
A Domain-Independent Agent Framework for Modelling, Simulating and Solving Tasks in
Internet of Things (IoT) Systems

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

(Dr.-Ing.)

von der KIT-Fakultät für Wirtschaftswissenschaften

des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Dipl. Informatik (FH) Nicole N. Merkle

__

Tag der mündlichen Prüfung: 30.01.2024

Referent: Prof. Dr. Andreas Oberweis

Korreferent: Prof. Dr. Anne Koziolek

Karlsruhe 30.01.2024

Danksagungen

Ich möchte meine Dissertation zum Anlass nehmen, um eine wahre Anekdote zu erzählen

und mich bei den Menschen, die mich auf meinem Weg zum Doktor Grad begleitet und

unterstützt haben zu bedanken.

Die Anekdote lautet wie folgt: Zu meinem 40. Geburtstag bekam ich von meinen ehe-

maligen Kolleg*innen und dem ehemaligen "Doktorvater" aus grauer Vorzeit eine Karte

mit einer Schnecke darauf abgebildet und über der Karte stand der Text: "Besser spät als

nie". Die Karte sollte wohl auf vermeintlich "witzige" Art einen gewissen Spott darüber

ausdrücken, dass ich in fortgeschrittenem Alter promovieren wollte, und wie es den An-

schein erweckte, wurde mein Tempo im Promovieren mit dem einer Weinbergschnecke

verglichen. Ich vermute, dass auch Wetten darauf abgeschlossen wurden, ob und wann

ich die Promotion schaffen würde, da sich diese auf Grund unliebsamer Umstände und

Bestrebungen gewisser Personen so ziemlich in die Länge zog. Nur war mir das damals zu

dem Zeitpunkt noch nicht bewusst.

Was die ehemaligen Kolleg*innen und der damalige "Doktorvater" in ihrem Spott und ihrer

Ignoranz, jedoch nicht bedacht haben, ist, dass "Schnecken" interessante Tiere sind, die

zwar klein, unscheinbar und langsam, aber dafür zäh und geduldig sind. Eine Schnecke

hinterlässt ihre Spuren und überwindet Hindernisse, die ihr immer wieder Mal auf ihrem

Weg begegnen. Sie geht ihren Weg in ihrem eigenen Tempo und lässt sich dabei nicht

davon abbringen, und dabei streckt sie immer wieder ihre Fühler aus, um sich neu zu

orientieren und die nächste Etappe zu verfolgen.

Diese Geburtstagskarte wurde für mich zum Sinnbild und Ansporn es der Weinbergsch-

necke gleich zu tun. Auch wenn ich in meinem Leben und meiner Promotion langsame

Schritte gegangen bin und dabei Umwege gemacht habe, so habe ich trotz aufkommender

Hindernisse nie meine Zuversicht und mein Ziel aus den Augen verloren und bin entgegen

aller Steine, die mir durch so manche Person in den Weg gelegt wurden, nicht davon

abgehalten worden, meinen Weg zum erstrebten Ziel zu gehen. Auf diesem Weg habe ich

sehr viel gelernt, vor allem über mich selbst und es haben mich einige Menschen begleitet

und denjenigen, die mich menschlich bereichert, unterstützt bzw. gefördert haben, genau

diesen Menschen möchte ich aus ganzem Herzen danken.

Allen voran möchte ich meiner Doktormutter Prof. Dr. Anne Koziolek, die mich von

dem damaligen Lehrstuhl, aus dem ich auf eigenen Wunsch ausgetreten bin, "adop-

tiert" hat, ganz herzlich danken, dafür, dass sie den Anstand, die menschliche Größe

und Offenheit besessen hat, mich ohne Vorbehalte bzw. unvoreingenommen als Dok-

torandin zu übernehmen. Sie war letztendlich die einzige Person unter den angefragten

i

Professor*innen, die, trotz bzw. aufgrund der problematischen Hintergründe meines

Lehrstuhlwechsels, gesehen hat, in welcher schwierigen und ungerechtfertigten Situation

ich mich befand und auch erkannt, dass ich auf der Zielgeraden zur Promotion Unter-

stützung benötige und das Potential besitze, diese zu erreichen. Es war für mich immer sehr

angenehm mit ihr über meine Doktorarbeit und die inhaltlichen Themen zu sprechen und

ich habe einiges über wissenschaftliches Arbeiten von ihr gelernt und erfahren, dass eine

Betreuung, im Gegensatz zu früheren Erfahrungen, auch angenehm und unkompliziert

verlaufen kann. Zudem bewundere ich, dass sie Familie und Beruf sowie zusätzliche

Doktorand*innen wie mich unter einen Hut bekommt. Ein großes Dankeschön, dass ich

mit der Unterstützung von Frau Prof. Dr. Koziolek meine Dissertation erfolgreich beenden

durfte.

Meine Entscheidung den "Doktorvater" zu wechseln, habe ich jedenfalls zu keiner Zeit

bereut. Im Gegenteil, ich habe mittlerweile auch ein unterstützendes Arbeitsumfeld mit

sehr netten Kolleg*innen und Doktorand*innen gefunden, in dem Menschen nicht auf

Grund persönlicher Merkmale diskriminiert und ausgegrenzt werden.

Weiter möchte ich Prof. Dr. Oberweis danken, der sich bereit erklärte, als Erst-Gutachter

meine Doktorarbeit zu bewerten. Ich habe ihm und Frau Koziolek ziemlich viel zum Lesen

zugemutet, da ich mich einfach nicht kurz fassen kann. Ich hoffe, dass meine Arbeit trotz

Umfang, interessante Einblicke in mein Thema geben konnte und beide Gutachter*innen

einen gewissen Unterhaltungswert darin finden konnten, auch wenn das Thema meiner

Dissertation nicht ihr wissenschaftliches Interessengebiet umfasste.

Ich möchte auch meinen ehemaligen Kolleg*innen Dr. Tom Zentek, Nadia Ahmed, Prof.

Dr. Stefan Zander sowie Dr. Viliam Simko danken.

Tom hatte meine Diplomarbeit betreut und war der erste Kollege mit dem ich nach meinem

Diplom Abschluss am FZI zusammen arbeiten und Projekt Erfahrung sammeln durfte.

Dabei habe ich sehr viel darüber gelernt, wie es in der Arbeitswelt zugeht. Zudem habe

ich mich in der damaligen Abteilung sehr wohl gefühlt und das Arbeitsklima war sehr

angenehm und familiär. Mir ist auch mit der Zeit klar geworden, wie wichtig und leider

nicht selbstverständlich, ein gutes Arbeitsklima, offene Kommunikation, Teamfähigkeit,

verträgliche Kolleg*innen und Chefs sind.

Meine Kollegin Nadia, mit der ich später ein Büro teilen durfte, hatte mich damals überre-

det an einer "Semantic Web Summer School" teilzunehmen und hatte mich ermuntert

die Promotion, zu versuchen, da ich damals als FH Abgängerin mit Diplom Abschluss

überhaupt keine Ambitionen hatte zu promovieren. Auf der Summer School wurde ich

dann auch von Prof. Dr. Maria-Esther Vidal ermuntert die Chance einer Promotion zu

nutzen, da, laut ihren Aussagen, meine Themen, die ich dort präsentiert hatte, interessant

seien und Potential für eine Promotion hätten. Sie hat mir auch bei meinem aller ersten

Paper wertvolles Feedback gegeben, so dass es dann auch tatsächlich auf einer Konferenz

akzeptiert wurde und das für mich den Ausschlag gegeben hat es wirklich anzugehen.

ii

Mir ist klar geworden, dass es manchmal einzelne Menschen sind, die zum richtigen

Zeitpunkt durch Zuspruch und gezeigtes Zutrauen einem den entscheidenden Impuls

geben, einen neuen Weg einzuschlagen. Deshalb ein großes Danke an Nadia und Prof. Dr.

Vidal, denen ich ihren damaligen Impuls und Zuspruch hoch anrechne.

Nun komme ich zu Stefan und Viliam. Beide haben mich damals am FZI als Postdocs

betreut. Mit Stefan habe ich die meisten Paper geschrieben bzw. auch veröffentlicht und er

hat mir einiges über das Schreiben von wissenschaftlichen Papern und den akademischen

"Betrieb" beigebracht. Zudem war er ein sehr freundlicher und angenehmer Kollege, mit

dem ich mich gut verstanden habe und der den allzu treffenden Begriff "Wissenschafts-

Zirkus" in mein Vokabular brachte. Im Verlauf meiner Promotion habe ich öfter daran

denken müssen, dass es zum Glück auch andere Menschen außer mir gibt, die es so

empfinden, wie der Begriff es suggeriert.

Nachdem Stefan Professor wurde und das FZI verließ, übernahm Viliam die Betreuung

meiner Arbeit. Zu Viliam ist zu sagen, dass er ein angenehmer Kollege und Zeitgenosse

ist, mit dem ich sehr gerne zusammengearbeitet und von dem ich auch einiges technis-

ches Know-how zu Software Technik, Frameworks und APIs sowie R gelernt habe. Vor

allem haben mir unsere langen und amüsanten Diskussionen zu JavaScript, funktionaler

Programmierung, Fotografie, den Bau von Flipper-Automaten, sowie den Nutzen- bzw.

Nicht-Nutzen von "Semantic Web" als auch das Ansehen von skurrilen und witzigen

YouTube Videos über Arbeitsunfälle Spass gemacht. Ich finde man sollte mehr solcher

Kollegen wie Viliam haben, mit denen man auf Augenhöhe reden und arbeiten kann. Er

hat, im Gegensatz zu manch anderen, nie den überheblichen oder besserwisserischen

Postdoc raus hängen lassen, obwohl er sehr viel Ahnung und technisches Know-how

besitzt, sondern war ein Kollege, den ich sehr schätze.

Zu guter Letzt möchte ich meinen Eltern Birsen Merkle und Manfred Merkle danken,

ohne deren Zutun ich nicht auf diesem Planeten wäre. Sie haben mich auf all meinen

(Um-)Wegen und Sackgassen begleitet und mir Kraft, Mut, Zuversicht, Hoffnung und

Selbstvertrauen gegeben. Ich bin dankbar solche Eltern zu haben, die mich so akzeptieren

und lieben wie ich bin.

iii

Acknowledgements

I would like to take my doctoral thesis as opportunity to tell a true anecdote and to thank

the people who have accompanied and supported me on my way to my doctoral degree.

The anecdote is like this: For my 40th birthday, I received a card with a snail on it from

former colleagues and the former "Ph.D. supervisor". Above the card was the text: "Better

late than never". The card was supposedly meant to be "funny" and should obviously

express a certain mockery of the fact that at this advanced age of 40 at the time, I still

wanted to do a doctorate and presumably my speed in doing a doctorate was compared

to that of a vineyard snail. I suspect that bets were also placed on whether and when I

would be able to complete my doctorate, as this took quite a long time due to unpleas-

ant circumstances and the endeavours of certain people. But I didn’t realise that at the time.

What the former colleagues and "Ph.D. supervisor" did not consider in their mockery and

ignorance, however, is that snails are interesting animals that may be small and slow, but

patient and tough. A snail leaves its traces and overcomes obstacles that are placed in its

path from time to time. A snail goes its own way at its own pace and does not allow itself

to be diverted from its path, and in the process it always puts out feelers to reorient itself

in order to pursue the next stage.

This birthday card became a symbol and incentive for me to do the same as the snail.

Even though I have taken slow steps and detours in the course of my dissertation and my

life, I have never lost sight of the goal and have not let myself be deterred from reaching

the desired goal despite all the obstacles that some people have put in my way. On this

path I have learned a lot, especially about myself and there have been people who have

accompanied and supported me, especially these people I would like to thank here.

First and foremost, I would like to thank my doctoral supervisor Prof. Dr. Anne Koziolek,

who "adopted" me from the former chair I left at my own initiative, for the fact that she

had the decency, human size and openness to accept me as a doctoral candidate without

reservations or bias. Ultimately, she was the only person among the professors approached

who, despite or because of the problematic background of my change of research chair, saw

the difficult and unjustified situation I was in and also recognised that I needed support

on the home stretch to my doctorate and that I had the potential to achieve it. It was

always very pleasant for me to talk to her about my doctoral thesis and the content-related

topics and I learnt a lot about scientific work from her and experienced that, in contrast to

previous experiences, supervision can also be pleasant and uncomplicated. I also admire

the fact that she manages to juggle family and career as well as additional doctoral students

like me. A big thank you for allowing me to successfully complete my doctorate with the

v

support of Prof. Dr. Koziolek.

I have never regretted my decision to change my doctoral supervisor. On the contrary, I

have now also found a supportive working environment with very nice colleagues and

doctoral students in which people are not discriminated against or marginalised on the

basis of personal characteristics.

Furthermore, I would like to thank Prof. Dr. Oberweis, who agreed to be the first reviewer

of my thesis. I expected him and Mrs. Koziolek to read quite a lot, as I simply cannot be

brief. I hope that, despite its length, my thesis was able to provide interesting insights into

my topic and that both reviewers were able to find some entertainment value in it, even if

the topic of my dissertation did not cover their scientific field of interest.

I would especially like to thank my former colleagues Dr. Tom Zentek, Nadia Ahmed, Prof.

Dr. Stefan Zander and Dr. Viliam Simko.

Tom had supervised my diploma thesis and was the first colleague with whom I was

able to work and gain project experience at the FZI after graduating. I learnt a lot about

how things work in the world of labour. I also felt very comfortable in the department at

the time and the working atmosphere was very pleasant and informal. Over time, I also

realised how important a good working atmosphere, open communication, team spirit

and friendly colleagues and bosses are, which unfortunately cannot be taken for granted.

My colleague Nadia, with whom I later shared an office, had persuaded me to take part

in a "Semantic Web Summer School" and encouraged me to try for a doctorate, as I had

no ambitions at all to do a doctorate as a graduate with a degree from a university of

applied sciences at that time. At the summer school, I was also encouraged by Prof. Dr.

Maria-Esther Vidal to take the opportunity to do a doctorate because, according to her,

the topics I presented there were interesting and had potential for a doctorate. She also

gave me valuable feedback on my very first paper, so that it was actually accepted at a

conference and that was the deciding factor for me to really go for it.

I realised that sometimes it is individual people who give you the decisive impetus to take

a new path at the right time through encouragement and confidence. So a big thank you to

Nadia and Prof. Dr. Vidal, who I greatly appreciate for their impetus and encouragement

at the time.

Now I come to Stefan and Viliam. Both of them supervised me as post-doctoral researchers

at the FZI. I wrote and published most of my papers with Stefan and he taught me a lot

about writing scientific papers and the academic "business". He was also a very friendly

and pleasant colleague with whom I got on well and who brought the all too apt term

"scientific circus" into my vocabulary. During the course of my doctorate, I often had to

think about the fact that, fortunately, there are other people besides me who feel the way

the term suggests.

vi

After Stefan became a professor and left the FZI, Viliam took over the supervision of my

work. I have to say that Viliam is a pleasant colleague and contemporary with whom

I really enjoyed working and from whom I learnt a lot of technical know-how about

software technology, frameworks and APIs as well as R. Above all, I enjoyed our long and

amusing discussions about JavaScript, functional programming, photography, building

pinball machines and the benefits or non-benefits of the "Semantic Web", as well as watch-

ing bizarre and funny YouTube videos about accidents at work. I think we should have

more colleagues like Viliam with whom we can talk and work at eye level. In contrast to

some others, he never let the arrogant or know-it-all post-doc hang out, even though he

has a lot of knowledge and technical expertise, but was a colleague I really appreciated.

Last but not least, I would like to thank my parents Birsen Merkle and Manfred Merkle,

without whose help I would not be on this planet. They have accompanied me on all my

journeys, (re)paths and dead ends, and have given me strength, courage, optimism, hope

and self-confidence. I am grateful that I have such parents who accept and love me for

who I am.

vii

List of Referenced Publications

This Thesis is based on the following publications:

[157] Nicole Merkle and Stefan Zander. “Improving the Utilization of AAL Devices

through Semantic Web Technologies and Web of Things Concepts”. In: Proce-

dia Computer Science 98.Supplement C (2016). The 7th International Conference

on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2016)/The 6th

International Conference on Current and Future Trends of Information and Commu-

nication Technologies in Healthcare (ICTH-2016)/AffiliatedWorkshops, pp. 290–297.

issn: 1877-0509.

[156] Nicole Merkle and Stefan Zander. “Agent-Based Assistance in Ambient Assisted

Living Through Reinforcement Learning and Semantic Technologies”. In: On the

Move to Meaningful Internet Systems. OTM 2017 Conferences. Ed. by Hervé

Panetto et al. Cham: Springer International Publishing, 2017, pp. 180–188. isbn:

978-3-319-69459-7.

[159] Nicole Merkle, Stefan Zander, and Viliam Simko. “A Semantic Use Case Simulation

Framework for Training Machine Learning Algorithms”. In: Knowledge Engineer-

ing and Knowledge Management. Ed. by Catherine Faron Zucker et al. Cham:

Springer International Publishing, 2018, pp. 243–257.

[158] Nicole Merkle and Stefan Zander. “Using a Semantic Simulation Framework for

Teaching Machine Learning Agents”. In: Procedia Computer Science 137 (2018).

Proceedings of the 14th International Conference on Semantic Systems 10th, 13th

of September 2018 Vienna, Austria, pp. 78–89. issn: 1877-0509.

[155] Nicole Merkle and Patrick Philipp. “Cooperative Web Agents by Combining Se-

mantic Technologies with Reinforcement Learning”. In: Proceedings of the 10th

International Conference on Knowledge Capture, K-CAP 2019, Marina Del Rey,

CA, USA, November 19-21, 2019. Ed. by Mayank Kejriwal, Pedro A. Szekely, and

Raphaël Troncy. ACM, 2019, pp. 205–212.

[152] Nicole Merkle and Ralf Mikut. "Context-Aware Composition of Agent Policies by

Markov Decision Process Entity Embeddings and Agent Ensembles". Semantic Web

Journal (SWJ), IOS Press. 2024. pp. 1-29.

viii

Abstract

Considering the digitisation and trends in heterogeneous domains (e.g. healthcare, robotics,

smart home, automated web agents), a growing number of tasks and processes are out-

sourced to intelligent software agents that are able to perform and solve process oriented

tasks and make recommendations based on sensed observations and contextual informa-

tion. For instance, the Internet of Things (IoT) and artificial intelligence (AI) algorithms help

intelligent software agents to perform their tasks in cyber-physical and IoT systems [174,
28, 10]. Meanwhile, smart watches, medical bands, mobile applications as well as smart

home platforms move mainstream and are available for affordable costs.

The mentioned digitisation in every day life leads to the generation of valuable data and

further to social implications such as outsourcing tasks to intelligent software agents. By

handling these valuable data through software agents, informative insights can be gained

that allow making smart decisions, while costs and (human) resources can be saved.

Thereby, the objective of agents is to imitate–based on domain knowledge, learned strate-

gies (policies) and their made observations–as good as possible the decisions of human

domain experts. Agents also have to exhibit adaptive and well-defined behaviour to nei-

ther cause harm in their environment nor harm themselves. However, this brings many

challenges for software agents they have to deal with, especially in IoT systems.

Due to the aforementioned requirements, agent frameworks or platforms are necessary

that cover the life cycle and process steps of software agents from development to de-

ployment, training, execution and maintenance. However, such frameworks are usually

developed for game environments or specific domains and tasks, or only fulfil the named

requirements of software agents to a limited extent.

The objective of the presented agent framework is to enable agents making smart and well-

defined decisions bymodelling and combining semantic technologies andmachine learning

in order to solve tasks in IoT systems. Thereby, the simulation of guidelines and mathemati-

cal models, representing phenomena and tasks, shall guide agents in their learning process.

For this reason, this work aims for providing a domain-independent, conceptual reference

framework that allows a simplified formalisation of decision process oriented tasks in

order to simulate/imitate them in a generic way so that software agents are enabled to

train task and process characteristics and apply the resulting policies for solving IoT tasks

adequately in a domain-independent and user-centric way. Furthermore, the framework

aims for allowing agents the adaptation and formal description of trained policies so that

these can be shared and are reusable by rule-based agents for novel tasks and individual

ix

users.

