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Abstract— Grasping unknown objects in unstructured environ-
ments is one of the most challenging and demanding tasks for
robotic bin picking systems. Developing a holistic approach is
crucial to building such dexterous bin picking systems to meet
practical requirements on speed, cost and reliability. Proposed
datasets so far focus only on challenging sub-problems and are
therefore limited in their ability to leverage the complementary
relationship between individual tasks. In this paper, we tackle
this holistic data challenge and design MetaGraspNetV2, an all-
in-one bin picking dataset consisting of (i) a photo-realistic
dataset with over 296k images, which has been created through
physics-based metaverse synthesis; and (ii) a real-world test
dataset with 3.2k images featuring task-specific difficulty levels.
Both datasets provide full annotations for amodal panoptic
segmentation, object relationship detection, occlusion reasoning,
6-DoF pose estimation, and grasp detection for a parallel-jaw
as well as a vacuum gripper. Extensive experiments demonstrate
that our dataset outperforms state-of-the-art datasets in object
detection, instance segmentation, amodal detection, parallel-jaw
grasping, and vacuum grasping. Furthermore, leveraging the
potential of our data for building holistic perception systems,
we propose a single-shot-multi-pick (SSMP) grasping policy for
scene understanding accelerated fast picking in high clutter.
SSMP reasons about suitable manipulation orders for blindly
picking multiple items given a single image acquisition. Physical
robot experiments demonstrate that SSMP effectively speeds up
cycle times through reducing image acquisitions by more than
47% while providing better grasp performance compared to
state-of-the-art bin picking methods.
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Note to Practitioners—In robotic bin picking, most proposed
methods and datasets focus on solving only one aspect of the
grasping task, such as grasp point detection, object detection,
or relationship reasoning. They do not address practical aspects
such as the widespread use of vacuum grasp technology or the
need for short cycle times. In practice, however, efficient bin
picking solutions often rely on multiple task-specific methods.
Hence, having one dataset for a large variety of vision-related
tasks in robotic picking reduces data redundancy and enables the
development of holistic methods. While deep learning has been
proven highly effective for bin picking vision systems, it demands
large, high-quality training datasets. Collecting such datasets
in the real-world, while assuring label quality and consistency,
is prohibitively expensive and time-consuming. To overcome
these challenges, we set up a photo-realistic metaverse data
generation pipeline and create a large-scale synthetic training
dataset. Furthermore, we design a comprehensive real-world
dataset for testing. Unlike previously proposed datasets, our
datasets provide difficulty levels and annotations in simulation
and real-world for a comprehensive list of high-level tasks,
including amodal object detection, scene layout reasoning, and
grasp detection. In real-world applications, cycle time is a critical
factor affecting the productivity and profitability of a robotic
system. We tackle time-efficiency through scene understanding
and demonstrate the capability of our data regarding holistic sys-
tem development by proposing a single-shot-multi-pick (SSMP)
policy. Our SSMP algorithm, trained exclusively on our synthetic
data, distinguishes between uncovered and occluded items, and
infers specific manipulation orders to perform multiple blind
picks in a single shot. Physical robot experiments show that
SSMP was able to reduce image acquisitions by more than
47% without compromising grasp performance. This clearly
demonstrates that SSMP, together with our dataset, paves the
way for application-oriented research in time-critical bin picking.

Index Terms— Bin picking, dataset, object detection, object
relationship reasoning, panoptic amodal segmentation, parallel-
jaw grasping, pose estimation, vacuum grasping.

I. INTRODUCTION

IN WAREHOUSING and manufacturing, robotic bin pick-
ing is an essential task for order-picking or machine

feeding processes. Unstructured bin environments with highly
occluded and unknown objects pose major challenges for
such autonomous systems, increasing investment costs and
compromising performance. To overcome these challenges
and accelerate the development of reliable and fast universal
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bin picking robot systems, three vision-related key challenges
regarding robotic bin picking are specified:

A. Robust Object Detection

Finding objects of interest inside a grasp scene can be
formulated as an object detection problem. Although this task
is not an essential step for many data-driven grasp detection
methods [1], [2], [3], work such as [4] and [5] show that
an upstream object recognition can significantly improve the
grasping performance. In addition, robust object detection is
a preliminary step for high-level scene understanding related
tasks such as 6-DoF pose estimation, object relationship
detection, and manipulation order reasoning [6], [7], [8].
Robotic grasping sensors are typically color or depth cameras.
Combining both modalities is common, as color data captures
fine object details but struggles with similarly textured items
and lighting variations, while depth data excels at capturing
scale-free object geometries but is prone to noise and material
properties. The successful use of both types of modality is
a non-trivial problem and is actively studied in automation
[9]. Another challenge is the strong occlusion and stacking
of objects inside a bin, which results in shadow areas and
reduced information. Besides, thin and non-convex objects
often visually break into multiple parts and are likely to be
detected as multiple instances [10]. In order to detect unseen
objects or deformable objects, the vision systems needs to
understand objects at a basic texture and geometry level [5].

We address the challenge of reliable object detection in bin
scenes from a data perspective, providing panoptic segmenta-
tion labels as well as object detection specific difficulty scores.
Together, our dataset enables effective and customized testing
across difficulty levels and sensor modalities.

B. Reliable and Dexterous Grasping Strategies

Various different types of grippers exist to handle a variety
of objects, differing in shape, weight, or material. Among
the most common in industry are vacuum suction cups and
parallel-jaw grippers. Vacuum grippers are widely used owing
to their ease of operation and grasp point detection, as well
as low cost and compact size at the robot’s end effector.
Therefore, they are well-suited for bin picking tasks and are
preferred in real-world applications. However, when dealing
with a high-diverse article spectrum, vacuum grippers may
not be able to handle all items due to material or geometric
constraints. In such cases, swapping the end effector for
an additional parallel gripper can be advantageous, since it
has lower demands on the object’s material and geomet-
ric properties [3], [11]. Regardless of the employed gripper
technology, grasping occluded items may result in damage,
unintentional double picks or failed attempts due to high
torques in the gripper-object contact. Finding reliable grasps
for a given grasping scene is not limited to reasoning about
the gripper-object interaction in isolation. It also requires to
understand the underlying relationship between neighboring
objects.

In order to assure reliable grasping strategies, we con-
tribute high-quality grasp annotations, 6-DoF pose annotations,

and amodal segmentation masks to provide the necessary
information and enrich the dataset for skillful and dexterous
manipulation.

C. Fast Cycle Times

When installing picking cells, specific time requirements
are defined beforehand. The system’s cycle time is a critical
factor to meet the return of investment or feeding rates of
downstream tasks. One prominent approach to speed up the
system is to reduce the idle time of the robot. In practice,
this task is often fulfilled by a system integrator optimizing
the physical layout and adapting the program sequence with
use-case specific solutions. An advanced vision system can
also play a significant role in reducing cycle times by, for
instance, reasoning about sets of objects that can be picked
within a single image acquisition. In order to successively
pick objects blindly, the picked objects must not change
the grasp scene while picking. While commercial systems
can filter detected objects by their distance or assume a
semi-structured scene, one-shot multi-item picking in clutter
has not received much attention in research yet, despite its
high economic potential. Especially in cluttered scenes, more
high-level information about the object layout is required to
reason about suitable blind picking sequences.

Our dataset with its comprehensive label set, including
object relationship graphs and occlusion information, enhances
the development of such fast picking systems and enables
application in unstructured scenes.

Various datasets have been proposed focusing on individual
aspects of bin picking related to the aforementioned chal-
lenges, e.g. WISDOM [5], [10] for object segmentation in
high clutter, SynPick [12] for pose estimation, REGRAD [13]
for object relationship reasoning, UOAIS [14] for amodal
segmentation, SuctionNet-1Billion [2] for vacuum grasping,
and DexNet 4.0 [3] for ambidextrous grasping. However,
in contrast to our proposed dataset, these datasets are capable
of addressing only a sub-range of the challenges mentioned
above. While holistic system design is critical for real-world
robotics in order to meet requirements regarding speed and
reliability, individual datasets addressing sub-problems only
advance the development of such systems to a limited extend.
Accordingly, a more general encompassing dataset approach
is needed to overcome the complexities and nuances of
automation-specific challenges and to create universal bin
picking solutions.

With the MetaGraspNetV2 dataset, a novel all-in-one
dataset is designed that aims to unify the most critical aspects
of robot vision and bin picking (cf. Fig. 1). Collecting such
comprehensive label sets from experiments [15], [16] or man-
ually [11] is too expensive and time prohibitive. Motivated
by work demonstrating the generalization capabilities towards
real-world data [3], [13], [14], our previous work [17] pro-
posed a data creation pipeline based on metaverse synthesis
and contributed two datasets: a large-scale synthetic training
dataset and smaller, but comprehensive real-world test dataset.

