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Vectorial analogues

of Cauchy’s surface area formula

Daniel Hug and Rolf Schneider

Abstract

Cauchy’s surface area formula says that for a convex bodyK in n-dimensional
Euclidean space the mean value of the (n − 1)-dimensional volumes of the or-
thogonal projections of K to hyperplanes is a constant multiple of the surface
area of K. We prove an analogous formula, with the volumes of the projections
replaced by their moment vectors. This requires to introduce a new vector-valued
valuation on convex bodies.
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1 Introduction

Cauchy’s surface area formula is probably the first result in a branch later named
integral geometry. The n-dimensional version of Cauchy’s formula says that

S(K) =
1

κn−1

∫

Sn−1

Vn−1(K|u⊥) du

for each convex body K (a nonempty, compact, convex set) in Euclidean space R
n.

Here K|u⊥ is the image of K under orthogonal projection to the linear subspace u⊥

orthogonal to the unit vector u. By S(K) we denote the surface area of K and by Vk

the k-dimensional volume. Further,
∫

Sn−1 f(u) du always denotes integration over the
unit sphere Sn−1 with respect to the spherical Lebesgue measure, and κk is the volume
of the k-dimensional unit ball (ωk = kκk is its surface area). For proofs of more general
projection formulas we refer to [14, p. 301] and [16, p. 222] or [6, Chap. 5].

Classical integral geometry, as it can be found, e.g., in the books by Hadwiger [3,
Chap. 6] and Santaló [11] (see also [14, Sect. 4.4]), exhibits, for example, intersec-
tion theorems such as the kinematic formulas and the Crofton formulas, mainly for
real-valued valuations on convex bodies. Integral geometric formulas for vector-valued
functionals were investigated in [4, 10, 12]. An extensive theory of integral geomet-
ric intersection formulas for tensor valued valuations, also with values in spaces of
measures, was developed in [2, 5, 7, 8, 9, 13, 15]. We also refer to the survey article [1].
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While the classical integral geometry of real-valued functionals also considered pro-
jections, the mentioned investigations of tensor valuations are restricted to intersec-
tions. It seems that not even such a simple question as the following vector-valued
analogue of Cauchy’s surface area formula has been answered. First we recall (e.g.,
from [14, Sect. 5.4.1]) that for a convex body K ⊂ R

n and for k ∈ {dimK, . . . , n} the
moment vector zk+1(K) is defined by

zk+1(K) :=

∫

K

xHk(dx),

where Hk is the k-dimensional Hausdorff measure (the lower index indicates the degree
of homogeneity). The question is then whether the integral

∫

Sn−1

zn(K|u⊥) du

can be expressed by familiar functionals of K. It turns out that, compared to the cases
dealing with intersections, additional tensor valuations are required. After introducing
these, we shall give an answer to the question in Theorem 1.

2 Preliminaries, and a result

We work in n-dimensional Euclidean vector space Rn (with origin o) and use its scalar
product 〈· , ·〉 to identify the space with its dual space. Thus, we identify a vector x ∈ R

n

with the linear functional 〈x, ·〉. By T
r we denote the real vector space (with its usual

topology) of symmetric r-tensors (tensors of rank r ∈ N0) on R
n. The elements of Tr

are symmetric r-linear functionals on R
n. The symmetric tensor product of a ∈ T

r

and b ∈ T
s is denoted by a · b = ab and is an element of Tr+s. In particular, for x ∈ R

n

we write xr := x · · ·x (r factors); we then have xr(a1, . . . , ar) = 〈x, a1〉 · · · 〈x, ar〉 for
a1, . . . , ar ∈ R

n.

Let K ∈ Kn, where Kn denotes the set of convex bodies in R
n. Its volume can be

written as

Vn(K) =

∫

K

dx, (1)

where
∫

f(x) dx indicates integration with respect to the Lebesgue measure on R
n.

This motivates one to define a symmetric r-tensor by

Ψr(K) :=
1

r!

∫

K

xrdx, K ∈ Kn.