This work is intended to contribute to the support of people by intelligent software agents

within heterogeneous IoT environments and domains (e.g. healthcare, service robotics,

web agents, ambient assisted living, etc.).

x

Contents

Vorwort . i

Acknowledgements . v

List of Figures . xv

List of Tables . xix

1. Motivation . 1
1.1. The Cold-Start Problem of Agents . 2

1.2. Context-Awareness and Personalisation of Agents 6

1.3. Mining, Sharing and Reusing of Produced Expert Knowledge 10

1.4. Structure of the Thesis . 12

1.5. Summary of this Chapter . 13

2. Foundations . 15
2.1. Agent-based Systems . 16

2.1.1. Properties of Intelligent Agents 17

2.1.2. Properties of the Task Environment 19

2.1.3. Simple Reflex Agent . 20

2.1.4. Model-Based Reflex Agent . 20

2.1.5. Goal-Based Agent . 21

2.1.6. Utility-Based Agent . 21

2.1.7. Learning Agent . 22

2.2. Semantic Technologies . 23

2.2.1. RDF(S), Turtle, SHACL, JSON-LD and RDFa 24

2.2.2. Description Logic . 32

2.2.3. SPARQL . 36

2.2.4. Semantic Web Rule Language (SWRL) 37

2.2.5. Notation3 (N3) . 38

2.2.6. The Internet of Things (IoT) . 39

2.2.7. The Web of Things . 40

2.3. Machine Learning . 42

2.3.1. Learning . 42

2.3.2. Supervised Learning . 43

2.3.3. Unsupervised Learning . 44

2.3.4. Over- and Under-fitting . 45

2.3.5. Classification versus Regression 45

xi

Contents

2.3.6. Feature Engineering and Data Preprocessing 46

2.3.7. Evaluation of ML Models . 47

2.3.8. Multinomial and Gaussian Naive Bayes Classifier 50

2.3.9. Markov Decision Process . 52

2.3.10. Reinforcement Learning . 54

2.3.11. Hyperparameter Optimisation . 58

2.3.12. Word/Entity Embeddings . 62

2.3.13. Genetic Algorithms . 64

2.4. Decision Rule Mining . 69

2.4.1. Frequent Item sets . 69

2.4.2. Association Rules . 70

2.4.3. OneR . 71

2.4.4. Sequential Covering . 71

2.5. Summary of this chapter . 75

3. Related Work . 77
3.1. Cold-Start Problem . 78

3.1.1. Recommender Systems . 79

3.1.2. Robot Systems . 82

3.1.3. Human Computer Interaction Systems 84

3.1.4. Summary . 85

3.2. Context-Aware Policies Adaptation and Combination 88

3.2.1. Reinforcement Learning Approaches 88

3.2.2. Language Models for Policies Combination 90

3.2.3. Rule Mining and Process Mining 92

3.2.4. Summary . 98

3.3. Retrieval and Reuse of Policies . 101

3.3.1. Summary . 104

3.4. Summary of this Chapter . 106

4. Approach . 109
4.1. Overview of Roles and Framework Phases 111

4.2. Framework Ontology: Formal Representation of Domain-Independent

Knowledge . 118

4.2.1. The Simulation of Phenomena by Mathematical Models 119

4.2.2. Concepts and Properties . 120

4.3. Simulation of MDP Tasks . 133

4.3.1. Message exchange . 134

4.3.2. Reasoning of States . 136

4.3.3. Reasoning of Rewards . 138

4.4. Adaptation and Mining of Policies . 141

4.4.1. Selection of Rule Mining Algorithm 142

4.4.2. Dataset Structure of Input . 142

4.4.3. The Relation between Data Samples and Rule Items 143

4.4.4. Data Preprocessing and Rule Mining Algorithms 143

xii

Contents

4.5. Retrieval of Policies . 155

4.5.1. Retrieval of Reusable Task Policies 155

4.5.2. Context-Dependent Combination of Task Policies 158

4.6. Conceptualisation of Agents . 178

4.6.1. General Structure and Flow of the Agent Program 178

4.6.2. Worker Agent . 183

4.6.3. Consumer Agent . 184

4.7. Assumptions and Limitations . 186

4.8. Summary of this Chapter . 189

5. Use Cases . 193
5.1. UC1: Automated Execution of Web Tasks 194

5.1.1. Flight Booking Task . 195

5.1.2. Click Check-box by Label or Synonymous Label 196

5.1.3. Click Button and Button Sequence 196

5.1.4. Click List Option by Label . 197

5.2. UC2: Virtual Coaching based on Clinical Pathways 201

5.2.1. Cardiac Disease Pathway . 202

5.3. UC4: COVID-19 Measures for Public Health and Economy 206

5.3.1. The SIR Model . 207

5.3.2. The SEIR Model . 208

5.4. UC5: Domestic Activities . 213

5.5. Summary of this chapter . 217

6. Evaluation . 219
6.1. RQ1: Cold-Start Problem . 219

6.1.1. General Goals addressing RQ1 . 220

6.1.2. Metrics . 221

6.1.3. Set-up . 222

6.1.4. Results and Discussion . 225

6.2. RQ2: Context-Aware Policy Adaption and Disambiguation 237

6.2.1. General Goals addressing RQ2.1 and RQ2.2 238

6.2.2. Metrics . 240

6.2.3. Set-up . 241

6.2.4. Results and Discussion . 247

6.3. RQ3: Share and Reuse of Policies . 257

6.3.1. General Goals addressing RQ3 . 257

6.3.2. Metrics . 258

6.3.3. Set-up . 260

6.3.4. Results and Discussion . 267

6.4. Threats to Validity . 287

6.4.1. Conclusion Validity . 288

6.4.2. Internal Validity . 290

6.4.3. Construct Validity . 292

6.4.4. External Validity . 294

xiii

Contents

6.5. Summary of this chapter . 296

7. Summary and Outlook . 299
7.1. Discussion about Contributions . 299

7.1.1. RQ1: The cold-start problem of agents 300

7.1.2. RQ2: Context-awareness and personalisation of agents 301

7.1.3. RQ3: Mining, sharing and reusing of produced expert knowledge 302

7.1.4. The simulation of phenomena by mathematical models 303

7.1.5. Summary of Contributions . 303

7.2. Future Work . 305

7.2.1. Evaluation of Framework Usability 305

7.2.2. Security concerns and trust . 305

7.2.3. Incorporating fuzzy states by fuzzy logic 305

7.2.4. Open-source and platform-independent framework distribution . 306

7.2.5. Environmental design andGenerativeModels for varying Simulations 306

7.2.6. Large language models for transforming natural language into

semantic task entity descriptions and policy instructions 306

7.2.7. A Wikidata knowledge graph for agent programs 308

Bibliography . 309

A. Reward Function Example . 335

B. State Update . 339

C. Data Preprocessing . 343

D. List of all Scientific Publications . 347

xiv

List of Figures

2.1. The interaction of an agent with its environment. 18

2.2. The graph representation of the Peanuts example. 25

2.3. RDFa graph representation of the resource me. 32

2.4. Supervised machine learning process steps 44

2.5. Illustration of a ROC/AUC curve of a synthetic generated and classified

dataset . 49

2.6. Function plot of cumulative reward per execution step 51

2.7. Screenshot of the SMAPPI game [232] and corresponding MDP created as

part of this work to illustrate an example of an MDP. 55

2.8. Learning cycle in RL . 56

2.9. An exemplary deep neural network with a word embedding layer. 64

4.1. Big picture of the presented approach. 113

4.2. The definition of a task instance with the guidance of a chat bot web

application. 114

4.3. The simulation process between agent and simulator [155]. 133

4.4. The UML sequence diagram illustrates the flow of the simulation and the

interaction between agent and simulator. 134

4.5. Process flow of the rule mining approach for deriving policy rules. 141

4.6. Stages, goals and actions of a flight booking task. 144

4.7. UML class diagram representing the datasets that serve as input for the

discussed rule mining algorithms. 144

4.8. The automated selection of the rule mining approach. 145

4.9. Example of rule-learning from CART. 147

4.10. Data flow between the presented function. First, the collected data samples

are preprocessed, then item sets and ordered action sequences are derived

and based on these frequent item sets and ordered action sequences the

Best Fit Sequence algorithm derives for each sequential task stage the

corresponding action sequence. 148

4.11. Retrieval of reusable policies by Entity Embeddings. An agent sends its

task entity description to the agent framework. The corresponding DNN

is re-trained with the new task entity description. The encoded entity

embedding of the new task is stored in the database and used to find the

most similar task embeddings in the database using similarity metrics. The

top-n of the most similar tasks are returned to the requesting agent who

had provided the new task entity description. 156

4.12. Deep Neural Network Architecture for training task and action embeddings. 158

4.13. Process flow and architecture of policies combination approach [152]. . . 160

xv

List of Figures

4.14. The second derivative at single points (here x) indicates whether the

underlying function is increasing, decreasing or constant. E.g.: (a) Shows

an increasing, i.e. concave upward, slope of a functionwith a local minimum.

(b) Illustrates that the slope of the function is constant, i.e. inconclusive.
This may indicate that an inflection point is reached. (c) Illustrates a

decreasing, i.e. concave downward, slope of a function with a local maximum. 166

4.15. The sampling of states by inflection points. The dashed lines mark and

delimit the samples in the time series data that represent different states of

a given feature (y-axis) among time steps (x-axis). A total of 4 states (e.g

SusceptibleDecreased, SusceptibleConstant, RecoveredIncreased, Recovered-
Constant) are sampled in the example, i.e. 2 for each of the two observation

features. 168

4.16. A (hidden) Markov model that represents hidden states, state transitions

and state observations [152]. 169

4.17. Bimodal data distribution (in blue) and different estimated density curves

(in red) by different kernel density estimators and with bandwidth 2. . . 171

4.18. Arrangement of the deep neural network for training entity embedding

vectors that represent activity contexts [152]. 173

4.19. The trained embedding vectors of activities, states and actions are merged

and visualised in a 3-dimensional space in the Tensorflow Projector. The

colouring of the embedding vectors (shown as dots) indicates how spatially

far away other embedding vectors are from a selected embedding vector

(here, e.g. in light red Wash_drinking_glass_1_Done). The darker the

hue of a neighbouring embedding vector, the closer it is to the selected

vector. The distances in this illustration were measured with the Euclidean

distance [152]. 174

4.20. The general programme to which an agent of the framework is obliged to

adhere. 179

4.21. Simulator-based online training of a worker (e.g. DQNN) agent [155]. . . 183

4.22. Adaptation and reuse of policies for performing novel tasks conducted by

the consumer agent [155]. 185

5.1. The flight-booking task execution sequence 196

5.2. The two variants of the check-box task. 197

5.3. Button related web tasks. 197

5.4. List Option Task . 198

5.5. Transition model of the SEIR [1] categories. 209

6.1. Set-up for the evaluation of automated web tasks. The trained RL agent

was previously trained with the simulation component of the proposed

agent framework. 224

6.2. Every agent’s cumulative reward for every evaluated web task. 230

6.3. Performance of each agent w.r.t. the select list option task [155]. 231

6.4. Performance of each agent w.r.t. the select click buttons task [155]. . . . 232

6.5. Performance of each agent w.r.t. the select click button sequence task [155]. 233

xvi

List of Figures

6.6. Performance of each agent w.r.t. the click checkboxes by synonym task [155]. 234

6.7. Performance of each agent w.r.t. the click checkboxes by label task [155]. 235

6.8. Performance of each agent w.r.t. the flight booking task [155]. 236

6.9. Evaluation set-up regarding the policy adaptation scenario. 243

6.10. Evaluation set-up of the agent ensemble approach [152]. 244

6.11. Distribution of the action sequence length (y-axis) among all 52 activities

(x-axis) evaluated [152]. 245

6.12. Density plot and histogram of the search radius value ranges (x-axis) in

which the most suitable and related action embeddings for submitted, i.e.

observed states, were found [152]. 247

6.13. Occurrence of actions and assigned rewards during and after training. . . 248

6.14. Distribution of successfully trained (right bar) and unsuccessfully learned

(left bar) activities by the ensemble agent approach after 1 episode and

the RL, i.e. DQNN, agent after 1, 10 and 100 training episodes. The colour

shades indicate the action sequence length of the respective activities.

In contrast to the RL agent, every task performed could be successfully

completed by the proposed agent ensemble approach [152]. 249

6.15. Cumulative reward (y-axis) for each activity (x-axis) obtained during com-

bination by ensemble agents (blue dots) and during training by RL agent

(red dots) after 1, 10 and 100 Episodes [152]. 250

6.16. Required steps (y-axis) of ensemble agents (blue dots) and RL agent (red

dots) per activity (x-axis) until policies are composed or trained. The

turquoise dots show the number of required policies among each activity.

The plots are scaled and displayed in logarithmic scale to make overlapping

values visible in the plots [152]. 251

6.17. Number of incorrect decisions (y-axis) made for each activity (x-axis)

during a) policy combination by ensemble agents (blue dots), and b) policy

training by the RL agent (red dots) [152]. 251

6.18. Distribution of successfully finished (true value at x-axis, right bar) and

unfinished (false value at x-axis, left bar) tasks by the RL and ensemble

approach. The RL agent had 3 different training times, i.e. 1, 10 and 100

episodes while the proposed ensemble approach required only 1 episode. 254

6.19. Development of cumulative reward (y-axis) for each performed and numer-

ically encoded activity (x-axis) during training for the ensemble approach

(blue dots) in 1 episode and the RL approach (red dots) in 1, 10 and 100

episodes. 254

6.20. Required steps (y-axis) for each performed and numerically encoded ac-

tivity (x-axis) during training for the ensemble approach (blue dots) in

1 episode and the RL approach (red dots) in 1, 10 and 100 episodes. The

turquoise dots show how many actions an activity requires in order to be

solved. The plots are scaled and displayed in logarithmic scale to make

overlapping values visible in the plots. 255

xvii

List of Figures

6.21. Number of wrongly executed actions (y-axis) for each performed and

numerically encoded activity (x-axis) during training for the ensemble

approach (blue dots) in 1 episode and the RL approach (red dots) in 1, 10

and 100 episodes. 255

6.22. Set-up for rule mining evaluation . 262

6.23. A generated MDP for the Turn on light 15 task. 264

6.24. Setup for task embeddings evaluation . 268

6.25. Performance of agents that reused for the web tasks the mined rules. . . 269

6.26. Histograms of rewards that were achieved by utilising the mined rules. . 270

6.27. Virtual Home dataset tasks, executed with mined rules. 271

6.28. Performed actions and rewards of Virtual Home dataset, executed with

mined rules. 272

6.29. COVID-19 measures: RL agent performance versus mined rules performance. 274

6.30. COVID-19 measures: Performed actions of each algorithm and received

rewards per action. 275

6.31. Development of the SEIR categories based on the imposed measures. Since

the exposures overlap with the infections, they cannot be seen in the plots. 276

6.32. COVID-19measures: GA agent performance versusmined rules performance. 278

6.33. COVID-19 measures: Performed actions of each algorithm and received

rewards per action. 279

6.34. Development of the SEIR categories based on the imposed measures. The

exposures (yellow) in Fig. 6.34b and Fig. 6.34c overlap with the infections

and therefore cannot be seen in the plots. 280

6.35. Embedding Projector showing trained task embeddings. 283

6.36. Go toilet 28 policies trained and applied to Go toilet 60 task. 284

6.37. Turn on light 15 policies trained and applied to Turn on light 16 task. . . 285

6.38. Read book 7 policies trained and applied to Read book 25 task. 286

7.1. Generative adversarial models for task simulation and policy combination. 307

xviii

List of Tables

2.1. Confusion Matrix . 47

3.1. Comparison of related works and agent framework w.r.t. the cold-start

problem. 87

3.2. Comparison of reinforcement learning approaches 91

3.3. Comparison of rule mining approaches. 100

4.1. State concept and its properties. 121

4.2. ObservationFeature concept and its properties. 123

4.3. Topic concept and its properties. 123

4.4. Action concept and its properties. 124

4.5. Effect concept and its properties. 125

4.6. The Transition concept and its properties. 125

4.7. VirtualInfluencer concept and its properties. 126

4.8. Strategy concept with its properties. 126

4.9. Policy concept and its properties. 128

4.10. Param concept and its properties. 128

4.11. Equation concept and its properties. 128

4.12. Algorithm concept and its properties. 129

4.13. Agent concept and its properties. 130

4.14. UseCase concept and its properties. 130

4.15. Task concept and its roles respectively properties. 132

4.16. Selection of rule mining algorithm based on task characteristics. 143

4.17. Ontology concepts and properties of the meta data describing log records. 163

4.18. Data Structure with the combined actions resp. policies. The rank deter-

mines the quality of the actions based on the reward values obtained [152]. 176

5.1. Characteristics of the use case tasks. 194

5.2. Features of heart disease pathway. 203

5.3. States and rules of the heart disease pathway. For implementation pur-

poses, InitialState and FinalState have been introduced as states, although

they violate the requirement that an MDP cannot be in two different states

at the same time. However, it can be said that a context or state consists of

all partial states defined here and all partial states are observable in each

time step and specify an overall state and context. 204

5.4. Actions and their effects in the heart disease pathway. 205

5.5. COVID-19 Measures with decreasing restriction level. 207

5.6. First configuration of reward assignment based on hospital beds and taken

measure. 211

xix

List of Tables

5.7. Second configuration of reward assignment based on hospital beds and

taken measure. 211

5.8. Third configuration of reward assignment based on hospital beds and

taken measure. 212

6.1. Performance table for every agent and web task with respect to the number

of episodes, cumulative reward and mean reward per episode. The bold

values show the best results. 227

6.2. The table shows the confidence intervals of the rewards received by the

agents per web task. The confidence intervals represent a 95% coverage

of the reward values. It can be seen that the confidence intervals do not

overlap and thus the results differ significantly. 228

6.3. The table displays the Cohen’d effect size between the different distribu-

tions of reward values obtained by the evaluated agents. The interpretation

of effect size values is as follows: +/-0.2 till 0.5 small effect, +/-0.5 till +/-0.8

medium effect, > +/-0.8 strong effect. 228

6.4. Average number of incorrect actions performed for each activity within

1, 10 and 100 episodes (seemetric M.2.2.5). A total of 52 activities were

evaluated for each of the approaches considered. The agent ensemble

approach required only 1 episode for each task, thus values for 10 and 100

episodes are not given. 251

6.5. Evaluation results of the 10-fold cross validation for the proposed ensemble

approach. Here the results of all tasks were considered, i.e. also the ones

that were aborted after a certain time because no solution could be found

within a predefined radius. 253

6.6. Evaluation results of the 10-fold cross validation for the proposed ensemble

approach. Here only the results of completed tasks were considered. . . . 253

6.7. Baseline approaches compared to the proposed policy combination ap-

proach in terms of their feasibility and conformance to the Virtual Home

dataset activities. It is important to note that the experimental set-ups are

different. For this reason, the results are only comparable to a certain extent. 256

6.8. Configuration of initial conditions for the COVID-19 measures task. . . . 262

6.9. Initial model parameters for the COVID-19 measures task. 262

6.10. Comparison of most similar tasks by their embedding vectors. 282

xx

1. Motivation

The progressing evolution of cyber-physical systems [10, 174] and Internet of Things (IoT)
technologies [286] as well as the evolution of artificial intelligence technologies and ap-

plications lead to the ubiquity of intelligent software agents [33] providing services that
support humans in daily life activities within heterogeneous domains, such as e.g. logistics,

smart home, entertainment, social life, healthcare, well-being, ambient assisted living,

service robotics and many more [260]. These agents take over tasks so that humans can

be relieved in their everyday life and work [198, 49].

Different research fields in computer science (e.g. machine learning, data science, data

mining, recommender systems, knowledge engineering and discovery) deal with strategies

and approaches in order to enable agents to perform such complex tasks. For this reason,

agents require different skills for observing and recognizing their environment in order

to decide which action to perform next so that pre-defined goals can be achieved step by

step [198]. This implies that agents have to interpret their observations (data) and have to

distinguish if the observed information is relevant or not and how made observations are

related to appropriate decisions and actions [210].

An awareness of context (state space) and agent capabilities (action space) is required

which means that agents have to knowwhich situations (states) can occur within a task and

which actions they are able to perform in a given environment [261, 29]. The mentioned

skills are usually provided by machine-interpretable formalisations summarised under the

term knowledge representation [128, 9]. Moreover, intelligent software agents require the

ability to learn strategies, i.e. policies, from their observations, which means that their

skills or strategies are based on their made experience [169]. To gather experience and

learn from this experience, machine learning (ML) techniques are required as a means.

The aforementioned requirements indicate what an agent framework is expected to pro-

vide or address in order to support software agents during their runtime. In the following

motivational sections, the different challenges that an agent has to deal with are discussed

in detail by providing an overview of how these challenges are addressed by the contribu-

tions of this work.

Section 1.1 discusses the cold-start problem [129, 140] that occurs when an agent has no

domain-specific prior knowledge at the beginning of its runtime. This problem is particu-

larly relevant in IoT systems where new tasks are deployed on-the-fly or new, unknown

users are introduced during the runtime of the system. The interaction and use of services

and applications by different people requires that agents can adapt their services and

policies at runtime, so that different requirements of tasks and preferences of the users

1

1. Motivation

can be served.

Section 1.2 sets the target users, their context and characteristics of tasks into the focus of

consideration and illustrates that context-aware adaptation and personalisation are impor-

tant, since an agent has to serve for heterogeneous target users and deal with different

and changing environments and task characteristics.

Section 1.3 reflects the utility of produced process data and elaborates the benefit of mining

and deriving rules from data as well as sharing and reusing the derived rules for solving

immediately upcoming tasks.

The research questions (RQ1-3) that are posed and addressed by this work, base on the

challenges and problems discussed in the corresponding mentioned sections. Therefore,

the stated hypothesis and the corresponding research question (RQ) are presented at the

end of each section to summarise the problem. Section 1.4 provides an overview about

how this work is structured. Finally, Section 1.5 summarises the key considerations of this

chapter.

1.1. The Cold-Start Problem of Agents

Numerous scientific works deal with the life-cycle management of software agents [16, 87,

31]. Every software agent passes a certain lifespan from the beginning of its development

and deployment to its execution of tasks and its adaptation to new situations and require-

ments [295]. Thus, from the beginning of their life cycle, agents should display a well

defined behaviour in order to appropriately solve the tasks assigned to them. Therefore,

an agent requires an internal knowledge-base that provides, adapts and maintains the

required knowledge about the environment, the solvable task and the capabilities of the

agent [214, 290]. This domain knowledge is usually provided by domain experts, guidelines,

demonstrations or by according use case specific datasets in order to delegate tasks to

intelligent software agents [240, 241, 99, 165, 250].

In case this prior knowledge is not available in a formal and machine-understandable

representation to an agent, the agent faces the cold-start problem which is problematic,

especially if unpredictable or critical situations come up. Use cases that often face the

cold-start problem and require immediately well-defined strategies, concern the personali-

sation of services, applications and recommender systems, the Internet of Things (IoT)

or service robotics [264]. A concrete example of this is when new devices and tasks are

deployed during runtime and an agent needs to be able to cope with the new devices and

tasks immediately. The rapid emergence of new contexts and environments, or switching

between them, may also require an agent to be able to respond adequately to these new

contexts and environments at runtime. For example, a service robot in a domestic environ-

ment or a factory floor is confronted with different tasks, spaces and possibly people and

should be able to react to sudden events and changing contexts in an appropriate way [32,

115]. In order to achieve a well-defined, safe and desired behaviour and task execution

2

1.1. The Cold-Start Problem of Agents

of the agent, a formal (machine-understandable) representation of the required domain

knowledge should be provided to the agent.

Domain knowledge depends heavily on the use cases, (see Sec. 5), and goals of the domain

experts or the target users. Information about dynamic changes in the environment or

sudden context and state changes may sometimes only be observable at runtime of the

agent, whereas they are unknown at design time. Moreover, the state and action space of

the task may be so huge or even infinite so that not all possible states and best possible

actions can be determined and pre-programmed in advance. For instance, if an agent has

many alternative actions to choose from in a given state, it sometimes cannot know in

advance which of the possible and alternative actions will lead to a desired state, since

many unconsidered factors can unpredictably influence the outcome of an action.

Since use cases and objectives can vary due to unknown and changing user preferences,

task requirements and stochastic environments, synthetic data, representing significant in-

formation to start and learn a task, is required in order to overcome the cold-start problem.

Machine learning (ML) strategies empower agents to learn a certain behaviour (sequence

of policies) depending on acquired data.

However, before an intelligent software agent is able to learn a desired behaviour or

strategy (policy), it requires existing and preprocessed datasets in classical (un-)supervised

ML settings and recommender systems. Depending on the application domain, the re-

quired datasets might be sparse or either not (immediately) available in a structured and

machine-interpretable way or they might lack significance and representativeness for a

given problem [178, 204]. In many cases, data sovereignty restrictions and privacy policies

prevent the collection of valuable data [111, 271]. Considering for instance the healthcare

domain, there are usually only synthetic data available or data that were acquired during a

medical field study [53, 41, 257, 281]. However, field studies are costly and it requires time

to collect and pre-process the appropriate data. Moreover, if certain tasks have varying

preferences, requirements and objectives (for instance due to personalisation), such data

are not sufficient significant and useful, because it just represents a tendency inherent to

the given field study.

Generalisability and transferability however is a crucial condition for predictions and

within evidence-based, process and decision oriented tasks [263, 268, 76]. Trained ML

policies require to be applicable and adaptable to changing observations within a given

task whereas they allow a well-defined behaviour. Many works [129, 27, 140] address

the cold-start problem, especially concerning recommender systems. The objective is to

provide for agents a matching default strategy, so that they are enabled to act immediately

within an environment in an adequate and intended way.

