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Abstract: Phytochromes are photoreceptors of plants, fungi, slime molds bacteria and heterokonts.
These biliproteins sense red and far-red light and undergo light-induced changes between the two
spectral forms, Pr and Pfr. Photoconversion triggered by light induces conformational changes in the
bilin chromophore around the ring C-D-connecting methine bridge and is followed by conformational
changes in the protein. For plant phytochromes, multiple phytochrome interacting proteins that
mediate signal transduction, nuclear translocation or protein degradation have been identified. Few
interacting proteins are known as bacterial or fungal phytochromes. Here, we describe how the
interacting partners were identified, what is known about the different interactions and in which
context of signal transduction these interactions are to be seen. The three-dimensional arrangement
of these interacting partners is not known. Using an artificial intelligence system-based modeling
software, a few predicted and modulated examples of interactions of bacterial phytochromes with
their interaction partners are interpreted.
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1. Introduction

Phytochromes are photoreceptor proteins that regulate multiple light effects in plants,
bacteria, fungi and heterokonts [1–4]. The protein binds a bilin chromophore covalently
to a cysteine residue. As in any photoreceptor, the chromophore absorbs light and this
triggers protein conformational changes that initiate a signal transduction cascade. Phy-
tochromes have a special feature, photoreversibility, which describes the switching between
two spectrally different forms, Pr and Pfr, by light. This conversion is triggered by an
isomerization of the chromophore. Most members of the large group of phytochromes
are synthesized in the Pr form, while Pfr can only be formed by light. To achieve con-
version from Pfr to Pr, there are two possibilities, either via photoconversion or via dark
reversion. Few phytochromes are comparable to this group but have a stable Pfr, i.e., the
conversion from Pr to Pfr is only possible by light. A third group, the so-called bathy
phytochromes, have a Pfr dark form [5,6]. They are also synthesized in the Pr form, but by
dark conversion, Pr converts to Pfr. Pr can then only be formed by light. Three different
bilins, phytochromobilin, phycocyanobilin and biliverdin, can be selected by phytochromes
(Figure 1). The choice depends on the species, i.e., which chromophore is synthesized, and
on the position of the chromophore binding cysteine [7]. There are also few examples of
other chromophores with still different spectral properties [8], and the group of cyanobac-
teriochromes [9], biliproteins that probably evolved out of phytochromes and are absorbed
in various different spectral ranges.
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Figure 1. Chromophores of phytochromes. Phytochromobilin is the chromophore of plant phyto-
chromes, phycocyanobilin is the chromophore of some cyanobacterial and green algal phyto-
chromes and of cyanobacteriochromes, and biliverdin is the chromophore of bacterial and fungal 
phytochromes. 

Phytochromes are multidomain proteins. The canonical phytochromes have a PAS 
(period, Arndt, single-minded)-GAF (cGMP-specific phosphodiesterases, adenylyl 
cyclases and FhlA)-PHY (phytochrome) tridomain in the N-terminus of the protein (Fig-
ure 2). The GAF domain gives rise to the cyanobacteriochromes, in which GAF is com-
bined with different other domains. Cyanobacterial proteins, in which GAF and PHY are 
present but a PAS domain is missing, are termed knotless phytochromes [8]. Our focus 
here is on the canonical phytochromes. In the C-terminus, most phytochromes have a his-
tidine kinase or a histidine kinase-like domain. Plant phytochromes are comparable with 
the typical bacterial phytochromes but carry two additional PAS domains between the 
PHY domain and the histidine kinase-like module (Figure 2). However, plant phyto-
chromes lose their histidine kinase activity.  

 
Figure 2. Domain arrangement of representative phytochromes. The red line indicates the position 
of the chromophore-binding cysteine. The abbreviations are NTE, N-terminal extension; PCM, pho-
tosensory core module; HK, histidine kinase (like) module; PAS, PAS domain [10]; GAF, GAF do-
main [11]; PHY, PHY domain [12]; HisKA, substrate and dimerization domain of histidine kinase; 
HATPase, ATPase domain of histidine kinase; HWE, HWE type of histidine kinase; RR, response 
regulator. 

Figure 1. Chromophores of phytochromes. Phytochromobilin is the chromophore of plant phy-
tochromes, phycocyanobilin is the chromophore of some cyanobacterial and green algal phy-
tochromes and of cyanobacteriochromes, and biliverdin is the chromophore of bacterial and fungal
phytochromes.