The factor before the integral is for convenience, and we have Ψ1(K) = zn+1(K). For
zn+1, we get the polynomial expansion

zn+1(K + λBn) =

n
∑

j=0

(

n

j

)

λjqj(K)

2



(see [14, (5.95)]), where Bn is the unit ball of R
n and λ ≥ 0. The vector-valued

coefficients qj can be represented by

qj(K) =
1

n

∫

∂K

xCn−j(K, dx)

for j ≥ 1 (whereas q0 = zn+1). See [14, (5.98)], and note that the curvature measure
Cm(K, ·) is concentrated on the boundary of K. In particular (by [14, (4.31)]), if K
has nonempty interior, then

q1(K) =
1

n

∫

∂K

xHn−1(dx). (2)

Let Kn
o denote the set of convex bodies K ∈ Kn with o ∈ intK. Alternatively to

(1), for K ∈ Kn
o the volume of K can also be written as the integral of the cone-volume

measure of K over the unit sphere Sn−1. The cone-volume measure of K ∈ Kn
o is

defined by

VK(ω) := Hn





⋃

x∈τ(K,ω)

[o, x]



 , ω ∈ B(Sn−1).

Here τ(K,ω) is the set of boundary points of K at which there exists an outer unit
normal vector of K belonging to ω, [o, x] is the closed segment with endpoints o and
x, and B(Sn−1) denotes the σ-algebra of Borel sets in Sn−1. It is known (see, e.g., [14,
p. 501]) that

VK(ω) =
1

n

∫

ω

hK(u)Sn−1(K, du)

=
1

n

∫

Rn×ω

〈x, u〉Θn−1(K, d(x, u)),

where hK is the support function of K, Sn−1(K, ·) is its surface area measure and
Θn−1(K, ·) is a support measure of K (see [14, Sect. 4.2]). For the last equality, we
refer to [14, (4.11)] and the simple observation that hK(u) = 〈x, u〉 for (x, u) in the
support of the measure Θn−1(K, ·). From these representations it is clear that VK is a
measure-valued valuation (see [14, Thm. 4.2.1]). Moreover, the integral representations
are well defined for all convex bodies.

The preceding discussion suggests to define a symmetric r-tensor functional by

Υr(K) :=

∫

Sn−1

ur VK(du), K ∈ Kd
o.

For general convex bodies K ∈ Kd, it is consistent to define Υr : Kn → T
r by

Υr(K) : =
1

n

∫

Sn−1

hK(u)u
r Sn−1(K, du) (3)

=
1

n

∫

Rn×Sn−1

〈x, u〉ur Θn−1(K, d(x, u)).
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Just as the Ψr, also the Υr are rotation covariant, continuous tensor-valued valua-
tions. But the translation behavior is different. We know (see [14, (5.104)]) that, for
t ∈ R

n,

Ψr(K + t) =

r
∑

j=0

1

j!
Ψr−j(K)tj ,

where Ψr−j(K)tj is a symmetric tensor product. On the other hand, if we define a
translation invariant r-tensor by

Ξr(K) :=
1

n

∫

Sn−1

ur Sn−1(K, du),

for K ∈ Kn, then
Υr(K + t) = Υr(K) + Ξr+1(K)(t),

where the symmetric (r + 1)-tensor Ξr+1(K) is applied to the vector t, which results
in a tensor of rank r.

Considering that Υ0(K) is the volume of K and that

1

n

∫

Sn−1

hK1
(u)S(K2, . . . , Kn, du) = V (K1, K2, . . . , Kn)

(where S(K2, . . . , Kn, ·) is the mixed area measure of K2, . . . , Kn) is the mixed volume
of K1, . . . , Kn and hence is symmetric in its arguments, one may ask whether also

∫

Sn−1

hK1
(u)urS(K2, . . . , Kn, du) (4)

is symmetric in K1, . . . , Kn. That this is in general not the case, can be seen from the
fact that, for r = 1, the vector

∫

Sn−1

hK(u)u S(B
n, . . . , Bn, du)

is proportional to the Steiner point of K (as follows from [14, (1.31)]), whereas
∫

Sn−1

hBn(u)u S(K,Bn, . . . , Bn, du)

is always equal to o, by [14, (5.30)].

Since (4) is not symmetric in K1, . . . , Kn, we introduce a symmetric tensor func-
tional Υ(r) : (Kn)n → T

r by

Υ(r)(K1, . . . , Kn) :=
1

n

n
∑

i=1

1

n

∫

Sn−1

hKi
(u)ur S(K1, . . . , Ǩi, . . . , Kn, du),

where Ǩi means that Ki is omitted.

We have mentioned tensor valuations of rank higher than necessary for the following,
since we hope to come back to them later.

We can now state the vectorial counterpart to Cauchy’s surface area formula.
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Theorem 1. For K ∈ Kn,
∫

Sn−1

zn(K|u⊥) du =
nκn−1

n+ 1
(nq1(K)−Υ1(K)).

The functional q1 is a special mixed moment vector, that is, we have

n

n+ 1
q1(K) = z(K[n], Bn).

