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Abstract: We study input and state constrained inverse optimal control problems starting from
a stabilizing controller with a control Lyapunov function, where the goal is to make the controller
an explicit solution of the resulting constrained optimal control problem. For an appropriate cost
design and initial states for which a sublevel set of the Lyapunov function is contained in the
state constraint set and the initial input lies on an ellipsoid inside the input constraint set, we
show that the stabilizing controller solves the constrained optimal control problem. Compared
to the state-of-the-art, we avoid solving nonlinear optimization problems evaluated pointwise,
i.e., for every state, or in a repetitive fashion, i.e., at each time step. We apply our theoretical
results to study the angular droop control studied in (Jouini et al., 2022) of an inverter-based
power network. For this, we accommodate the constraints on the angle and power generation
and exemplify our approach through a two-inverter case study.

Keywords: Optimal Control, Non-Linear Control Systems, Networked Systems, Power and
Energy Systems

1. INTRODUCTION

Chronologically speaking, optimal control stems from the
calculus of variation, a branch of mathematics dealing
with path optimization in a static setting (Kot, 2014).
The modern treatment of optimal control started from the
late 1950s, when two mathematical breakthroughs were
made (Vinter, 2010). First, the maximum principle gives
a set of necessary conditions for a control solution can-
didate to be optimal (Liberzon, 2011). Second, dynamic
programming provides necessary and sufficient conditions
for optimality by solving the Hamilton-Jacobi-Bellman
equation (Vinter, 2010). From an engineering point of
view, many examples of optimal control problems arise
spontaneously, every time a new quantity (e.g., product,
accuracy of information) is synthesized while a perfor-
mance index is taken into account.

In inverse optimal control (IOC), we start from a given
stabilizing control law, with an associated control Lya-
punov function and reverse engineer the cost function to
render the stabilizing controller optimal. Thus, the control
Lyapunov function is the value function of the resulting op-
timization problem as in (Haddad and Chellaboina, 2011;
Sepulchre et al., 2012). In this way, we circumvent the
complexity of solving partial differential equations. In fact,
⋆ This work was supported by the Helmholtz Association under the
program “Energy System Design”.

this approach provides analytically explicit and numeri-
cally feasible solutions in a simple, concise and closed form.
Upon tuning of inverse optimal controllers, the solution to
a whole family of optimal control problems corresponding
to different cost functions is obtained with the same value
function. We can solve inverse optimal control problems
in the presence of unknown bounded disturbances in the
dynamics as in (Freeman and Kokotovic, 1996) and also
in the cost as illustrated in (Jouini and Rantzer, 2021). In
applications to networked systems such as power networks,
inverse optimal stabilizing controllers have a topological
structure (e.g., distributed) and thus are feasible for im-
plementation. In particular, an inverse optimal stabilizing
controller for power networks is derived in (Jouini et al.,
2022), namely the angular droop control. This control law
stabilizes the phase angles of controllable voltage source
inverters to an induced steady-state angle characterized
by zero frequency error and thereby minimizes angle and
power deviations at steady state.

Incorporating input and state constraints makes optimal
control problems harder to solve. Inverse optimal control is
an approach that solves optimal control problem with no
computational effort by reverse engineering the cost. This
motivates the study of inverse optimal control problems
with input and state constraints. Despite recent efforts
in the direction of incorporating given input (Nakamura
et al., 2007) and state (Deniz et al., 2020) constraints
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separately, inverse optimal control problems that account
for both input and state constraints simultaneously as
in (Freeman and Kokotovic, 1996) have not been exten-
sively studied in the literature. More recent applications
of inverse optimal problems have been pronounced at the
interface of data-driven control and reinforcement learning
via so-called cost learning (Finn et al., 2016). The aim in
these works is to determine, for unknown dynamics and
an observed solution of the optimal trajectories, the opti-
mization criterion that has produced the solution. Recent
research involves not only the learning of the cost but also
the state and input constraints for constrained optimal
control problems following (Menner et al., 2019).