Phytochromes are multidomain proteins. The canonical phytochromes have a PAS
(period, Arndt, single-minded)-GAF (cGMP-specific phosphodiesterases, adenylyl cyclases
and FhlA)-PHY (phytochrome) tridomain in the N-terminus of the protein (Figure 2). The
GAF domain gives rise to the cyanobacteriochromes, in which GAF is combined with
different other domains. Cyanobacterial proteins, in which GAF and PHY are present but a
PAS domain is missing, are termed knotless phytochromes [8]. Our focus here is on the
canonical phytochromes. In the C-terminus, most phytochromes have a histidine kinase
or a histidine kinase-like domain. Plant phytochromes are comparable with the typical
bacterial phytochromes but carry two additional PAS domains between the PHY domain
and the histidine kinase-like module (Figure 2). However, plant phytochromes lose their
histidine kinase activity.
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Figure 2. Domain arrangement of representative phytochromes. The red line indicates the position of
the chromophore-binding cysteine. The abbreviations are NTE, N-terminal extension; PCM, photosen-
sory core module; HK, histidine kinase (like) module; PAS, PAS domain [10]; GAF, GAF domain [11];
PHY, PHY domain [12]; HisKA, substrate and dimerization domain of histidine kinase; HATPase,
ATPase domain of histidine kinase; HWE, HWE type of histidine kinase; RR, response regulator.
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All phytochromes analyzed so far have a dimer arrangement with usually two identical
subunits, although heterodimer formation is described for few plant phytochromes [13]. As
far as recent structure determinations are concerned, subunits of bacterial phytochromes are
arranged in a parallel manner (Figure 3). Surprisingly, plant phytochrome structures have
parallel histidine kinase-like regions, but the photosensory core modules (PCM modules)
are arranged in an antiparallel manner, and the overall dimer forms an unexpected, complex
and asymmetric arrangement (Figure 3).
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the known light effects as controlled by phytochrome are rare in these groups: the organ-
isms are much more diverse, and it is expected that the phytochrome-controlled effects 
are also diverse, i.e., different from one bacterium to another. Because light effects are hard 
to recognize in bacteria, they may remain hidden until genes are modified and responses 
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of chromatic adaptation [22] or phototaxis [23], whereas the only effect known for a ca-
nonical phytochrome is an effect on biofilm formation, which is probably not light de-
pendent [24]. In the photosynthetic bacteria Bradyrhizobium and Rhodopseudomonas, the 
synthesis of photosynthesis proteins and bacteriochlorophyll are under the phyto-
chrome’s control [5]. In the soil bacterium Agrobacterium fabrum, the gene transfer to plants 
and the plasmid transfer to other bacteria by conjugation are under the control of phyto-
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The signal transduction pathway starts as follows: Light is absorbed by the bilin chro-
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bridge from the Z to the E configuration as the first step of the photocycle [28,29]. The 
rotation of the ring D and its differential interaction with binding amino acids results in 

Figure 3. Overall rearrangement of the 3D structures of plant PhyB dimer and a phytochrome Agp1
dimer as representatives for plant and bacterial phytochromes. (A) The PhyB model is from cryo-EM
studies (PDB [14] entry 7RZW); (B) the full-length Agp1 (Agp1-FL) model is based on Alphafold
2.3.1 [15] with 2 identical sequences (Uniprot-ID: Q7CY45) as entry (see also [16] for PCM structures).
The domains are indicated by different colors. HK stands for histidine kinases (like).

Phytochromes were discovered as the second group of photoreceptors after the opsins.
Phytochrome discovery is based on action spectroscopy of plant effects such as flower
induction [17], seed germination [18] or de-etiolation [19], followed by spectral detection
which is based on the Pr-Pfr photoreversibility [20]. In fact, phytochromes control a large
number of developmental effects in plants and can therefore be regarded as the most
relevant plant photoreceptors [21]. The later discoveries of phytochromes in bacteria, fungi,
slime molds and heterokonts were based on genome sequences, and consequently, the
known light effects as controlled by phytochrome are rare in these groups: the organisms
are much more diverse, and it is expected that the phytochrome-controlled effects are also
diverse, i.e., different from one bacterium to another. Because light effects are hard to
recognize in bacteria, they may remain hidden until genes are modified and responses are
targeted by researchers. In cyanobacteria, the cyanobacteriochromes control the effects of
chromatic adaptation [22] or phototaxis [23], whereas the only effect known for a canonical
phytochrome is an effect on biofilm formation, which is probably not light dependent [24].
In the photosynthetic bacteria Bradyrhizobium and Rhodopseudomonas, the synthesis of
photosynthesis proteins and bacteriochlorophyll are under the phytochrome’s control [5].
In the soil bacterium Agrobacterium fabrum, the gene transfer to plants and the plasmid
transfer to other bacteria by conjugation are under the control of phytochrome [25–27].

The signal transduction pathway starts as follows: Light is absorbed by the bilin
chromophore, which undergoes an isomerization around the ring C-D-connecting methine
bridge from the Z to the E configuration as the first step of the photocycle [28,29]. The
rotation of the ring D and its differential interaction with binding amino acids results in con-
formational changes in the protein. These are translated into modulations of the histidine
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kinase and changes in its enzyme activities, in other enzymatic activities or in interactions
with other proteins as the next step of signal transduction. The three-dimensional struc-
tures of phytochrome’s PAS-GAF-PHY tridomains are well known [16,30,31]. The GAF
domain forms a chromophore pocket, PAS and PHY domains also interact with the chro-
mophore and an exceptional knot is formed between PAS and GAF domains. Upon Pr to
Pfr conversion, the secondary structure of the so-called tongue of the PHY domain changes
from ß-sheet to α-helix, and this step might initiate protein changes in the C-terminus.
Meanwhile, also crystal structures of full-length phytochromes are known [32,33], and due
to the successful cryogenic electron microscopy (cryo-EM) structure determination, a few
3D structures of full-length plant phytochromes are also known [34–36]. Phytochromes
form homodimers, and the PAS-GAF-PHY tridomains are usually arranged in a parallel
manner, although antiparallel arrangements have been described for the cyanobacterial
phytochrome Cph1 and the A. fabrum phytochrome Agp1 [16,31]. The cryo-EM structure
of plant phytochrome B determined recently shows an asymmetric and quite unexpected
arrangement of subunits with antiparallel PAS-GAF-PHY tridomains, whereas the full-
length structures of DrBphP and Ipomea phytochromes showed parallel arrangements of
both subunits [37,38].