Other approaches such as learning by demonstration [219, 278] are applied with the help

of (human) teachers who demonstrate the desired behaviour for a task to the agent, while

the agent imitates the performed behaviour [123, 266, 274, 121]. This implies that the

agent perceives its environment by demonstrated observations and acts according to the

3

1. Motivation

teachers behaviour. Therefore, usually an interaction between human domain expert and

agent is required, as well as a task representation (perception of the task) that the learning

agent can process. However, one problem of learning by demonstration is that implicit

or exceptional state occurrences that are not influenced directly by the demonstrating

teacher, are not covered by this kind of learning and cause uncertainty [42], which means

that it cannot be guaranteed that the entire state space is covered during the learning

phase and that the demonstrations are of high quality [39]. Moreover, teaching an agent

without having prior knowledge can be very lengthy and daunting for the teacher, since a

long time span can be required until the agent achieves a desired behaviour [24, 288].

Active Learning [222, 225, 56] that propagates a human-in-the-loop [177] approach is

a further attempt of numerous works [252, 36, 223, 93, 108, 291] for dealing with the

cold-start problem. Active learning utilises different, efficient strategies (e.g. dealing with

uncertainty and data diversity) for dataset selection and annotation by humans. Thereby,

data is iteratively filtered, preprocessed and labelled in order to train and improve ML

algorithms. For instance, crowd-sourcing [70, 107] platforms facilitate active learning.

However, active learning faces similar problems as learning by demonstration. One prob-

lem is given if annotators are uncertain regarding the correct annotation of datasets or

if there are contradicting opinions, i.e. disagreements about the right annotation of the

data [8, 68]. A further problem is, that annotating data is costly regarding human and

computational resources. Furthermore, it is not guaranteed to have experts that correctly

annotate the data [67]. Tasks and data that is provided to human annotators have to be

described and explained in a way that human annotators can understand the given problem.

Furthermore, the motivation of users in annotating data plays a crucial role in getting high

qualitative labelled data that can be utilised for training and improving supervised ML

algorithms. The focus of active learning lies in supervised learning that is basically tailored

towards classification and regression problems. Processes and dynamic changes of task

environments are hardly considered by active learning approaches. Nevertheless, active

learning can be utilised as basis for personalisation of policies as discussed in Section 1.2.

To tackle the cold-start problem and accelerate policy learning, a formal representation of

prior knowledge that can be used to simulate tasks might be helpful in addition to the ML

approach. Based on the previous considerations, hypothesis H1 is formulated as follows:

H1 Simulating tasks based on a thorough semantic formalisation of task processes allows,

for software agents, a warm-start in terms of a fast adaptation and positive feedback

that reflects the performance of the RL agent.

The previous considerations regarding the cold-start problem lead to RQ1:

RQ1 Can the presented agent framework train different kinds of software agents by formal

specification and simulation of tasks in such a way that they show a well-defined

and beyond state-of-the-art behaviour in solving different tasks from the beginning

of their runtime or at least within a short period of time?

4

1.1. The Cold-Start Problem of Agents

This work proposes an approach that helps to avoid the cold-start by means of a semantic

model representation comprising guideline rules, semantic task representations and agent

profiles that are utilised by a dedicated task simulation framework in order to simulate

these processes and decision oriented tasks and train the appropriate agent. Therefore,

human domain experts provide their domain knowledge as formal representation of tasks

that serves as prior knowledge for the corresponding simulation framework of the pro-

posed agent framework. With this simulated prior knowledge, an agent is enabled to

accelerate its learning phase and to overcome the cold-start as this work demonstrates.

Contribution C1.1 addresses RQ1:

C1.1 A task simulation framework that allows agents to train policies based on process

datasets and domain knowledge.

5

1. Motivation

1.2. Context-Awareness and Personalisation of Agents

Adaptation and Personalisation Valuable expert and process knowledge is hidden in guide-

lines and (unstructured) data and is reproduced by software agents that learn from human

experts and the corresponding data. Since humans can be fallible, ambiguous or biased,

this can lead to distorted, incomplete domain knowledge and incorrect, ambiguous rules, as

well as undefined and undesirable behaviour from a running agent [151, 258, 259]. Another

difficulty in learning policies arises when dynamic, unexpected task requests arise at agent

runtime. This mainly plays a role in personalisation, e.g. when the user’s preferences

and goals change or alternative goals and states occur that require an adaptation of the

agent’s behaviour [45, 235]. Furthermore, the uncertainty, heterogeneity and complexity of

environments, tasks and their immanent processes can make it difficult or even impossible

to specify during design time the appropriate interdependencies and requirements [60,

117, 77, 89]. Learned ambiguity in domain knowledge and biased, incorrect rules need

to be adjusted or corrected through current feedback. Furthermore, generally applicable

guidelines (policies) should be refined and adapted to the specificity of the task and the

users.

Personalisation or customisation within certain domains (e.g. advertising, entertainment,

healthcare, well-being, service robotics, social networks) is important since provided

software services are tailored to individual target users. This implies that individual user

characteristics (e.g. preferences, user skills, demographic information) are considered by

an agent during the adaptation of policies to user needs [113, 224].

This leads to some challenges for agents because among general characteristics and re-

quirements of a process-oriented task, they have to consider as well the individual user

characteristics and to adjust a general policy representation to an individualised policy

representation that meets the user requirements, context and task characteristics. However,

since user characteristics (profiles) can be diverse or as well have similarities, a requirement

is to adapt general policies to individual ones without retraining a new strategy for every

new task.

From a developer perspective, it might be cumbersome to re-program or re-align an

agent’s operational logic and internal decision-making processes for every specific task

and context. Moreover, it is impossible to consider all situations and exceptions, which

might occur during an agent’s life cycle, at its design time. Since a stochastic environment

can dynamically change its behaviour due to external parameters (e.g. changing context,

changing target user, unknown environmental influences) [112, 185, 189, 7], agent devel-

opers cannot hard-code all possible and necessary agent strategies to solve a task during

design and implementation time.

Considering the perspective of agent developers, it might be a relief providing a frame-

work that allows agents training their own new policies and adjusting them to changing

observations. This implies that developers do not need to implement hard-coded programs

that are restricted to certain tasks and environments because the agents are themselves

6

1.2. Context-Awareness and Personalisation of Agents

responsible for training and adapting their policies to their made observations. The un-

derlying requirement and precondition is that agent developers need tools for defining

and initialising agents for all kind of tasks. Therefore, it is important to provide a general

implementation process that allows a simplified integration into any kind of environment

that an agent has to face with.

Hypothesis H2.1 summarises the assumptions that are considered regarding the adaptation

of policies:

H2.1 RL agents can deal with incorrect, ambiguous guidelines and adapt their policies

(behaviour) either by changing the task representation or by feedback (e.g. datasets)

that provide user and task specific information.

The previous considerations lead to RQ2.1:

RQ2.1 Can a RL agent be empowered to correct wrong, ambiguous or unspecific guidelines

(i.e. policies) it has learned and adapt them to individual task and user requirements

and contextual needs?

This work addresses the discussed requirement by defining general valid procedures that
every agent requires to implement in order to be framework compliant, interchangeable

and applicable for different tasks.

If a strategy (ie. sequence of policies) is learned by the agent, it can share its learned

policies with other agents within a multi-agent system by a central database or semantic

collaboration framework e.g. Semantic MediaWiki (SMW)1 or even the Semantic Web [101].
Other agents can retrieve, adapt and reuse these policies given that they have to solve

similar tasks. The adaptation and reuse of policies can speed up and improve the task

execution because new policies do not have to be retrained from new and the more agents

refine given policies the more tailor-made and optimised strategies for various tasks are

generated.

Therefore, this work proposes methodologies for sharing policies and their provenance

information in a formal way so that agents can look up these policies and their provenance

information. Agents are enabled by this creating formal representations of their trained

policies and assessing them in order to collaborate with each other within a multi-agent

system.

The following points list the contributions for RQ2.1:

C2.1.1 A methodology that combines reinforcement learning [242] and rule mining tech-

niques in order to adapt policies and derive adapted policy rules.

C2.1.2 A methodology for the selection of suitable rule mining algorithms that is based

on the corresponding task description.

1 https://www.semantic-mediawiki.org/wiki/Semantic_MediaWiki

7

1. Motivation

C2.1.3 An algorithm, for data preprocessing so that the applied approaches can process

and mine the given datasets.

C2.1.4 An approach, i.e. Best Fit Sequence, for deriving rules for sequential tasks that are

divided in stages.

Context-Awareness of Agents Agents operating in complex and stochastic environments

also have to be able to cope with different contexts. This means that they require to react

immediately and adequately to context changes. In addition, an agent has to choose in

every step the action that promises the best, i.e. the most reward-maximizing, result from

a set of possible actions. Most often in many approaches [171, 170, 230, 61, 167, 79, 73],

reinforcement learning is used to teach agents reward-maximizing policies. However,

learning policies for a single task through reinforcement learning may require the agent

to perform several thousand training episodes with several thousand action steps until it

has developed a strategy for a single task. To act in a complex multi-context environment,

an agent would then have to learn all possible policies in advance, which can be very

time-intensive or even hardly feasible depending on the size of the state and action space

at hand. Furthermore, actions can belong to different contexts and activities, making it

more difficult to learn unambiguous and context-dependent policies.

The aim of this work is to enable agents to adapt their trained policies and act appropriately

across contexts without having to learn all possible policies in advance. Agents should be

enabled to decide at runtime and context-dependently through knowledge already gained

or through feedback provided which actions are required.

One consideration of this work is that already learned context-related activities, per-

ceived states and performed actions can be represented by their spatial distribution in an

n-dimensional entity embedding space and their context can be determined by their neigh-

bourhood. In order to accelerate the combination of optimal policies, the simulation and

parallel execution of potential actions by agents enables the exploration of optimal policies.

The following research question R2.2 and hypothesis (H2.2) summarise the previously

discussed considerations about context-awareness of agents.

H2.2 The agent framework can numerically represent the context, i.e. the state and action

space of tasks or activities, through entity embedding vectors and, based on the

spatial distance of the vectors, narrow down the agent’s context as well as speed up

policy provision. This is done by selecting action candidates that are semantically

close to the currently observed state of the agent and running them in parallel in a

simulation to determine which action promises the best result for the current state.

RQ2.2 Can the agent framework compose reward-maximising policies across contexts,

i.e. across activities, that contribute to the fulfilment of activities and speed up

the provision of policies in terms of less training episodes and steps, compared to

agents that apply reinforcement learning, i.e. deep-q-learning neural networks

(DQNN), for policies learning?

8

1.2. Context-Awareness and Personalisation of Agents

The contributions for RQ2.2 are:

C2.2.1 A methodology for representing and transforming task entity descriptions into a

processable representation that can be used to calculate similarities between task,

state and action entities and to represent and delimit task contexts.

C2.2.2 A methodology for the context-dependent composition of policies that address

tasks and activities.

9

1. Motivation

1.3. Mining, Sharing and Reusing of Produced Expert
Knowledge

In computer science as well as in other domains, the share and re-use of expert knowledge

and strategies is a common method to avoid reinventing the wheel. In order to preserve

experience and knowledge, it is necessary that expert knowledge is shared openly and

understandably with future generations of people who want to become experts in a partic-

ular problem area. Transferring this common principal of sharing and re-using knowledge

into the application of agent-based systems leads to the consideration that also agents

that learn by experience and by training certain strategies (i.e. policies) can share their

strategies to future agent generations that face the same problem domains and have to

solve the same or very similar tasks.

For instance, in agent-based systems, during runtime and within real-time environments,

agents do not only observe empirical data but also produce valuable empirical data [208]

by their policy-driven actions that can be used to derive corresponding valuable and

representative agent-based models and rules [118, 125], determining which actions to

perform. However, one challenge is to extract useful knowledge from a huge amount

of data that contains this hidden knowledge [52] while another challenge is to relate

problems and tasks with matching strategies and required (agent) competencies [273, 85,
12, 13]. The competencies or capabilities [188, 3, 194, 195] of an agent are determined by

its environment and the set of actions it is able to perform. A strategy has to be adequate

to the given problem domain (e.g. empathy in social interaction) [150] or task. Thus, a

methodology is required that enables agents to be interoperable [193] and compare task

properties between different tasks (e.g. in various environments) [90] in order to find

policies that fall into the given problem domain.

These considerations lead to hypothesis H3 and RQ3.

H3 Rules derived and formalised from recorded demonstration data can enable agents in

a multi-agent environment to solve given tasks on demand without the requirement

and effort of training policies from scratch.

RQ3 Are rules and policies obtained via mining techniques from the collected data re-

flecting behaviour validly applicable and as accurate and effective as the originally

executed behaviour inherent to the data, and do the rules derived from the data

actually mirror the intended behaviour and enable the agent to achieve a reward

maximising behaviour?

Thiswork proposes amethodology that allows agents the comparison of task characteristics

with respect to the properties of tasks. The assumption is that similar tasks require similar

policies to solve a task. This information in turn can be made available to other agents (for

example on the World Wide Web (WWW) or other networked infrastructures). In this way,

trained agent knowledge can be shared, reused and adapted to task requirements as needed.

10

1.3. Mining, Sharing and Reusing of Produced Expert Knowledge

Learned knowledge that is hidden in data can be useful for agents that want to process

and solve tasks on-the-fly without cumbersome and daunting pre-processing, parametri-

sation and learning procedures, because usually, data is not directly usable as source of

information due to noise in the data, or missing and incomplete data samples. Therefore,

pre-processing, cleaning, feature engineering, dimensionality reduction and feature aggre-

gation are essential prior steps before collected data from different sources can be utilised

for machine learning applications. In order to avoid for a newly deployed and starting

agent these pre-processing and training steps, the previously trained RL policies can be

transferred into concise and significant rules that reflect the essential trained policies of

the appropriate RL agent. Moreover, the competencies that are provided by the policies

can be formalised so that agents can search for competencies that they can adopt by the

appropriate derived rules.

Considering the value of generated operational data, a methodology for the agent frame-

work shall be devised that empowers agents to exploit their produced and observed

real-world data in order to derive decision rules and to provide them subsequently to other

agents in a formal representation together with provenance data.

In this work, provenance data are considered as meta information that enable agents to

request and assess the derived and provided policy rules with respect to their performance.

Provenance data mainly contains statistical information about performance and training

conditions (e.g. mean reward, standard deviation from the mean reward, training iterations,

etc.) as well as information about the authorship and extraction process of the derived rules.

Since policies are tailored towards tasks and their requirements, also task descriptions can

serve as indicator for the suitability of policies to a given task. Thus, a methodology is

required that allows the representation and comparison of task characteristics in order to

determine the similarity between them.

On the web, the previously discussed meta information can then be made available together

with the rules in a machine-readable form, enabling rule-based web agents to assess and

reuse the trained and provided agent knowledge. This way, rule-based web agents no

longer have to go through long learning processes and can directly apply the published

knowledge. In addition, decision rules are also comprehensible to humans, which is im-

portant for the explainability and user acceptance of made decisions.

The following points list the contributions for RQ3:

C3.1 A methodology that allows the mining of representative decision rules from be-

havioural, operational and task-specific data.

C3.2 A methodology that allows the formal specification and provision of provenance

data and knowledge that can be utilised by agents to assess the suitability of policies.

11

1. Motivation

1.4. Structure of the Thesis

The remainder of this thesis is structured as follows.

Chapter 2 outlines conceptual models and technological foundations upon which this

work is based.

Chapter 3 presents and discusses related State-Of-The-Art (SOTA) approaches that have

been considered with regard to the contributions of this thesis in order to differentiate the

approaches of this thesis from other existing approaches.

Chapter 4 provides for every posed RQ, software-based solutions and demonstrates step

by step the agent framework that has been conceptualised, implemented, evaluated and

presented by this work.

Chapter 5 illustrates heterogeneous use cases of different application domains (e.g. health-

care, automated web tasks, epidemiology) that were considered for conceptual considera-

tions and later for evaluation purposes.

Chapter 6 presents and discusses the set-up and results of the performed evaluation that

was conducted with the presented use cases of Chapter 5.

Finally, Chapter 7 concludes the presented work and achieved results and gives an outlook

to future works that cannot be addressed within the scope of this work.

12

1.5. Summary of this Chapter

1.5. Summary of this Chapter

This chapter provided a motivation for agent-based solutions and an overview regarding

the problems and challenges that intelligent software agents nowadays have to deal with.

In detail, diverse problems such as the cold-start problem, the programming and on-the-fly
integration of intelligent software agents into heterogeneous infrastructures and environ-

ments as well as the adaptation of agent strategies to context, user-centric needs and task

characteristics have been outlined.

Furthermore, this chapter provided considerations about the requirements (e.g. formalisa-

tion and simulation of tasks and phenomena, share of knowledge, etc.) that an appropriate

agent framework should address in order to overcome the discussed challenges and prob-

lems. It has been discussed that different strategies and paradigms (e.g. ML and knowledge

representation and rule mining approaches) are required and have to be combined in order

to provide a holistic solution that supports domain experts as well as agent developers

and serves for context-aware and user-centric needs. In order to do so, the entire lifespan

of a software agent has been considered.

In summary, this doctoral thesis presents a reference architecture for an agent framework

that supports the entire lifespan of software agents, i.e. deployment, learning, execution

and provision of strategies to other agents. The aim is to (semi-)automate all the steps

that an agent has to go through with the help of the presented framework. The focus is on

the acquisition, adaptation and provision of openly available and machine-interpretable

knowledge for agents. The agent framework is intended to promote the expansion and

improvement of process knowledge and strategies as well as the cooperation between

agents in IoT systems.

13

2. Foundations

This work builds upon different foundational concepts and technologies comprising in

particular three research fields, i.e. data mining, machine learning (ML) and Semantic Web

technologies. The main objective of this chapter is to provide a basic understanding about

the used technologies within the presented approach.

Since this work serves for agent-based solutions, this chapter outlines the definition of an

agent and its environment and considers different agent programs that follow different

implementation paradigms. Section 2.1 introduces the commonalities and differences of

agent programs in order to provide a categorisation of agents that are considered in this

work.

The conceptualised and implemented agent framework consists of different software com-

ponents that utilise semantic technologies such as RDF(S), SHACL, JSON-LD and RDFa

for annotating, representing and sharing the required domain knowledge, comprising the

different model representations (i.e. agent profile, task profile, observation topics, policies,

etc.).

Section 2.2.1 gives a basic introduction into RDF(S), SHACL and RDFa which are W3C

recommendations for serialising semantic knowledge graphs.

The formal description of concepts was partially represented within scientific publications

by description logics (DL). Section 2.2.2 gives a basic introduction into DL constructs that

allow concisely representing concepts and deducing implicit knowledge.

As it has been outlined in the introduction, the devised simulation framework utilises do-

main specific guideline rules in order to generate numerical state representations of tasks

that can be processed by ML algorithms. Furthermore, agents shall be enabled to describe

their policies by means of rules that can be reused by other agents within a multi-agent

system. For this reason, this work applies interchangeably the W3C recommendations

Semantic Web Rule Language (SWRL), Notation3 (N3) and SPARQL in order to represent

and reason rules that serve for the definition of states and task policies. Sections 2.2.3,

2.2.4 and 2.2.5 discuss the characteristics of SPARQL, SWRL and N3.

The considered agents communicate with the environment via sensing and acting devices

and messages. Therefore, communication means are required that allow a shared under-

standing and interoperability between different devices and software components. This

work considers IoT andWoT concepts and infrastructures in order to introduce appropriate

15

2. Foundations

communication technologies in Section 2.2.6 and 2.2.7.

Since the proposed agent-framework applies ML in combination with semantic technolo-

gies, Section 2.3 gives a brief overview regarding common ML paradigms and approaches

to lay the foundations for a better understanding regarding the made design decisions

and to outline why RL, compared to other ML approaches, is predestined for agent-based

systems.

In the area of ML, tasks are described by process models, called Markov Decision Process
(MDP). This decision process model among others is an abstract representation of complex

task processes by probabilistic state-action diagrams. Section 2.3.9 provides the formal

specification of MDPs.

Especially, intelligent agents that apply RL in order to train task-specific policies, are

enabled to process tasks by means of an internal MDP model representation. Section 2.3.10

illustrates the general idea of the RL paradigm.

Since ML algorithms require to be parametrised preceding to their execution, hyper-
parameter optimisation [287] is an important topic that is applied within the framework in

order to find optimal parameters for the utilised RL algorithm. Section 2.3.11 deals with

two hyper-parameter optimisation methods that are grid- and random search.

As outlined in Section 1.3, the numerical representation of contexts and the similarity

measurement of task specifications provides a means for policy search. For this reason,

word embeddings are a foundational approach that are introduced in Section 2.3.12.

Agents may implement various algorithms in order to learn strategies and make decisions.

Genetic Algorithms (GAs) are one of these algorithms that are applied in the agent frame-

work and are discussed in Section 2.3.13.

The extraction of decision rules for sharing and reusing policies is conducted by different

decision rule mining approaches. Section 2.4 discusses four approaches (e.g. frequent item

sets, association rules, OneR and sequential covering) that allow the derivation of rules

from huge datasets.

Finally, Section 2.5 summarises what has been outlined in this chapter.

2.1. Agent-based Systems

The following definitions and classification of agents and environments are adopted from

the AI books [213] and [198].

16

2.1. Agent-based Systems

2.1.1. Properties of Intelligent Agents

Russell and Norvig define the terms rational and intelligent agent and use them synony-

mously. Rational agents are agents that perform the right or intended actions. In order to

assess what is right or wrong, an agent requires a performance measure that evaluates the
entire sequence of environmental states that were generated by the agent’s actions. It is

important to notice that not the agent’s internal states are assessed by the performance

measure but the environmental states, because an agent could assess its performed actions

always as right in order to maximise its performance measure. Therefore, a performance

measure has to be independent from the agent’s internal states and has to follow the

intended behaviour that is expected from an agent. According to Russell and Norvig,

rationality depends on four criteria [213]:

• The performance measure that defines the success criterion.

• The prior knowledge about the environment.

• The actions that an agent can perform.

• The sequence of agent perceptions.

Considering these criteria, [213] provides the following definition regarding rational

agents: "A rational agent shall select for every sequence of perception, an action which is
expected to maximise the performance measure if the sequence of perception as well as the
existing knowledge of the agent are considered."

According to Russell and Norvig, intelligent or rational agents can be categorised into five

different types: simple reflex agents, model-based agents, goal-based agents, utility-based
agents and learning agents [213]. All agents have in common the way in that they perceive

and interact with their environment.

Intelligent agents perceive their environment via sensors (e.g. cameras, infra-red sensors,

etc.) and act within this environment via available actuators while they influence their

environment via their actuators. For instance, software agents [198] perceive their environ-
ment by the peripheral equipment (e.g. keyboard, mouse, file content, network packages,

etc.) of a computer and impact their environment by updating or generating file contents,

making outputs to the user interface (UI) or sending network packages.

The agent’s sequence of perception is considered as course of all perceptions that the agent

has made during its life time. The selection of an action depends only on the made obser-

vation. This leads to the implication that the behaviour of an agent is determined by an

agent function that specifies all possible courses of perceptions and assigns them to the

appropriate executable actions. The agent function is usually implemented by an agent
program [213]. However, both terms have to be distinguished. While, the agent function is

a mathematical abstraction, the agent program is a concrete implementation of the agent

function that is executed within a physical system [198, 213].