In this paper, we build on our previously proposed synthetic
data generating pipeline (cf. Sec. III) and increase the sample
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Fig. 1. MetaGraspNetV2 provides a large-scale synthetic and real-world
dataset with comprehensive label sets and difficulty levels allowing for holistic
system development. Annotations for both datasets include panoptic amodal
segmentation masks, object relationship labels, 6-DoF object poses, and
ambidextrous grasp labels.

size of of our synthetic dataset (MGN-Sim) and real-world
dataset (MGN-Real) by 40%, respectively. To assure per-
formance for real-world problems, a comprehensive and
fully-annotated test dataset (MGN-Real) is required. We close
the annotation gab between our simulation and real-world data
by providing labels for panoptic amodal segmentation and
6-DoF object poses in MGN-Real (cf. Sec. V-A). Task-specific
difficulty levels for object detection, amodal detection, and
vacuum grasping are designed and allow for efficient perfor-
mance monitoring (cf. Sec. V-B). Comprehensive label sets
enable the development of holistic vision systems. We show-
case the capability of our data for time-critical bin picking by
developing a novel method for single-shot-multi-pick (SSMP)
grasping in Sec. VI. SSMP fuses grasp detection with scene
occlusion reasoning, and is able to perform multiple blind
picks given a single image acquisition. Physical robot experi-
ments in Section VII-A demonstrate its superiority for vacuum
and parallel-jaw grasping in terms of speed and reliability
compared to state-of-the-art methods for unseen environments
and high clutter. Furthermore, extensive object detection exper-
iments focusing on generalizability show that models trained
on our dataset outperform a state-of-the-art dataset for object
detection, instance segmentation, and amodal segmentation
(cf. Sec. VII-C).

Datasets and code are public available at https://
github.com/maximiliangilles/MetaGraspNet.

II. RELATED WORK

Datasets for robotic grasping are versatile and differ in
many aspects such as scene composition, item diversity, sen-
sor modality, gripper types, and labelled properties. Related
work can be categorized based on its sensor modalities
in depth-only and photo-realistic RGB-Depth (RGBD) data.
While depth-only datasets [1], [3], [25], [26], [27] are suffi-
cient for training grasp detection networks such as [3], [4],
[25], [28], and [29], multi-modal RGBD datasets (cf. Table I)
are needed for recent sensor fusion approaches [2], [9], [30],
[31], [32], or object relationship detection methods [14] com-
bining color and depth information. In the following, we will
discuss datasets related to robotic grasping regarding their
respective contributions and annotations.

A. Parallel-Jaw Grasping

A top-down grasp with 4-DoF can be represented in image
space by an oriented bounding box [18]. Shifting scene and
grasp label generation into simulation, [19] can increase the
dataset size by a factor up to 50 with regard to dataset size
in [18]. As the number of objects and the complexity of the
items increases, the more obvious the advantage of 6-DoF
grasps over top-down grasps becomes. Annotating grasps in
SE(3) with 6-DoF can be tedious. Therefore, often automatic
sampling schemes are used, either based on analytical models
such as antipodal samplers [13], [21] or simulation envi-
ronments [3], [26]. For an in-depth overview over sampling
methods, we refer to [33]. To provide a broad coverage
of grasps even for cluttered scenes, our MetaGraspNetV2
dataset contributes 6-DoF grasp annotations based on antipodal
sampling and simulation.

B. Vacuum Grasping

In [11] and [34] vacuum contact points are manually
labelled based on human experience. The annotators were
experienced users and instructed to annotate pixel regions in
bin scenes where a vacuum seal is applicable or not. The
manual annotation of vacuum grasps is straightforward and
easy to start. However, it is limited in scale and once annotated,
adapting an existing dataset to different gripper dimensions
is difficult. Besides, human introduced label ambiguities can
potentially harm the training process and the performance of
the system. Inspired by prior work regarding grasping with
two-finger or multi-finger hands, research has been shifted
toward focusing on sampling reliable vacuum grasp labels
proposing physically-inspired contact force models [1], [2],
[25], [35]. Finding seal-tight contact points based on the
local suction cup-object interaction results in reliable vacuum
grasps and comes with a high potential for energy and cost
savings [36], as well as label adaptability [25]. Dex-Net 3.0
[1] models the suction cup as a spring-mass system and
predicts well-suited vacuum gripper contact points based on
the object’s mesh surface. The proposed model is adapted from
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TABLE I
OVERVIEW OVER PUBLIC RGBD GRASP DATASETS

prior work on deformable textile simulation [37] and simplifies
the problem by only considering the quasi-static projection
of the suction cup onto the object’s mesh. Depending on
the geometric deformation of the projected springs, a seal is
assumed to be applicable or not. SuctionNet-1Billion [2] builds
upon [1] simplifying the spring structure and contributes a
dataset with real RGBD data and multiple objects per scene.
However, building up on prior work [21], their dataset requires
manually annotating the objects poses’ in the scene which
introduces label inaccuracies, limits the items’ arrangement,
and the overall scene number. Depending on the number of
objects and the sample density, simulating the vacuum seal
for a single contact point can lead to large computational
costs. In [38] and [39], the seal problem is simplified by using
geometrically inspired grasp heuristics [40] based on object
planarity. By using strong parallelization, we can overcome
the computational burden of modelling the vacuum seal with
spring-mass models and thus provide realistic and dense
vacuum grasp annotations for our synthetic data.

C. Object Detection and Relationship Reasoning

High occlusion and tight packaging present unique chal-
lenges to the vision system that are often encountered in
automation. With WISDOM [5] a depth-only dataset for
instance segmentation of everyday objects in bin scenes is
proposed. [10] focuses on highly occluded, thin industrial
parts and proposes a method and dataset for robust instance
segmentation. Simply inferring grasps without considering the
underlying object arrangement can result in unsuccessful grasp
attempts or even damaged objects. Recent work addresses this
problem by attempting to learn the manipulation order for
a picking system [27], [41]. However, currently only a few
datasets are available that provide the necessary scene layout
information [6], [13] (cf. Table I). VMRD [6] contributes
a dataset of over 5k manually annotated scenes with 2D
bounding box annotations and relationship labels. The follow-
up work, REGRAD [13] uses simulation to increase size
and provides 6-DoF parallel-jaw grasps and manipulation
order labels. UOAIS [14] reasons about manipulation order
predicting visible and invisible masks of items and provides a
synthetic dataset UOAIS-SIM for amodal segmentation. To the

best of our knowledge, MetaGraspNetV2 is the first dataset
providing amodal segmentation masks and object relationship
labels in simulation and real-world for highly occluded bin
scenes.

D. Pose Estimation and Keypoint Detection

Recent research has increasingly focused on model-free
end-to-end grasp detection methods, which do not rely on a
3D model of the object to be grasped. However, for tasks such
as packing, machine feeding, or assembling, accurate object
pose estimation is still crucial for precise localization and
placement of picked items or for downstream manipulation
tasks [27], [42], [43]. SynPick [12] contributes a synthetic
dataset for 6-DoF pose estimation in dense bin clutter simu-
lating object-gripper interaction. [42] focuses on texture-less,
metallic industry objects and sim-to-real transfer. However,
both datasets are limited in terms of class diversity and scale
or do not provide real-world test data. Regarding pure 6-
DoF pose estimation, HOPE [44] and HomebrewDB [45]
dataset provide household scenes containing every-day objects
arranged in clutter. In MetaGraspNetV2, we provide 6-DoF
object pose labels in our simulation and real-world dataset
featuring a large-number of different classes with diverse
object arrangement and occlusion properties located in an
industry typical bin.

III. SYNTHETIC DATA

Our proposed method for synthetic data generation, initially
introduced in [17], can be divided into three steps (cf. Fig. 2):
A) putting together a diverse object set (cf. Sec. III-A),
B) sampling parallel-jaw and vacuum grasp labels for each
object individually (cf. Sec. III-B), and C) simulating the
physical interaction of objects falling into the grasp scene
together with rich annotations for every scene viewpoint
(cf. Sec. III-C).

A. Object Dataset

To address challenges posed by unseen objects at test time,
we aim for a diverse set of objects, emphasizing versatility in
object shape and domain affiliation. The shape of an object
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Fig. 2. Synthetic data generation pipeline overview.

Fig. 3. The object set is evenly balanced between convex (sphere-, cylinder
and cuboid-like) and non-convex shaped objects and across domains.

significantly influences its grasping strategy and grasp point
availability [46]. Convex shaped objects, such as spheres
or cylinders, are easier to grasp with vacuum grippers than
with parallel-jaw grippers. While complex, non-convex shaped
objects can challenge collision-free grasp detection [47].
In total, our object set consists of 82 high-quality, real-world
objects, evenly distributed between convex and non-convex
shapes and across domains (cf. Fig. 3). For the composition,
we selected 33 meshes from YCB object set [22], 4 from [24],
and scanned 36 custom objects using a commercial 3D scan-
ner. For 9 objects scanning was not possible, we remodeled
them in CAD software.

B. Grasps Sampling Strategy

In logistics and automation domain, picking robots are usu-
ally equipped with vacuum or parallel grippers. In order to deal
with a wide range of articles, we provide ambidextrous grasp
annotations to train robots with both gripper technologies.