In this overview, we summarize the interactions of phytochromes with other proteins.
The interactions are relevant for the first steps of signal transduction or for the intracellular
migration of phytochromes. Most interacting proteins are known for plant phytochromes,
which is due to the long research period since the discovery of plant phytochromes, the large
number of research groups interested in plant phytochromes and the higher complexity of
plant cells compared to bacteria.

2. Interaction Partners of Plant Phytochromes

Most phytochrome interaction proteins have been found for the plant Arabidopsis
thaliana. This model plant has five phytochromes. Interacting proteins are listed in
the Biogrid database [39]. The entries for PhyA are, for example, found here: https:
//thebiogrid.org/22724/table/arabidopsis-thaliana/PhyA.html. Our selection below cov-
ers most of the database entries. In most cases, PhyA and/or PhyB are the interaction
partners, and the experiments are usually carried out with the model plant Arabidop-
sis thaliana.

3. Homodimer and Heterodimer Formation

Phytochromes are dimeric proteins. The interaction between monomers may be
regarded as a very stable protein interaction of phytochromes. Dimerization has been long
documented and analyzed [40–42]. Recently, it has been discovered that the arrangement
of subunits in PhyA and PhyB is significantly different from what had been expected.
The arrangement is asymmetric, and the subunits are aligned parallel to each other in
the C-terminal part, the histidine kinase-like region, and antiparallel to each other in the
N-terminal PCM. This asymmetric arrangement poses new questions about the interaction
with other proteins. Is it a specific interaction with one subunit, is it an interaction with
either subunit of both sides, or are both subunits required?

Typically, both subunits of the dimer have identical sequences. However, since there
are different phytochromes in a species, there is the possibility that subunits of different
phytochromes form a dimer, although a mixed formation would not necessarily turn out
from standard biochemical assays such as Western blotting. Indeed, co-precipitation of
Myc-tagged phytochromes showed that heterodimers can be formed between all type II
phytochromes of Arabidopsis (PhyB, PhyC, PhyD and PhyE), whereas PhyA seems to be
excluded from mixed dimer formation [13].

4. Interaction with PIF3 and Other PIF Proteins

The interaction between phytochromes and phytochrome interacting factor 3 (PIF3)
was the first interaction for a phytochrome with another protein to be discovered. This is

https://thebiogrid.org/22724/table/arabidopsis-thaliana/PhyA.html
https://thebiogrid.org/22724/table/arabidopsis-thaliana/PhyA.html
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probably the best-studied interaction of a phytochrome with another protein, as seen by the
literature statistics: in Web of Science (a paid-access platform for reference and citation data
from academic journals), there are 420 articles and reviews on PIF3 [43–46]. PIF3 was found
by a yeast two-hybrid screening using an Arabidopsis cDNA library as prey and PhyB as
bait [47]. Considering the evidence indicating that the “signaling” C-terminal domain of
the phytochromes might be directly involved in the interaction with signaling partners [48],
Ni et al. used the non-photoactive C-terminal PAS-PAS-HK (see Figure 2) of PhyB as bait in
the yeast two-hybrid system.

To investigate the functional relevance to phytochrome signaling, transgenic Ara-
bidopsis seedlings expressing both sense and antisense PIF3 constructs were examined,
evaluating their impact on photoresponsiveness under constant red light or constant far-red
light conditions, which are indicative of PhyB and PhyA activity, respectively. Transgenic
Arabidopsis seedlings, which had reduced levels of PIF3 through antisense techniques,
showed significantly decreased responsiveness to light signals detected by either PhyB or
PhyA. Thus, PIF3 is functionally involved in both the PhyA and PhyB signaling pathways
within plant cells, which aligns with its ability to bind to both photoreceptors [49].

Following the discovery of the interaction between PIF3 with the C-terminal domain
of PhyB, an in vitro pull-down assay was performed to verify the interaction with the full-
length, photoactive PhyB holoprotein. In their study, Ni et al. [50] used PIF3 immobilized
on beads as bait and full-length phytochrome molecules carrying a chromophore as prey.
The phytochrome molecules were synthesized in vitro [50]. The results demonstrated that
PhyB binds to PIF3 only upon light-induced conversion to its biologically active Pfr form.
When PhyB reverted to its inactive Pr form, PIF3 dissociated from the phytochrome. This
indicates that PhyB signaling relies on the specific recognition of PIF3 by the active Pfr
form of the photoreceptor. While initial experiments indicated an interaction between
PIF3 and the C-terminal region of the phytochrome, it became evident that a phytochrome
lacking a C-terminus can initiate light-induced signal transduction, and in fact, it can do
so even more efficiently than the full-length protein [51]. The C-terminus might function
in a modulatory way or could initiate pathways that differ from the standard signaling
pathways, providing an explanation for PIF3’s interaction with the C-terminus. Indeed, the
Ni et al. experiments (1999) [50] showed that there is a Pfr-dependent interaction of PIF3
with the N-terminal PAS-GAF-PHY domain of the phytochrome.

In a comprehensive mutagenesis-based “yeast reverse-hybrid screen”, Kikis et al.
identified four amino acids of PhyB that are necessary for PIF3 binding [52]. The same
PhyB mutants were also reduced in their light responses in Arabidopsis. All four amino
acids clustered in the knot region of PhyB, which is formed by PAS and GAF domains
in the N-terminus of the protein. These experiments gave deep insight into the spatial
interactions between PhyB and PIF3. Because the C-terminus of PhyB is too distant from the
knot region, it seems unlikely that PIF3 interacts with the C-terminus and the N-terminal
knot at the same time.