17

2. Foundations

Figure 2.1 illustrates a closed interaction loop between an agent and its environment. First,

the agent observes its environment via its sensors, then decides via an agent function its

next action and finally performs via its actuators the appropriate action that impacts again

the environment and leads to new state changes and due to these to new observations.

Figure 2.1.: The interaction of an agent with its environment.

Russel and Norvig make in their AI book a distinction between rationality and omniscience.
In the real world omniscient agents are not possible because this would mean that agents

know in advance what effects all their actions will have to an environment. Since this

is not possible, agents perform actions in order to explore environmental states and the

effects their performed actions might have to the environment. Exploration is an important

means for agents, to collect information and learn a useful behaviour. This implies that

rational agents learn from their perception based on their explorations.

If an agent only relies on the knowledge and experience of its developer and does not

consider its own perceptions and experience, then it has a lack of autonomy. However, a
rational agent should always be autonomous in order to compensate incomplete or erro-

neous knowledge [213]. Incomplete and erroneous knowledge can result among others,

from unavailable domain knowledge, noisy sensors and environmental characteristics that

hinder the agent to observe all relevant information [213, 198, 186, 54, 285].

It depends highly on the environment and agent program, how an agent is implemented [198].

However, the different agent programs may have, nevertheless, overlapping characteristics

as it will be outlined later.

According to Russell and Norvig, an agent consists of an architecture and an agent program
that implements the agent function for the assignment of observations to actions. An

architecture is the platform (e.g. computer, robotic platform, etc.) with its periphery

(e.g. sensors, actors). The agent program and architecture have to match to each other

because the program requires to apply the appropriate architectural components. Later in

18

2.1. Agent-based Systems

this chapter, the different fundamental agent programs (simple reflex, model-based reflex,

goal-based, utility-based and learning agent) will be described.

2.1.2. Properties of the Task Environment

Since an agent acts within an environment that is determined by the assigned task, we

consider now the task environment and its characteristics. According to [213], an environ-

ment can be evaluated by the following PEAS description. PEAS stands for Performance,
Environment, Actuators and Sensors. Performance defines the criterion for evaluating the

agent’s performance. Environment describes the agent’s environment. The sensors and
actuators specify the means for observing and acting within the environment. In the

conceptualisation of an agent-based system, the PEAS description can be used by agent

developers to determine characteristics of the considered agent tasks [213].

Task environments are classified by different criteria. One of them is the observability
of an environment. Environments can be either fully observable, partially observable or
not observable [213]. It depends on the utilised sensors or the lack of them what kind of

observability is given. For instance, sensors can be noisy, missing or provide just partial or

unreliable information.

Another criterion is the determinism of an environment. An environment can be either

deterministic if it is given that the next state is determined by the current environmental

state and performed actions or stochastic if uncertainty is given regarding the performed

action and next state. This implies that in a stochastic or indeterministic environment,

the probabilities of action and state occurrences are unknown to the agent and its devel-

oper [213].

Furthermore, an environment is determined by the number of agents that act within this

environment in order to solve a task. Given that only one agent acts within an environ-

ment, it is a single-agent environment, otherwise if more than one agent act within that

environment, it is a multi-agent environment. In a multi-agent environment, agents can

collaborate with each other in order to solve a task and influence mutually the states of

the environment.

The challenges of multi-agent environments are different to the challenges of single-agent

environments. In multi-agent environments the communication between the agents is

important. Moreover, it has to be distinguished if there are cooperating agents or compet-
ing agents. It depends on the objectives that the agents might have and if their actions

maximise or minimise the performance measure of each other. Cooperating agents max-

imise mutually their performance measures, while the actions of competing agents impact

diametrically their performance measure.

Additional properties are utilised for the classification of task environments. For instance,

an environment is undefined, if the environment is either stochastic or not fully observable.

19

2. Foundations

In episodic environments the perceptions and decisions of an agent are independent from

previous perceptions and decisions, while in sequential environments, decisions and per-

ceptions can influence subsequent perceptions and decisions. Episodic environments are

easier to implement and maintain because the agent does not require the ability to look

ahead regarding the effects its actions might have in future.

An environment is dynamic if it changes, while the agent is making a decision regarding

the next action, otherwise the environment is static. Given that the environment does not

change but the agent’s performance measure changes according to the performed actions,

then the environment is semi-dynamic.

Regarding environments, there is also a distinction between continuous and discrete envi-
ronments. In order to make this distinction, the states of the environment, the time, the

perceptions and actions have to be considered. Continuous environments provide usually

an infinite number of states. The states themselves are described by continuous values,

while in a discrete environment, a finite number of states and actions is given. More-

over, the state and action value representations are as well discrete (e.g. pixels of an image).

The knowledge level of agents about an environment and its physics determines if an

environment is known or unknown for agents. Given that an environment is unknown, the

agent requires to learn how the environmentworks and how to act within this environment.

Finally, an environment can be simulated in order to train agents within heterogeneous

environment classes. A simulation, which can be considered as an environment generator,

implements the physics and characteristics of the environment, so that agents can learn to

act useful within that environment.

2.1.3. Simple Reflex Agent

Simple reflex agents are the simplest implementation of an agent program. They select

their actions based on their current observation and do not consider the previous course

of perceptions. Simple reflex agents react reflexive by following condition-action rules,

represented by simple if-then clauses. The program of a simple reflex agent can be consid-

ered as a collection of condition-action rules that are triggered by certain observations,

matching certain conditions. It is important to note that only the current observed state

is relevant for the agent. Due to their simplicity they are limited in their intelligence.

Furthermore, it has to be taken into account that simple reflex agents can act only in fully
observable environments because all perceptions and according action-assignments have

to be known beforehand by the agent.

2.1.4. Model-Based Reflex Agent

Model-based reflex agents are agents that maintain an internal model representation that

is influenced by the agent’s course of perception. This allows model-based reflex agents

to act within partially observable environments, since the model representation provides

20

2.1. Agent-based Systems

the required knowledge about how the world they act in, changes independent of their

actions. In addition, this model representation reproduces the knowledge about the effects

that the agent’s actions have to the world in question. It is important to notice that the

agent cannot exactly determine the current state of the world in a partially observable

environment. Therefore, it has to follow its internal model in order to make assumptions

about the current state of the world and decide based on these.

2.1.5. Goal-Based Agent

In order to solve a task, an agent requires a goal that is formalising the intended outcome

of the given task. A goal-based agent can combine this goal information with a given

model representation in order to select the actions that contribute to the according goal

state. Finding a solution (sequence of actions) that lead to the objective can be either

easy or complex depending on how many actions have to be considered and performed

in order to a achieve an appropriate goal. Goal-based agents have to apply planning or

search algorithms to find certain action sequences. They require to know which effects

their actions might have in future and this distinguishes them fundamentally from simple

reflex agents which only consider the current perception. Goal-based agents are much

more flexible because their knowledge can be explicitly represented and updated so that

an adaptation of behaviour patterns is possible. In order to do this, it is only required to

change the goals of the agent.

2.1.6. Utility-Based Agent

Goals can be achieved on different ways. However, not every way is desirable and it

might be as well important how a goal was achieved. That is the point when utility-based

agents come into play. A utility-based agent, evaluates by a utility function the utility of

its actions depending on the perceived environmental states. The objective of the agent is

to maximise its utility by performing actions that lead to desirable states.

The utility of the agent is determined by the states the agent faces during its execution. It

is required that distinct states can be assessed based on a given performance measure. This

performance measure usually provides a numerical value that is computed by evaluating

the performed sequence of actions and achieved sequence of states. In this way, more or

less desirable action paths can be distinguished. The internal utility function and external

performance measure require to match so that an agent can be classified as a rational

utility-based agent [213].

Utility-based agents have the advantage that they allow different interim solutions and

trade-offs, in the case that a task has two or more conflicting goals. Moreover, utility-based

agents enable the estimation of success probabilities versus the importance of goals. These

both features allow utility-based agents to decide under uncertainty. The success of utility-

based agents depends on various capabilities. They have to be able to represent internally

a model, to perceive and track their environment, to reason and learn their behaviour in

order to maximise their utility.

21

2. Foundations

2.1.7. Learning Agent

The ability to learn enables an agent to act in unknown environments and to improve its

behaviour in relation to the initial behaviour that is based on its initial knowledge. To equip

an agent with the capability to learn, four conceptual components that fulfil different tasks,

are required. The learning component has the task to improve the agent’s decisions, while

the performance component has the task to select actions based on the agent’s perceptions.

The actor-critic component provides feedback regarding the outcome of a performed action.

Based on this feedback, the learning component changes the performance component

in order to improve the outcomes of the agent. The actor-critic component is required

because the perception all alone is not sufficient in assessing the success of the agent. The

last component, the problem generator is responsible for suggesting the next actions in

order to explore new information that contributes to the learning and improvement of the

agent. Learning means in this context a process that allows changing all mentioned agent

components in order to align the performance of the agent with the received actor-critic

feedback. The objective is to improve the agent’s overall performance.

22

2.2. Semantic Technologies

2.2. Semantic Technologies

The idea of the Semantic Web was first proposed and introduced by Tim Berners-Lee, the

inventor of the World Wide Web (WWW).

The objective of the Semantic Web is to enable machines (computers) to interpret and

understand the meaning of annotated web content. Programs are enabled to use formalised

real world knowledge in order to solve tasks in heterogeneous domains and fields of ap-

plication. This is conducted by semantic vocabularies and ontology languages that allow

devising and annotating resources on the web with meta data in order to add machine-

interpretable meaning to these web resources.

Moreover, the provision of web standards leverage many means to create and publish

formal knowledge representations that contribute to a shared conceptualisation and un-

derstanding between different hardware and software components. For this reason, the

World Wide Web Consortium (W3C) standardises these ontology languages to facilitate

the growth of theWeb of Data or Linked Open Data (LOD), formerly and still known as

Semantic Web.

Basically, the idea of the Semantic Web is to interlink web resources by properties in

order to provide facts or descriptions about these resources. Both the resources as well

as the relations between them are used to build knowledge graphs, infer the different

kinds of relationships (e.g. subsumption, instance-of-relationship, etc.) and make implicit

knowledge explicit.

In this work, knowledge representation within the proposed agent framework is imple-

mented by ontologies and semantic knowledge graphs. In order to devise ontologies and

knowledge graphs, several serialisations and web APIs (e.g. URI, HTTP, XML, JSON, etc.)

are available and recommended by the W3C. This section deals with the foundations of

different utilised semantic technologies such as the Resource Description Framework (RDF)

that serves for representing knowledge graphs by linking facts. RDF can be formalised

and combined with different serialisations, such as the Terse RDF Triple Language (Turtle),

the Shape Constraint Language (SHACL), JSON-LD and many more.

In this work, Turtle and SHACL are proposed for defining a vocabulary that represents

relevant knowledge for agents and the dedicated agent framework. SHACL is a means

for defining shape definitions with constraints for relevant concepts and their properties.

This feature of SHACL assures in contrast to plain RDF a closed world assumption that is

required in order to avoid undefined factual circumstances on the A-Box level. The shape

constraints of SHACL allow beforehand to evaluate RDF instances regarding completeness,

cardinality and typisation. In this way, missing facts and constraint violations can be

reported to the creator of RDF instances.

In this approach, the considered agents exchange messages during their interaction with

the agent framework and within heterogeneous task environments. For this purpose,

23

2. Foundations

the agents communicate via JSON-LD messages in order to have a shared understanding

between all participating components.

Moreover, agents of this approach publish their policy provenance information by different

semantic serialisations. One of them is RDFa, that is used for annotating HTML pages

semantically. In this way, the appropriate provenance information can be shared by the

agents with other semantic agents that crawl the web in order to search for policies that

match to their task requirements.

Since an ontology was defined for the proposed agent framework, a tool was needed

to concisely describe the semantic concepts of the developed vocabulary. Description

logics (DL) were used because DL in its formalism allows for a higher expressiveness (e.g.

conjunctions, disjunctions, negations of terms) than simple RDF constructs.

The policies that the agents learn for a certain task, are shared by them via alternative

rule and query languages. The agent framework uses different languages such as SPARQL

CONSTRUCT queries, SWRL and N3 rules interchangeably, as heterogeneous agents

should be provided with alternatives for sharing, reusing and reasoning about task policies.

The Web of Things (WoT) that is planned to become a W3C recommendation, can be

considered as a semantic layer for the Internet of Things (IoT). The WoT allows to abstract

relevant IoT device functionalities and properties, so that heterogeneous hardware and

software components of an IoT infrastructure can cooperate. The proposed approach

applies the concepts of the WoT in order allow agents to interact interoperable with their

environment and independently of proprietary protocols and APIs.

The foundational description of the considered semantic technologies relies on the books [100,

102] of Hitzler et al. as well as on the W3C specifications that are openly accessible on the

web. The objective of this section and its subsections is to provide a basic understanding

of the Semantic Web concepts and technologies that this work builds on.

2.2.1. RDF(S), Turtle, SHACL, JSON-LD and RDFa

The basic building block for semantic technologies is RDF. RDF is a framework for repre-

senting resources or entities by Uniform Resource Identifiers (URIs) or Uniform Resource

Locators (URL). These web constructs allow to assign a unique identity to resources on

the web in order to make their semantic representation by the Hyper Text Transfer Proto-

col (HTTP) accessible. RDF triples or statements consist of subject, property and object

constructs that allow to express facts about states of the real world by building relations

between resources. In addition, properties allow to assign literals to resources in order to

characterise these resources. The literals may be typed (e.g. string, float, double, boolean,

etc.) or untyped. By means of type specifications of the XML Schema Definition, types

can be assigned to literals. It has to be taken into account that literals have no external

existence within the web. They are just locally related to a resource and therefore not

24

2.2. Semantic Technologies

represented by publicly accessible URIs.

Figure 2.2 depicts a graph representation and Listing 2.1 shows the corresponding Turtle

example of RDF triples that express the facts that Snoopy is a beagle (line 4), that has a

height of 60 centimetres (line 5). Snoopy’s height is described by a literal of the XSD type

integer. Further, Snoopy’s owner is Charlie Brown who is a cartoon character (line 6 and

9). Snoopy’s friend is Woodstock, a canary bird (line 7-8). In this way factual knowledge

about entities of the real (or in this case fictional) world can be provided. Every triple

element despite literals and blank nodes, is represented by URIs. The prefix tags allow to

define abbreviations of name-spaces. Instead of writing the entire domain name-space, the

abbreviation tag is taken for representing the domain of the entity. In the depicted example

(line 1-3), we have three different name-spaces: rdf, xsd and the base or local name-space

that does not require a reference tag. The rdfs:label property allows to assign among the

URI of a resource also a human readable name in a certain language (e.g. English), which

is indicated for instance by the @en tag (line 10).

Figure 2.2.: The graph representation of the Peanuts example.

Listing 2.1: RDF triples in Turtle format.

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

2 @prefix xsd: <http://www.w3.org/2001/XMLSchema>.

3 @prefix : <http://peanuts-ontology.org>.

4 :Snoopy rdf:type :Beagle;

25

2. Foundations

5 :heightInCm "60"^^xsd:integer;

6 :dogOwner :CharlieBrown;

7 :friend :Woodstock.

8 :Woodstock rdf:type :CanaryBird;

9 :CharlieBrown rdf:type :CartoonCharacter;

10 rdfs:label "Charlie Brown"@en.

In order to model and deduce what meaning and implications the relations between

resources have, RDF Schema (RDFS) is required. It allows to create hierarchical structured

concepts and properties of light-weight ontologies by class and property definitions. The

following Listing 2.2 illustrates how the model schema, which means the concepts and

properties of the previous Snoopy example, can be specified by RDFS.

Listing 2.2: RDF Schema of the Peanuts example.

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

3 @prefix : <http://peanuts-ontology.org>.

4 :CartoonCharacter rdf:type rdfs:Class.

5 :Beagle rdfs:subClassOf :CartoonCharacter.

6 :CanaryBird rdfs:subClassOf :CartoonCharacter.

7 :friend rdf:type rdf:Property;

8 rdfs:domain :CartoonCharacter;

9 rdfs:range :CartoonCharacter.

10 :heightInCm rdf:type rdf:Property;

11 rdfs:domain rdfs:Class;

12 rdfs:range rdf:XMLLiteral.

13 :owner rdf:type rdf:Property;

14 rdfs:domain :CartoonCharacter;

15 rdfs:range :CartoonCharacter.

16 :dogOwner rdfs:subPropertyOf :owner.

First, a class is defined and then the sub-class relationships (line 4-6). For instance, Cartoon-
Character is of type rdfs:Class (line 4) and Beagle is a sub-class of CartoonCharacter (line 5).
The same principle is applied with the property definitions (line 7-16), whereby a property

can be sub-property of other properties (line 16) and have in addition, domain-range

relationships.

The rdfs:domain property specifies which kind of subjects a property has, while the

rdfs:range property specifies which type of objects are assigned to the property. By means

of this kind of conceptualisation already simple logical inferences can be applied. For

instance, the class membership of an entity can be derived from the domain or range of

its properties. Moreover, the super-class membership of an entity can be deduced by the

specified class hierarchy. Additionally, new facts can be derived by sub-property relation-

ships. However, the possibilities are limited and therefore, depending on the complexity

of the domain model, more expressive languages such as OWL-Lite, OWL-DL, SHACL or

26

2.2. Semantic Technologies

rules might be required.

As already outlined, the proposed framework utilises RDF(S) because the agent-framework’s

model representation is not that complex and requires only light-weight ontology language

constructs. This is due to the fact that complex semantic reasoning is not applied within

the framework. In this case, the main purpose of the ontology is to provide task repre-

sentations in order to simulate the states that occur within a task. Basic reasoning tasks

are only performed within the task simulator in order to recognise and update states and

their according desirability after actions have been performed by agents. The designated

agents only predict after their training the appropriate actions that they have to perform

according to their trained policies.

Reification is a further helpful means that is supported by RDF. It allows to define state-

ments about statements. Reification can for instance be utilised for providing provenance

information about resources. Listing 2.3 shows an example about how reification can be

applied with the help of RDF.

Listing 2.3: Reification example.

1 :AgentX :proposes :Policy1.

2 :Policy1 a rdf:Statement;

3 rdf:subject :CoffeeMachine1;

4 rdf:predicate :switch;

5 rdf:object "OFF".

In Listing 2.3, an agent (AgentX) instance proposes via a policy (Policy1) statement to

switch off a certain coffee machine (CoffeeMachine1). Reification is as well applied within

this approach, when the agents provide provenance data about their trained policies.

We have seen now the basic building blocks of RDF. In the next paragraphs SHACL,

JSON-LD and RDFa are discussed.

2.2.1.1. SHACL

The Shapes Constraint Language (SHACL) is a W3C recommendation
1
of July 2017. Its

main purpose is to enable the validation of RDF graphs by means of individually defined

constraints. This implies that SHACL allows the definition of constraints on RDF resources

and their properties by means of shape constraint definitions. According to the referenced

W3C specification, SHACL shapes can as well be utilised for data integration, code genera-

tion and user interface building.

On the one hand, SHACL is an alternative to RDF/OWL and on the other hand it can be

utilised together with these both formats. Furthermore, the SHACL core function can be

1 https://www.w3.org/TR/shacl/

27

2. Foundations

extended by extension-mechanisms
2
such as SPARQL and JavaScript

3
constraints that

provide additional functionality that can be not covered by the SHACL core concepts.

SHACL provides as well the opportunity to define rules that allow the reasoning of new

facts. The rules can be described in three different formats: SPARQL, JavaScript and triple

rules.

The basic principle of SHACL is that shapes specify targets for graph nodes. A shape can

be considered as a collection of constraints that are applied to certain graph nodes. The

shape constraints can for instance determine the type of properties. There are built-in

constraint types and user-specified constraints by SPARQL or JavaScript. By means of

the stipulated constraints, it is possible to validate beforehand if user-driven inputs and

instantiations of data are correct.

Furthermore, SHACL enables to search for RDF or OWL instances that match the shape def-

initions. The shape constraints can be defined in a declarative manner, and the appropriate

shape instances can be shared as linked data so that they are reusable by other applications.

It is also possible to define and implement custom functions that are designated to modu-

larise and solve certain (micro) tasks (e.g. conversion of currencies and temperatures, etc.).

The appropriate shape functions can then be queried by different applications on the web.

Listing 2.4 shows an example of a SHACL shape definition.

Listing 2.4: SHACL Shapes.

1 ex:StudentShape

2 a sh:NodeShape ;

3 sh:targetClass ex:Student ;

4 sh:property [

5 sh:path ex:registerNo ;

6 sh:maxCount 1 ;

7 sh:datatype xsd:string ;

8 sh:pattern "^\\d{3}-\\d{2}-\\d{4}$" ;

9] ;

10 sh:property [

11 sh:path ex:studies ;

12 sh:class ex:University ;

13 sh:nodeKind sh:IRI ;

14] ;

15 sh:closed true ;

16 sh:ignoredProperties (rdf:type) .

In the given listing, a student shape is defined. In line 2, the StudentShape is declared as

being of type sh:NodeShape. The RDF target class is ex:Student that is defined in line 3.

2 https://www.w3.org/TR/shacl-af/
3 https://www.w3.org/TR/shacl-js/

28

2.2. Semantic Technologies

Then the sh:property is defined where all constraints are listed for the appropriate property

registerNo (line 4-9). The registerNo property has a cardinality of one which means that

only one value can be assigned to the registerNo property. The data type of the property
is string and the according value has to comply to a regular expression pattern that is

assigned to (sh:pattern). In this way SHACL is compliant to RDF(S) and provides means for

enabling constraints and validating the conformance of RDF instances to shape definitions.

For in-depth details regarding the definition of SHACL shapes, please refer to the appro-

priate web resources
4
.

2.2.1.2. JSON-LD

JavaScript Object Notation for Linked Data (JSON-LD) is a serialisation format for Linked

Data (LD) that was recommended in the version 1.0
5
by the W3C. In the meantime the

version 1.1 is available as W3C editor’s draft
6
. JSON-LD can be considered as an extension

of JSON.

The purpose of JSON-LD is to transmit documents between different (web) applications

and to utilise and support LD. JSON documents consist of key-value pairs. In JSON-LD

additional keys or tags are introduced (i.e. @context, @id, @type, @value, @language,

@graph, etc.) that support the LD principles.

Listing 2.5 shows a JSON-LD document that provides appropriate keys. First, within the

document, the context is specified (line 2-22) through the appropriate key words (person,

name, company_de, role_en) and their id and type definitions. Then, a concrete person
instance (i.e. Nicole Merkle) is defined that is described by the previously introduced keys

and their value initialisations (line 23-27).

As Listing 2.5 shows, JSON-LD also supports internationalisation by the @language tag

(line 15 and 20). For instance, the keys company_de and role_en reference German and

English string values. In this way, different languages can be supported. Furthermore,

JSON-LD allows key aliasing. Line 7 shows an example for aliasing the id key as url.

Listing 2.5: JSONLD example.