1) Parallel-Jaw Grasps: Parallel-jaw grasp labels Gpj are
generated combining antipodal sampling strategy and physics
simulation [26]. For each object, up to j = 1 . . . 5k antipodal
grasps are generated by sampling finger-object contact points
cpj

i evenly distributed over the object’s surface. For each
contact point cpj

i , k=1. . .N , N=5 antipodal [48] contact pairs
{c̃l , c̃r }i,k are sampled with deviation in approach direction
and translation. The introduced robust antipodal score santip,i ∈

[0, 1] for a contact point cpj
i is defined as the number of

successful antipodal samples divided by the number of total
samples N . To obtain grasp poses in SE(3), for each success-
ful antipodal contact pair, up to l=1. . .L , L=50 gripper poses
are sampled by rotating it around the fingers’ closing direction.
A grasp Gpj

j = Gpj
i,k,l is considered successful if the gripper

model does not collide with the object and it is assigned

spj
anal, j = santip,i . After identifying antipodal contact pairs, each

grasp Gpj
j is executed multiple times in a physics simulation

in IsaacGym [49] using the Franka Hand as gripper reference
model. The idea of robustness is employed in simulation
by simulating Gpj

j with varying mass density factors and
friction coefficients. Similar to ACRONYM [26], an upward
and shaking gripper movement is performed and a grasp is
considered to be successful if the object remains in contact
after execution. The robust simulation score spj

sim, j is defined
as the fraction of successful simulated grasps divided by the
number of attempts.

2) Vacuum Grasps: An airtight-seal between vacuum cup
and object is a necessary condition for vacuum grippers.
Though it can be weakened using higher air flow rates, a good
seal is important for energy efficiency and grasp stability
[36]. To improve the quality of vacuum grasp annotations
Gsc in simulation, we align with prior work [1], [2], [25]
and propose a model able to predict the vacuum sealability
of a contact point given the object’s 3D mesh. Up to 5k
vacuum gripper contact points csc

i are sampled on the object’s
surface and checked for seal. For each contact point csc

i ,
k=1. . .N , N =10 vacuum grasp attempts csc

i,k are considered
with varying approach direction and translation. Similar to
the parallel-jaw sampling strategy described above, the robust
vacuum grasp sealability score ssc

i ∈ [0, 1] is defined as the
quotient of successful seals over the number of total samples
N . If ssc

i >0 and the vacuum gripper does not collide with the
object in simulation, Gsc

j =Gsc
i is added to the set of successful

grasps. Within our vacuum contact model, the projection idea
in [1] is adapted due to its universality and efficiency. The
suction cup is abstracted as a spring-mass system and its
mass points are projected onto the object’s surface along
the gripper’s approaching direction. Based on the projection
and the displacement of the springs, forces within the spring
system are computed. It is concluded that there is a leak
between object and vacuum cup if one of the mass points
is not in contact with the object’s surface. A more detailed
derivation of our model and experimental evaluation can be
found in our previous work [17].

C. Scene Generation and Annotations

Instead of manual or semi-automatic methods for generat-
ing and labeling grasp scenes [2], [6], [11], [21], we have
drawn inspiration from the metaverse trend and create data in
NVIDIA Isaac Sim [50]. In a simulated bin picking scenario,
objects are randomly sampled and dropped into the bin.
The realistic physics-based interaction between the objects
k, k=1. . .N and the bin assures that scene layouts are diverse
and close to reality. Each scene is captured with alternating
lightning conditions from 37 different camera viewpoints
arranged in a hemisphere and facing the center of the bin.
Path-tracing is used as a rendering setting to capture realistic
light and shadow configurations, as well as realistic rendering
of materials such as glass, plastic, or metal.

For each viewpoint, all individual objects’ parallel Gpj
k, j and

vacuum suction grasps Gsc
k, j (cf. Sec. III-B) are projected into

the bin scene and checked for visibility and collision with other
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Fig. 4. Our synthetic dataset provides a comprehensive list of ambidextrous grasping (a)-(b) and scene annotations (d)-(e).

objects or with the tote when approaching and performing the
grasp (cf. Fig. 4(a)-(b)). A good grasp not only depends on
the local object’s properties, but is also highly affected by
the wrenches applied to the gripper contact. Considering the
object’s pose and center of mass, the wrench for each vacuum
grasp is computed around all three contact axes and scored
similar to [2] ssc

sim, j∈[0, 1]. Though being implicitly considered
in spj

sim, an explicit soft-finger wrench score [48] spj
soft, j ∈ [0, 1]

around the gripper’s closing direction is also specified for each
parallel jaw grasp Gpj

j .
Amodal panoptic segmentation masks, instance occlusion

rates, and center of mass distribution heat maps are pro-
vided for each viewpoint (cf. Fig. 4(c)-(e)). The amodal
segmentation mask is defined as a tuple of visible mask
and occluded mask for each object instance k assigned to
a semantic class in the scene {Mvis,Moccl}k . The occlusion
score soccl,k ∈ [0, 1) is defined as the quotient of occluded
Moccl,k and total object surface area Mtotal,k =Moccl,k∪Mvis,k .
The computation is based on visible object masks by hiding
and showing objects in the scene. For the center of mass
distribution heatmap, l=1. . .1000 surface points cl are sam-
pled for each object and checked for visibility. Mass density

is assumed to be the same for all objects. The distance
score is defined as sd

l,k = {(dmax−dl)/(dmax−dmin)}k , where
dl = ∥cl−ccom

k ∥2.
In addition to amodal segmentation masks and occlusion

rates, an object relationship graph is proposed to character-
ize the layout of objects in the scene. For an object pair
(Ok, O j ), k ̸= j three types of relationships are defined: If
Ok is occluding O j , the relationship (Ok, O j ) is defined as
positive and both edges are connected with a directed vertex
(k, j), e.g. (banana, lemon) in Fig. 4(e). If Ok is occluding
O j and O j is occluding Ok , the connection between both
objects is defined as interlocked and both edges are connected
with a bi-directional vertex ((k, j), ( j, k)) (cf. object pair
(banana, wirecutter) in Fig. 4(e)). If O j and O j have no
direct relationship, the relationship is defined as neutral and
no connection between both vertices is added. Starting from
the presented relationship graph in Fig. 4(e), one can make
the following statements regarding manipulation order: First,
assuming that fully visible items should be picked first, we can
find unoccluded objects of interest by scanning the graph
for object vertices without parents nodes. Secondly, given an
object of interest, it is possible to reason about the necessary
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Fig. 5. (a) Camera poses are randomly sampled. (b) Data is captured
from four different camera viewpoints: top-down and three randomly sampled
poses.

manipulation order by traversing the graph coming from the
target object vertex.

IV. REAL-WORLD DATA

In addition to our synthetic data (cf. Sec. III), we contribute
comprehensive and fully-annotated real-world data.

A. Data Recording

Multi-modal real-world data is captured with a high per-
formance RGBD camera system (Zivid Two) mounted at
the robot’s end effector from four different viewpoints: one
top-down view and three randomly sampled poses in the bin
hemisphere. The camera distance to the bin ranges from 0.6 m
to 0.68 m, the pitch and yaw angle between [0, 0.08π ] and
[−0.06π,+0.06π], respectively (cf. Fig. 5). The parameters
have been chosen to be kinematically feasible for the robot
arm and to ensure that the bin scene is in the camera’s field
of view. Extrinsic (and intrinsic) camera calibration parameters
are provided for all data samples.

B. Annotation

Due to the complexity of our label types and the domain
knowledge required to annotate bin scenes, we utilized a pool
of in-house experts to perform all annotations. Annotators
were trained and familiarized with the objects and the physical
setup. This was particularly crucial for tasks like annotating
grasp labels and creating object layout graphs, as these tasks
are challenging to automate and heavily rely on the human
expertise. For labeling segmentation masks, a semi-supervised
approach [51] based on click-based interactive segmentation
was used, allowing for efficient annotation of visible panoptic
object masks. The occluded parts of objects (if any) are
manually annotated through human expertise and assigned
to the corresponding visible object masks based on their
unique instance IDs. Together, they form panoptic amodal
masks (cf. Fig. 6(e)). To accurately label the 6-DoF object
poses, an annotation tool has been developed that combines

the panoptic segmentation mask with the Open3D point-to-
point ICP algorithm [52] to provide an initial estimate of
an object’s pose. The estimated pose is then validated and
fine-tuned by a human annotator through a two-step process.
First, the annotator manually adjusts the 3D model to roughly
align with the object point cloud. Then, either the Open3D
point-to-point or the point-to-plane ICP algorithm [52] can
be used to further refine the pose. This approach not only
ensures accurate pose estimation but also increases efficiency
by leveraging automation and human expertise. However, due
to occlusion, depth sensing, and object symmetry, labeling
some scenes and objects can be challenging. To provide
transparency in our dataset, a list of objects and scenes is
provided for which labels may be less confident. Curating a
comprehensive real-world dataset is time-intensive, especially
if the considered label types require substantial human super-
vision, as in our case. The total time spent to annotate our
real-world data is estimated to be 150 hours, not including the
time for data collection, annotation tool development, and data
processing.