In 2006, Al Sady et al. [53] developed antibodies targeting the low-abundance native
PIF3 protein. They also created various transgenic Arabidopsis lines that expressed dif-
ferent forms of PIF3 fusion proteins labeled with fluorescent markers and epitope tags.
Through Western blot analysis, they confirmed and expanded the data of Bauer et al. [54],
who demonstrated that the immunochemically measurable native PIF3 protein decreases
below detectable levels in wild-type Arabidopsis seedlings within 260 min of exposure
to continuous red light. These studies showed that the interaction with Phy induces the
degradation of PIF3.

PIF3 is a member of the basic helix-loop-helix (bHLH) family and localized in the
nucleus [47,50]. It functions as a negative regulator of photomorphogenesis by repress-
ing the expression of genes involved, like those associated with chlorophyll biosynthesis
and light-induced growth processes [52,55]. Under dark conditions or in the presence of
inactive phytochromes, PIF3 is stable and able to bind to specific DNA sequences in the
promoters of target genes, thereby repressing their expression. In the light, plant phy-
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tochrome in its active Pfr conformation is quickly translocated into the nucleus. These
active phytochromes can interact with PIF3 and induce its degradation by phosphory-
lation [56] and sumoylation [57] or prevent its binding to DNA by competing with the
DNA binding. The degradation or inhibition of PIF3 by active phytochromes allows
for the activation of photomorphogenesis-related genes and promotes plant growth and
development [53,58,59].

In Arabidopsis, there are six other proteins that are homologous to PIF3, namely, PIF1,
PIF4 [60], PIF5 [61], PIF6 [62], PIF7 [63] and PIF8 [60]. Homologous PIFs have also been
examined in other plants [64]. All members seem to bind phytochrome specifically in the
Pfr form, but the DNA binding positions differ. The variability in PIFs is thus one way to
allow for multiple variations in light control via phytochrome.

The signal transduction cascade for PIF3 performs as follows: Upon irradiation of the
plant and photoconversion from Pr to Pfr, the phytochrome transfers from the cytosol to the
nucleus. Here, it interacts with PIF3 in a Pfr specific way. This leads to the phosphorylation
of PIF3 through a kinase which also interacts with the phytochrome and PIF3. Upon
sumoylation, PIF3 is targeted for degradation. Because, in general, PIF3 acts as a negative
transcriptional regulator, the degradation of this protein leads to an induction of expression
in the light (see model in Figure 4). Due to its early discovery, PIF3 is the best-analyzed
member of the PIF family but probably also the most relevant with respect to light regulation
of plant responses.

Biomolecules 2024, 14, x FOR PEER REVIEW 6 of 17 
 

the expression of genes involved, like those associated with chlorophyll biosynthesis and 
light-induced growth processes [52,55]. Under dark conditions or in the presence of inac-
tive phytochromes, PIF3 is stable and able to bind to specific DNA sequences in the pro-
moters of target genes, thereby repressing their expression. In the light, plant phyto-
chrome in its active Pfr conformation is quickly translocated into the nucleus. These active 
phytochromes can interact with PIF3 and induce its degradation by phosphorylation [56] 
and sumoylation [57] or prevent its binding to DNA by competing with the DNA binding. 
The degradation or inhibition of PIF3 by active phytochromes allows for the activation of 
photomorphogenesis-related genes and promotes plant growth and development 
[53,58,59].  

In Arabidopsis, there are six other proteins that are homologous to PIF3, namely, 
PIF1, PIF4 [60], PIF5 [61], PIF6 [62], PIF7 [63] and PIF8 [60]. Homologous PIFs have also 
been examined in other plants [64]. All members seem to bind phytochrome specifically 
in the Pfr form, but the DNA binding positions differ. The variability in PIFs is thus one 
way to allow for multiple variations in light control via phytochrome.  

The signal transduction cascade for PIF3 performs as follows: Upon irradiation of the 
plant and photoconversion from Pr to Pfr, the phytochrome transfers from the cytosol to 
the nucleus. Here, it interacts with PIF3 in a Pfr specific way. This leads to the phosphor-
ylation of PIF3 through a kinase which also interacts with the phytochrome and PIF3. 
Upon sumoylation, PIF3 is targeted for degradation. Because, in general, PIF3 acts as a 
negative transcriptional regulator, the degradation of this protein leads to an induction of 
expression in the light (see model in Figure 4). Due to its early discovery, PIF3 is the best-
analyzed member of the PIF family but probably also the most relevant with respect to 
light regulation of plant responses.  