In the present work, we consider an infinite horizon
continuous-time input and state constrained inverse op-
timal control problem, i.e., the cost is determined after
a stabilizing controller with a control Lyapunov function
is specified. For this, we initialize the trajectory on a
sublevel set of the Lyapunov function contained in the
state constraint set and the input on a an ellipsoid lying
inside of the input constraint set. In this way, we find
upon suitable cost design an explicit solution to the con-
strained optimal control problem given by the controller
that is simple, concise and has a closed-form expression.
Compared to other methods that handle constraints in the
inverse setting, where the cost is determined aposteriori,
our approach does not require the computational effort
of solving nonlinear programs pointwise, that is the case
for pointwise minimum norm controllers (Freeman and
Kokotovic, 1996). When the cost is given apriori as in
Model Predictive Control (MPC) (Morari and Lee, 1999),
we avoid repetitively solving an open loop optimization
problem. Finally, inverter-based power networks are a di-
rect application of our theory, where the constraints on the
input norm represent lower and upper limits on the total
power generation and constraints on the states consist in
upper and lower bounds on the inverters’ virtual angles.

The paper unfurls as follows. Section 2 presents the setup
and in particular the inverse optimal control problem with
input and state constraints. Section 3 proposes a solution
approach and compares it with other approaches. Section 4
suggests a numerical implementation for a two-inverter
power network. Finally, Section 5 concludes the paper.

Notation: For a continuously differentiable function V :
Rn → R, ∇xV (x) = ∂V

∂x denotes its gradient. Given

a matrix P = P⊤ > 0 and a vector v, we denote by

∥v∥P =
√
v⊤Pv the 2-norm of v weighted by P . Given

a non-empty set C, we denote by int C the interior of C.

2. PROBLEM FORMULATION

Consider the continuous-time input-affine system dynam-
ics

ẋ = f(x) +G⊤(x)u(x), x(0) = x0 , (1)

where f : Rn → Rn is locally Lipschitz continuous
over Rn with f(0) = 0, and the input matrix G(x) =
[g⊤1 (x), . . . , g

⊤
m(x)]⊤ ∈ Rm×n is given by the nonlinear

functions gi(x), i = 1, . . .m that are continuous mappings
from Rn to Rn. The state and input vectors are given by
x ∈ Rn and u ∈ Rm. Furthermore, let the following infinite

horizon continuous-time optimal control problem be given,

minimize
u∈U

∫ ∞

0

[
q(x) + u⊤(s)R(x)u(s) + δ⊤(x)u(s)

]
ds

(2a)

subject to ẋ = f(x) +G⊤(x)u, (2b)

x(0) = x0, x ∈ X , (2c)

where U ⊂ Rm and X ⊂ Rn are given input and state
constraint sets. Additionally, the function q : Rn → R is
continuous with q(0) = 0 and assumed to be unknown
and R(x) = R⊤(x) > 0 for all x. Here δ : Rn → Rm

is a weighting function satisfying δ(0) = 0. Notice that
the function δ provides flexibility in the cost design that
can be exploited for instance to connect inverse optimal
control with backstepping methods as shown in (Haddad
and Chellaboina, 2011, Ch.9).

Our goal in the remainder is to solve the constrained
optimal control problem (2) based on inverse optimality by
determining the cost function as in (Sepulchre et al., 2012;
Freeman and Kokotovic, 1996; Haddad and Chellaboina,
2011; Jouini and Rantzer, 2021).

3. SOLUTION APPROACH AND DISCUSSION

3.1 Solution approach

We start from the following feedback control law

uf (x) = −1

2
R−1(x)

(
G(x)∇xV (x) + δ(x)

)
, (3)

together with a continuously differentiable function V :
Rn → R+ with V (0) = 0 satisfying,

∇⊤
x V (x)(f(x) +G⊤(x)uf (x)) < 0. (4)

In the remainder, the input and state constraint sets U
and X are given by the following assumption.
Assumption 1. We assume that U and X are closed.
Additionally, let 0 ∈ int(X ) and 0 ∈ int(U). For M(x) =
M⊤(x) > 0, let

Cγ := {u ∈ Rm | ∥u∥M(x) ≤ γ} ⊆ U , (5)

where γ is a positive constant.