1 {

2 "@context": {

3 "Person": {

4 "@id": "http://schema.org/Person",

5 "@type" : "@id"

6 },

7 "url": "@id",

8 "name": {

4 https://www.topquadrant.com/technology/shacl/tutorial/ and https://www.w3.org/TR/shacl/
5 https://www.w3.org/TR/json-ld/
6 https://w3c.github.io/json-ld-syntax/

29

2. Foundations

9 "@id": "http://schema.org/name",

10 "@type": "xsd:string"

11 },

12 "company_de": {

13 "@id": "http://schema.org/company",

14 "@type": "xsd:string",

15 "@language": "de"

16 },

17 "role_en": {

18 "@id": "http://schema.org/role",

19 "@type": "xsd:string",

20 "@language": "en"

21 }

22 },

23 "@type": "Person",

24 "url": "http://www.fzi.de/former_employee/NicoleMerkle",

25 "name" : "Nicole Merkle",

26 "company_de" : "FZI Forschungszentrum Informatik",

27 "role_en": "PhD Student"

28 }

The previous example illustrates that within the @context specification the utilised object-

keys and property-keys are defined by their @id and @type definitions in order to enable

short key names without having the necessity to list long URIs.

The type of a key can be either an object type (e.g. Person, Affiliation, etc.) or a data

type (string, date, integer, etc.). Data types can be specified with a concrete value (e.g.

2019-06-17) by the @value tag.

According to the LD principles, the URIs help to reference for instance RDF resources on

the web and disambiguate similar keys, having a different meaning. Therefore, different

property and object definitions from different web resources can be utilised together which

contributes to interoperability between different applications.

The context specification can be provided in a separate JSON-LD document and can be

included into other JSON-LD documents by referencing the URI of the context specification

file in the @context tag. Therefore, the appropriate context definition has to be publicly

accessible on the web.

There are two ways of referencing LD objects, either by embedding the objects directly into
the referencing document or by referencing an URI that links to the JSON-LD document,

containing the object specification.

30

2.2. Semantic Technologies

In this section, a basic introduction into JSON-LD was given. JSON-LD provides many

more features. For further details, please refer to this web resource
7
or the previously

mentioned W3C pages.

2.2.1.3. RDFa

Resource Description Framework in attributes (RDFa) is a markup extension of HTML5,

XHTML and XML-based (e.g. SVG) web pages for annotating them semantically in order

to provide structured meta data regarding their content. Web browsers, web services

and web crawlers of search engines can utilise this semantically enriched data in order

to gather useful and valuable information and answer for instance specific search inquiries.

RDFa in version 1.1
8
is a W3C standard of March 2015. The objective of RDFa annotations

is to provide machine-readable data within human-readable web pages. Therefore, RDFa

provides a set of mark up tags (i.e. @vocab, @typeof, @resource, @property, etc.) that can

be applied for exactly this purpose. Listing 2.6 shows a snippet of a HTML page annotated

with RDFa.

First, in the body-tag the used schema.org vocabulary is referenced (line 3). Then within a

div-tag the referenced resource (me) is specified with the typeof property as type Person
(line 4). Every RDFa property tag within the span-tags stipulates the properties (i.e.

fullName, birthdate, url) of the previously defined resource (line 5-7). The RDFa tags can

be utilised together with every kind of HTML tag. In this way arbitrary complex RDF

graphs can be generated that provide the appropriate knowledge for web applications

such as e.g. web agents.

Listing 2.6: RDFa example.

1 <html>

2 <body vocab="http://schema.org/">

3 <div typeof="Person" resource="#me">

4 Nicole Merkle

5 1978-12-04

6

7 Homepage

8

9 </div>

10 </body>

11 </html>

The resulting RDF graph representation of the previous RDFa example is depicted in

Figure 2.3. The basic principles of RDFa should have become clear. For more details please

refer to the corresponding web resources
9
.

7 https://json-ld.org
8 https://www.w3.org/TR/rdfa-core/
9 e.g.https://rdfa.info

31

2. Foundations

Figure 2.3.: RDFa graph representation of the resource me.

2.2.2. Description Logic

Before providing a basic introduction to DL, the term ontology has to be clarified. According
to Gruber, an ontology is an "explicit, formal specification of a shared conceptualisation" [88].

If we deconstruct Gruber’s definition, it becomes evident that an ontology has to meet

different criteria to be an ontology. For instance, the ontology requires to be explicit,
which means that the meaning of all relevant concepts has to be defined within the on-

tology. Further, it has to be formal or in other words, machine-understandable so that

computers are enabled to interpret it. An ontology is, according to Gruber, a conceptuali-
sation, which means that it is an abstract model of relevant concepts and their relations,

and last there has to be a consensus given about the appropriate ontology in order to

be a shared conceptualisation that can be utilised by every human or computational instance.

The main building blocks of an ontology are classes (concepts), relations (roles) and indi-

viduals (entities). Classes are templates or collections for objects (individuals) that specify

which attributes (properties) an individual of this class might have. Furthermore, attributes

are name-value pairs and classes can be related via attributes to other classes. Moreover,

constraints (e.g. disjointness of two classes, cardinalities between attribute and class, etc.)

can be defined on the attribute relations. In this way, assertions and axioms can be build

in order to enable reasoning.

Considering the building blocks of an ontology, we have to distinguish terminological
(T-Box), assertional (A-Box) and role-centric (R-Box) knowledge. The terminological knowl-

32

2.2. Semantic Technologies

edge describes how ontology concepts are related to each other and which constraints

apply on these relations. The assertional knowledge represents the individuals (concrete

and real objects) of an ontology that implement the terminological knowledge, while the

role-centric knowledge determines properties and their constraints.

The main objective of ontologies is to provide knowledge by drawing inferences, whereby

implicit encoded knowledge is made explicit by applying basic inference types. The

following listing introduces briefly the appropriate inference types:

• Subsumption – Inference about whether a class C is subclass of class D, i.e. C ⊑ D.

• Class equivalence – Inference about whether class C is equivalent to class D, i.e. C ≡
D.

• Class disjointness – Inference about whether a class C and a class D are disjoint/dis-

junctive, i.e. C ⊓ D ⊑ ⊥.

• Global (in)consistency of a knowledge base (KB) – Inference about whether a KB is

globally (in)consistent by showing if KB |= ⊥.

• Class (in)consistency – Inference about whether a class is (in)consistent, if C ⊑ ⊥ is

not a logical consequence of the given knowledge base.

• Instance checking – Inference about whether individual x is instance of class C, i.e.

C(x).

• Instance retrieval – Inference of all individuals x of class C, i.e. (∀x) C(x).

After, it was outlined what an ontology is and what basic inference types are, the charac-

teristics of DL will be discussed now.

DL is a family of formal languages that base on logical formalisms in order to represent

knowledge. The building blocks of DL models consist of concepts, roles, individuals and
their relationships to each other. Different ontology constructors (e.g. transitivity, inver-
sity, number restrictions, qualified number restrictions, etc.) define the expressibility of

DLs. For instance, OWL2DL is an implementation of DLs that supports the following

constructors SROIQ(D)10. The OWL2DL constructor indicates that OWL2DL supports

the attribute language with complement (ALC), the transitivity of roles (S), role construc-
tors (R), nominals (O), inverse roles (I), qualified number restrictions (Q) and data types (D).

Furthermore, DLs provide logical operators such as, universal ∀ and existential ∃ quan-

tifiers, conjunction ⊓, disjunction ⊔ and negation ¬, universal concept ⊤ and bottom

concept ⊥. By means of these logical operators it is possible to define logical axioms that

represent class inclusion, class equivalence, strict binding and open binding regarding roles.

10 https://www.w3.org/TR/2004/REC-owl-guide-20040210/#OWL_DL_tag

33

2. Foundations

Axiom 2.1 depicts an example for class inclusion. According to axiom 2.1, a dolphin is

subclass of a mammal.

Dolphin ⊑ Mammal (2.1)

Axiom 2.2 illustrates a class equivalence in which classes are equivalent to concepts and

vice versa.

Concept ≡ Class (2.2)

Also more complex class relations are possible. Axiom 2.3 depicts an example for complex

class relations. For instance, a Mushroom is subclass of a class that either is of type

EatableFood and Tasty or Toxic and the negation of EatableFood.

Mushroom ⊑ (EatableFood ⊓ Tasty) ⊔ (Toxic ⊓ ¬EatableFood) (2.3)

In DL exist different binding types (strict and open) for roles. The task of a binding type is

to restrict by quantifiers the domain and range of a role. Strict binding in DL is achieved

by the universal quantifier.

Axiom 2.4 shows an example that specifies that all Car concepts need to have a component

that is of typeWheel.

Car ⊑ ∀hasComponent.Wheel (2.4)

Open binding in DL is defined by the existential quantifier. Axiom 2.5 depicts an example

in that every Paper should have at least one Author that is of type Person.

Paper ⊑ ∃hasAuthor.Person (2.5)

Number restrictions allow defining the cardinality of roles. Axiom 2.6 determines that a

hasValidAge role should have only integer values greater than or equal eighteen.

18 ≥ hasValidAge (2.6)

It is also possible defining qualified number restrictions (cardinalities) for roles. The

difference to the previously discussed number restrictions is that the range of the role is

known and the number restriction applies on the given range concept. Axiom 2.7 defines

that the role hasWheel requires to have greater than or equal fourWheels.

4 ≤ hasWheel.Wheel (2.7)

Concrete domain restrictions stipulate a concrete data type and its value range. Axiom 2.8

illustrates that the role hasIncome is a numeric value and that all values of this role have

to be greater than or equal three thousand five hundred.

hasIncome.(≥ 3500) (2.8)

34

2.2. Semantic Technologies

Classes can be defined by enumerations of nominals. For instance, a class of ball games

could be defined by the given nominals in axiom 2.9.

{Soccer,Basketball,Handball,Volleyball} (2.9)

Inverse roles are stipulated as in axiom 2.10. The inverse of the role isParent is the role
isChild.

isParent− ≡ isChild (2.10)

The transitivity of roles can be expressed as illustrated in axiom 2.11.

isPartOf ⊑ +isPartOf (2.11)

Role compositions–also known as property chains–can be as well defined in DL. The

concatenation of roles (properties) establishes a new role. Axiom 2.12 depicts an example,

expressing that the sister of a father is an aunt.

hasFather ◦ hasSister ⊑ hasAunt (2.12)

It is important to know that two assumptions are made in DL. On the one hand the no
unique name assumption (UNA) and on the other hand the open world assumption (OWA).
The no unique name assumption stipulates that an individual can have more than one name

or ID. This means that it is never assured that different named individuals are not the same

one.

The open world assumption defines that every concept and relation is possible until it is

restricted by the DL. This implies that incomplete information and uncertainty about the

world state are allowed and that unknown facts about the world are not false but undefined

within the knowledge base that contains the T-, A- and R-Box.

This circumstance can have advantages but as well disadvantages depending on the field

of application. On the one hand, it may be required that uncertain facts about the world

are allowed, since the world and its states are not always transparent and asserted. Open

world ontologies can be arbitrarily extended and reused depending on their utilisation. On

the other hand, domain applications may require well-defined states and certainty in order

to ensure an intended behaviour of the application. Therefore, restrictions are required

and since in a DL every restriction has to be specified explicitly, this can be a drawback,

which means that every possible circumstance requires to be considered and restricted by

the domain experts who constitute the ontology.

In contrast in the closed world assumption (CWA), every relevant knowledge has to be

specified and everything that is not true is in turn false. Therefore, there is no undefined

knowledge given in the knowledge base. This has the benefit, that it allows the validation

of facts.

35

2. Foundations

2.2.3. SPARQL

SPARQL Protocol and Query Language (SPARQL) is as the name indicates, a protocol layer

and a query language for RDF graphs. It allows graph traversal, so that linked graphs

entirely can be discovered. The protocol layer of SPARQL transmits SPARQL queries

via HTTP, while the output format specification of SPARQL is XML. SPARQL provides

similar to other query languages, different query (CRUD
11
) operations, such as exploring

graphs by SELECT and ASK queries, transforming graphs by CONSTRUCT queries from

one vocabulary to another, creating and updating new graphs and performing federated

queries over several SPARQL endpoints. SPARQL queries consist of the query statement

that depends on the query type and a WHERE clause that contains RDF Turtle triples,

representing graph patterns. These graph patterns allow to filter query results that have

to match to the given graph pattern.

Listing 2.7 depicts a SELECT query with appropriate variables that are represented by

variable names with a leading question mark (line 1). The results are assigned to the

appropriate variables and represented within a table containing for each variable a column.

Listing 2.7: SPARQL query for selecting a Pizza.

1 SELECT ?pizza_name ?price

2 FROM <http://pizza-house.com>

3 WHERE {

4 ?pizza rdf:type :Pizza.

5 ?pizza :hasName ?pizza_name.

6 ?pizza :hasIngredient :Olive.

7 ?pizza :hasIngredient :Salami.

8 {?pizza :hasIngredient :Artichoke.}

9 UNION

10 {?pizza :hasIngredient :Anchovies.}

11 ?pizza :hasIngredient :Mozzarella.

12 OPTIONAL {

13 ?pizza :hasIngredient :Mushroom.

14 }

15 ?price :hasValueInEuro ?value.

16 FILTER(?value < 15)

17 }

18 ORDER BY ASC(?pizza_name)

19 LIMIT 10

20 OFFSET 0

In this query example, the names of pizza instances are requested that match the ingredi-

ents listed in the WHERE clause (line 3-13). The filtering triples within the WHERE clause

are conjunctively connected. Given that disjunctive queries have to be build, the UNION
term is required (line 9). In the given example, either the requested pizzas need to have arti-

11
Create, Update, Delete

36

2.2. Semantic Technologies

chokes (line 8) or anchovies (line 10), while all other triples have tomatch the graph pattern.

Furthermore, according to the defined OPTIONAL (line 12-14) and FILTER (line 16) func-

tion, the ingredient mushroom is optional and the price of the appropriate pizza has to

be less than fifteen Euro. The OPTIONAL statement allows to define a triple pattern as

optional condition, while the FILTER statement allows to specify as constraints, logical

and mathematical operators (e.g <, >, <=, >=, =, !=, +, -, *, /, &&, ∥, etc.) and apply general

SPARQL functions (e.g. LANG, STR, IN, NOT IN, isLiteral, isBlank, etc.) to filter query

results. The FROM statement in line 2 specifies the graph to be queried. After the WHERE
clause, further instructions can be added, such as ORDER BY, LIMIT, OFFSET, etc. (line
18-20). For instance, the ORDER By instruction defines by which variable, the results

have to be ordered. The results can be ordered either ascending (ASC) or descending

(DESC). The LIMIT statement specifies how many results are requested, while the OFFSET
statement indicates from which position on the results should be displayed.

In this way arbitrary complex requests (also with sub-queries) can be performed.

As already mentioned, among the SELECT query, there are also other query types.

An ASK query for instance, indicates if at least one result regarding the queried pattern is

existing in the queried RDF graph. The response of an ASK query is always either true for
result exists or false for a result does not exist.

A DESCRIBE query is similar to a SELECT query and provides as result a RDF graph

representation with data about appropriate resources that match the given graph pattern.

A CONSTRUCT query allows to create new RDF graphs by existing graphs. In this way,

existing graphs can be transformed into new graphs of other vocabularies. In the presented

work, CONSTRUCT queries are utilised in order to deduce new facts from given graph

patterns. The graph patterns represent the precondition of a rule, while the constructed

triple(s) represents the implication of the rule. In the approach section it is described in

detail, how CONSTRUCT queries are used as rules.

SPARQL provides many more features that are not covered within the scope of this work.

For more details, the reader is referred to online sources.

2.2.4. Semantic Web Rule Language (SWRL)

The Semantic Web Rule Language (SWRL) is a W3C submission (no standard) of 2004. It

combines parts of OWL and RuleML/DATALOG
12
. SWRL exists in three different syntax

variants, one concrete XML version in OWL and RDF and an abstract syntax version in

12
Programming language for databases

37

2. Foundations

RDF. SWRL rules consist of an antecedent (body) and a consequent (head) that is the

implication of the antecedent. Axiom 2.13 depicts the general structure of SWRL rules.

Antecedent → Consequent (2.13)

The elements of a SWRL rule are conjunctively connected assertions (atoms). These

assertions can be built by OWL individuals, variables and concrete OWL domain elements.

The following (unary or binary) constructs are possible:

• C(x) – x is element of class C.

• D(x) – x is element of data type D.

• R(x, y) – element x is in relation R with element y.

• D(x, y) – element x is in relation with data type value y.

• builtIn(x, 𝑦1, ..., 𝑦𝑛) – built in properties with an arbitrary number of elements.

• sameAs(x, y) – element x is same as element y.

• differentFrom(x, y) – element x is different from element y.

A SWRL knowledge base is usually constituted by an OWL knowledge base and a finite

set of rules. SWRL utilised together with OWL is undecidable
13
, though it useful for

different applications (e.g. rule-based agents), given that the number of possible inferences

is restricted. However, it is also possible to define decidable rules in OWL, but this will

not be covered in this work, since rules in OWL were not applied.

2.2.5. Notation3 (N3)

Notation3 (N3) is a formal language that was developed by Tim Berners-Lee and Dan

Connolly for specifying RDF data. N3 goes beyond defining RDF, since it also allows to

specify rules, formulae, functional predicates and variables. The Turtle format is a subset

of N3. Therefore, triples in Turtle are expressed the same way as in N3. For rule defini-

tions, existential (@forSome) and universal (@forAll) quantifiers as well as implications

(log:implies, =>) are supported. Since in this thesis N3 is proposed for defining and sharing

trained policies as rules, Listing 2.8 shows an example for N3 rules, variable use and

formulae statements. Formulae statements are statements about statements (reification).

In line 2 of the example Listing 2.8, an existential quantifier is defined for the variables x
and y. The appropriate entailment stipulates that x supervises y and since y is a student, it

can be inferred that x in all cases might be a person of type supervisor (line 3-4).

If no quantifier is given, then variables that begin with a question mark are universally

quantified. This means that an implicit quantification is assumed. The same is valid for

13 https://www.w3.org/Submission/SWRL/

38

2.2. Semantic Technologies

blank node variables (line 9), since blank node variables are existentially quantified and

therefore an explicit quantifier is not required. In line 9, an example is given about the use

of blank node variables. Tom has a pet that is a gold fish. In line 7, the individual Sherlock
infers the formula (statement) that the individual Gardner has killed the individual Alice.

Listing 2.8: N3 rule example.

1 # Entailment with quantifiers and variables.

2 @forAll ?x, ?y

3 {?x :supervises ?y.}

4 {?y a :Student.}

5 => {?x a :Supervisor.}

6 # Statement about formula

7 :Sherlock :infers {:Gardner :killed :Alice.}.

8 # Use of variable _:x

9 :Tom :hasPet _:x.

10 _:x a :GoldFish.

It is important to note that the formal semantics of N3 is not yet defined and the different

implementations of N3 may differ. The W3C team submission
14
makes only recommenda-

tions about the intended use of N3. The usual reasoners that are implemented and used

for N3 are EYE15 and Cwm16
. For additional information regarding N3, please refer to the

mentioned web resources.

2.2.6. The Internet of Things (IoT)

Agents using the proposed agent framework deal with Internet of Things (IoT) systems and

corresponding tasks. According to the International Telecommunication Union’s definition
the Internet of Things is: "A global infrastructure for the information society, enabling
advanced services by interconnecting (physical and virtual) things based on existing and
evolving interoperable information and communication technologies." [2], and the Internet
Society states that the "Internet of Things generally refers to scenarios where network connec-
tivity and computing capability extends to objects, sensors and everyday items not normally
considered computers, allowing these devices to generate, exchange and consume data with
minimal human intervention." [233]. Considering these two definitions and the goals of the
proposed agent framework, it can be stated that software agents can also be considered as

"interconnected virtual things" that "enable advanced services through evolving interoperable
information and communication technologies" [2] while they "consume and exchange data
with minimal human intervention". Software agents of the framework perceive states

in the environment via connected sensors but they make decisions without considering

the specificity of hardware devices. In addition, the agents of the framework use "data-
accessing and data-processing services available on the internet." [174]. These services and

14 https://www.w3.org/TeamSubmission/n3/
15 http://eulersharp.sourceforge.net/
16 https://www.w3.org/2000/10/swap/doc/cwm

39

2. Foundations

APIs are provided by the agent framework when training policies and sharing and reusing

task entity descriptions and policies. The agent framework uses e.g. log and time series

data to derive, combine and adapt decision rules and task policies while it mediates the

bi-directional communication between software agents and corresponding environments.

This implies that sensors and agents send in an event-driven manner information via the

agent framework in order to perceive and cause environmental changes. In this sense,

it can be said that the agent framework serves for software agents that act in IoT-based

systems and solve heterogeneous IoT tasks.

2.2.7. The Web of Things

The Web of Things (WoT) is candidate for a W3C recommendation
17
and serves as an

abstraction layer for IoT infrastructures in order to provide interoperability in different

areas of application and for different use cases (e.g. smart cities, health care, industry,

smart buildings, gas and oil, insurance, etc.)

The basic concept of the WoT is the abstract Thing Description (TD)18 that encapsulates
the semantic and virtual representation of physical and virtual Things in the appropriate

IoT environments. Things are in this context relevant objects in the environment, that

can be shared, retrieved, accessed and composed. Therefore, WoT implementations require

to provide for every of these functionalities a layer that addresses and serves for the

appropriate management of Things and their representation.

The TD comprises of some main building blocks, such as meta data (property affordance)
about the Thing, interaction affordance (e.g. actions, events), data exchange schemas for
interpretability and web links that associate a Thing to other Things in the environment.

In this work, the concepts of the TD were adopted for the interaction of agents, platforms

and IoT devices. The considered Things are usually responsible for providing their TD that

can be looked up by other WoT participants (Things) in order to use and communicate with

the appropriate Thing. The specification of TDs is made by JSON or JSON-LD. Listing 2.9

was adopted from the W3C page
19
and depicts a TD of a Lamp device.

Listing 2.9: WoT description as JSON-LD.

1 {

2 "@context": "https://www.w3.org/2019/wot/td/v1",

3 "id": "urn:dev:ops:32473-WoTLamp-1234",

4 "title": "MyLampThing",

5 "properties": {

6 "status" : {

7 "type": "string",

17 https://www.w3.org/WoT/
18 https://www.w3.org/TR/wot-thing-description/
19 https://www.w3.org/TR/wot-thing-description/\#simple-thing-description-sample

40

2.2. Semantic Technologies

8 "forms": [{"href": "https://example.com/status"}]

9 }

10 },

11 "actions": {

12 "toggle" : {

13 "forms": [{"href": "https://example.com/toggle"}]

14 }

15 },

16 "events":{

17 "overheating":{

18 "data": {"type": "string"},

19 "forms": [{

20 "href": "https://example.com/oh",

21 "subprotocol": "longpoll"

22 }]

23 }

24 }

25 }

In the presented JSON-LD example, a lamp device is described by a TD. First, the context

of the lamp is defined. The @context reference provides the schema definition, namely

the context in which the lamp is described (line 2). Then, in line 3, the @id of the

lamp is specified by a URN. The lamp supports the action toggle that provides a forms
reference link for the mentioned action (line 13). Further, the given lamp may trigger the

event (OverHeating), whose value type is a string data type. Events have as well a forms
specification that references a link to the appropriate event form. Moreover, a sub-protocol

can be defined that stipulates the kind of request protocol (i.e. longpoll). There are already
different WoT implementations

20
that provide the infrastructure and adhere to the Thing

representation. However, for the given work at hand, an own WoT implementation was

developed, since the WoT was emerging newly and there were no mature implementations

that could have been reused.