V. SIM/ REAL DATASETS DETAILS

MetaGraspNetV2 consists of two datasets: a large-scale
synthetic training dataset MGN-Sim and a real-world eval-
uation and test dataset MGN-Real. MGN-Sim has 296k
samples distributed over 8k scenes and 37 viewpoints, while
MGN-Real contains 3.2k samples distributed over 800 scenes
and 4 viewpoints.

A. Label Overview and Dataset Statistics

For both datasets a comprehensive collection of labels types
is provided. In MetaGraspNetV2, we are able to provide the
same extensive annotation types for MGN-Real as for MGN-
Sim (see Fig. 6 and Table II). For MGN-Real, visible semantic
and instance (panoptic) masks are available for all scenes
and all viewpoints. Amodal panoptic segmentation masks,
object relationship graphs, vacuum grasp regions, as well as
parallel-jaw grasps are annotated for the first 500 scenes and
top-down viewpoint (MGN-Real500). For MGN-Sim, all label
types are available for all viewpoints. For an overview over
label types and quantities for both synthetic and real dataset
see Table II. Fig. 7 illustrates our dataset statistics regarding
number of objects per scene and object size with a comparison
to the WISDOM dataset [5]. In particular Fig. 7(b) shows that
our designed MGN-Sim and MGN-Real datasets offer better
coverage of relative object sizes compared to [5]. Note that
the total number of instances in the WISDOM-REAL dataset
is significantly lower (3849) than in MGN-Real (12122).

B. Task-Specific Difficulty Levels

Our dataset is designed to provide tailored configuration
for different use cases and benchmark testing. We developed
multiple levels of task-specific difficulties to facilitate research
for vision-driven bin picking and allowing for customized per-
formance monitoring of object and grasp detection methods.
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TABLE II
LABEL COVERAGE IN METAGRASPNETV2

1) Grasp Point Detection: Challenging objects for robotic
grasping are often categorized based on the physical properties
affecting sensing and grasping [46], [53]. The most represented
object categories are transparent (e.g. glass), highly reflective
(e.g. metal sheets), and deformable objects (e.g. fabrics). When
using vacuum technology, air-permeability and object surface
become important factors as well. For MGN-Real, all object
masks Oi , i = 1. . .N are assigned ordinal scaled values
0-low, 1-medium, 2-high regarding the following properties:
air-permeability Di,air, object dimension w.r.t. gripper dimen-
sion Di,grip, shape Di,shape, specularity Di,spec, texturedness
Di,text, occlusion Di,occl and transparency Di,trans. While most
attributes require only one label per object class, occlusion
must be evaluated once per scene. The overall scene vacuum
grasp difficulty score SG is defined as the averaged sum over
all property difficulties Dp and object masks (cf. Fig. 8(b)):

SG =
∑

p∈Props

λp ·
1
N

N∑
i=1

Di,p. (1)

The weights λp control the impact of properties p based on the
underlying use-case. For simplicity, all weights are assigned
the same value λp=1. 1D k-means clustering [54] is used to
separate SG into easy, medium and hard difficulty levels.

2) Object Detection and Semantic Segmentation: Scenes
have a varying number of objects, which can add to the overall
complexity of the scene. To capture the difficulty of the scene
while also considering the difficulty of each individual object,
we adopted a two-step approach. First, a per-object difficulty
score is calculated, and then these scores are aggregated to
obtain a scene difficulty score (cf. Fig. 8).

One preeminent challenge for object detection and seg-
mentation is the heavy occlusion caused by the complex
stacking relationship between objects, often confusing these
systems to make false positive or false negative predictions.
To better understand, we classify the scenarios leading to a
false detection for an object O as (cf. Fig. 9):
• False Positive: Object O has multiple components due to

occlusion.
• False Positive: Object O has holes.
• False Positive: The bounding box or amodal mask for

object O may enclose components from other objects,
which can lead to false detections in object detection and
false segmentation in segmentation tasks.

Fig. 6. Our real-world data provides annotations for top-down parallel-jaw
and vacuum grasps, semantic instance segmentation masks, object poses,
amodal panoptic segmentation masks, occlusion rates, and object relationship
graphs.

• False Negative: The false detection is of the same class
as O .

• False Negative: The false detection’s mask is completely
enclosed by object O’s mask.

Still, not all false detections are equal. Objects with a
larger mask within the bounding box are considered to be
more important than those with a smaller mask. To address
this issue, a weight term is proposed for each potential false
detection. Let MO be the object’s mask and MF j be the mask
of the j th potentially false detected object (cf. Fig. 8(a)).
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Fig. 7. MetaGraspNetV2 dataset characteristics with comparisons to WIS-
DOM dataset [5]. As both datasets are designed for bin picking, many scenes
contain multiple instances (a) with small sizes compared to image size (b).

Fig. 8. Task-specific difficulty scores enable targeted performance evaluation.
Scene-wise difficulty scores for object detection are calculated by adding
object-wise difficulties for bounding box and amodal detection, as illustrated
in (a) and (b) for object instances 1, 8 and 9. Scene-wise vacuum grasp
difficulty levels are obtained by adding up property difficulties, as illustrated
for Doccl and Dshape in (b). For visualization purposes, scaling alternates.

An enclosure mask EO is defined in a task-specific manner,
depending on the underlying task. For visible object detection,
the enclosure mask EO is defined as the bounding box of O’s
visible mask. For amodal object detection, the enclosure mask
EO is specified as the bounding box of O’s amodal mask. The
mask PF j = EO ∩ MF j for the potential false detection object
F j is the intersection of the enclosure mask EO and F j ’s mask
MF j (cf. Fig. 8(a)). The potential false detection is weighted by
the ratio RF j =

|PF j |

|MO|
between the object mask size and the false

detection mask size, where function |.| computes the number

Fig. 9. Five false detection scenarios for an object O: (a) object F cross-cuts
object O into two components, (b) object O has a hole, (c) the bounding box
of object O contains components from objects F1 and F2, (d) object F has the
same class as object O and significant overlap, and (e) object F is completely
enclosed by object O .

of pixels in the mask. However, this simple ratio will lead to
an unbounded value for the false detection weight when the
object’s mask MO is small and the false detection mask PF j is
large. We specify that the maximum weight of a false detection
can only be 1, even though RF j might be larger. The difficulty
score associated with j th potential false detection is defined
as Sc j = clip(RF j ), where clip(.) is a function that clips the
value to [0, 1]. When there are k potential false detections, the
proposed object-wise difficulty score SO is composed as
the sum over all the weighted potential false detections:

SO =

k∑
j=1

Sc j =

k∑
j=1

clip(
|EO ∩ MF j |

|MO|
) (2)

Note that this design may cause some of the false detections to
be counted multiple times. We reason that each false detection
has a different reference object O making them all unique.

Scenes typically feature varying numbers of objects with
different sizes. In order to aggregate object difficulty scores
into a scene difficulty score, two critical questions have to
be considered. The first question is whether size needs to be
included to weigh the per-object difficulty score. To address
this, we examine typical object detection networksMask
R-CNN [55] and YOLO [56]. Both networks are capable of
performing scale-invariant object detection. Therefore, size is
omitted as a factor in the difficulty score. The second question
is to find an appropriate method for aggregating object-level
difficulty scores into a scene difficulty score. While using the
mean value is one possible solution, it may not be optimal as
some bins are more filled than others and the items’ spatial
distribution within the bin can also vary. We motivate that an
increase in the number of objects within the bin can result
in a higher incidence of false detections. In a scene with
N items, to aggregate N item-level difficulties SOi into a
scene-level difficulty score SS, we employ a straightforward
summation approach: SS =

∑N
i=1 SOi . To make the difficulty

levels more user-friendly, we cluster scene difficulties into four
discrete levels: amodal-basic, amodal-easy, amodal-medium,
and amodal-hard. The basic level comprises objects spread out
in the bin and without any occlusion. The remaining scenes
in the dataset are then classified into easy, medium, and hard
categories using 1D k-means clustering [54] based on their
difficulty scores.

C. Novel Objects List

Having accurate 3D scans for all objects is unrealistic for
real-world applications, e.g. product range or packaging are
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TABLE III
NOVEL OBJECTS AND PROPERTIES

likely to change. Therefore, it is crucial to test performance on
novel objects and scenes to ensure functionality at application
time. A novel object test set MGN-Novel is constructed based
on the following properties (cf. Table III): convex, non-convex,
transparency, varying shape depending on orientation, and
color. Non-convex objects are harder to detect and objects
with varying shape can be hard to detect in their entirety.
Transparency and color pose special challenges to the sensor
system and can results in false or noisy measurements.

VI. OCCLUSION-AWARE FAST PICKING

MetaGraspNetV2’s comprehensive label set allows the
development of holistic vision systems. Understanding the
occlusion properties of objects in the grasp scene can optimize
robot capacity by allowing to pick multiple objects in a single
image acquisition and processing step, effectively tackling
the challenge of fast-cycle times for robotic picking systems
(cf. Sec. I). Occlusion-aware fast picking comes without any
additional costs and can be applied together with conventional
approaches including physical cell layout optimization, trajec-
tory planning, optimization of sequence control or algorithms.