 
Figure 4. Cartoon for the action of plant phytochrome A. The cell borders are defined by the outer 
lines, while the nucleus is represented by the inner circle. (A) In darkness, phytochrome resides in 
the cytosol. PIF3 interacts with the DNA as negative transcription factor and inhibits transcription 
of certain genes. (B) In the light, phytochrome converts to Pfr, and this form interacts with FAR1 
and FHY1. The complex moves into the nucleus (arrow) (C) This triggers transfer to the nucleus. 
PIF3 moves towards PhyA (D) FAR1 and FHY1 move back to the cytosol and phytochrome interacts 
with PIF3, thereby triggering its degradation possibly by phosphorylation and sumoylation. The 

Figure 4. Cartoon for the action of plant phytochrome A. The cell borders are defined by the outer
lines, while the nucleus is represented by the inner circle. (A) In darkness, phytochrome resides in
the cytosol. PIF3 interacts with the DNA as negative transcription factor and inhibits transcription
of certain genes. (B) In the light, phytochrome converts to Pfr, and this form interacts with FAR1
and FHY1. The complex moves into the nucleus (arrow) (C) This triggers transfer to the nucleus.
PIF3 moves towards PhyA (D) FAR1 and FHY1 move back to the cytosol and phytochrome interacts
with PIF3, thereby triggering its degradation possibly by phosphorylation and sumoylation. The
green arrow indicates that specific transcription can start due to removal of PIF3 from the promotor.
(E) PIF3 degrades, and new phytochrome in the Pr form appears in the cytosol. (F) PhyA interacts
with SPA1 and with COP1, and PhyA is degraded.



Biomolecules 2024, 14, 9 7 of 17

5. Interaction with Cryptochrome (Cry)

Cryptochromes are widely distributed flavoprotein blue light photoreceptors that
are homologous to the photolyases, which are enzymes that repair DNA damage. Plants
typically contain two to three cryptochromes and two other flavoprotein photoreceptors,
the phototropins. Already, in the early days of phytochrome research [65,66], it was
found that many phytochrome effects can also be induced by blue light. Because the bilin
chromophore of the phytochrome absorbs not only red light but to a lesser extent also blue
light, both light qualities could equally induce responses via the phytochrome. However,
separate blue light photoreceptors could as also cause the blue light effects. The gene of
cryptochrome was discovered in 1994 [67] and the gene of phototropin was discovered in
1997 [68].

An interaction between Cry1 and plant phytochrome A was first demonstrated by the
phosphorylation of Cry1 by purified PhyA, and by yeast two-hybrid techniques [69]. The
interaction seems independent of the photochromic state (Pr or Pfr) of the phytochrome,
because phosphorylation of Cry by the phytochrome was independent of the respective
form of the latter (but see [70]).

While the interaction between Phy and PIF3 results in a clear action, i.e., the degrada-
tion of PIF3, the result of the phytochrome/cryptochrome interaction is open. However,
studies on the coaction of both photoreceptors have continued [70,71].

6. Interaction with ARR4

Bacterial and fungal phytochromes often have histidine kinase domains and function
as light-regulated histidine kinases that phosphorylate cognate response regulator proteins.
Plant phytochromes have a module at the C-terminus which has evolved from histidine
kinases but has no phosphorylating function and the regions do not dimerize in the way
characteristic for histidine kinases [35]. Nevertheless, the attention has been drawn to
Arabidopsis homologs for the E. coli CheY response regulator. Mutant studies have already
identified response regulator sequences in cytokinin signal transduction [72]. One of
these, ARR4 (Arabidopsis response regulator 4), was found to be involved in light signal
transduction. Subsequent in vitro studies demonstrated that ARR4 interacts with the N-
terminus of PhyB, but not of PhyA [73]. ARR4 knockout mutants show reduced sensitivity
to red light. One action of ARR4 is that it modulates dark reversion of PhyB.

7. Interaction with Phototropin

While interactions with cryptochrome and PIFs probably take place in the nucleus
of a plant cell, an interaction between the phytochrome and phototropin at the plasma
membrane has been shown for the moss Physcomitrium patens [74]. The tip cell of moss
filaments grows phototropically toward the light. This response is controlled by the
phytochrome (and possibly phototropin). A gradient of activated photoreceptor can only
be formed by unilateral light if the photoreceptors are immobilized, most likely at the
plasma membrane. The interaction between the phytochrome and phototropin at the
plasma membrane could fulfil both functions.

8. Interaction with COP1

Constitutive photomorphogenesis 1 (COP1) is a ubiquitin ligase that is involved in
protein degradation. Dark grown COP1 and DET (de-etiolated) mutant seedlings are
similar in many aspects to wild-types grown in the light. The interaction of COP1 with the
N-terminal of PhyB in vitro has been shown by pull-down assays [75]. COP1 is involved in
many photomorphogenic responses, probably by inducing degradation as part of plant
proteasomes. The light-induced degradation of plant PhyA was found already very early in
phytochrome research. Here, PhyB is thought to be degraded through the COP1 proteasome
in the nucleus.
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9. Interaction with NDPK2

In a yeast two-hybrid screen using the C-terminal part of PhyA as a bait, the nucleoside
diphosphate kinase 2 (NDPK2) was isolated [76]. In vitro characterization showed that
the interaction takes place between one PAS domain A of the C-terminus of PhyA and the
C-terminal part of NDPK2 [77]. The enzyme catalyzes the phosphotransfer of the gamma
phosphate of ATP to other nucleoside diphosphates and thus plays an important role in
nucleotide metabolism. NDPK2 was shown to be involved in phytochrome photoregulation,
e.g., of starch formation [77–80].

An open question in NDPK2 function is its localization to the chloroplast [80] via
a chloroplast target sequence. Plant phytochromes reside in the cytoplasm, at the plas-
malemma or in the nucleus, but have never been reported to be in the chloroplast. The
interaction between NDPK2 and the phytochrome is thus either not relevant for in vivo
functions or is relevant for the protein on its way to the chloroplast.