20 https://hacks.mozilla.org/2017/06/building-the-web-of-things/, https://github.com/

thingweb/node-wot

41

2. Foundations

2.3. Machine Learning

In the previous sections, agent-based systems and Semantic Web technologies were in-

troduced and discussed. Now the focus is on machine learning (ML) that enables agents

to learn policies and adapt themselves to new situations. In this section, the adopted

information about ML is based on the following literature [25, 169, 65, 242, 181, 213]. In

the agent framework presented, agents apply reinforcement learning (RL) to learn to solve

tasks.

However, before we dive into RL, some definitions regarding the challenges and nature

of ML have to be clarified. In the following sections, this work outlines topics and terms

such as (un-)supervised learning, reinforcement learning, feature engineering, ML model
evaluation, etc. in order to give a basic introduction into the employed ML terminology.

2.3.1. Learning

According to [213], learning in the context of ML means learning a function by means

of inputs and appropriate outputs in order to make predictions by a learned (non-)linear

function for new unseen input data. Learning is important because not every situation

that could occur, can be considered beforehand at design time of a ML task. For this reason,

agents require to learn how to react to possible unconsidered situations. Moreover, it is

not possible to predict beforehand over time upcoming changes in the agent environment

and the last reason why learning is important and indispensable for agents, is that some

solutions for given tasks are not programmable by fix procedures and functions, especially

if the previously mentioned conditions (e.g. dynamically changing situation and envi-

ronment) are given. The objective of learning is to obtain a representative mathematical

model for a given problem. According to Mitchell [169], learning is defined as:

“A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P, if its performance at tasks in T, as measured by P, improves

with experience E.“

In other words, an agent learns by its made experience regarding a certain class of tasks

and by evaluating a performance measure, while the learning process is observable by the

performance improvement, depending on gathered experience. This implies that three

different components (Class of Tasks, Experience, Performance) are required to characterise

a (machine) learning process and describe a learning agent.

If we map Mitchell’s definition of learning to agents, the class of tasks can be considered

as the agent’s problem domain that has to be solved by the agent. The agent’s experience

is built by representative training samples (observations) and an agent function represents

the utility (i.e. performance measure) of conducted actions with respect to observed states.

The agent’s performance is usually measured by an error or loss function (e.g. mean

squared error) that indicates the deviation (error rate) from the training sample’s model

representation. The fitting of the model function is conducted by different algorithms (e.g.

42

2.3. Machine Learning

stochastic gradient descent, etc.).

There are many challenges in ML (e.g. data quantity and quality, feature selection and

pre-processing, etc.), which are discussed in the corresponding sections.

2.3.2. Supervised Learning

The training of ML algorithms depends in particular on the datasets that are used for

building a representative model. Annotated datasets that provide the corresponding

outputs to given inputs contribute to supervised learning. The agent gets feedback by

applying the input values (X-vector) to the model function and compares by the loss

function, the results of its model function with the given outputs (Y-vector) of the annotated

samples. At the same time, the error function shows howmuch themodel has to be adjusted

until it produces the desired results.

𝑋 =

[
𝑥1

𝑥2

]
𝑌 =

[
𝑦1

𝑦2

]

The success of supervised learning depends highly on the quantity, quality, significance
and representativeness of annotated datasets. The different prediction classes have to be

separable by their feature representation. The better the separation of samples by their

features is possible, the more are the appropriate models and predictions reliable.

Most of the algorithms require a high number of qualitative training samples in order

to cover and reproduce all data characteristics inherent to the model. Noise in data by

irrelevant features and missing or incorrect values can be a problem and lead to non-

representative models and worse prediction results. Moreover, datasets can be imbalanced
which means that not all of the predictable classes are sufficiently represented in the

training samples. Given that a class is more representative than other classes, this may

contribute to good predictions for this one class but to uncertain and incorrect predictions

regarding the under-represented classes.

Feature engineering, cleaning and pre-processing of data samples help to overcome the

above problems by converting the data into machine-processable formats. Figure 2.4

illustrates a ML pipeline that is usually processed during the training of a model. First,

the (annotated) preprocessed datasets serve for the learning algorithm as input, then a

hypothesis (i.e. model function) is trained and then this hypothesis is tested by test data

in order recognise the error rate and to adjust it according to the error rate. The trained

hypothesis is later employed for making predictions.

43

2. Foundations

Figure 2.4.: Supervised machine learning process steps

2.3.3. Unsupervised Learning

In cases in which the training samples only consist of input but no output data, agents

have to deal with an unsupervised learning problem. This means that the agent gets no

supervision about how output results according to the given features have to look like.

𝑋 =

[
𝑥1

𝑥2

]
The main objective in such cases is to find patterns (e.g. clusters) in the data, draw

conclusions and get insights by these patterns. The focus is more in exploring, interpreting
and describing the data. Distance respectively similarity measures (e.g. Euclidean distance,

Manhattan distance, Cosine distance, Minkowski distance, Jaccard similarity, etc.) and

clustering algorithms (e.g. K-Means, DBSCAN, Expectation Maximisation, etc.) as well

as dimensionality reduction (e.g. Principal Component Analysis (PCA), Latent Semantic

Analysis (LSA)) algorithms are applied. This kind of problems are usually more often

given, since the annotation of data is costly and means some effort. Unsupervised learning,

however, is more difficult to manage than supervised learning because it is not clear what

the outcome will be and it depends heavily on the interpretation of the data scientist as to

how conclusions are drawn from the recognised patterns. In unsupervised learning the

objective is to receive new, unknown insights and knowledge.

44

2.3. Machine Learning

2.3.4. Over- and Under-fitting

A hypothesis (model function) can perfectly fit the given training data by capturing the

underlying relationship between independent and dependent variables. The trained hy-

pothesis then perfectly represents the training dataset, but does not generalise well to new,

unseen data samples. Thus, an over-fitted model implies high variability in predictive

performance as measured by a specific loss function (e.g. mean squared error, log-loss)

across different datasets, i.e. across training data and test data. Reasons for high variance

in trained models include training on a small sample size or a large number of features in

the data and hence parameters to train for.

Moreover, such a hypothesis is sensitive to noise. In the above cases, the model function

has a high variance. Over-fitting or variance is a problem in ML that requires various

heuristics (e.g. regularisation, bagging, boosting) that avoid over-fitting themodel function.

Eq. 2.14 (ridge regression) and Eq. 2.15 (lasso regression) represent two regularisation

methods where 𝑅 is the regularised loss, 𝑙𝑜𝑠𝑠 is a model-dependent loss function, _ is the

regularisation parameter that ranges between 0 and ∞, and 𝑤1 . . .𝑤𝑛 are the estimated

model parameters, i.e. weights. The only difference between the Lasso and Ridge regres-
sions is that the former computes the absolute sum of the model parameters, whereas the

latter squares the sum of the model parameters. The consequence of this slight difference

is that in lasso regression, unimportant model parameters that do not contribute to the

prediction can be eliminated by setting the corresponding parameters to zero, whereas in

ridge regression their value approaches zero but never becomes zero.

R = Loss + _(w1 + w2 + . . . + wn)2
(2.14)

R = Loss + _ | w1 + w2 + . . . + wn | (2.15)

The opposite problem of over-fitting a hypothesis is under-fitting or biasing it. Thus, it

can be stated that there is a trade-off between variance and bias, and the difficult task of

an estimator is to find a balance between variance and bias.

When bias is present, the hypothesis does not fit the training data and yields poor or random

results for each prediction. This is usually the case when the dataset is not representative

of the prediction task or when the quality and quantity of the data is insufficient. Another

reason for bias could be that the ML method only captures linear models, while the data is

based on a non-linear and complex model. Neither bias nor variance is desirable and can

be avoided by different approaches, as mentioned above.

2.3.5. Classification versus Regression

ML problems can be distinguished by whether they solve a classification or a regression
problem. Regression algorithms predict numeric value outputs, while classification algo-

45

2. Foundations

rithms predict distinct classes or categories of made observations. Classification problems

can be separated into binary (two classes) or multi-class (many classes) classification

depending on the number of classes that can be predicted.

For instance, predicting the price of a house by certain house features or making a weather

forecast regarding upcoming temperatures are regression problems, since the appropriate

ML algorithms predict numeric values. Examples for classification tasks are for instance

image recognition, spam filtering and many more.

2.3.6. Feature Engineering and Data Preprocessing

Before training a hypothesis, a ML engineer or data scientist requires to explore and

consider which data features may be of interest for the given problem. There may be cases

in which features are redundant or irrelevant and then it is required that the redundancy

and irrelevant features are eliminated through feature engineering. Moreover, incorrect

or missing values in the data lead to poor results, and raw data can usually not directly

be utilised as training data because of many different reasons such as e.g. noisiness of

the data, missing or incorrect values, no machine-processable and uniform format, no

numerical representation, etc. Additionally, the curse of feature dimensionality can be a

problem, since a high-dimensional feature space in the datasets can lead to sparse vectors

and insignificant data samples. This in turn, contributes to a diminished performance of

the learning algorithm.

In order to overcome these problems and challenges, feature selection and dimensionality

reduction (e.g. Principal Component Analyse (PCA), etc.) techniques are applied.

Assuming now that the test data is preprocessed, we have to consider how the test data

can be effectively utilised for learning. Usually, the test data is divided into different

partitions also called bins, such as training set, test set, validation set21. The ratio of this
splitting is individual but it makes sense to take a much higher ratio of samples for training

than for the other both partitions. In order to ensure the equal distribution of prediction

classes in every data partition, approaches such as sampling, (k-fold, leave-one-out) cross
validation [213] are applied. For instance, in k-fold cross validation the dataset is partitioned
in k-partitions, whereby iteratively k-times, k-1 equal sized bins are taken as training

data while the one selected bin is taken as validation data. Then the training results are

averaged over the k-bins. In this way, every class has the chance to be in the training

dataset.

Feature Engineering is an important aspect of ML. The right selection of features and data

cleaning are crucial for the success of ML algorithms.

21
The validation data serves for evaluating the model performance during the training, while the test data

serves for evaluating the performance of the finally trained algorithm.

46

2.3. Machine Learning

2.3.7. Evaluation of ML Models

After or during a ML model is trained, the prediction performance and reliability of the

model can be evaluated by different metrics, depending on the ML algorithm (e.g. super-

vised learning, reinforcement learning), such as accuracy, precision, recall, F1, Receiving
Operator Characteristics (ROC) and Area under the ROC curve (AUC), confusion matrix,
cumulative rewards, etc. In this section, we discuss common metrics and evaluation means

for supervised ML and in particular for classification problems as well as for reinforcement

learning.

For evaluation purposes usually a ground-truth is required. The ground-truth consists of

datasets whose prediction outcomes are representative correct and already known. For

instance in a binary classification problem, a ground-truth is provided by annotated data

samples that represent the two classes (positive, negative). According to the comparison

of prediction results against a ground-truth, different rates can be measured, such as true
positive (TP), false positive (FP), true negative (TN) and false negative (FN).

TP means that the trained classifier and the ground-truth have the same positive prediction

result. FP means that the ground-truth result is negative but the hypothesis predicts it

as positive. In turn, FN means that the ground-truth result is positive but the hypothesis

predicts it as negative and TN means that the ground-truth result is negative and the

hypothesis predicts it as well negative.

A confusion matrix (see Table 2.1) can be utilised for counting the number of correct and

incorrect predicted classes. It enables intuitive insights into the performance of a trained

hypothesis by comparing the results of a hypothesis against a given ground-truth. Based

Prediction

positive negative

Ground-Truth

positive #TP #FN

negative #FP #TN

Table 2.1.: Confusion Matrix

on the previously mentioned rates, different metrics such as accuracy, precision, recall and

F1 can be computed in order to show the prediction performance of a trained classifier.

Equation 2.16 computes the accuracy of a classifier. The number of all correctly classified

results (TP and TN) is divided by the size of the entire evaluation set. The accuracy however

is no reliable metric, since it depends on the balance of the dataset, which means that all

classes are equally represented within the evaluation set. In imbalanced datasets, using

accuracy does not make any sense because it does not reflect how the accuracy would

change if the occurrence of the under-represented classes would increase. Therefore, other

metrics are more suitable for evaluating a classifier.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
#𝑇𝑃 + #𝑇𝑁

#𝑇𝑃 + #𝐹𝑃 + #𝑇𝑁 + #𝐹𝑁
(2.16)

47

2. Foundations

The precision of a classifier computes the ratio of TPs and the entire–by the classifier–as

positive predicted data samples. This metric shows how precise the classifier was in its

positive predictions. 2.17 shows the equation for computing the precision of a classifier.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
#𝑇𝑃

#𝑇𝑃 + #𝐹𝑃
(2.17)

The recall of a classifier computes the ratio of TPs and all positive values that are given in

the ground-truth. This metric expresses how many of the entire positive samples could be

covered by the classifier. 2.18 depicts the equation for computing the recall rate.

𝑅𝑒𝑐𝑎𝑙𝑙 =
#𝑇𝑃

#𝑇𝑃 + #𝐹𝑁
(2.18)

The F1 measure is the harmonic mean of precision and recall, so it combines both measures

for providing one key number for estimating the reliability of the (binary) classifier. The

maximum F1 rate that can be achieved is one, which means that the classifier has a perfect

precision and recall of 100 percent. Eq. 2.19 shows the computation of the F1 rate. Precision

and recall are equally weighted.

𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(2.19)

Among the outlined metrics, there are also metrics for determining the most accurate

decision boundary threshold values of trained classifiers. For this reason, many different

decision thresholds are tested for performance and their performance is plotted as indi-

vidual points in a (ROC/AUC) visualisation. In other words, each point in the ROC/AUC

represents the performance of a tested classification threshold. If multiple thresholds are

assessed, the points form a curve representing the relationship between true positive rate
(TPR) (see Eq. 2.20) and false positive rate (FPR) (see Eq. 2.21). The TPR corresponds to the

recall probability, while the FPR determines the ratio of classes incorrectly predicted as

positive that were labelled as negative to all negative results calculated in the ground-truth.

The AUC allows comparison of different ML methods by calculating the area under the

given ROC curve. The larger the AUC, the better the prediction method. Thus, when

comparing two or more methods, one should select the method with the highest AUC

value.

𝑇𝑃𝑅 =
#𝑇𝑃

#𝑇𝑃 + #𝐹𝑁
(2.20)

𝐹𝑃𝑅 =
#𝐹𝑃

#𝐹𝑃 + #𝑇𝑁
(2.21)

By the visual representation of ROC/AUC, TPR and FPR are set into relation. Figure 2.5

depicts an example ROC/AUC representing a synthetically generated performance esti-

mate of a classified dataset. The more the curve tends towards the value one hundred in

the top left corner the better is the reliability and performance of the classifier, since the

TPR is then higher than the FPR. The AUC shows the ratio between TPR and FPR. The

48

2.3. Machine Learning

Figure 2.5.: Illustration of a ROC/AUC curve of a synthetic generated and classified dataset

49

2. Foundations

higher the AUC rate, the more reliable are the made classifications. In the given case the

AUC is at 82.9 % which is not bad for a classifier. However, a value towards one or one

hundred is the ideal AUC for a classifier.

In reinforcement learning (RL), the evaluation of the performance of a strategy looks differ-

ent than in supervised learning because a) in RL there is usually no baseline data available

and b) the only feedback the RL agent receives about whether or not it is performing well

is the reward value received per action execution step. Therefore, different evaluation

metrics depending on the use case scenario have to be considered and applied.

According to Poole and MacWorth [198], the evaluation of RL agents is either by looking

"how good an RL agent finds policies" or by considering the cumulative reward as a function

of steps (t).

f (t) =
T∑︁

t=0

Rewardt (2.22)

For instance, if no further exploration steps are required because the agent has time to

sufficiently learn off-line final policies, then the cumulative reward function may be the

metric of choice to estimate the performance of the trained policies, while an agent that has

to train during deployment time, may be evaluated by how good and fast it finds policies.

Hence, the RL agent collects and sums the reward gained per execution step. Figure 2.6

shows an example plot of a cumulative reward function. The slope of the function can be

used to derive various statistics about the performance and utility of the actions performed,

indicating whether the agent learns and performs desirable or useful behaviour in the

course of task execution. As depicted in Figure 2.6, the slope is continuously increasing

which means that the agent continuously learns a reward maximising and therefore useful

behaviour.

2.3.8. Multinomial and Gaussian Naive Bayes Classifier

Agents who observe their environment can use different types of classification algorithms

for decision making. The Naive Bayes classifier is one such classification algorithm that

allows agents to compute conditional probabilities of actions and thus select actions de-

pending on the currently observed state and the underlying collected data representing the

agent’s experience. The Bayes classifier is based on the Bayes Theorem (see Theorem 2.23)

that was defined by Thomas Bayes, a mathematician in the 18th century. The foundation

to multinomial and Gaussian naive Bayes classifiers was adopted from the books: Pattern
Classification [65] and Thinking Bayes [64].

P(action|evidence) = P(action) · P(evidence|action)
P(evidence) , (2.23)

50

2.3. Machine Learning

Figure 2.6.: Function plot of cumulative reward per execution step

where P(action|evidence) is the posterior probability of an action given an evidence,

P(action) is the prior probability of action, P(evidence|action) is the likelihood of evi-

dence and P(evidence) is the prior probability of evidences.

The mentioned theorem prescribes the calculation of conditional probabilities. It is as-

sumed that a hypothesis H is given whose posterior probability is to be calculated. In the

case of the agent, the hypothesis could be any action that the agent is able to perform. The

conditional variables (i.e. evidences) are the observations that the agent makes before each

execution step by perceiving its environment. The likelihood of an evidence, is defined by

the probability of an evidence given a hypothesis. Thus, this means that a hypothesis and

evidence co-occur in the dataset.

It is important to note that the Naive Bayes classifier is called naive because it assumes

that all evidence is independent of each other, which is rarely the case in reality, as there

are usually some dependencies between evidence variables that influence each other.

Nevertheless, the Naive Bayes classifier has been shown to work very well for certain

classification problems (e.g. Spam classification).

Acquired data can consist of different types of features (e.g. discrete, continuous) and thus

have different probability distributions (e.g. uniform, binomial, multinomial and Gaussian).

A finite set of possible feature values characterises discrete data, while continuous data

51

2. Foundations

can consist of an infinite number of possible feature values. Depending on the underlying

probability distribution, either the agent requires to perform a multinomial
22
Bayes classi-

fier for discrete features distributed in a Probability Mass Function (PMF) or a Gaussian
Bayes classifier for continuous features distributed in Probability Density Function (PDF).
Thus, 𝑃 (𝑥) is the probability of a feature 𝑥 .

Equation 2.24 defines how probabilities of multi-nomial features can be calculated.

𝑃 (𝑥) =
𝑁∑︁
𝑖=1

𝑃 (𝐶𝑖 ∩ 𝑥) =
𝑁∑︁
𝑖=1

𝑃 (𝑥 |𝐶𝑖) · 𝑃 (𝐶𝑖), (2.24)

where x is an observed feature (e.g. door) with a certain value (e.g. open) and 𝐶𝑖 is a

predictable class in the dataset. Eq. 2.25 depicts how probabilities of Gaussian distributed

features can be calculated.

P(x) = 1

√
2𝜋𝜎2

𝑒
− (𝑥−`)2

2𝜎2 , (2.25)

where 𝑥 is an observed feature value, 𝜎 is the standard deviation, 𝜎2
is the variance and `

is the mean of the observed feature’s values.

To summarise the difference between multinomial and Gaussian Naive Bayes classifiers,

it can be said that for data with continuous feature variables, the Gaussian probability

calculation is required, while for discrete and thus categorical feature variables whose

frequency of occurrence can be counted, the multinomial probability calculation is required.

In this way agents have a statistical and evidence based method to decide their next step

of action.

2.3.9. Markov Decision Process

This section lays the technical and formal foundations for understanding reinforcement

learning (RL). The activities of agents are modelled and represented by Markov decision

processes (MDPs) in reinforcement learning. Furthermore, strategies learned by means

of value functions are expressed by policies. These terms therefore require clarification.

First, MDPs are introduced, then a definition of policies and value functions is given. For

the description of finite MDPs, policies, and value functions in this section, the definitions

were adopted from [203] and [242].

According to [242], a finite MDP is a mathematical formalisation that allows RL agents

to make sequential, goal-oriented decisions that do not only impact immediate rewards

but also subsequent states and future (i.e. delayed) rewards. MDPs are defined through

a tuple (𝑆,𝐴, 𝑅) of finite sets, where S is the finite set of process states, A is the finite

set of possible actions that can be performed by an agent and R is a finite set of reward

22
Multinomial in this context means that the frequency of multiple discrete events forms a probability

distribution that can be represented by a histogram.

52

2.3. Machine Learning

values. MDPs enable agents to learn policies through their interactions with their external

environment. In particular, an agent has the objective to maximise through its performed

actions and accumulated reward values its internally maintained value function. Each
action 𝐴𝑡 ∈ 𝐴 is selected and performed in discrete time steps 𝑡 = 0, 1, 2, 3...𝑛 based on the

perceived state 𝑆𝑡 ∈ 𝑆 . After executing an action 𝐴𝑡 , the agent obtains a numerical reward

signal 𝑅𝑡+1 ∈ 𝑅 ⊂ R and a subsequent state 𝑆𝑡+1. Thus, a sequence or trajectory of a MDP

is defined in [242] as follows: 𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, 𝑆2, 𝐴2, 𝑅3, The probability distribution

𝑝 of states and rewards is determined by their preceding states and conducted actions.

Eq. 2.26 formalises this fact:

p(s′, r|s, a) .
= 𝑃𝑟 {𝑆𝑡 = 𝑠′, 𝑅𝑡 = 𝑟 |𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎} (2.26)

Eq. 2.27 specifies the conditional probability 𝑝 that considers the vocabulary respectively

sets 𝑠, 𝑠′ ∈ 𝑆 , 𝑟 ∈ 𝑅, 𝑎 ∈ 𝐴(𝑠) and expresses the dynamics of MDPs:

𝑝 : 𝑆 × 𝑅 × 𝑆 ×𝐴 → [0, 1] (2.27)

The introduced conditional probability also indicates the Markov property of a state, since

only the previous state and the action performed determine the probability of the next

state 𝑆𝑡+1 and the corresponding reward 𝑅𝑡+1. Thus, it is not necessary to consider all

previous states, but only the current state, to determine the transition probabilities of S

and R.

Any state in an MDP can be a starting point state of an agent. To express how likely it is

that a state will become an initial state, there is a probability 𝑝0 that expresses this fact.