A picking robot’s vision sensor can be in-hand or externally
mounted above the bin. In-hand camera systems allow for
more flexibility regarding viewpoints and cell design, while
external camera mounts reduce end effector loads and dimen-
sions. For both designs, in order to acquire a new image, the
robot has to stop working, either by moving to the desired
camera viewpoint pose (in-hand mount) or by moving out
of the scene (external mount). Considering that a new image
is normally captured and processed for each grasp (single-
shot-single-pick), this results in large idle times when multiple
objects have to be picked. To address this issue, we propose
a single-shot-multi-pick (SSMP) method (cf. Fig. 10) for
picking multiple items based on a single camera shot. SSMP
consists of three modules: A) detecting grasps in a given
scene (cf. Sec. VI-A), B) localizing objects in the scene and
reason about their occlusion properties (cf. Sec. VI-B), and
C) combining both results for object detection and grasp pre-
diction to deduce suitable multi-pick manipulation sequences
(cf. Sec. VI-C). All modules can be trained exclusively on
MGN-Sim, no external data sources are needed.

A. Grasp Detection

For a given depth image I of a bin scene, multiple grasp
candidates Gk are predicted by a grasp detection network

Fig. 10. Block diagram of single-shot-multi-pick (SSMP) method. Grasps
Gk (here illustrated for vacuum grasping) and object detection masks together
with occlusion properties Ol,O are connected in the SSMP-policy to reason
about suitable multi-pick manipulation sequences Q.

f grasp
= { f sc, f pj

}. A grasp candidate Gk is represented by its
center location (x, y)k in 2D pixel space and a grasp quality
score sk , as illustrated in Fig. 10 and explained in more detail
for vacuum and parallel-jaw grasping in this section:

Gk =
{
(x, y), s

}
k . (3)

1) Vacuum Grasp Detection (MGN-SG): In line with recent
work [2], [38], we interpret vacuum grasp detection as
a pixel-wise graspability learning problem and propose a
vacuum grasp detection method MGN-SG. Given a depth
image I , a vacuum grasp heatmap V is predicted by a
deep vacuum grasp segmentation network f sc based on
DeepLabv3 [57] architecture. Contrary to [2] and [38], inter-
preting vacuum grasp prediction as a pixel-wise regression
task, we define it as a pixel-wise classification task over
C = 25 bins Ci=i/(C−1), i=0 . . . C−1 [58], representing
grasp score values in the range of [0, 1] with a resolution
of 0.04. Cross-entropy loss L is used to train the network’s
weights θ sc:

L(y, θ, I ) =
−1
H W

H,W∑
x,y=0

C−1∑
c=0

sgt
x,y,c · log( f sc

x,y,c(I, θ sc)), (4)

where H, W is the height and the width of the image and
sgt represents ground truth. At prediction time, the pixel-wise
vacuum grasp heatmap V is obtained by: V =softmax( f sc(I )).

In order to find reliable vacuum grasps, it is desirable to
select grasp points located at the center of vacuum grasp
areas, far away from object edges or boundaries. Related
work, such as [2] merges object center and vacuum grasp
prediction. However, we found that, especially for complex,
non-convex items or cluttered scenes, a simple convolution
operation of both heatmaps often harms the quality of pre-
dicted grasps and frequently results in failed grasp attempts.
In our work, we focus on detecting reliable vacuum seal.
We propose a three-step post-processing approach that rewards
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grasp points in V when they are located in the center of
predicted vacuum grasp areas. In the first step, based on
a threshold λsc

=0.7, V is segmented into j high-scoring
vacuum regions V j |V (x, y) j >λsc applying regionsprops
function in scikit-image library [59]. In the next step, each
pixel (x, y) in V is assigned a distance value greater or equal
ϵ with regard to the distance to its region’s boundary ∂V j . The
resulting distance heatmap D follows to:

D(x, y) j =

{
max(d((x, y), ∂V j ), ϵ) if (x, y) ∈ V j

ϵ if (x, y) /∈ V j .
(5)

The distance function d(.) is implemented as medial_axis
method in scikit-image [59]. The constant ϵ ≪ 1 is added
in case no region V j is found. In the last step, the two
resulting heatmaps V and D are combined via 3D convolution
into one final prediction heatmap H = Conv3D(2×2)(V, D)

(cf. Fig. 10). Following the grid-sample approach from [2],
k=1 . . .K , K = 512 grasps Gk = {(x, y), s}k are sampled per
scene by rasterizing the prediction heatmap H into 10×10 pixel
large sub-grids H̃ and searching for their local maxima:

(x, y)k = arg max
x̃,ỹ

(H̃). (6)

The local maxima, as illustrated in Fig. 10 with colored dots,
correspond to the predicted grasp quality scores sk from (3).

2) Parallel-Jaw Grasp Detection (MGN-PJ): As proposed
in [18] and widely applied, e.g. in [11], [29], and [60],
we interpret parallel-jaw grasp detection as oriented bound-
ing box (grasp rectangle) detection problem and propose a
straightforward parallel-jaw grasp detection method MGN-PJ
based on Oriented R-CNN architecture [61]. To cover the
additional three degrees of freedom for describing top-down
parallel-jaw grasp configurations [18], we extend our previ-
ous general grasp representation in (3) with an angle θ ∈

(−π/2, π/2] describing the gripper orientation relative to
the vertical camera axis, a gripper opening distance d , and
a finger width w. Our grasp prediction model f pj predicts
k = 1 . . .K , K = 1024 2D grasps candidates Gk together
with their associated grasp quality score sk based on a depth
image I .

B. Occlusion-Aware Instance Segmentation

In VMRD [6], layout detection is based on two consecutive
stages: object detection and object pair relationship reasoning
due to shared feature maps. We simplify the problem and focus
on distinguishing between first-layer and second-layer objects,
rather than predicting the relationship between all objects.
First-layer objects are those that can be grasped without
changing the pose of any other object in the scene, while the
remaining objects are referred to as second-layer objects. Non-
occluded objects are first-layer objects, occluded objects are
associated to be second-layer objects. However, the appearance
of objects with low occlusion values can be very different
from heavily occluded objects. For example, an object can be
occluded by an edge of another object, or simple touching, and
still represents a second-layer object (cf. object pair (8, 4) in
Fig. 10). To account for these characteristics, we introduce

Fig. 11. Example for single-shot-multi-pick (SSMP) policy. 1st Shot: For the
proposed single-shot-multi-pick (SSMP) policy, grasps and object instances
are linked with each other based on their coordinates. Gray boxes represent
connected grasp instances, encapsulating grasp score, pixel coordinates, object
id, and occlusion property. For visualization purposes, pixel coordinates are
simplified to grid coordinates from Fig. 10. 1st Pick: Grasps instances are
ordered in a manipulation sequence queue Q based on a rule set that considers
occlusion properties and grasp scores. The robot executes the first entry in
Q1 and grasps item 4. 2nd Pick: Q1 is updated by removing all entries
associated to item 4. A second pick is executed grasping item 7. SSMP
initiates picks as long as the system is sure that the scene layout has not
changed unexpectedly. If not, it restarts the process by acquiring a new image.

a second occlusion class for objects with less than 10%
occlusion. Our proposed occlusion-aware instance segmenta-
tion network f obj is based on straightforward Mask R-CNN
[55] architecture. Given a depth image I , object masks Ol are
predicted together with their occlusion class O (see Fig. 10).
Ground truth is obtained by assigning visible instance mask
labels Mvis,l the following occlusion classes O based on their
amodal masks: unoccluded, less than 10%, and greater than
10%:

O =


O0% if Moccl,l / (Mvis,l + Moccl,l) = 0
O≤10% if Moccl,l / (Mvis,l + Moccl,l) ≤ 0.1
O>10% if Moccl,l / (Mvis,l + Moccl,l) > 0.1.

(7)

More details on the multi-task loss for Mask-RCNN training
can be found in [55].

C. Policy

Our proposed single-shot-multi-pick (SSMP) policy reduces
the idle time of a picking robot, which is otherwise used
for image acquisition and processing. The goal is to perform
multi-pick sequences with only one image acquisition without
sacrificing grasp reliability.

For an initial grasp scene with N objects, the algorithm
(cf. Algorithm 1) starts by capturing a depth image Ii of
the scene at time step i . Given f grasp (cf. Sec. VI-A) and
f obj (cf. Sec. VI-B), grasps G i,k and object masks with
their occlusion classes Oi,l,O are predicted in the first step
(cf. Fig. 10). In our notation, we use k to index predicted
grasps and l to index detected object instances. Sharing the
same 2D pixel-space, grasps G i,k can be assigned to objects
Oi,l,O when possible (cf. upper row in Fig. 11): G i,k,l,O. Based
on the predicted grasp quality score and assigned occlusion
class, grasps G i,k,l,O are sorted in a manipulation sequence
queue Qi according to the following rule set (cf. Fig. 11):
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Algorithm 1 Single-Shot-Multi-Pick Algorithm
Parameters : N (number of objects to clear)
Input : f grasp, f obj

Output : Lcleared
1 Lcleared ← {}

2 while len(Lcleared) < N do
3 blind = 0
4 capture image Ii at time ti
5 detect G i = f grasp(Ii ) and Oi = f obj(Ii )

6 create manipulation queue Qi (G i , Oi )

7 while len(Lcleared) < N do
8 Q′i ← filter Qi for Lcleared

9 G1st
i ← get head of Q′i

10 transform G1st
i into world and execute grasp

11 if grasp successful then
12 if object unoccluded then
13 Lcleared ← {Oi,l,O)

14 increment blind
15 else
16 Lcleared ← {Oi,l,O)

17 break
18 end
19 else
20 break
21 end
22 end
23 end

1) Non-occluded grasps are prioritized over grasps belong-
ing to occluded objects or background (cf. green arrows
in Fig. 11). Reason: The system prioritizes unoccluded
(first-layer) objects because they can be picked without
changing the pose of the remaining objects in the scene.