10. Interaction with PKS1

PKS1 (PHYTOCHROME KINASE SUBSTRATE 1) is a protein in Arabidopsis thaliana
that has been identified in a yeast two-hybrid screen with C-terminal PhyA and PhyB as
bait. The interaction in vitro with the full-length GST-tagged PhyA and PhyB has been
demonstrated: the interaction appears to be independent from Pr or Pfr [81]. A homolog
PKS2 fulfils similar functions [82]. PKS1 is phosphorylated by phytochromes in response
to light, and this phosphorylation is thought to activate downstream signaling components.
In addition to its role as a substrate of phytochrome-mediated signaling, PKS1 has also been
shown to interact with other proteins involved in light signaling pathways, such as the
photoreceptors cryptochrome or phytotropin. This suggests that PKS1 may play a broader
role in regulating plant responses to light beyond its interactions with phytochromes.

11. Interaction with SPA1

The suppressor of phytochrome A (SPA1) has been shown to interact with phy-
tochromes by using the yeast two-hybrid system and by using FRET-based methods in
plant cells [83]. SPA1 is involved in the regulation of photoperiodic flowering and regulates
circadian rhythms. It is required for the suppression of photomorphogenesis in dark-grown
seedlings and for normal elongation growth of adult plants. As an integral component of
the COP1-SPA-E3 ubiquitin–protein ligase complex, it is involved in degradation of PhyA
as well as in HY5, HFR1, LAF1 and CO degradation.

12. Other Plant Proteins Involved in Phy Signal Transduction

Based on mutant results and physiological investigations of light effects in Arabidop-
sis, genes and proteins were identified that play a central role in phytochrome signal
transduction, but for which no direct interaction with phytochromes has been found. These
are, for example, HY5 (long hypocotyl 5), a transcription factor [84,85], HFR1, a bHLH
transcription factor [86], or DET1 (DEETIOLATED 1). All genes arose from mutant studies
with Arabidopsis.

13. Interaction with FHY1 and FAR1

FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and FAR-RED IMPAIRED RESPONSE
1 (FAR1) are proteins that are involved in the translocation of PhyA into the nucleus. In
dark-grown plant tissue, the phytochrome (in the Pr form) is localized in the cytoplasm,
but upon light-induced conversion into Pfr, the protein is translocated into the nucleus,
although a subfraction remains in the cytosol or bound to the plasma membrane. The inter-
action between PhyA and FHY1 or FAR1 [87,88] is dependent on Pfr. In the nucleus, the
interaction with, e.g., PIF proteins mediates transcriptional regulation, and the COP1 inter-
action mediates the degradation of phytochromes. During the transport of phytochromes,
the partner proteins cycle between the nucleus and cytoplasm (see the model in Figure 4).
During constant irradiation, phytochromes cycle between Pr and Pfr because light is ab-
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sorbed by both forms. [89]. This explains the switch from binding to non-binding. Nuclear
transport, Pr-Pfr cycling and Phy degradation can explain the shift of action spectrum
toward far-red.

14. Fungi

The first fungal phytochrome was discovered in 2004 [90]. Two proteins were shown
to physically interact with phytochrome FphA from Aspergillus (or Emericella) nidulans, VeA
and LreB [91]. It was shown that FphA, LreA, LreB and VeA form a regulatory complex
in vivo. VeA is a transcription factor with a nuclear localization sequence that controls the
transcription of hundreds of genes. LreB, which is homologous to WC2 of Neurospora crassa,
is also a transcription factor which also interacts with the WC1 homolog and blue light
receptor LreA. It was shown by bimolecular complementation that LreB interacts with the
C-terminus of FphA (histidine kinase + response regulator), whereas VeA interacts with a
part of the histidine kinase.

15. Bacteria

The first bacterial phytochromes were found in 1996 or 1997 [22,92,93], also in cyanobac-
teria. Due to the many available genome sequences, it is known that phytochromes are
broadly distributed among bacterial phyla but are not present in archaebacteria. The broad
diversity of bacterial sequences as compared to eukaryotes is also reflected in the high
diversity of bacterial phytochrome sequences. Despite this diversity, little is known about
the biological functions of bacterial phytochromes. The first clear example of a bacterial
phytochrome effect was the regulation of photosynthesis in the proteobacterium Bradyrhizo-
bium [5]. In Agrobacterium fabrum, it is known that conjugation and gene transfer to plants
is controlled by phytochromes [27,94].

Since bacterial phytochromes were discovered long after plant phytochromes, and
research on these phytochromes focuses on the photoreceptor’s biochemical studies, the
list of confirmed interaction partners is more limited.

16. Interactions of Bacterial Phytochromes with Response Regulators

The majority of bacterial phytochromes have a C-terminal response histidine kinase
region, and often a response regulator is encoded by a neighboring gene. The canonical
mechanism, as exemplified for the first discovered bacterial phytochrome Cph1 [92], is
that the phytochrome histidine kinase autophosphorylates in a Pr/Pfr-dependent manner
(Pr strong and Pfr weak, see also [95,96]) and that the phosphate is transferred to the
response regulator. This phosphotransfer mechanism follows the typical scheme for other
histidine kinases [97]. Several bacterial phytochrome systems differ from the classical
pattern. In two cases, DrBphP [98] and Agp2 [99], no autophosphorylation was found. A
phosphatase activity was described for DrBphP. In Pseudomonas syringae phytochrome, the
kinase follows a low-Pr high-Pfr pattern [98]. In many bacterial phytochromes, such as
Agp2 (and all fungal phytochromes), the response regulator is linked to the C-terminal
part of the histidine kinase region (see also Figure 2). The biochemistry of histidine kinase—
response regulator transphosphorylation—is yet only scarcely studied but both proteins do
interact during the time of transphosphorylation. A structural study by Wahlgren et al. [37]
shows the interaction of a response regulator and DrBphP at its C-terminus. We have
modeled an interaction of a bacterial phytochrome with its cognate response regulator
(see below).