The mixed moment vectors z : (Kn)n+1 → R
n are symmetric and multilinear in each of

their n+1 arguments (see [14, Section 5.4.1]. The choice K = λ1K1+ · · ·+λnKn with
λ1, . . . , λn ≥ 0 in Theorem 1, polynomial expansion and comparison of the coefficients
of λ1 · · ·λn yields the following consequence.

Corollary 1. Let K1, . . . , Kn ∈ Kn. Then
∫

Sn−1

zn(K1|u⊥, . . . , Kn|u⊥) du

= nκn−1

(

z(K1, . . . , Kn, B
n)− 1

n+ 1
Υ(1)(K1, . . . , Kn)

)

.

3 Proof of Theorem 1

Both sides of the asserted equation depend continuously on K. Hence we can assume
that K ∈ Kn has nonempty interior. Let ∂′K denote the set of all x ∈ ∂K at which
the outer unit normal vector νK(x) of K at x is unique. Then ∂′K is a Borel set, νK
is continuous on ∂′K and ∂K \ ∂′K has Hn−1-measure zero. Moreover, for y ∈ ∂′K

and u ∈ Sn−1 the projection map pu : ∂K → u⊥, y 7→ y − 〈y, u〉u, has the Jacobian
Jpu(y) = |〈νK(y), u〉|. For x ∈ relint (K|u⊥) we have p−1

u ({x}) = {y−u (K, x), y+u (K, x)}
and pu(y

±
u (K, x)) = x. Therefore, we can apply the coarea formula and then Fubini’s

theorem to obtain

2

∫

Sn−1

zn(K|u⊥) du = 2

∫

Sn−1

∫

K|u⊥

xHn−1(dx) du

=

∫

Sn−1

∫

K|u⊥

∫

p−1
u ({x})

pu(y)H0(dy)Hn−1(dx) du

=

∫

Sn−1

∫

∂K

|〈νK(y), u〉|(y − 〈y, u〉u)Hn−1(dy) du

=

∫

∂K

y

∫

Sn−1

|〈νK(y), u〉| duHn−1(dy)

−
∫

∂K

∫

Sn−1

|〈νK(y), u〉|〈y, u〉u duHn−1(dy). (5)

For the first integral in (5) we can use that
∫

Sn−1

|〈v, u〉| du = 2κn−1
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for all v ∈ Sn−1 and obtain
∫

∂K

y

∫

Sn−1

|〈νK(y), u〉| duHn−1(dy) = 2nκn−1q1(K),

by (2). For the second integral, we need a lemma. For this, we denote by Q the metric
2-tensor on R

n, that is, Q(x, y) = 〈x, y〉 for x, y ∈ R
n.

Lemma 1. Let n ≥ 2 and v ∈ Sn−1. Then

∫

Sn−1

|〈v, u〉|u2 du =
2κn−1

n + 1
(v2 +Q).

Proof. We use a decomposition of spherical Lebesgue measure to get

∫

Sn−1

|〈v, u〉|u2Hn−1(du)

=

∫ 1

−1

∫

Sn−1∩v⊥
(1− τ 2)

n−3

2

∣

∣

∣

〈

v, τv +
√
1− τ 2w

〉∣

∣

∣

(

τv +
√
1− τ 2w

)2

Hn−2(dw) dτ

=

∫ 1

−1

∫

Sn−1∩v⊥
(1− τ 2)

n−3

2 |τ |
(

τ 2v2 + 2τ
√
1− τ 2 vw + (1− τ 2)w2

)

Hn−2(dw) dτ

=

∫ 1

−1

|τ |τ 2(1− τ 2)
n−3

2 dτ ωn−1v
2 +

∫ 1

−1

|τ |(1− τ 2)
n−1

2 dτ

∫

Sn−1∩v⊥
w2Hn−2(dw), (6)

since
∫

Sn−1∩v⊥
wHn−2(dw) = o.

Let B(· , ·) denote the Beta function. Then

∫ 1

−1

|τ |τ 2(1− τ 2)
n−3

2 dτ = 2

∫ 1

0

τ 3(1− τ 2)
n−3

2 dτ =

∫ 1

0

s(1− s)
n−3

2 ds

= B

(

2,
n− 1

2

)

=
Γ(2)Γ(n−1

2
)

Γ(n+3
2
)

=
4

n2 − 1
(7)

and
∫ 1

−1

|τ |(1− τ 2)
n−1

2 dτ =

∫ 1

0

(1− s)
n−1

2 ds =
2

n+ 1
.