2) Within a set of grasps belonging to the same occlusion
class, grasps are ordered by their grasp score (cf. purple
arrow in Fig. 11). Reason: Under consideration of 1),
always select the grasp candidate with the highest score.

Once the manipulation queue Qi = {G1st
i,k,l,O, G2nd

i,k,l,O, . . . }

has been created, the algorithm initiates the execution of the
grasp at the beginning of queue Qi (cf. middle row in Fig. 11).
Grasps which are in collision with the scene are filtered out.
If the pick has been successful, its underlying instance Oi,l,O
is added to the list of cleared objects Lcleared and all remaining
grasps in Qi belonging to the same object O with index l are
removed, resulting in Q′i . For the next pick, the remaining
grasp instances in Q′i move up (cf. yellow arrow in Fig. 11)
and the grasp at the beginning is executed (cf. lower row in
Fig. 11). This process of updating Q is repeated for succeeding
picks as long as the system is sure that the grasp scene has not
changed unexpectedly. Therefore, if a grasp fails or an item
has been picked which might have been occluded (either no
object detection was available or occlusion was predicted), the
robot exits the current control loop and acquires a new picture
at time step i + 1 to restart the process. Interested readers are
encouraged to view our supplementary video featuring SSMP
robot picking demos for a vacuum and a pararallel-jaw gripper.

VII. EXPERIMENTS

In our previous work [17], the potential of our synthetic data
for vacuum grasping and class-agnostic instance segmentation
has been demonstrated. In addition, the proposed vacuum
seal model was able to generalize to different cup materials
and dimensions with an average seal precision of 95.0%
and outperformed state-of-the-art models, e.g. [1] and [2],
in real-world experiments. The experiments in this work are
designed to evaluate the potential of our data and methods
with focus on dexterous grasping, robust object detection
and fast cycle times, three key-challenges of robot picking
systems (cf. Sec. I). For the task of vacuum and parallel-
jaw grasping, the generalization capabilities of our data and
algorithms to truly unseen real-world environments are eval-
uated. In addition, we extend our physical robot bin picking
experiments with a thorough evaluation of the proposed SSMP
method for occlusion-aware fast picking. Besides real robot
test series, extensive experiments for object detection, amodal
segmentation and pose estimation are conducted.

A. Vacuum Grasp Experiments

In our previous work [17], the effectiveness of our data
generation pipeline has been evaluated by comparing the
grasp performance of the vacuum grasp network SuctionNet-
1Billion [2] trained on their proposed large-scale real-world
dataset versus a version of SuctionNet-1Billion trained on
our synthetic data. The results showed clearly that our syn-
thetic data improves picking performance for unseen objects.
However, the robotic cell used to collect the evaluation data
to monitor training performance and the test environment
were identical. In this work, the generalization towards unseen
environments and objects is evaluated. To prevent data leakage
and increase the meaningfulness of our results with regard to
novel environments and object sets, a completely new picking
cell is built for our real robot tests (cf. Fig. 12). The new cell
design differs from the setup used for recording MGN-Real
in various aspects: camera mounting position and orientation,
light conditions, two bins instead of one bin with different
dimension and colors, as well as unseen objects and new
arrangements in the scene. In order to exploit the full potential
of our two datasets and mimic a realistic deployment phase,
training is been conducted on synthetic data MGN-Sim, while
MGN-Real is used exclusively to monitor performance during
the training process. Testing is performed in an unseen robotic
environment.

The proposed vacuum grasp model MGN-SG
(cf. Sec. VI-A) and SuctionNet-1Billion [2] are trained
on MGN-Sim. A batch size of 16, Adam Optimizer, and
a learning rate of 10−4 are used. Training samples contain
viewpoints {8, 10, 12, 14} and the experiment is terminated
after 50k training batch iterations. Training is conducted on a
single NVIDIA Quadro RTX6000 GPU and took about 27 h
per model. Successful grasp rate is used as evaluation metric
and model performance is tracked on grasp difficulty splits
of MGN-Real (cf. Sec. V-B).

As shown in Fig. 13, [2] achieves the highest successful
grasp rate after 30k training iterations with 69.7%, while
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Fig. 12. Physical robot experiments are designed to mimic a real-world
logistics use-case, where a robot is tasked with transferring items from one
bin to another, as is the case in many order-picking processes. The camera
system Zivid Two (not shown) is mounted above the bin, vacuum is generated
by an air-powered venturi vacuum pump (Festo VN-07-M-I3-PQ2-VQ2-A).
The suction cup (Festo ESS-20-CS) has 20 mm diameter. Test objects are
divided in two difficulty levels: moderate split-1 and challenging split-2.

Fig. 13. Successful vacuum grasp rate evaluated during training for each 5k
training iterations of SuctionNet-1Billion [2] (a) and MGN-SG (b). MGN-Sim
is used for training, performance is monitored over all three difficulty levels
of MGN-Real. Black arrows indicate the best overall result.

MGN-SG performs best after 50k iterations with 74.8%. For
both networks, clear performance gaps between the difficulty
splits in MGN-Real demonstrate that the proposed vacuum
grasp difficulty rating is able to cover real-world challenges.

Physical Robot Experiment: For the robot experiments that
follow a conventional single-shot-single-grasp (SSSP) policy,
the following questions are of interest: How well does the
proposed vacuum grasp model MGN-SG trained on MGN-
Sim perform against state-of-the art networks [2], [62]? How
large is the generalization error regarding novel objects and
novel scenes comparing MGN-Sim against a large-scale real
world dataset [2]?

Three different network architectures are considered: MGN-
SG, FC-DexNet 4.0 [62], and SuctionNet-1Billion [2]. While
emptying the bin, scene layout changes continually. There-
fore, we focus in our real-world experiments on object level
difficulties and divide our novel object test set in two levels:
moderate split-1 and challenging split-2. Items are assigned

TABLE IV
REAL-WORLD VACUUM GRASP PERFORMANCE WITH STANDARD

DEVIATION IN PARENTHESES FOR NOVEL OBJECTS IN
CLUTTER AND UNSEEN ENVIRONMENTS

to each split based on the following criteria (cf. Fig. 12):
convex/non-convex shape, material, coverage of suctionable
areas, specularity, and weight. Object arrangement in scenes
is restored for all experiments across different methods.
To align with experimental designs in previous works [2],
[62], background is filtered out based on an empty bin depth
image. A grasp is considered successful if the object is
lifted up and stays in contact while moving to a predefined
post-grasp pose. If the robot attempts to grasp the bin, the
grasp is considered unsuccessful and assigned to the nearest
object. After two failed grasp attempts per object and scene,
a human supervisor removes the object. The weights for MGN-
SG+MGN-Sim and [2]+MGN-Sim for the best training
iteration (cf. Fig. 13) are selected and tested against provided
pretrained versions of FC-DexNet 4.01 trained on synthetic
data and SuctionNet-1Billion2 trained on real-world data. Note
that our test environment is completely different from the
environment in which the evaluation data was collected. This
allows for a fair comparison between methods. The number
of successfully cleared objects over the number of total grasps
attempts Rgrasp (successful grasp rate) and the number of
successfully cleared objects over the total number of objects
Robj (autonomously cleared object rate) are used as metrics.
For each of the four test series, 400 items distributed over
40 bin scenes (20 runs of 10 split-1 objects and 20 runs of
10 split-2 objects) had to be picked, adding up to a sample
size of 2040 grasp attempts. Reported numbers in Table IV
and Fig. 14 are averaged across all runs and reported with
standard deviation.

Table IV shows that the proposed MGN-SG method out-
performs all other networks in terms of successful grasp rate
Rgrasp and autonomously cleared object rate Robj for easy as
well as challenging items. Depth image based methods (MGN-
SG and [62]) perform better than RGBD-based method [2].
Comparing the grasp performance for [2] trained on MGN-Sim
with the provided version trained on real-world data, it can be
shown that our proposed synthetic data outperforms real-world
data for Rgrasp and Robj by a large margin (cf. Table IV and
Fig. 14(a)-(b)). This result confirms our previous experiments
on novel objects [17] and extends it to novel environments.