17. The Transcription Factor PpsR

The transcription factor PpsR regulates the formation of the photosynthetic apparatus
in many bacteria. In Rhodobacter sphaeroides and other species, this regulation is a blue
light effect, mediated via the BLUF protein AppA, which was shown to interact with
PpsR in a light-dependent manner and in this way, reverse the repression of the inhibitory
effect of PpsR on transcription [100]. In Bradyrhizobium and Rhodopseudomonas species,
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phytochromes play a major role in light regulation of photosystem formation [5]. The phy-
tochrome reverses the repression of PpsR [101]. The interaction between the phytochrome
and PpsR has been used for optogenetics [102].

18. Interaction between Agrobacterium fabrum Phytochromes Agp1 and Agp2

The soil bacterium Agrobacterium fabrum has two phytochromes, Agp1 and Agp2. Agp2
is a bathy phytochrome, i.e., adopts the Pfr form in darkness, whereas Agp1 belongs to
the normal phytochromes with Pr ground state [25,26]. Both phytochromes have histidine
kinase modules, and for Agp1, it was shown that autophosphorylation is high in the Pr and
low in the Pfr form. A. fabrum uses two types of DNA transfer. During conjugation, plasmid
DNA is transferred from one bacterium to another bacterium. The T-DNA of the Ti plasmid
can be transferred to plant cells, thereby inducing tumor growth and opine production in
the plant. It was found that both DNA transfer processes are light-dependent and controlled
by phytochromes [27,94]. Mutant studies showed that in both cases, Agp1 and Agp2 act
together in the regulation. It seemed therefore possible that both phytochromes interact.

This interaction was indeed shown by different methods. When absorbance spectra
were measured from Agp1 and Agp2 and from a mixed sample, the spectrum of the mixed
sample differed from the sum of the spectra of single proteins. The rates of dark reversion
were affected by the presence of the respective other phytochrome. The phosphorylation of
Agp1 (in the Pr, but not in the Pfr form) was diminished by the presence of Agp2. Biliverdin
assembly of Agp1 was significantly inhibited by the presence of Apg2. Agp1 and Agp2
were labeled with fluorophore and subjected to fluorescence measurements. The results
clearly showed fluorescence resonance energy transfer [99]. All data showed that Agp1
and Agp2 do interact in solution. Ongoing measurements with fluorescence markers at
different positions of Agp1 allowed conclusions to be made about the orientation of Agp1
and Agp2 to each other.

19. Possible Interaction of Agp1 or Agp2 with TraA and VirD2

The impact of Agp1 and Agp2 on the conjugation process suggests interaction with
conjugation proteins. It is unlikely that the regulation occurs via differential transcription,
because microarray and proteome measurements showed no differences between the wild-
type and the double knockout mutant or between light and dark [27,103]. A. fabrum has
three TraA proteins that initiate conjugation. A TraA protein has several domains: a mob
domain, which cleaves the DNA and forms a covalent DNA–protein adduct, a helicase
domain, which unwinds double-stranded DNA, and a so-called BID domain [104]. TraA is
the first protein in the chain of conjugation events and it is therefore tempting to assume
that Agp1 or Agp2 directly interact with TraA. Our group is presently studying this putative
interaction in vitro. The experiments are ongoing. We modeled possible interactions by
Alphafold [15] and obtained reliable results that the TraA mob domain interacts with the
histidine kinase of Agp1 (see below).

The gene transfer from A. fabrum to plants is also regulated by light and by phy-
tochromes, as noted above. The first protein in the cascade of DNA excision and transport
is VirD2. The functions are like those of TraA discussed above. VirD2 cleaves T-DNA at the
border sequences from the Ti plasmid, forms a covalent adduct with the DNA and migrates
together with the DNA to the plant cell to be infected. The regulation of VirD2 expression
by light or by phytochromes was not found in microarray and proteome studies. It was
therefore suggested that Agp1 or Agp2 interact with VirD2 directly and thereby modulate
its activity. Like TraA, VirD2 is the first protein in the DNA transfer cascade, and it is also
the last.

Overall, while bacterial phytochromes are not as well studied as their plant counter-
parts, there is growing evidence to suggest that they play important roles in regulating
bacterial physiology and behavior in response to light. Further research will be needed
to fully understand the mechanisms underlying these responses and the signaling path-
ways involved.
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20. Modeling the Interaction

To visualize the potential interactions of interacting proteins with phytochromes, we
modeled these protein–protein interactions using the AI-based software Alphafold 2.3.1
(AF) [15]. This program predicts 3D structures of proteins even if no homologous structure
is available. Interactions between different proteins can also be analyzed. In our approaches,
the upper limit of molecular masses for the structures to be predicted was about 200 kDa.
AF generates different models and provides quality criteria for each position in the modeled
protein complex. It should be clearly emphasized here that these AF models have their
limitations and they can never be perfect (also because of the different predictions). Such
models need to be structurally and functionally tested by experimental approaches. We
had the impression that a part of the AF models cannot be used, whereas some others
can be used to generate a working hypothesis and, in this way, complement experimental
approaches and increase the efficiency.