Since the foreseen agents have to solve process oriented tasks, MDPs are predestined to

serve as a process model. In particular, reinforcement learning approaches represent tasks

by means of MDPs. However, these MDPs are in most of the cases unknown beforehand

and have to be explored by the agent, especially if the solvable tasks are complex and have

an infinite state space.

By means of a MDP, an agent can train policies 𝜋 : S → A for every state-action pair

specified within the MDP.

For instance, Fig. 2.7a illustrates a 2-D game
23
in which a robot has the task to collect

red apples whereas it has to avoid green apples since they are poisoned. In addition, the

robot needs to be careful not to bump into one of the 4 outer walls of the playing field and

to eat red apples in time to recharge its energy or battery level. The robot can perform

7 actions: Pick up apples, move (right, left, up, down), eat apples and stop its activities

when its battery level is depleted. While the nodes of the MPD represent the appropriate

states (Apple in front, Bumped into wall,...), the edges represent the actions that lead from

one state to another state. There are 3 final states (i.e. No battery energy, Died by green
apple, Collected all red apples) that are represented through bold node edges and finish

23
Accessible on Github at https://github.com/nmerkle/SMAPPI-Smart-Apple-Picker-Agent

53

2. Foundations

the game whereas the state Collected all red apples is the goal state that the robot intends
to achieve. Each state has a positive or negative reward value that indicates whether a

state is desirable or not. Furthermore, for every transition (T) a probability value is given.

For instance, if the robot has a wall in front of it the chances are 50 % that it will bump

into the wall and the appropriate reward for that action that leads to this state is a value

of -10. In the state Bumped into wall two different actions are possible (e.g. Move further
against the wall, or move away from the wall). However, it is not clear in which order the

actions have to be performed. Therefore, the agent has to explore which action sequences

promise the highest expected cumulative reward.

As Figure 2.7b illustrates, the probability distribution of transitions approximately sums

up for every single state to the value one. MDPs are simple models. However, tasks can be

arbitrarily complex and then it is usually not possible to visualise a MDP. The agent has to

discover itself by exploration and exploitation steps the state representations and relating

actions with the appropriate transition probabilities. The visual representation of MDPs

are only a means for developers to understand the processes of a task and gain knowledge

about the problem domain.

2.3.10. Reinforcement Learning

Reinforcement learning (RL) is another ML paradigm, along with supervised and unsu-

pervised learning [242]. One assumption in reinforcement learning (RL) is that every

behaviour has in the long- or short-term, a consequence and this consequence can be

either positive or negative. An agent learns its strategies (policies) by interacting with its

environment and is either rewarded or punished for its performed actions. The objective in

RL is to imitate the way of how human beings learn from their childhood on. We humans

get directly or indirectly rewarded or punished for our actions and RL exactly reproduces

this way of human learning for software agents.

An agent that implements RL, performs an action and receives for the performed action

by a real or simulated environment a return (e.g. reward or punishment) represented

by a scalar number. RL processes can be considered as a cycle in that the agent per-

ceives and interacts with its environment (see Figure 2.8). However, before an agent

can compute a policy, it requires a model representation of its task environment with

a terminating goal state. A RL task is usually represented by a Markov Decision Process
(MDP) (see Sec. 2.3.9). Within a MDP model every transition probability from one state to

a next state depends only on the current state of the environment and the performed action.

A policy 𝜋 represents the probability of performing an action 𝑎 in a certain state 𝑠 . Equa-

tion 2.28 represents the general definition of a policy.

𝜋 (s, a) (2.28)

Furthermore, a resulting optimal policy can be considered as a mapping from environmen-

tal states to optimal actions. Equation 2.29 shows an optimal policy representation.

54

2.3. Machine Learning

(a) A screen-shot of the smart apple picker (SMAPPI) game.

(b) An example MDP modelling the SMAPPI game that is derived from the rules of the game.

Figure 2.7.: Screenshot of the SMAPPI game [232] and corresponding MDP created as part

of this work to illustrate an example of an MDP.

55

2. Foundations

Figure 2.8.: Learning cycle in RL

For every given state s of a task, an optimal action a is computed by the agent, so that the

agent knows in every possible state which action to perform. An optimal action is in this

context an action that leads to the highest expected cumulative reward value. This implies

that the agent needs to iteratively compute the optimal action for every state until a value

function of each state-action pair is converging.

𝜋∗(s) = a (2.29)

There are two different value functions in RL, called state value function and action value
function. A value function indicates how reward-maximising, a state or state-action pair

is for the agent because it takes into account future rewards that can be expected by the

agent. Equation 2.30 depicts the state value function 𝑉 that computes the expected E𝜋
reward value Rt of a state s for performing a certain policy 𝜋 at time 𝑡 .

V𝜋 (𝑠) = E𝜋 [Rt | st = s] (2.30)

A value function requires always to be considered in relation to a policy where a policy is

a probability function 𝜋 (𝑎 |𝑠) indicating the probability 𝑎 ∈ 𝐴(𝑠) that an action 𝑎 = 𝐴𝑡 ∈ 𝐴

is performed in state 𝑠 = 𝑆𝑡 ∈ 𝑆 . According to Barto et al., a value function, computing the

expected reward E[.], w.r.t. a policy 𝜋 , is defined as follows, where 𝛾 is the discount factor
that controls how strong an immediate reward is affecting the value of the value function.

Thus, unlike Eq. 2.30 and Eq. 2.32, Eq. 2.31 and Eq. 2.33 also take into account the discount

factor 𝛾 for future steps.

56

2.3. Machine Learning

v𝜋 (𝑠)
.
= E𝜋 [𝐺𝑡 |𝑆𝑡 = 𝑠] = E𝜋

[∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1

�����𝑆𝑡 = 𝑠

]
, for all 𝑠 ∈ 𝑆 (2.31)

Equation 2.32 depicts the action value function Q𝜋 (𝑠, 𝑎) that computes the expected E
reward value Rt of performing an action a in a certain state s according to a policy 𝜋 .

Q𝜋 (𝑠, 𝑎) = E𝜋 [Rt | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (2.32)

Equation 2.33 depicts the action value function with discount factor 𝛾 :

q𝜋 (𝑠 |𝑎)
.
= E𝜋 [𝐺𝑡 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] = E𝜋

[∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1

�����𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

]
. (2.33)

Despite the previously mentioned value functions, usually in RL, the policies are computed

by means of a quality value function [242] that is a Bellman equation. The Bellman equation

can be derived from the previously discussed value functions. However, the mathematical

derivations will not be presented within this work. Equation 2.34 depicts the Bellman

equation (q-function).

Q∗(s𝑡 , a𝑡) =

𝑇∑︁
𝑡=0

r𝑡+1 + 𝛾 ∗𝑚𝑎𝑥 (Q∗(s𝑡+1, a𝑡+1)) 0 ≤ 𝛾 ≤ 1 (2.34)

The quality value Q∗
of a state-action input at time t is computed by considering the

reward rt+1 for choosing the action at plus a discount factor gamma multiplied with the

maximum expected quality value of the next state st+1 and the next related action at+1.

The gamma discount factor helps to balance the importance of the quality values of future

states. The value range of the discount factor is [0, 1].

By using the quality value function, the agent iteratively computes a strategy that promises

the highest expected reward for each state-action pair of a task.

In RL, an agent has to face the credit assignment problem (CAP) that first was raised by

Marvin Minsky in his work Steps towards Artificial Intelligence [166]. There exist three
types of the CAP:

i. Temporal CAP – The problem to figure out which of the actions within an action

sequence lead to the assigned reward or punishment.

ii. Structural CAP – The problem to identify which system-immanent, i.e. structural,

influences (e.g. observed states or cooperating agents) have contributed to the sequence

of actions and thus to the achieved result.

iii. Transfer CAP – The problem to generalise learned action sequences across different

tasks (see Transfer learning).

57

2. Foundations

The most considered CAP in RL is the temporal CAP. For instance, an agent receives

delayed rewards, which means that a longer sequence of actions has to be performed by

the agent until a feedback is given. In order to solve the mentioned problem, there are

two kinds of agent activities during learning, called exploration and exploitation [242].

Exploration means that the agent performs randomly an action without considering the

collected utility or quality values. In the exploitation step the agent performs actions that

have the highest accumulated utility value. Both steps are required for discovering the

state-action space and learning policies.

At the beginning, the agent initiates different actions without knowing if this leads to a

high reward value [172]. The agent learns over several thousand episodes which actions

in the observed states lead to the maximum expected cumulative reward. The obtained

cumulative reward values for each state-action pair are stored either in a table where

rows and columns represent states and actions, or in a neural network that trains the

model parameters for each state-action pair. If some quality value functions are already

computed, the agent is also able to exploit (decide) based on its computed Q-values which

action to select in order to maximise its cumulative reward. According to [242], the agent

should alternate between exploration and exploitation, since the exploration allows to

find unknown and unapparent constellations, which can maximise the future expected

cumulative reward of the agent. In particular at the beginning of the learning phase, the

exploration of actions is necessary.

In order to balance exploration and exploitation, usually a greedy strategy is applied by

defining a probability 𝜖 that specifies when a random action and when a trained action is

performed (see Eq. 2.35).

at =

{
a∗twith probability 1-𝜖

random action with probability𝜖
(2.35)

In this way the agent can explore the environment’s feedback (reward) and exploit the

already learned knowledge (experience).

2.3.11. Hyperparameter Optimisation

The most ML algorithms require besides of initial weights, fix hyper-parameters (e.g.

learning rate, greedy value, discount factor, etc.) to train their models. Hyper-parameters

control the training process and are usually defined before the training starts. Depending

on the required hyper-parameters, the performance of a ML model can vary considerably.

Therefore, finding and setting the hyper-parameters that contribute to the best prediction

results is crucial for ML tasks.

In several papers [139, 21, 226, 82] strategies and approaches (e.g. grid search, ran-

dom search, Bayesian, gradient-based and evolutionary optimisation) for finding hyper-

parameters are discussed and proposed to optimise the performance of ML models with

58

2.3. Machine Learning

respect to evaluation metrics. The outcome of a hyper-parameter search is a set of hyper-

parameters that promises the best evaluation metric results.

The applied evaluation metrics (see Sec. 2.3.7) depend on the appropriate ML algorithm that

requires the hyper-parameters. In supervised ML settings often metrics such as precision,

recall, F1, ROC/AUC are applied, while in RL settings, the performance of trained policies

is usually evaluated by the gained cumulative reward function. Since in this work, RL

agents are in focus, the cumulative reward function and required number of steps or

episodes until the agent has learned optimal, i.e. reward maximising policies, are adopted

as performance metrics, also regarding hyper-parameter optimisation. In this work, hyper-

parameter optimisation is part of the agent-lifespan and is applied before the initialisation

and training of the agent starts. Therefore, the following two optimisation algorithms for

hyper-parameter tuning are considered and proposed for the agent framework.

2.3.11.1. Grid Search

In grid search beforehand a subset of parameters has to be defined for evaluation. Usu-

ally, common adopted values are taken that base on experience and assumptions. The

appropriate ML algorithm (agent function) is then executed several times with different

combinations of the according parameters, while the prediction outcomes (cumulative

reward) are recorded. To get the mean reward value of the prediction performance, the

cumulative reward is averaged by the performed episodes. The evaluated hyper-parameter

combination with the best evaluation results is then chosen for the accordingML algorithm.

Algorithm 1 represents the corresponding procedure. After evaluating the different combi-

nations of hyper-parameters with the agent function, they are sorted by the performance

of the parametrised estimator in descending order.

2.3.11.2. Random Search

In contrast to grid search, in random search it is not required to set a fix subset of hyper-

parameters manually. Only the parameter range is necessary for every considerable

hyper-parameter, in order to randomly determine the appropriate parameter values within

the given ranges. However, the number of how many random values have to be gen-

erated, is defined by the developer. The random parameter values are then tested by

the algorithm in one or several iterations. The more random parameters are tested, the

more the hyper-parameter subspace is covered. Also here the testable parameter size

depends on how much computational resources are available. The best performing param-

eter configuration is then selected by the random search algorithm as well as in grid search.

Algorithm 2 demonstrates the procedure of random search.

Grid search and random search are intended to be used in the agent framework and the

agent developer can decide which of the optimisers to select and apply.

59

2. Foundations

Algorithm 1: Grid Search

Input: set of selected hyper-params, iterations, episodes, agent function

Output: best performing hyper-params

1 Function GridSearch(paramSet, iterations, episodes, funcName):
2 evaluatedParams = []

3 for i = 0; i < iterations; i++ do
4 result = 0

5 selectedParams = combineParameters(paramSet)

6 for j = 0; j < episodes; j++ do
7 result += funcName(selectedParams)

8 result /= episodes

9 evaluatedParams.push([selectedParams, result])

10 evaluatedParams.sortByResult(ascending)

11 return evaluatedParams[0]

12

13 Function Main:
14 iterations = 10

15 episodes = 30

16 selectedHyperparams = [...]

17 bestResult = GridSearch(selectedHyperparams, iterations, episodes,

agentFunction())

18 store(bestResult)

19 return 0

60

2.3. Machine Learning

Algorithm 2: Random Search

Input: search size, hyper-param range, hyper-param names, iterations, agent

function

Output: best performing hyper-params

1 Function RandomSearch(randomSearchSize, iterations, paramNames, ranges,
funcName):

2 evaluatedParams = []

3 for i = 0; i < randomSearchSize; i++ do
4 evalParamSet = []

5 forall param in paramNames do
6 value = getRandom(ranges[param].min, ranges[param].max)

7 evalParamSet.push([param, value])

8 result = 0

9 for i = 0; i < iterations; i++ do
10 result += funcName(evalParamSet)

11 result /= iterations

12 evaluatedParams.push([param, result])

13 evaluatedParams.sortByResult(ascending)

14 return evaluatedParams[0]

15

16 Function Main:
17 iterations = 10

18 selectedHyperparams = [...]

19 bestResult = RandomSearch(selectedHyperparams, iterations)

20 store(bestResult)

21 return 0

61

2. Foundations

Hyper-parameter optimisation can be, if required, performed in parallel in order to save

time. However, it depends on the given computational resources, such as computation

power, available processors, RAM, etc.) whether the hyper-parameter optimisation is

performed in parallel execution.

2.3.12. Word/Entity Embeddings

In 1957, J.R. Firth wrote in [74]: "You shall know a word by the company it keeps.". Word

embeddings operate based on this principle of distribution similarity, because words in
text corpora are distributed in the word embedding (vector) space depending on their

contextually surrounding words.

Since the proposed agent framework adopts word embedding techniques in order to a)

compute the similarity between different agent task representations, i.e. task entities, and

b) represent contexts numerically, this section provides the foundational knowledge for

word embeddings and their utilisation within this work. However, in the scope of this

work, the term Entity Embedding will be utilised since not words but semantic entities of

MDP tasks are encoded within embedding spaces.

Simply spoken,Word/Entity Embeddings are vectors of real numbers (e.g. trained weights),

representing single words in order to allow the quantification, processing and examina-

tion of these words respectively entities within data mining and ML algorithms. This is

necessary due to the fact that the mentioned algorithms require numerical vector repre-

sentations in order to process them.

Word embeddings are in particular used in Natural language processing (NLP) to capture the
context and semantics (meaning) of words within phrases of huge text corpora. Moreover,

word embeddings have very interesting properties that provide useful insights about

the semantic relationship of words to each other. For instance, Allen and Hospedales

demonstrate in their paper [6] that word embeddings enable to find semantic relations such

asKing relates to Man as Queen relates toWoman, by performing simplemathematical vector

operations, such as i.e. addition and subtraction. For instance, the following mathematical

operations on the appropriate word vectors are possible: Subtract the word embedding

vector of man from king and add the embedding vector of woman to the previous vector,

which results in the embedding vector of queen [6].

WEKing − WEMan + WEWoman = WEQueen (2.36)

Said that, the (dis)similarity and semantic relatedness of word vectors, respectively words

can be measured by computing the Cosine similarity (see Eq. 2.37) respectively Cosine
distance (see Eq. 2.38) or the Euclidean distance (see Eq. 2.39). For instance, the cosine
similarity of nearly one indicates a high similarity between two word embeddings, while a

similarity value between zero and minus one indicates a high dissimilarity between those

words.

62

2.3. Machine Learning

However, the situation is different with the Euclidean and Cosine distance. An Euclidean

distance or a Cosine distance of nearly zero indicates a very low distance and thus a high

similarity. Computing the similarity or distance of entity embeddings is required to enable

agents to find reusable policies for similar tasks. In the approach chapter (see Sec. 4.5.1

and 4.5.2), it is outlined in detail, how entity embeddings were adopted and trained for

agent tasks and their properties in order to derive matching policies.

cos𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (p, q) =
pq

∥p∥∥q∥ =

∑𝑛
𝑖=1

p𝑖q𝑖√︁∑𝑛
𝑖=1

(p𝑖)2

√︁∑𝑛
𝑖=1

(q𝑖)2

(2.37)

cos𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (p, q) = 1 − pq
∥p∥∥q∥ = 1 −

∑𝑛
𝑖=1

p𝑖q𝑖√︁∑𝑛
𝑖=1

(p𝑖)2

√︁∑𝑛
𝑖=1

(q𝑖)2

(2.38)

d(p, q) = ∥p − q∥2 =
√︁
(𝑝1 − 𝑞1)2 + ... + (𝑝𝑛 − 𝑞𝑛)2 =

√√
𝑛∑︁
𝑖=1

(𝑝𝑖 − 𝑞𝑖)2
(2.39)

Single entities in entity embeddings are usually represented in a high-dimensional vector

space. To visualise entity embeddings, however, dimensionality reduction techniques such

as T-Distributed Stochastic Neighbour Embedding (T-SNE) [145], Principal Component

Analysis (PCA) or Uniform Manifold Approximation and Projection (UMAP) [149] are

required.

For instance, Google (Tensorflow) applies the mentioned dimension reduction techniques

in the Embedding Projector24, a web application that allows the upload and visualisation of

word respectively entity embeddings in a two or three dimensional space.

Word or entity embeddings can be constructed in different ways (e.g. one-hot encoded

vectors, word frequencies, co-occurrence matrix, etc.), however the most common method

is to train embedding layers in an arbitrary Neural Network (NN), because in contrast to

the earlier mentioned approaches, embeddings trained by NNs maintain the contextual

meaning of words and entities. The corresponding NN architecture and supervised learning

task depends on the problem domain for which the embedding layers have to be trained

for. It is common between the different NN architectures to train the weights of the first

hidden network layer by back-propagation. The embeddings layer is usually initialised

with random weights. Figure 2.9 illustrates exemplary a deep neural network (DNN) with

an embedding layer.

There are two popular types of embedding architectures, Skip-gram and Continuous Bag
of Words (CBOW). While in the CBOW architecture, the network predicts the embedded

target word by the contextual surrounding words, in the Skip-gram architecture, the

network predicts the contextually surrounding words by the appropriate target word. In

24 http://projector.tensorflow.org/

63

2. Foundations

Figure 2.9.: An exemplary deep neural network with a word embedding layer.

both approaches the context of words plays an important role.

The number of neighbouring words that are considered by the NN, is defined by an arbi-

trary window size. For instance, if a window size of 2 is selected for the following sentence:

London is the capital of England, then the appropriate word tuples, related to the target

word capital will be as follows:

(capital, is), (capital, the), (capital, of), (capital, England).

In most of the cases, it is not required to train embedding layers from scratch because there

are already pre-trained models (Word2Vec
25
, GloVe

26
, etc.) freely available that can be

used for different NLP tasks (e.g. sentiment analysis). However, depending on the purpose

of the specific embeddings, it can be required to train an own model that addresses the

own task requirements. In this work, different embedding layers are trained for different

task properties, i.e. entities, because the similarity of tasks is to be determined.

2.3.13. Genetic Algorithms

One objective of the proposed framework is to support different types of ML and optimisa-

tion algorithms to find task-specific strategies that can be applied by software agents. The

implementation of a genetic algorithm (GA) is supported by the proposed agent framework.

GAs can be used for different purposes in the context of the framework. One purpose is to

create successful agent strategies (i.e. action sequences) based on executable agent actions.

Another purpose is to combine actions of multiple agents and create agent populations

25 https://code.google.com/archive/p/word2vec/
26 https://nlp.stanford.edu/projects/glove/

64

2.3. Machine Learning

that collectively contribute to solving tasks in a multi-agent system (MAS). In future works,

it is also considerable that agent developers utilise GAs together with semantic model

representations for finding certain agent skills that enable an agent to solve a variety of

tasks, depending on given user and task requirements.

The foundational knowledge about GAs is adopted from the following literature: [86, 162,

95].

GAs are a subset of evolutionary algorithms (EAs) and are inspired by Charles Darwin’s

theory of natural evolution and selection [55]. They are primarily meta-heuristics that

search for near-optimal solutions in mostly huge solution spaces. The advantage of GAs

is that they are able to find sufficient solutions to NP-hard problems without requiring

model knowledge or prior knowledge about a problem space. However, a transformation

between real world (i.e. Phenotype) and computation space (i.e. Genotype) is required in

order to achieve a mapping between both spaces.

GAs follow the principle of the survival of the fittest, which means that only successful

solutions survive and prevail. The fitness of solutions is measured by a problem specific

fitness function that allows to assess the success of a solution.

GAs apply various genetic operators (e.g. parent selection, recombination, mutation, sur-

vivor selection) that mimic the evolutionary process in nature. Whilemutation contributes

to a high diversity of solutions within the populations, recombination ensures that suc-

cessful solutions survive in subsequent generations by reproducing themselves. Mutation

and recombination each occur with a certain probability, which is set in advance as a

hyper-parameter.

A problem in GAs is the premature convergence to local optima. This means in simple terms

that the algorithm stagnates before finding a global optimum what yields in a suboptimal

population and solution of the problem. To overcome this problem different strategies

(e.g. randomisation, crowding selection [37]) are applied that facilitate a high diversity of

solutions and the reduction of crowding. Crowding means in this context that the fittest

solutions survive and displace less successful solutions which in turn reduces the diversity

of solutions and leads to homogeneous solutions. Since there is a trade-off between explo-

ration and exploitation, a balance between the two should be maintained, with sufficient

diversity of solutions and reproduction of good solutions. The corresponding strategies

are very problem specific and so for each problem different strategies have to be tried.

The terminology of GAs is based on Darwin’s theory of evolution. Thus, the following

terms are commonly used in the discourse of GAs:

Phenotype APhenotype represents problem specific solutions in real world environments.

For instance the controlling and execution of certain peripherals and devices by specific

commands in the physical environment of the agent, are phenotype representations.

65

2. Foundations

Genotype A genotype represents in a simplified and numerical way solutions in the

computation space so that genetic operators can easily manipulate the given solution

representations by numerical and permutation operations.

Decoding and Encoding The representation and transformation of problem solutions from

a computational representation (i.e. genotype) to a real world application (i.e. phenotype)

and vice versa is called decoding and encoding. Depending on the problem and its complex-

ity, genotype and phenotype representations can be more or less congruent. Decoding and

encoding operations require model knowledge about the problem space and its allowed

solutions, their representation and their mapping to both spaces.