For evaluating our proposed single-shot-multi-pick
(SSMP) method, the following questions are of interest: How
effective is SSMP compared to a conventional (SSSP) policy
in terms of required image acquisitions? Is there a trade-off

1https://berkeleyautomation.github.io/gqcnn/index.html
2https://github.com/graspnet/suctionnet-baseline
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Fig. 14. Results from physical robot vacuum grasp experiments in clutter.
In (a) and (b), the number of autonomously cleared objects is plotted over
the total number of grasp attempts. The dashed line represents the ideal case,
where all items are cleared with the first trial. In (c) and (d), the number of
autonomously cleared objects is plotted over the number of image acquisitions
for the proposed single-shot-multi-pick (SSMP) method. Top left means better
performance, characterized by a high number of autonomously picked objects
and a low number of required image acquisitions. The dashed line represents
a baseline for an ideal single-shot-single-pick (SSSP) policy, where every
grasp attempt is successful, but still requires an new recording. Standard
deviation is scaled by a factor of 0.5 and shown in shaded and hatched areas
for ≥ 10 active runs and < 10 active runs, respectively.

between blind picking and grasp reliability? How well does
the SSMP policy work together with a state-of-the-art vacuum
grasp detection network [62]?

We have extended FC-DexNet 4.0 [62] with our SSMP
policy. The proposed occlusion-aware instance segmentation
network f obj, a key component of SSMP, is trained on
MGN-Sim using the same parameters as for training MGN-
SG. For comparability, identical object scenes from previous
experiments are recreated. As shown in Fig. 14(c)-(d), the
number of cleared objects for our SSMP policy converges
significantly faster than for the conventional SSSP policy.
This observation is valid for both grasp detection methods
MGN-SG and FC-DexNet 4.0 [62]. On average, to clear a
scene of 10 split-1 objects, SSMP policy requires only 5.0
(σ=1.5) and 5.2 (σ=1.9) shots for MGN-SG and [62] method,
respectively, reducing image acquisitions by 53.9% and 53.6%
compared to the SSSP policy. For split-2 objects, the required
image acquisitions for MGN-SG and [62] are reduced by
41.0% and 46%, respectively. Note that this increase in speed
does not alter the grasp performance. In fact, Table IV shows
clearly that SSMP policy even improves Rgrasp and Robj.
Especially FC-DexNet 4.0 [62] seems to be profiting the most.

To gain further insight into the capabilities of SSMP,
additional offline experiments on MGN-Real500 are con-
ducted,evaluating f obj for the task of occlusion-aware instance
segmentation (cf. Fig. 15). For the reliability of SSMP policy,
a high precision for detecting unoccluded items is required.
The results in Fig. 15(a) confirm this precondition with high

Fig. 15. Occlusion-aware instance segmentation network f obj evaluated on
MGN-Real500 with a confidence threshold of 0.7. A prediction is considered
true positive if the correct occlusion class is predicted, I oU ≥ 75%, and
no other prediction has been assigned to the ground truth label yet. The
precision-recall plot in (a) shows that especially unoccluded items are reliably
detected with more than 80% precision up to a recall value of 60%.

Fig. 16. (a) Robot setup for parallel-jaw grasp experiments. The electrical
two-finger parallel gripper (Franka Hand) was customized with enlarged 3D
printed fingers to avoid collision with the bin while picking objects close to
the wall. (b) Test items are split in two sets: a subset of objects from previous
vacuum grasp experiments (split-3) and parallel-jaw only objects (split-4).

precision-recall values (mAP.75
O0%
=0.93) for unoccluded items

(blue curve) and low confusion values for highly occluded
objects in Fig. 15(b). The observed overall low recall values
for occluded objects (turquoise and orange in Fig. 15(a) do
not have a large negative influence on the SSMP policy, since
the algorithm focuses on detecting unoccluded objects.

B. Parallel-Jaw Grasp Experiments

When evaluating our data for the task of parallel-jaw
grasping, the following questions are of interest: How well
does a parallel-jaw grasping model trained on our synthetic
data perform against state-of-the-art [28] in the real-world?
How effective is our SSMP method for parallel-jaw grasping?

Physical Robot Experiment: Analogous to the previous
vacuum grasp experiments, the real-world test environment is
unseen and a scene consists of 10 objects arranged in high
clutter (cf. Fig. 16(a)). Test objects are novel and divided in
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Fig. 17. Results from physical robot parallel-jaw grasp experiments in
clutter. The number of autonomously cleared objects is plotted over the
number of image acquisitions for the proposed single-shot-multi-pick (SSMP)
method (purple and blue) and a conventional single-shot-single-pick (SSSP)
policy (yellow and red). Top left means better performance, characterized
by a high number of autonomously picked objects and a low number of
required image acquisitions. The dashed line represents a baseline for an ideal
single-shot-single-pick (SSSP) policy, where every grasp attempt is successful,
but still requires an new recording. Standard deviation is scaled by a factor
of 0.5 and shown in shaded and hatched areas for ≥ 10 active runs and
< 10 active runs, respectively.

TABLE V
REAL-WORLD PARALLEL-JAW GRASP PERFORMANCE WITH STANDARD

DEVIATION IN PARENTHESES FOR NOVEL OBJECTS IN CLUTTER
AND UNSEEN ENVIRONMENTS

two separate item splits (cf. Fig. 16(b)): a mixed item split-
3, equally balanced between split-1 and split-2 objects, and a
parallel-jaw only split-4 containing objects which can only be
grasped by a finger gripper due to weight, material, or shape
properties. Like in the previous experiments, each test series
consists of 400 items spread across 40 different bin scenes
(20 runs of split-3 objects and 20 runs of split-4 objects),
adding up to a sample size of 1893 grasp attempts. The same
metrics Rgrasp (successful grasp rate) and Robj (autonomously
cleared object rate) are used for evaluation.

We train MGN-PJ (cf. Sec. VI-A) for 12 full epochs on our
synthetic MGN-Sim dataset. A batch size of 2, SGD optimizer,
and a learning rate of 0.02 are used. Training samples contain
3 random viewpoints per scene. For performance compari-
son, the widely applied GG-CNN2 grasping network [28] is
used. It is trained on synthetic depth images from large-scale
Jacquard dataset [19] and is well established for grasping in
clutter.

Looking at the experimental results for the conventional
single-shot-single-pick (SSSP) policy in Table V, one can see
that MGN-PJ trained on MGN-Sim outperforms GG-CNN2
[28] in terms of Rgrasp and Robj for both split-3 and split-4
objects by a large margin. Combining both item splits, MGN-
PJ is able to autonomously pick 95.3% of objects (Robj) with
an average precision of 88.5% (Rgrasp). These results show that
our synthetic dataset allows the training of reliable parallel-jaw
grasp detection methods in the real-world.

To evaluate the potential of the proposed single-shot-
multi-pick (SSMP) method for parallel-jaw grasping,

GG-CNN2 [28] is extended with our SSMP policy and the
previous real-world grasp experiments are repeated. As shown
in Fig. 17, with SSMP, the number of cleared objects converges
significantly faster for both methods, MGN-PJ and GG-CNN2,
as for the conventional SSSP policy (blue and purple vs.
orange and yellow lines in Fig. 17). On average, for scenes
containing objects from mixed item split-3, SSMP requires
only 3.5 (σ =1.07) and 5.7 (σ =2.19) shots for MGN-PJ and
[28] method, respectively, reducing needed image acquisitions
by 68.2% and 57.5% compared to the conventional SSSP
policy. For split-4 objects, image acquisitions are reduced to
4.1 (σ = 1.34) and 4.7 (σ = 1.27) shots for MGN-PJ and
[28], resulting in 61.1% and 59.3% less image acquisitions.
However, when comparing Rgrasp and Robj for both SSSP
and SSMP policies (cf. Table V), this efficiency gain comes
for split-4 objects with a small decrease in grasp precision
(Rgrasp). During our experiments, we noticed that in some rare
cases, when grasping an object, the finger of the parallel-jaw
gripper can unintendedly change the pose of background
objects, resulting in possible failed downstream picks. This
is particularly relevant for objects whose shape or pose might
easily be changed (deformable textiles or round objects, cf.
split-4 in Fig. 16(b)). Note that this was only observed for
Rgrasp and item split-4, considering autonomously cleared
objects (Robj), SSMP performs even better. Overall, the results
confirm the effectiveness of our proposed SSMP policy for
parallel-jaw grasping and extend our previous finding for the
vacuum gripper in Sec. VII-A to ambidextrous grasping.

C. Object Detection Experiments

Object detection and segmentation are crucial but challeng-
ing tasks and are essential for achieving a comprehensive
and dependable understanding of grasp scenes. These tasks
enable the model to deliver consistent performance even in
the presence of diverse object layouts, including defective or
previously unseen objects. To evaluate the effectiveness of our
dataset for these tasks, we designed two experiments. We first
describe the setup that is shared by both experiments and then
introduce the two experiments in detail.