Sufficient conditions for the controller uf (x) in (3) to solve
the constrained inverse optimal control problem (2) are
specified in the following theorem.
Theorem 3.1. Let Assumption 1 hold. For a given con-
stant c > 0, consider

Ωc = {x ∈ X |V (x) ≤ c}, (6)

such that Ωc ⊆ X . For x0 ∈ Ωc and uf (x0) ∈ Cγ , let
q(x) = −∇⊤

x V (x)f(x) + uf⊤(x)R(x)uf (x), (7)

then, the controller uf (x) in (3) minimizes (2). Addition-
ally, the optimal control problem (2) has the optimal value
V (x0).

Proof. We apply Theorem 8.2 in (Haddad and Chellaboina,
2011) as follows. First, we show that uf (x) ∈ U by showing
that uf (x) ∈ Cγ if uf (x0) ∈ Cγ .
Following (4), the set Ωc is control invariant under the
action of uf (x) (Blanchini, 1999) and is thus a forward
invariant set, i.e., x(t) ∈ Ωc ⊆ X given that x0 ∈ Ωc for all
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separately, inverse optimal control problems that account
for both input and state constraints simultaneously as
in (Freeman and Kokotovic, 1996) have not been exten-
sively studied in the literature. More recent applications
of inverse optimal problems have been pronounced at the
interface of data-driven control and reinforcement learning
via so-called cost learning (Finn et al., 2016). The aim in
these works is to determine, for unknown dynamics and
an observed solution of the optimal trajectories, the opti-
mization criterion that has produced the solution. Recent
research involves not only the learning of the cost but also
the state and input constraints for constrained optimal
control problems following (Menner et al., 2019).

In the present work, we consider an infinite horizon
continuous-time input and state constrained inverse op-
timal control problem, i.e., the cost is determined after
a stabilizing controller with a control Lyapunov function
is specified. For this, we initialize the trajectory on a
sublevel set of the Lyapunov function contained in the
state constraint set and the input on a an ellipsoid lying
inside of the input constraint set. In this way, we find
upon suitable cost design an explicit solution to the con-
strained optimal control problem given by the controller
that is simple, concise and has a closed-form expression.
Compared to other methods that handle constraints in the
inverse setting, where the cost is determined aposteriori,
our approach does not require the computational effort
of solving nonlinear programs pointwise, that is the case
for pointwise minimum norm controllers (Freeman and
Kokotovic, 1996). When the cost is given apriori as in
Model Predictive Control (MPC) (Morari and Lee, 1999),
we avoid repetitively solving an open loop optimization
problem. Finally, inverter-based power networks are a di-
rect application of our theory, where the constraints on the
input norm represent lower and upper limits on the total
power generation and constraints on the states consist in
upper and lower bounds on the inverters’ virtual angles.

The paper unfurls as follows. Section 2 presents the setup
and in particular the inverse optimal control problem with
input and state constraints. Section 3 proposes a solution
approach and compares it with other approaches. Section 4
suggests a numerical implementation for a two-inverter
power network. Finally, Section 5 concludes the paper.

Notation: For a continuously differentiable function V :
Rn → R, ∇xV (x) = ∂V

∂x denotes its gradient. Given

a matrix P = P⊤ > 0 and a vector v, we denote by

∥v∥P =
√
v⊤Pv the 2-norm of v weighted by P . Given

a non-empty set C, we denote by int C the interior of C.

2. PROBLEM FORMULATION

Consider the continuous-time input-affine system dynam-
ics

ẋ = f(x) +G⊤(x)u(x), x(0) = x0 , (1)

where f : Rn → Rn is locally Lipschitz continuous
over Rn with f(0) = 0, and the input matrix G(x) =
[g⊤1 (x), . . . , g

⊤
m(x)]⊤ ∈ Rm×n is given by the nonlinear

functions gi(x), i = 1, . . .m that are continuous mappings
from Rn to Rn. The state and input vectors are given by
x ∈ Rn and u ∈ Rm. Furthermore, let the following infinite

horizon continuous-time optimal control problem be given,

minimize
u∈U

∫ ∞

0

[
q(x) + u⊤(s)R(x)u(s) + δ⊤(x)u(s)

]
ds

(2a)

subject to ẋ = f(x) +G⊤(x)u, (2b)

x(0) = x0, x ∈ X , (2c)

where U ⊂ Rm and X ⊂ Rn are given input and state
constraint sets. Additionally, the function q : Rn → R is
continuous with q(0) = 0 and assumed to be unknown
and R(x) = R⊤(x) > 0 for all x. Here δ : Rn → Rm

is a weighting function satisfying δ(0) = 0. Notice that
the function δ provides flexibility in the cost design that
can be exploited for instance to connect inverse optimal
control with backstepping methods as shown in (Haddad
and Chellaboina, 2011, Ch.9).