We used PhyB as a protein–protein complex in combination with PIF3, PIF6, CRY1, or
with zeitlupe [105], and PhyA in combination with NDPK2, as well as FphA in combination
with VelA for AF structural modeling. In some cases, it was possible to model the potential
interaction, but not for, e.g., PhyB and PIF6. Due to the 200 kDa limit, it was only possible to
model phytochrome monomers in combination with other proteins, but it was not possible
to model structures with a plant phytochrome dimer. Moreover, the overall folding of PhyA
or PhyB differed from the cryo-EM structures published recently ([35] and PDB Codes:
7RZW, 8ISI, 8F5Z and 8ISJ). The cryo-EM structure shows an asymmetric and unexpected
arrangement of the phytochrome domains, the subunits being arranged in parallel in the
C-terminus and antiparallel in the N-terminus (Figure 3). The AF monomer model was not
consistent with either monomer of the cryo-EM structure. Since the four published cryo-EM
structures of full-length plant phytochromes match well with each other (RMSDs < 1.5),
the overall fold of the AF prediction is certainly wrong. Another difficulty was that the
AF models of PIF3 or PIF6 consisted mainly of loop structures with few α-helices and no
ß-sheet regions, indicating difficult predictability. Other transcription factors have a high
proportion of rigid secondary structures and only a few loop structures. The AF models for
PIF3 or PIF6 were therefore probably also not correct. For these reasons, we thought that
the AF models with the large plant Phy or the fungal Phy should not be discussed in more
detail. We therefore focus on the shorter bacterial phytochromes for which we were able to
calculate dimer models. The calculated overall fold of the bacterial phytochromes matched
the parallel arrangement of the subunits in the cryo-EM structure of the recently published
Deinococcus phytochrome [37]. Firstly, we calculated a dimer model for full-length Agp1
(Figures 3B and 5A) and the corresponding response regulator (RR). The two subunits
of the response regulator were located between the ATPase of the two Agp1 subunits,
resulting in a four-leaf clover appearance when viewed from the C-terminal end of Agp1.
The cryo-EM structure of the (engineered) full-length phytochrome of Deinococcus also
contained a (by mutagenesis attachment) response regulator arranged in a similar manner,
but the resolution was too low for a better comparison. For phosphotransfer from the Agp1
histidine kinase to the response regulator, the response regulator needs to come into the
vicinity of His 528, the substrate for the kinase. For phosphorylation, the ATPase also must
come into the vicinity of the substrate histidine. The proposed four-leaflet arrangement
could allow both the ATPase and the RR to come into alternate contact with His 528. The
AF folding model could contribute to a better understanding of the mechanism. Although
the mechanisms of histidine kinase of other systems are largely known, we will not go into
more detail here.

The AF calculations with Agp1 and VirD2 or with Agp1 and TraA (mob domain)
resulted in similar arrangements (Figure 5B,C). Both VirD2 and TraA (mob domain) were
located between the two ATPase subunits. The overlay of all three modeled interactions
is shown in Figure 5D. An interaction of Agp1 with TraA or with VirD2 has not yet been
clearly demonstrated experimentally, but the impact of Agp1 and Agp2 on both gene
transfer pathways makes it very likely that the AF models support the interaction. The fact
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that all three proteins were located at a nearly similar position of Agp1 could indicate an
interesting mechanism: VirD2, TraA and RR could compete for the same binding site on
Agp1 and thereby interfere with the phosphotransfer.
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21. Conclusions

Signal transduction is mostly mediated by protein interactions, and numerous inter-
action partners have been identified for plant phytochromes. Research on bacterial and
fungal phytochromes started later, and fewer interaction partners for phytochromes from
these groups are known so far. This overview shows that there is no universal phytochrome
interacting protein, and that the interactions fulfil different functions such as intracellular
translocation, degradation or signal transduction. The interactions in the cell are certainly
dynamic, so that interaction partners do not necessarily compete for the binding. However,
if different proteins interact at similar positions on the phytochrome molecule, the binding
competition could play a regulatory role. Knowing the nature of the interaction at the
structural level would therefore be essential to better understand the mode of action and
function. For PIF3, an interesting mass mutagenesis approach has shown that this protein
interacts with the knot region of phytochromes, which is formed by the N-terminal PAS
and GAF domains.

It is also important to understand how the interaction dependent on Pr and Pfr is
realized at the phytochrome level. Increasing structural details about phytochromes are
emerging, and for some phytochromes (fragments), conformational changes in the protein
from Pr and Pfr crystal structures are known, e.g., by time-resolved X-ray methods. In ad-
dition, cryo-EM structures have already been used to obtain some full-length phytochrome
structures, and it is likely that phytochromes in combination with an interaction partner
will be structurally analyzed primarily by cryo-EM in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom14010009/s1, Supplementary Figure S1: Confidence (pLDDT)
values of the AF models presented in Figure 5. The values are scaled from 0 to 1, and the color scale
is given below. The models are the same as in Figure 5A–C and in the same order. Almost all regions
of the proteins must be regarded as highly confident.

https://www.mdpi.com/article/10.3390/biom14010009/s1
https://www.mdpi.com/article/10.3390/biom14010009/s1
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