y)Hn−1(dy) +
2κn−1

n + 1

∫

∂K

y Hn−1(dy)

=
2κn−1

n + 1

∫

Sn−1

hK(u)u Sn−1(K,du) +
2nκn−1

n + 1
q1(K)

=
2nκn−1

n + 1
[Υ1(K) + q1(K)] .

We have used that the surface area measure Sn−1(K, ·) is the image measure
of Hn−1 under the Gauss map, together with the transformation theorem for
integrals, and we have again used (2), as well as (3). Taking both integrals of
(5) together, we complete the proof of Theorem 1.

4. Another analogue of Cauchy’s formula. We mention briefly another way of
obtaining an analogue of Cauchy’s surface area formula. For this, we consider
a convex body K ∈ Kn

o and a measurable, bounded function f : ∂K → T
r.

For x ∈ K|u⊥, the intersection K ∩ (x+Ru) is a segment [y−
u (K,x), y+

u (K,x)]
with boundary points y−

u (K,x), y+
u (K,x) ∈ ∂K satisfying, say, 〈y−

u (K,x), u〉 ≤
〈y+

u (K,x), u〉. Defining the r-tensor

Ff (K,u) :=
∫

K|u⊥

f(y+
u (K,x))Hn−1(dx),
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we state that ∫

Sn−1

Ff (K,u) du = κn−1

∫

∂K

f(x)Hn−1(dx). (9)

For r = 0 and f = 1, this is Cauchy’s surface area formula. While (9) involves
integration over projections, the relation is rather a statement about real-
valued than tensor-valued functions.

For the proof of (9), we write

∂±
u K := {y±

u (K,x) : x ∈ K|u⊥}.

By the coarea formula, we then have∫

∂±
u K

f(x)|〈νK(x), u〉|Hn−1(dx) =
∫

K|u⊥

f(y±
u (K,x))Hn−1(dx). (10)

Since 〈νK(x), u〉 = 0 for Hn−1-almost all x ∈ K ∩ (relbd (K|u⊥) + Ru) (here
relbd refers to the boundary relative to u⊥), we have∫

K∩(relbd (K|u⊥)+Ru)

f(x)|〈νK(x), u〉|Hn−1(dx) = 0. (11)

It follows from y+
−u(K,x) = y−

u (K,x), (10), and (11) that

Ff (K,u) + Ff (K,−u) =
∫

∂K

f(x)|〈νK(x), u〉|Hn−1(dx).

Fubini’s theorem gives∫

Sn−1

Ff (K,u) du =
1
2

∫

Sn−1

∫

∂K

f(x)|〈νK(x), u〉|Hn−1(dx) du

=
1
2

∫

∂K

f(x)
∫

Sn−1

|〈νK(x), u〉|du Hn−1(dx)

= κn−1

∫

∂K

f(x)Hn−1(dx).

This completes the proof of (9).
We add a final remark. Tsukerman and Veomett [17], in their Section 3,

aim at an extension of Cauchy’s formula to moment vectors, but in an irri-
tating way. Their notion zn(Ku) has different meanings in the formulation of
Theorem 3 and in its proof. According to the definitions given on page 927,
zn(Ku) =

∫
Ku

xHn−1(dx), where Ku is a part of the boundary of K. But this
contradicts the third displayed formula on page 928, which should read

D[o,u](zn+1)(K) = lim
ε→0+

zn+1((K + ε[o, u]) \ K)
ε

= (n + 1)z(K, . . . , K, [o, u]),
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and this is different from zn(Ku). With the notations used above, we have

(n + 1)z(K, . . . , K, [o, u]) =
∫

K|u⊥

y+
u (K,x)Hn−1(dx).

Therefore, with corrections, the argument on p. 928 of [17] can be interpreted
to yield the special case f(x) = x of formula (9).
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Berlin (1957)

[4] Hadwiger, H., Schneider, R.: Vektorielle Integralgeometrie. Elem. Math. 26, 49–

57 (1971)

[5] Hug, D., Schneider, R., Schuster, R.: Integral geometry of tensor valuations.

Adv. Appl. Math. 41, 482–509 (2008)

[6] Hug, D., Weil, W.: Lectures on Convex Geometry. Springer, Cham (2020)

[7] Hug, D., Weis, J.A.: Crofton formulae for tensor-valued curvature measures. In:

Kiderlen, M., Vedel Jensen, E.B. (eds.) Tensor Valuations and their Applications

in Stochastic Geometry and Imaging, pp. 111–156. Lecture Notes in Math., 2177.

Springer, Cham (2017)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


352 D. Hug and R. Schneider Arch. Math.

[8] Hug, D., Weis, J.A.: Crofton formulae for tensorial curvature measures: the

general case. In: Bianchi, G., Colesanti, A., Gronchi, P. (eds.) Analytic Aspects

of Convexity, pp. 39–60. Springer INdAM Ser., 25. Springer, Cham (2018)

[9] Hug, D., Weis, J.A.: Kinematic formulae for tensorial curvature measures. Ann.

Mat. Pura Appl. 197, 1349–1384 (2018)
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[11] Santaló, L.A.: Integral Geometry and Geometric Probability. Addison-Wesley,

Reading (1976)
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