Our goal in the remainder is to solve the constrained
optimal control problem (2) based on inverse optimality by
determining the cost function as in (Sepulchre et al., 2012;
Freeman and Kokotovic, 1996; Haddad and Chellaboina,
2011; Jouini and Rantzer, 2021).

3. SOLUTION APPROACH AND DISCUSSION

3.1 Solution approach

We start from the following feedback control law

uf (x) = −1

2
R−1(x)

(
G(x)∇xV (x) + δ(x)

)
, (3)

together with a continuously differentiable function V :
Rn → R+ with V (0) = 0 satisfying,

∇⊤
x V (x)(f(x) +G⊤(x)uf (x)) < 0. (4)

In the remainder, the input and state constraint sets U
and X are given by the following assumption.
Assumption 1. We assume that U and X are closed.
Additionally, let 0 ∈ int(X ) and 0 ∈ int(U). For M(x) =
M⊤(x) > 0, let

Cγ := {u ∈ Rm | ∥u∥M(x) ≤ γ} ⊆ U , (5)

where γ is a positive constant.

Sufficient conditions for the controller uf (x) in (3) to solve
the constrained inverse optimal control problem (2) are
specified in the following theorem.
Theorem 3.1. Let Assumption 1 hold. For a given con-
stant c > 0, consider

Ωc = {x ∈ X |V (x) ≤ c}, (6)

such that Ωc ⊆ X . For x0 ∈ Ωc and uf (x0) ∈ Cγ , let
q(x) = −∇⊤

x V (x)f(x) + uf⊤(x)R(x)uf (x), (7)

then, the controller uf (x) in (3) minimizes (2). Addition-
ally, the optimal control problem (2) has the optimal value
V (x0).

Proof. We apply Theorem 8.2 in (Haddad and Chellaboina,
2011) as follows. First, we show that uf (x) ∈ U by showing
that uf (x) ∈ Cγ if uf (x0) ∈ Cγ .
Following (4), the set Ωc is control invariant under the
action of uf (x) (Blanchini, 1999) and is thus a forward
invariant set, i.e., x(t) ∈ Ωc ⊆ X given that x0 ∈ Ωc for all

future times t > 0. Since the origin is a minimum of V and
δ(0) = 0, the (scaled) magnitude of uf (x) is decreasing as
the closed-loop trajectory approaches the origin starting
from x0 ∈ Ωc, i.e., ∥uf (x)∥M(x) ≤ ∥uf (x0)∥M(x0) holds.

Combining the above inference with uf (x0) ∈ Cγ , we have
∥uf (x)∥M(x) ≤ γ. This shows that uf (x) ∈ Cγ . From

Cγ ⊆ U , it follows that uf (x) ∈ U .
Second, we define L(x, u) = q(x)+u⊤R(x)u+δ⊤(x)u with
q as in (7) and show that the Hamilton function satisfies

H(x, u) = L(x, u) +∇⊤
x V (x)(f(x) +G⊤(x)u) ≥ 0.

For the feedback controller uf (x) in (3), our calculations
show that

H(x, uf (x)) = L(x, uf (x)) +∇⊤
x V (x)(f(x) +G⊤(x)uf (x))

= 0.

Since the function H is convex in u, the first order con-
dition ∂H

∂u = 0 is necessary and sufficient for a minimum.

This corresponds to u(x) = uf (x). Therefore H(x, u) ≥
H(x, uf (x)) = 0 and uf (x) satisfies all the conditions of
Theorem 8.9 of (Haddad and Chellaboina, 2011) with the
Lyapunov function V in (4). This shows that the feedback
controller uf (x) ∈ U in (3) minimizes (2) and the optimal
value is V (x0).