1) Experimental Setup: To evaluate object detection, seg-
mentation, and amodal segmentation tasks, the network
architecture proposed in [14] UOAIS-Net was utilized. The
architecture is implemented using a ResNet-50 [63] backbone.
To facilitate comparison across datasets, all objects are treated
as one class during training and evaluation. The learning rate
is set to 0.015 and all models are trained for 12 iterations over
the training set (epochs). The results are evaluated using the
standard Microsoft Common Objects in Context (COCO) [64]
object detection and instance segmentation metrics, including
Bounding Box Mean Average Precision (Box mAP), Segmen-
tation Mean Average Precision (Mask mAP), and Amodal
Segmentation Mean Average Precision (AMask mAP).

2) Difficulty Levels Experiment: Evaluating a model’s per-
formance on objects with varying degrees of difficulty ensures
its ability to accurately detect and segment objects across vari-
ous scenarios. In this experiment, UOAIS-Net is trained on our
MGN-Sim dataset, referred to as UOAIS-Net+MGN-Sim.
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Fig. 18. Example visible object detection results of UOAIS-Net+MGN-Sim.

TABLE VI
EXPERIMENT ON THE DIFFICULTY OF VISIBLE OBJECT DETECTION,

INSTANCE SEGMENTATION AND AMODAL DETECTION

During training, 4 viewpoints from MGN-Sim are randomly
selected. After training, we fine-tune UOAIS-Net+MGN-Sim
on two empty bin scenes from our MGN-Real dataset to
account for the sim-to-real gap. Empty scenes contain no
labels, but provide enough information for the models to
learn new lighting conditions and backgrounds. The model is
fine-tuned with a learning rate of 1 until the model produces
no false positive proposals, as indicated by the region proposal
loss converging to zero. Taking less than a minute to complete
with an average of only 6 epochs, this process was remark-
ably fast. The fine-tuned UOAIS-Net+MGN-Sim model is
evaluated on the proposed four levels of difficulties for amodal
detection on MGN-Real500. The results, as shown in Table VI
and Fig. 18, demonstrate that as the difficulty level increases,
the performance of our model drops correspondingly. This
outcome validates the effectiveness of our proposed difficulty
level design and provides valuable insights into the capabilities
and limitations of our model.

3) Object Detection Generalizability Experiment: The pur-
pose of this experiment is to test the generalizability of
our dataset by comparing models with the same architecture
and training policy trained on different datasets. Evaluat-
ing the performance of these models on previously unseen
real-world objects and datasets allows us to assess their
ability to perform well in novel real-world scenarios. For
this experiment, we train two UOAIS-Net models: one on
our MGN-Sim dataset and the other one on the UOAIS-SIM
synthetic dataset proposed in [14]. The models are referred to
as UOAIS-Net+MGN-Sim and UOAIS-Net+UOAIS-SIM,
respectively. The same fine-tuning process is applied as in
the previous difficulty levels experiment. Both models are
evaluated for the task of visible object detection, instance seg-
mentation, and amodal detection on our MGN-Novel dataset
(cf. Sec. V-C), which includes novel object classes not seen
before. Furthermore, performance of both models is evaluated
for the task of object detection and instance segmentation
on the WISDOM-Real dataset [5] (cf. Fig. 7). Note that

TABLE VII
AMODAL OBJECT DETECTION AND SEGMENTATION RESULTS

this dataset lacks amodal labels. The results, as shown in
Table VII, indicate that the model UOAIS-Net+MGN-Sim
trained on our synthetic data outperforms the model trained
on the UOAIS-SIM dataset by at least 10% for each task
when applied to our MGN-Real500 real-world dataset. When
evaluating on our MGN-Novel dataset and the WISDOM-Real
dataset, the UOAIS-Net+MGN-Sim model performs compet-
itively. With empty bin fine-tuning, UOAIS-Net+MGN-Sim
outperforms UOAIS-Net+UOAIS-SIM by 3.4% in aver-
age across the three tasks. With regard to experiments on
WISDOM-Real dataset, we observe that UOAIS-Net+MGN-
Sim demonstrates a 3.1% advantage in object detection and
a 4.3% advantage in instance segmentation performance after
fine-tuning. In short, all the experimental results support the
conclusion that our MGN-Sim dataset is better suited for
generalizing to real-world unseen objects and datasets.

D. 6D-Pose Estimation Experiments

Object poses represent rich scene labels and are often
used in industy due to the wide availability of CAD data.
To validate our dataset with regard to the task of pose
estimation, a base GDR-Net model [8] is trained on MGN-Sim
and its performance is evaluated on MGN-Real500 using the
ADD(-S) [65] metric. ADD(-s) measures the average distance
deviated between the point clouds of the ground truth and the
predicted objects. To provide a threshold-invariant evaluation
score, AUC scores are calculated by varying the threshold to
a maximum of both 10 cm and 2 cm, similar to [23]. Results
for MGN-Real500 and a hold-out 15% test split of MGN-Sim
are shown in Table VIII, separated in two occlusion test splits:
less than 10% and greater than 10%. The presence of occlusion
can be challenging for pose estimation. As seen in Table VII,
the AUC performance dropped noticeably at occlusion levels
greater than 10%. This is especially noticeable for an AUC
threshold of 2 cm.

E. Discussion and Remarks to Practitioners

Extensive physical robot experiments in novel scenes clearly
demonstrate the effectiveness of our proposed synthetic dataset
MGN-Sim and vacuum grasp detection method MGN-SG
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TABLE VIII
EXPERIMENT ON 6-DOF POSE ESTIMATION

for vacuum grasping. Specifically, MGN-SG outperforms
SuctionNet-1Billion [2] and FC-DexNet 4.0 [62] by a large
margin in terms of Rgrasp and Robj for moderate as well as
challenging items. For novel objects and scenes, SuctionNet-
1Billion trained on MGN-Sim outperforms the same model
trained on a large-scale real-world dataset [2]. We attribute
the superior generalization capabilities of our synthetic data
for novel objects and environments to a better dataset diversity
in terms of object layout and dataset size. Due to the hybrid
data collection approach in [2], requiring human annotated
6-DoF object poses for each scene, their dataset has only
190 scenes compared to MGN-Sim dataset featuring 8k scenes.
When dealing with large and diverse article sets, not all objects
might be graspable with a vacuum suction cup. Extensive
real robot experiments confirm the effectiveness of our data
for parallel-jaw grasping, significantly expanding the range of
graspable objects (cf. item split-4 in Fig. 16(b)). The results
show that MGN-PJ trained on MGN-Sim is able to reliably
grasps objects even in high clutter, outperforming GG-CNN2
[28] by a large margin in terms of Robj and Rgrasp.

The main aim of our proposed SSMP policy is to reduce
required image acquisitions without sacrificing grasp perfor-
mance. Our bin picking experiments show that SSMP policy
speeds up cycle rates by significantly reducing image acquisi-
tions by more than 47% on average for vacuum grasping and
64.7% for parallel-jaw grasping, even for scenes with high
clutter and challenging item sets. Based on these findings,
SSMP or similar strategies could become an integral part of
future time-critical picking systems.

Experiments on object detection validate the effectiveness
of the proposed difficulty levels. With increasing difficulty, the
model performance decreased accordingly providing insights
into our model’s capabilities and limitations. Experiments
for MGN-Novel demonstrate the generalization capabilities
of MGN-Sim for the task of object detection and amodal
segmentation outperforming [14] on novel objects. Experi-
ments on WISDOM-Real [5] dataset for visible detection
show that models trained on MGN-Sim generalize well to
novel environments. More generally, both results indicate that
our MetaGraspNetV2 dataset is diverse and representative,
allowing object detection models trained on it to generalize
to previously unseen objects and novel environments.

VIII. CONCLUSION

In this paper, a universal bin picking dataset has been
designed to facilitate grasping in unstructured bin environ-
ments. Our proposed MetaGraspNetV2 dataset consists of

two datasets: (i) a large-scale synthetic dataset with 296k
samples; (ii) a real-world test dataset with 3.2k samples.
Both datasets provide a comprehensive label set for a wide
variety of tasks including ambidextrous grasping, panoptic
amodal segmentation, object relationship reasoning, and pose
estimation. Novel task-specific difficulty levels are proposed
for our real-world dataset targeting visible and amodal object
detection, as well as vacuum grasping. They allow efficient
evaluation of robotic vision systems and provide meaningful
insights into their capacities and limitations. Extensive exper-
iments for object detection, instance segmentation, amodal
detection, parallel-jaw, and vacuum grasping have demon-
strated the superior generalization capabilities of our dataset
with regard to unseen objects and environments, outperforming
state-of-the-art task-specific datasets. Our novel single-shot-
multi-pick (SSMP) policy increased the time-efficiency of bin
picking. Combining occlusion and scene reasoning with robust
grasp detection, SSMP reduces cycle time by picking multiple
objects in one single image acquisition. Physical robot exper-
iments for unseen objects and environments demonstrated its
effectiveness for vacuum and parallel-jaw grasping, reducing
the number of required image acquisitions by more than
47% while outperforming state-of-the-art bin picking methods.
Overall, with its high-quality data and comprehensive label
set, the proposed MetaGraspNetV2 dataset has the potential
to enhance the development of dexterous bin picking systems
in terms of speed and reliability.
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