It is known from [15, (24)] that

∫

Sn−1∩v⊥
w2Hn−2(dw) = 2

ωn+1

ω3
Qv⊥ = κn−1(Q− v2), (8)

where Qv⊥ = Q − v2 is the metric tensor of v⊥. Combination of (6)–(8) yields the
assertion.
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Using Lemma 1, we can write the second integral in (5) as
∫

∂K

∫

Sn−1

|〈u, νK(y)〉|〈y, u〉u duHn−1(dy)

=

∫

∂K

∫

Sn−1

|〈u, νK(y)〉|u2(y) duHn−1(dy)

=
2κn−1

n+ 1

∫

∂K

(νK(y)
2 +Q)(y)Hn−1(dy)

=
2κn−1

n+ 1

∫

∂K

〈νK(y), y〉νK(y)Hn−1(dy) +
2κn−1

n+ 1

∫

∂K

yHn−1(dy)

=
2κn−1

n+ 1

∫

Sn−1

hK(u)u Sn−1(K, du) +
2nκn−1

n+ 1
q1(K)

=
2nκn−1

n + 1
[Υ1(K) + q1(K)] .

We have used that the surface area measure Sn−1(K, ·) is the image measure of Hn−1

under the Gauss map, together with the transformation theorem for integrals, and we
have again used (2), as well as (3). Taking both integrals of (5) together, we complete
the proof of Theorem 1.

4 Another analogue of Cauchy’s formula

We mention briefly another way of obtaining an analogue of Cauchy’s surface area
formula. For this, we consider a convex body K ∈ Kn

o and a measurable, bounded
function f : ∂K → T

r. For x ∈ K|u⊥ the intersection K ∩ (x + Ru) is a segment
[y−u (K, x), y+u (K, x)] with boundary points y−u (K, x), y+u (K, x) ∈ ∂K satisfying, say,
〈y−u (K, x), u〉 ≤ 〈y+u (K, x), u〉. Defining the r-tensor

Ff (K, u) :=

∫

K|u⊥

f(y+u (K, x))Hn−1(dx),

we state that
∫

Sn−1

Ff (K, u) du = κn−1

∫

∂K

f(x)Hn−1(dx). (9)

For r = 0 and f = 1 this is Cauchy’s surface area formula. While (9) involves in-
tegration over projections, the relation is rather a statement about real-valued than
tensor-valued functions.

For the proof of (9), we write

∂±
u K := {y±u (K, x) : x ∈ K|u⊥}.

By the coarea formula we then have
∫

∂±
u K

f(x)|〈νK(x), u〉|Hn−1(dx) =

∫

K|u⊥

f(y±u (K, x))Hn−1(dx). (10)
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Since 〈νK(x), u〉 = 0 for Hn−1-almost all x ∈ K ∩ (relbd (K|u⊥) + Ru) (here relbd
refers to the boundary relative to u⊥), we have

∫

K∩(relbd (K|u⊥)+Ru)

f(x)|〈νK(x), u〉|Hn−1(dx) = 0. (11)

It follows from y+−u(K, x) = y−u (K, x), (10) and (11) that

Ff(K, u) + Ff (K,−u) =

∫

∂K

f(x)|〈νK(x), u〉|Hn−1(dx).

Fubini’s theorem gives
∫

Sn−1

Ff(K, u) du =
1

2

∫

Sn−1

∫

∂K

f(x)|〈νK(x), u〉|Hn−1(dx) du

=
1

2

∫

∂K

f(x)

∫

Sn−1

|〈νK(x), u〉| duHn−1(dx)

= κn−1

∫

∂K

f(x)Hn−1(dx).

This completes the proof of (9).

We add a final remark. Tsukerman and Veomett [17], in their Section 3, aim at
an extension of Cauchy’s formula to moment vectors, but in an irritating way. Their
notion zn(Ku) has different meanings in the formulation of Theorem 3 and in its proof.
According to the definitions given on page 927, zn(Ku) =

∫

Ku

xHn−1(dx), where Ku is
a part of the boundary of K. But this contradicts the third displayed formula on page
928, which should read

D[o,u](zn+1)(K) = lim
ǫ→0+

zn+1((K + ǫ[o, u]) \K)

ǫ
= (n+ 1)z(K, . . . , K, [o, u]),

and this is different from zn(Ku). With the notations used above, we have

(n+ 1)z(K, . . . , K, [o, u]) =

∫

K|u⊥

y+u (K, x)Hn−1(dx).

Therefore, with corrections, the argument on p. 928 of [17] can be interpreted to yield
the special case f(x) = x of formula (9).

Acknowledgements. D. Hug was supported by DFG research grant HU 1874/5-1
(SPP 2265).
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