A direct consequence of Theorem 3.1 is given in the
following Corollary.
Corollary 3.2. Let Assumption 1 hold and consider the
optimization problem (2) with δ(x) = 0 given by

minimize
u∈U

∫ ∞

0

[
q(x) + u⊤(s)R(x)u(s)

]
ds (8a)

subject to ẋ = f(x) +G⊤(x)u, (8b)

x(0) = x0, x ∈ X . (8c)

Consider the feedback controller,

ũf (x) = −1

2
R−1(x)G(x(k))∇xṼ (x), (9)

and a continuously differentiable function Ṽ : Rn → R+

with Ṽ (0) = 0 satisfying,

∇⊤
x Ṽ (x)(f(x) +G⊤(x)ũf (x)) < 0. (10)

Furthermore, let Ωc and Cγ as in (6) and (5) with Ωc ⊆ X
and Cγ ⊆ U . Given x0 ∈ Ωc and ũf (x0) ∈ Cγ , suppose that

q(x) = −∇⊤
x Ṽ (x)f(x) + ũf⊤(x)R(x) ũf (x). (11)

Then, ũf (x) in (9) minimizes (8). Additionally, the opti-

mal control problem (8) has the optimal value Ṽ (x0).

3.2 Discussion

• Selecting the positive constants c, γ > 0 in (6)
and (5), respectively, can be cast as optimization
programs. In the first problem, we find the largest
sublevel set of V by maximizing c such that Ωc ⊆ X .
In the second program, we determine the largest
set Cγ ⊆ U by maximizing γ. By choosing the
parametrization c = V (x0) and γ = uf (x0) these
two programs are merged into one that solves for the
initial condition x0.

• For δ(x) = 0, we note the results on inverse op-
timality of input-affine systems found in (Haddad

and Chellaboina, 2011) are a relaxed version of our
approach in (Jouini and Rantzer, 2021) by selecting
a Lyapunov function, whose derivative along closed-
loop trajectories is negative (and not upper bounded
by a negative definite function) and a cost functional
that is real-valued (and not positive definite)

3.3 Result contextualization

In the light of Theorem 3.1 and Corollary 3.2, we compare
our approach to the state-of-the-art literature in solving
constrained optimal control problems for the direct for-
mulation, i.e., where the cost is known and given as in
Model Predictive Control, as well as the inverse setting
of the pointwise min-norm controller, where the cost is
determined a posteriori.

Model Predictive Control (MPC) If we consider the
discrete-time version of the optimal control problem (2)
and a given cost function, MPC approach finds an open-
loop control sequence over a horizon length N by evalu-
ating the state trajectories starting from an initial state
x(0), where only the first element in the input sequence
is applied. It is a repetitive decision making process, i.e.,
that solves an open-loop optimization problem at each
time step and has the inherent ability to systematically
handle input and state constraints (Goebel and Raković,
2019).

Pointwise min-norm controller The input and state con-
strained inverse optimal control problem (2) has been
solved in (Freeman and Kokotovic, 1996) by suggesting
the pointwise minimum norm controller. Freeman and
Kokotovic proposed to solve a convex program to find
the pointwise min-norm controller that includes solving
a static nonlinear program. The pointwise min-norm con-
troller finds for every x, the controller u with minimum
(possibly scaled) norm ∥u(x)∥H(x) with H(x) > 0 that
satisfies the input constraints. Following the Control Bar-
rier Function (CBF) formulation in (Ames et al., 2016),
the quadratic program of finding the min-norm controller
can be augmented with an inequality for a control barrier
function to additionally account for state constraints.

Compared to these methods, our approach provides a
closed-form solution to the constrained inverse optimal
control problem (2) without resorting to solving optimiza-
tion problems in a repetitive (as in MPC) or pointwise
fashion (i.e., for pointwise min-norm controller, also incre-
mented with CBF).

4. APPLICATION TO POWER SYSTEM NETWORKS

In this section, we study a constrained optimal control
problem arising in angle control of inverter-based power
networks. The goal is to stabilize the inverter angles at an
induced steady-state angle while keeping the angle devi-
ations and input effort within prescribed bounds. In par-
ticular, we consider a connected undirected graph, where
the set of nodes consists of n−phase coupled oscillators,
representing controllable voltage sources (with constant
voltage magnitude, i.e., 1 per unit), whose angle (relative



5454 Taouba Kaouther Jouini  et al. / IFAC PapersOnLine 56-2 (2023) 5451–5456

to an angle rotating at nominal frequency ω∗) dynamics
are described by the following first-order integrator dy-
namics,

θ̇ = u, θ(0) = θ0, (12)

where θ = [θ1, . . . , θn]
⊤ ∈ Rn is the angle vector. The set of

edges consists of inductive (i.e., lossless) m−transmission
lines. The coupling strengths are represented by line sus-
ceptance bij > 0 for j ∈ Ni, where Ni denotes the
neighborhood set of the i−th inverter node. An example
network of two inverters is represented in Fig. 1.

The active power deviation from the nominal value is given
by,

Pi(θ)− P ∗
i =

∑
j∈Ni

bij
(
sin(θij)− sin(θ∗ij)

)
,

where θij = θi − θj and θ∗ij = θ∗i − θ∗j . Here {θ∗i }ni=1 are
the nominal steady state angles, Pi(θ) is its active power
injected into the network and P ∗

i is its nominal active
power.

Let θs := limt→∞ θ(t) be an induced steady state angle
of (12) satisfying

ξ (θs − θ∗) = P ∗ − P (θs), (13)

with ξ > 0 is the angle to power droop gain. By taking the
time derivative of (13), we show in (Jouini et al., 2022)
that θs rotates at the nominal frequency ω∗. Notice that
when there is no power imbalance, i.e., P ∗ − P (θs) = 0,
the induced steady state angle corresponds to the nominal
steady state angle, i.e., θs = θ∗.

We make the following assumption stating that neighbor-
ing steady state angle differences are contained in an arc
of length π.
Assumption 2 ( (Jouini et al., 2022)).
The induced steady state angle θs = {θsk}nk=1 satisfies

B⊤θs ∈
(
−π

2 ,
π
2

)m
, where B ∈ Rn×m is the incidence

matrix of the underlying graph.

Next, let R = R⊤ > 0 be the input penalty matrix and
consider the following optimal control problem,

minimize
u∈U

∫ ∞

0

q(θ(s)) + ∥u(s)∥2Rds

subject to θ̇ = u, θ(0) = θ0,

θ ∈ X
Here q : Rn → R with q(θs) = 0 is a function that will be
determined in the sequel and θ0 ∈ X . The constraints on
the state are represented by the following set

X := {θ ∈ Rn| θ − θs ≤ θ − θs ≤ θ − θs}, (15)

with θ ≤ θs and θs ≤ θ are upper and lower limits on the
admissible inverter angles and therefore θs ∈ X . These
can be obtained for instance from minimal and maximal
electrical power output at each inverter P ≤ P (θ) ≤ P
with P (θ) = [P1(θ), . . . , Pn(θ)]

⊤ and P , P ∈ Rn are the
vectors of minimum and maximum power output. The
input is constrained by the overall power generation limit
and given by

U := {u ∈ Rn : ∥u∥M ≤ γ}, (16)

with γ > 0 and M = M⊤ > 0. Let Ξ = ξIn and define the
following function

V (θ) =
1

2
∥θ − θs∥2Ξ+ (17)

n∑
i=1

∑
j∈Ni

bij
(
cos(θij)− cos(θsij)− (θij − θsij) sin(θ

s
ij)

)
.

For ϵ > 0, let Bϵ(θ
s) = {θ ∈ Rn|∥θ − θs∥ < ϵ} be

a neighborhood of θs. Under Assumption 2, we show
in (Jouini et al., 2022) that V (θ) in (17) is locally (i.e,
in the neighborhood Bϵ(θ

s)) positive definite.

Our approach based on inverse optimality following (Had-
dad and Chellaboina, 2011) and Corollary 3.2 suggests the
choice of the cost function,

q(θ) =
1

4

(
Ξ(θ − θ∗) + P (θ)− P ∗

)
R−1(θ)

(
Ξ(θ − θ∗) + P (θ)− P ∗

)
, (18)

where,

∇θV (θ) = Ξ(θ−θs)+P (θ)−P (θs) = Ξ(θ−θ∗)+P (θ)−P ∗

with P (θ)−P ∗ = [P1(θ)−P ∗
1 , . . . , Pn(θ)−P ∗

n ]
⊤ yields the

locally inverse optimal stabilizing controller,

u∗(θ) = −1

2
R−1

(
Ξ(θ − θ∗) + P (θ)− P ∗

)
. (19)

The angular droop controller in (Jouini et al., 2022) is
given by (19).

Following Corollary 3.2, we numerically demonstrate in
the following two-inverter network example depicted in
Fig. 1 that for a chosen initial condition, the angle and
input satisfy the constraints defined in (15) and (16).
Table 4 summarizes the numerical values (in p.u.) of the
case study.

Given γ = 1, we select θ0 ∈ X such that c = V (θ0)
and Ωc ⊆ X together with ∥u(θ0)∥M ≤ 1. The matrix
M plays the role of virtual inertia and its value is taken
from (Menta et al., 2018). By graphical inspection of
Fig. 4, we find θ0 = [2.5,−2]⊤ ∈ X and the sublevel
c = 6.7430. In Fig. 2, the angle trajectories remain inside
of the set X for all times t and the induced steady
state θs = [0.5,−0.5]⊤ satisfies Assumption 2. In Fig. 3,
the scaled 2-norm of the input satisfies the constraints
described in (16), where the cost in (18) and the input (19)
are a decreasing function of time.

✓̇1(t) = u⇤
1

✓̇2(t) = u⇤
2

Fig. 1. Two-inverter system in closed-loop with angular
droop (19).
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to an angle rotating at nominal frequency ω∗) dynamics
are described by the following first-order integrator dy-
namics,

θ̇ = u, θ(0) = θ0, (12)

where θ = [θ1, . . . , θn]
⊤ ∈ Rn is the angle vector. The set of

edges consists of inductive (i.e., lossless) m−transmission
lines. The coupling strengths are represented by line sus-
ceptance bij > 0 for j ∈ Ni, where Ni denotes the
neighborhood set of the i−th inverter node. An example
network of two inverters is represented in Fig. 1.

The active power deviation from the nominal value is given
by,

Pi(θ)− P ∗
i =

∑
j∈Ni

bij
(
sin(θij)− sin(θ∗ij)

)
,

where θij = θi − θj and θ∗ij = θ∗i − θ∗j . Here {θ∗i }ni=1 are
the nominal steady state angles, Pi(θ) is its active power
injected into the network and P ∗

i is its nominal active
power.

Let θs := limt→∞ θ(t) be an induced steady state angle
of (12) satisfying

ξ (θs − θ∗) = P ∗ − P (θs), (13)

with ξ > 0 is the angle to power droop gain. By taking the
time derivative of (13), we show in (Jouini et al., 2022)
that θs rotates at the nominal frequency ω∗. Notice that
when there is no power imbalance, i.e., P ∗ − P (θs) = 0,
the induced steady state angle corresponds to the nominal
steady state angle, i.e., θs = θ∗.

We make the following assumption stating that neighbor-
ing steady state angle differences are contained in an arc
of length π.
Assumption 2 ( (Jouini et al., 2022)).
The induced steady state angle θs = {θsk}nk=1 satisfies

B⊤θs ∈
(
−π

2 ,
π
2

)m
, where B ∈ Rn×m is the incidence

matrix of the underlying graph.

Next, let R = R⊤ > 0 be the input penalty matrix and
consider the following optimal control problem,

minimize
u∈U

∫ ∞

0

q(θ(s)) + ∥u(s)∥2Rds

subject to θ̇ = u, θ(0) = θ0,

θ ∈ X
Here q : Rn → R with q(θs) = 0 is a function that will be
determined in the sequel and θ0 ∈ X . The constraints on
the state are represented by the following set

X := {θ ∈ Rn| θ − θs ≤ θ − θs ≤ θ − θs}, (15)

with θ ≤ θs and θs ≤ θ are upper and lower limits on the
admissible inverter angles and therefore θs ∈ X . These
can be obtained for instance from minimal and maximal
electrical power output at each inverter P ≤ P (θ) ≤ P
with P (θ) = [P1(θ), . . . , Pn(θ)]

⊤ and P , P ∈ Rn are the
vectors of minimum and maximum power output. The
input is constrained by the overall power generation limit
and given by

U := {u ∈ Rn : ∥u∥M ≤ γ}, (16)

with γ > 0 and M = M⊤ > 0. Let Ξ = ξIn and define the
following function

V (θ) =
1

2
∥θ − θs∥2Ξ+ (17)

n∑
i=1

∑
j∈Ni

bij
(
cos(θij)− cos(θsij)− (θij − θsij) sin(θ

s
ij)

)
.

For ϵ > 0, let Bϵ(θ
s) = {θ ∈ Rn|∥θ − θs∥ < ϵ} be

a neighborhood of θs. Under Assumption 2, we show
in (Jouini et al., 2022) that V (θ) in (17) is locally (i.e,
in the neighborhood Bϵ(θ

s)) positive definite.

Our approach based on inverse optimality following (Had-
dad and Chellaboina, 2011) and Corollary 3.2 suggests the
choice of the cost function,

q(θ) =
1

4

(
Ξ(θ − θ∗) + P (θ)− P ∗

)
R−1(θ)

(
Ξ(θ − θ∗) + P (θ)− P ∗

)
, (18)

where,

∇θV (θ) = Ξ(θ−θs)+P (θ)−P (θs) = Ξ(θ−θ∗)+P (θ)−P ∗

with P (θ)−P ∗ = [P1(θ)−P ∗
1 , . . . , Pn(θ)−P ∗

n ]
⊤ yields the

locally inverse optimal stabilizing controller,

u∗(θ) = −1

2
R−1

(
Ξ(θ − θ∗) + P (θ)− P ∗

)
. (19)

The angular droop controller in (Jouini et al., 2022) is
given by (19).

Following Corollary 3.2, we numerically demonstrate in
the following two-inverter network example depicted in
Fig. 1 that for a chosen initial condition, the angle and
input satisfy the constraints defined in (15) and (16).
Table 4 summarizes the numerical values (in p.u.) of the
case study.

Given γ = 1, we select θ0 ∈ X such that c = V (θ0)
and Ωc ⊆ X together with ∥u(θ0)∥M ≤ 1. The matrix
M plays the role of virtual inertia and its value is taken
from (Menta et al., 2018). By graphical inspection of
Fig. 4, we find θ0 = [2.5,−2]⊤ ∈ X and the sublevel
c = 6.7430. In Fig. 2, the angle trajectories remain inside
of the set X for all times t and the induced steady
state θs = [0.5,−0.5]⊤ satisfies Assumption 2. In Fig. 3,
the scaled 2-norm of the input satisfies the constraints
described in (16), where the cost in (18) and the input (19)
are a decreasing function of time.

✓̇1(t) = u⇤
1

✓̇2(t) = u⇤
2

Fig. 1. Two-inverter system in closed-loop with angular
droop (19).
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Fig. 2. Time-domain simulation of the angle error θ − θs

starting from θ0 = [2.5,−2]⊤ ∈ X together with the
minimum and maximum admissible angle deviations.
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Fig. 3. Time-domain simulations of the inputs u as well as
its norm in (16) for γ = 1. The cost q(θ) in (18) is de-
creasing function of the closed-loop angle trajectory.

5. CONCLUSION

We solved the constrained inverse optimal control problem
for an input constraint set containing an ellipsoid and a
state constraint set containing a sublevel set of the control
Lyapunov function. Our future work aims to study the
effect of choosing different Lyapunov functions to satisfy
the state constraints and a numerical comparison with
state-of-the-art methods from constrained optimization.
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Table 1. Parameter values in (p.u.)

Parameter Value (in p.u.)

R I3
γ 1

M 0.25 · I3
ξ 1

b12, b21 0.1

c 6.7430

θ −5 · [1, 1]⊤

θ 5 · [1, 1]⊤

Fig. 4. 3-D Representation of the sublevel set of the
Lyapunov function V in (17) in blue and the state
constraint set X in (15) in black containing the origin
marked by the red star. The initial condition θ0 ∈ X
marked by the blue star is chosen such that the set
Ωc in (6) is contained in the box X .
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