Population A population represents the current subset of all possible solutions of the

entire solution space. The population size can vary according to the given problem.

Depending on how fast solutions have to be found, the population size has to be adjusted.

A population is manipulated by according genetic operators that stochastically alter the

individual solutions of a population.

Chromosome Chromosomes represent individual solutions within a population. Each

chromosome can be altered by the given operators. They can have further properties such

as an age that indicates the existence time span of the chromosome, and a fitness value

that allows the GA the assessment of the chromosome’s success.

Gene A gene is an atomic element within a chromosome. If a chromosome is considered

as an array of values, one field of this array represents a gene. A gene can be considered

as a property of the chromosome.

Allele An allele is a possible value that a gene can take. For instance in binary problems,

the allele would consists of two possible values e.g. 0 or 1. However, depending on the

phenotype and genotype representation also more values of different types (e.g. integers,

real values, strings) are possible.

Genetic Operators In order to change and reproduce chromosomes different operators

such as mutation, recombination and selection are iteratively applied.

Fitness Function Fitness functions are problem-specific and allow the assessment of

solutions. A fitness function evaluates the given solutions and provides a fitness value

that represents the performance of the solution for the given problem. Fitness functions

should be easy and quick to calculate because a GA is an iterative algorithm that multiple

times computes via fitness functions the success of provided solutions.

The general process flow of GAs looks as in Algorithm 3. Firstly, a random population

with a certain size is generated. Depending on the problem the population size can vary.

Usually the population size comprises between hundreds or thousands chromosomes. The

higher the size is, the longer takes the computation time for a finite number of iterations.

66

2.3. Machine Learning

However, a small population size lacks after some time a high diversity of solutions. It

is important to find a balance between sufficient diversity, computation time and resources.

For each chromosome of the initial population a fitness value is computed and assigned.

Subsequently, a while-loop starts that first terminates if one of the conditions are met. In

this case, the conditions are a maximum number of iterations and an optimal fitness value.

From the population an amount of chromosomes are selected for mating with each other

in order to produce offsprings. The selection can be made by different selection strategies,

e.g. tournament selection, rank selection, fitness proportionate selection, stochastic universal
sampling, etc.

Recombinations and mutations are performed with a pre-defined probability. Hence, a

random number between 0.0 and 1.0 is generated and if this number is lower than the set

probabilities then the corresponding operator is applied. Firstly, offsprings are generated

via the recombination of the selected parents. Then, the mutation operator is applied

on the population. For the mutation, different operations can be performed. The basic

idea is to make small changes on the chromosomes in order to generate and explore new

chromosomes that provide new solutions.

For each new generated or reproduced chromosome the fitness function is applied in order

to compute its fitness.

The survivor selection is done on the end of the while-loop. There are as well different

strategies for selecting the survivors of the population. One strategy is age-based selec-

tion. In every iteration (i.e. generation) the age of a chromosome is increased and the

oldest chromosomes are kicked out of the population without considering the fitness of

chromosomes. Thus, each chromosome has a finite life time within the population during

that it can reproduce itself. A second strategy is the fitness-based selection. As in the

parent selection, different fitness-based strategies can be applied, e.g. ranking, tournament

selection, fitness proportionate selection, etc. In this way, only the fittest chromosomes

survive in the population while less chromosomes are replaced by their children.

The termination of the GA algorithm depends on the objectives of the GA designer. The

purpose is to achieve near optimal solutions. There exist different termination criteria that

allow the determination of near optimal solutions. In order to determine the convergence

of the algorithm the following termination conditions can be utilised:

• Convergence of the best fitness value for a predefined number of generations.

• Achieving a predefined limit of generations.

• Achieving the targeted fitness value.

As soon as the termination condition(s) is/are met, the while loop is left and a sufficiently

optimal population is returned (see Algorithm 3).

67

2. Foundations

Algorithm 3: Genetic Algorithm
Input: populationSize, mutationProbability, crossoverProbability,

optimalFitnessValue, numMaxIterations

Output: population
1 Function geneticAlgorithm(populationSize, mutationProbability,

crossoverProbability, optimalFitnessValue, numMaxIterations):
2 population = []

3 bestFit = 0

4 iteration = 0

5 mutatedPopulation = NULL

6 recombinedPopulation = NULL

7 population = randomInitialPopulation(populationSize)

8 fitnessFunction(population)

9 while (bestFit < optimalFitnessValue) && (iteration < numMaxIterations) &&
!isConverged(population) do

10 crossoverProb = getRandomDouble(0.0, 1.0)

11 if crossoverProb <= crossoverProbability then
12 selectedParents = selectParents(population)

13 recombinedPopulation = recombine(selectedParents)

14 fitnessFunction(recombinedPopulation)

15

16 mutationProb = getRandomDouble(0.0, 1.0)

17 if mutationProb <= mutationProbability then
18 mutatedPopulation = mutate(population)

19 fitnessFunction(mutatedPopulation)

20

21 concatPopulation = concat(population, mutatedPopulation,

recombinedPopulation)

22 population = selectSurvivors(concatPopulation)

23 bestFit = getBestFitnessOf(population)

24 iteration++

25

26 return population

27

68

2.4. Decision Rule Mining

2.4. Decision Rule Mining

Since processes, environments and people can generate a huge amount of data through

the effects of their behaviour in real-world environments, a methodology for processing

and using knowledge from corresponding history data is required. Decision rule mining

approaches are useful for this very purpose. In order to discover policy rules, various rule

mining approaches have been considered and adopted for this work. The following sections

outline the corresponding decision rule mining approaches that enable the extraction of

policy rules from history data. The presented knowledge about Frequent Item sets, A-priori

algorithm, FP-Growth algorithm, Sequential Covering, OneR and Association Rules were

taken from the books, Mining of Massive Datasets (MMDS) [134] and Interpretable Machine
Learning (IML) [173].

One objective in this work, is the discovery of decision rules, respectively policy rules,

following the structure in Eq. 2.40. A rule consists of a list of observations that the agent

makes in the environment and a derived action that is one of the actions the agent can

take.

{observation1, observation2, ...observationn} → {actionn} (2.40)

2.4.1. Frequent Item sets

Many different algorithms (e.g. A-priori algorithm, FP-Growth, etc.) have been developed

in rule mining to find frequent item sets in Big Data. Frequent item sets in transactions
(i.e. samples) are considered to determine frequent item co-occurrence. Frequent item sets

are useful, for instance, to infer customer buying behaviour in recommender systems. A

popular sample Rule 2.41, which is also mentioned in the MMDS book, is:

{diaper,milk} → {beer} (2.41)

The example rule in Eq. 2.41 indicates that customers who buy diaper and milk are likely

to buy also a six-pack of beer. This information can foster different sale strategies in order

to maximise the profit.

Extracting frequent item sets can be considered as a data pre-processing step that re-

duces the amount of data considerably, before decision rules, respectively patterns, can

be discovered by applying subsequent statistical metrics, such as confidence, interest and lift.

However, preceding to the discovery of frequent item sets, an additional metric is required

that determines the support or coverage of an item set. Equation 2.42 demonstrates how the

support value of item sets is computed. The number of transactions (e.g. sets of purchased

items, here x and y) that appear together in a transaction, is counted and divided by the

number N of all recorded transactions. If the specified support threshold is surpassed by

the computed support value, an item set counts as frequent item set. For this reason, every

item set combination, respectively transaction, in the dataset has to be considered by the

69

2. Foundations

appropriate algorithm that determines frequent item sets.

In a first step, the support value of single items is computed while the algorithm iteratively

combines different items and determines their support value. The support threshold is

a hyper-parameter that beforehand has to be specified, depending on the use case and

dataset. According to the Mining the Massive Datasets (MMDS) book [134], a rule of thumb

is that 1% of the data amount is taken as support threshold value. For instance, if 10000

transactions are given, a threshold factor of 1% will set the support threshold to the number

1000. However, it depends on the dataset and the use case which support threshold is

ultimately useful.

support({x} → {y}) = (x ⊔ y)
N

(2.42)

Extracting frequent item sets requires a huge amount of computational resources (i.e.

RAM and CPU). In most cases, the volume of data is so large that customised algorithms

have to be used to process the huge amounts of data in main memory. The widely used

A-priori algorithm turns out to be very slow compared to the FP-Growth algorithm. For

this reason the FP-Growth algorithm that is building and traversing recursively an item

tree, is preferred for extracting frequent item sets. The concrete implementation of the

mentioned algorithms are out of the scope of this work and can be found e.g. in the

referenced book [134].

2.4.2. Association Rules

Association rules are if-then rules consisting of an antecedent (i.e. conjunction of condi-

tions) and a consequent (conclusion), that represent the relationship (co-occurrence) of

items. Association rules are identified based on previously discovered frequent item sets.

For this reason, different metrics such as confidence (accuracy), lift and interest are applied
in order to determine association rules.

The confidence of an association rule represents the probability of a target item y given one
or several items 𝑥𝑛 . The computation of the confidence value by means of the appropriate

support values, is shown in equation 2.43.

confidence({x} → {y}) = support(x ⊔ y)
support(x) (2.43)

However, the confidence alone is not a sufficient indicator for the significance of an asso-

ciation rule, since considering the confidence value alone, can lead to misinterpretations,

because a high frequency of the target item influences the confidence value positively. Is

an item set frequently present, the confidence value will be highly independent of the

co-occurrence of items, which means that the discovered association rule may be not

necessarily significant. For this reason also the interest (see Eq. 2.44) of an item set has to

70

2.4. Decision Rule Mining

be considered. The interest of an association rule determines the difference between the

confidence of the association rule and the probability of the consequent rule item. Is the

value highly positive or negative (e.g. > 0.5 or < -0.5), then the corresponding association

rule seems to be significant.

interest({x} → {y}) = confidence({x} → {y}) − P({y}) (2.44)

The lift value indicates the likeliness of the target item y with respect to its frequency and

the occurrence of the independent items (here x). For the sake of completeness, Eq. 2.45

depicts how the lift value of an association rule is determined. A lift value greater than

one indicates that the target item y is likely to occur if the appropriate independent items

occur. A lower value than one indicates the opposite, which means that the target item y

will most likely not occur if the independent item x occurs.

lift({x} → {y}) = support{x, y}
support{x} × support{y} (2.45)

Discovering association rules by certain metrics is not the only method to gain decision

rules from huge datasets. The next two possibilities that are presented are the OneR (stands

for one rule) algorithm and the sequential covering algorithm. Furthermore, Bayesian rule
lists provide also a possibility to derive decision rules. However, they will be not discussed

here, because they were not considered or applied for this work.

2.4.3. OneR

OneR is an algorithm that has been proposed by Holte [106]. The algorithm allows the

derivation of decision rules from one single feature. The advantage of OneR is its simplicity

in terms of its implementation and representation. Since the rules are represented by only

one feature and its corresponding possible values, the rules are concise and interpretable.

OneR discovers the most informative feature that allows the best distinction of predictable

classes. The implementation of OneR is outlined in Algorithm 4.

Before applying OneR, numerical features have to be transformed into discrete features,

for instance by binning. Then, for each feature-value pair and prediction class, the algo-

rithm counts the co-occurrence. The underlying assumption is that the class that has the

highest co-occurrence with the corresponding feature-value pair is considered the correct

prediction class. Based on this assumption, the number of misclassifications is counted

in a cross-table for each feature-value pair to determine the prediction error that results

from the sum of the incorrectly predicted classes. Finally, the feature rules that give the

lowest error rate are selected as decision rules.

2.4.4. Sequential Covering

Sequential Covering is a widely used algorithm that follows the principle of divide and
conquer. The approach is to remove all data points from the dataset step by step, taking

71

2. Foundations

Algorithm 4: OneR
Input: dataset, classes, features
Output: rules of one feature

1 Function OneR(dataset, classes, features):
2 crosstable = []

3 forall sample IN dataset do
4 forall featValuePair IN features do
5 if featValuePair NOT IN crosstable then
6 crosstable[featValuePair] = 0

7 forall class IN classes do
8 if featValuePair IN sample AND class IN sample then
9 crosstable[featValuePair] += 1

10 featRules = selectFeatRulesWithLowestError(crosstable)

11 return featRules

12

into account the currently considered and learned rule that covers the corresponding data

points in the sample. In doing so, a rule list is kept in which all considered and learned

rules are collected. To determine significant rules from the data, an algorithm (e.g. CART

tree, bar search) is required to find the purest path to the corresponding class node. This

is implemented in Algorithm 5 by the function learnOneRule.

The implementation of the sequential covering algorithm differs depending on whether it

is a binary or a multi-class classification problem. Since a multi-class classification problem

is given in this work, only the implementation for multi-class classification is discussed

(see Algorithm 5).

According to [173], classes have to be ordered by the least prevalent class in ascending

order. The algorithm starts with the least common class and its prediction rules and

moves to the next class rules after a rule is learned. Iteratively, data points covered by

the considered rules are removed from the data samples. The rules of the most prevalent

classes are set as default rules.

It is important to note that the most common class rules are marked as default rule. A

default rule is a rule that applies if no other rule applies, thus it has no if-path. Through

default rules, always a prediction is possible also in cases when no other rule meets the

conditions.

A general problem with decision rules is the overlapping of rules. It is possible for rule

conditions to apply to conflicting class predictions, resulting in an uncertain prediction.

Various strategies are used to avoid rule overlap. For example, decision lists bring order to

the rules. For class prediction, the first rule in the list whose conditions apply is selected

72

2.4. Decision Rule Mining

Algorithm 5: Sequential Covering
Input: dataset, classes
Output: list of decision rules

1 Function SequentialCovering(dataset, classes):
2 classdistribution = []

3 rulelist = []

4 forall sample IN dataset do
5 forall class IN classes do
6 if class NOT IN classdistribution then
7 classdistribution[class] = []

8 if class IN sample then
9 classdistribution[class].push(sample)

// Consider least common classes’ rules first.

10 classdistribution.sortBy(sampleSizePerClass, ascending)

11 while samples.length > 0 do
12 forall class IN classdistribution do
13 bestRule = learnOneRule(class, classdistribution)

14 rulelist.add(bestRule)

15 samples.removeAll(bestRule)

16 return rulelist

17

73

2. Foundations

as the prediction rule.

In decision sets, rules either are weighted by their accuracy or by majority voting methods

that allow rules the same voting right. In this way, the overlap of rules can be addressed

and handled.

74

2.5. Summary of this chapter

2.5. Summary of this chapter

In this chapter, the basics on which this thesis is built were discussed. The terms agent and
task environment as well as their properties and requirements were clarified. Furthermore,

the most important building blocks of semantic technologies (e.g. serialisation formats,

rule-based languages, description logics, etc.) were introduced. In this thesis, semantic

technologies are needed to formalise and represent domain knowledge about agents and

tasks, and to share and reuse this knowledge so that agents are able to understand and

interact with their environment and each other.

In the second half of this chapter, ML as foundational building block was outlined. As we

have seen, in ML different paradigms and approaches for optimising the learning strategies

of agents are applied. By ML, agents are enabled to learn their strategies depending on task

inherent process characteristics. We have seen that learning is required in cases where

the dynamics of the environment and certain strategies cannot be anticipated at design

time and where agents require to adapt their behaviour to these changing dynamics. In

particular, RL is important in this work, since a subset of agents that use the proposed

framework implement RL strategies in order to learn policies for solving varying MDP

tasks.

However, in order to successfully apply ML, certain conditions have to be considered. For

instance, hyper-parameter optimisation is a crucial part of ML that contributes to the fail

or success of ML algorithms. Different optimisation algorithms (genetic algorithm, grid

search, random search) as well as probabilistic classifiers such as the Multi-nomial and
Gaussian Naive Bayes classifiers were introduced that are adopted by the agents of the

proposed framework.

Another aspect of the proposed agent framework is the derivation/extraction of decision

rules representing policies. This chapter has discussed various techniques for extracting

decision rules that have been tested and applied to derive data-inherent policy rules. These

rules are needed, on the one hand, to enable rule-based agents to perform tasks without

having to train new rules from scratch and, on the other hand, to make the agents’ be-

haviour explainable. In this way, the approach facilitates the integration of new agents,

making expert knowledge reusable and comprehensible.

By adopting and combining different technologies, the proposed approach is intended to

enable agents to gather domain knowledge, learn to solve problems autonomously and

adapt themselves to new upcoming situations.

75

3. Related Work

In this chapter, related work is considered with different problem areas that the agent

framework also addresses with its contributions. The goal is to distinguish the approaches

presented in this thesis from related work and to demonstrate the relevance, novelty, and

utility of the approaches implemented in the agent framework presented. The structure

of this chapter is based on the identified themes and contributions of this thesis and is

organised as follows.

Section 3.1 considers related work that addresses the cold-start problem outlined earlier,

which arises particularly in recommender systems and user-centred application systems

where software agents need to interact with users. However, it also occurs in systems

where agents perform tasks and provide services in different environments and contexts.

State of the Art (SOTA) approaches use either simulation frameworks [180, 276, 15], learning
by demonstration [219, 244, 30, 239, 78] or by imitation [122, 201, 103, 130] to overcome

the cold-start problem or for other purposes. Other approaches use crowd sourcing, active
learning [66, 67, 144, 220, 212, 222] and human-in-the-loop approaches [177] to obtain

representative data and domain knowledge that can enable agents to act in an intended

way at start-up time. The contributions C1.1 - C1.2 of this work are compared with the

contributions of the considered related works on the basis of various criteria listed in

Table 3.1.

Behavioural data from users and processes can be used to derive decision rules for agents

and thus extract task strategies from the corresponding data. In this context, personalisa-

tion or contextual adaptation of policies plays a crucial role when default strategies, i.e.

policies, have to be adapted to individual requirements. Section 3.2 considers various works

that apply mining techniques such as association rule mining, sequential rule mining and

process mining to derive decision rules from behavioural data. Moreover, approaches such

as reinforcement, transfer and incremental learning approaches are considered, which

deal with the adaptation of policies, models and services. The objective is to show what

advantage the contributions C2.1.1 - C2.2.2 offer in comparison with the related works.

Therefore, the criteria in Table 3.2 and Table 3.3 are used.

Context-aware behaviour is a crucial requirement that software agents are expected to ful-

fil. The proposed agent framework implements an approach that enables the context-aware

combination of policies. To evaluate this approach, three different baseline approaches

were considered (see Section 3.2.2) and compared in the evaluation (see Section 6.2.4.2)

that use language models and natural language descriptions for the execution of activities

in the Virtual Home environment.

77

3. Related Work

Furthermore, policy mining, sharing, retrieval and reuse is an important part of the agent

framework as its philosophy is to create, provide and openly share knowledge as well

as support agent collaboration in an automated manner. Therefore, in Section 3.3, re-

lated works that deal with policy discovery and reuse are compared with the proposed

approaches of the agent framework. For this reason, the contributions C3.1 - 3.2 will be
considered in order to show the novelty of the proposed agent framework.

Finally, Section 3.4 summarises the findings and discusses the differences between the

proposed agent framework from the considered related works.

To the knowledge of the author of this doctoral thesis, there are no agent frameworks in

the presented form that have the same purpose as the proposed agent framework. For

this reason, only parts of the proposed agent framework and single approaches can be

compared to existing related works.

3.1. Cold-Start Problem

The deployment of new tasks and agent instances requires knowledge about the given task,

its properties and dynamics, so that software agents can immediately act in a well-defined

and intended manner with respect to the task they require to solve. However, if this

knowledge is not available, an affected system or agent cannot act in the intended manner.

The problem described is called the cold-start problem. The proposed agent framework

tries to overcome this problem with a methodology that allows the formalisation and

simulation of MDP tasks, so that agents can train the strategies required to solve the task

before they are deployed in a real operational environment. For this reason, the following

contributions are intended to help overcome the cold-start problem:

C1.1 A lightweight task ontology that captures the different characteristics of MDP tasks.

C1.2 A task simulation framework that allows agents to train policies based on process

datasets and domain knowledge.

The criteria for evaluating and comparing related work with the proposed contributions

are whether the approaches considered are a) domain-specific or cross-domain, whether b)
datasets, c) guidelines or domain models are required for training an intended behaviour

and whether d) user interactions or e) domain expert interventions are required in advance.

The above criteria are summarised in Table 3.1, and the corresponding works are evaluated

with respect to these specific criteria.

Numerous scientific papers deal with the outlined cold-start problem, which indeed occurs

in situations where there is no prior knowledge about environments, users and their

preferences due to lack of representative data and adaptation time. The areas where

cold-start is a common problem are divided into three different categories in this thesis

(see Sec. 3.1.1 - Sec. 3.1.3): recommendation systems, robotic systems and dialogue systems
that perform human-computer interaction (HCI).

78

3.1. Cold-Start Problem

3.1.1. Recommender Systems

Recommender systems are often confronted with the cold-start problem, since recom-

mender systems have to take into account the specific characteristics and behaviour of

new target users who apply or use the corresponding recommender system. Integrating

new users means that their characteristics and behaviour have to be analysed and learned

in order to make appropriate recommendations. This may require numerous interactions

with the user and thus take some time until sufficient data and knowledge about the

corresponding user are available.

For instance, Theocharous et al. propose a process that precedes the transformation of

passive data into active data to overcome the cold-start problem that often occurs in user

recommendation systems [249]. Here, the authors consider passive data to be data that

does not consist of historically evolved sequences, i.e. recommendations that are not past.

A cold-start problem is present in these recommender systems because historically evolved

data on user-related recommendations is not immediately available and it takes some time

to collect data consisting of past user interactions and corresponding recommendations.

In particular, the methods of Theocharous et al. rely on datasets of user interactions

with web applications to cope with the cold-start and thus rely on data collection. In

addition, the considered approach is domain-specific. In contrast, the proposed agent

framework uses semantic task descriptions with rules that can be defined by domain

experts and used to simulate corresponding tasks. This means that no user interactions

are required and all types of processes and data can be simulated based on simple task

and rule descriptions. The lightweight framework ontology makes it possible to specify

diverse and domain-independent tasks, allowing agents to train well-defined policies

before deployment without requiring to wait for data.

In their work [204], Quiao et al. combine clustering and reinforcement learning to avoid

the cold-start problem in software crowd-sourcing recommendation systems. To do this,

they create developer and software project models based on user interactions that can be

used to describe and cluster developers and projects. Similar to their approach, this work

does apply reinforcement learning, but not for learning developer skills and preferences,

but for learning task strategies for agents. Unlike the related work of Quiao et al., the

proposed agent framework applies reinforcement learning in an off-line simulation of tasks

and therefore does not require prolonged interactions with users to obtain feedback. The

feedback provided in the agent framework comes from the simulation component, which

uses task descriptions provided by domain experts. In this way, the exploration phase is

shifted to off-line learning and can be largely omitted or reduced when executed in the real

world. Moreover, the model they propose for developers and software projects is precisely

limited to the domain at hand and therefore cannot be generalised to other application

domains, as it is very specific to project recommendations for software developers, while

the task ontology of the proposed agent framework offers good generalisability due to

its semantic representation of Markov decision processes and abstract concepts such as

states, actions, effects, etc.

79

3. Related Work

The paper [196] by Poirier et al. proposes to annotate user web content based on the opin-

ions expressed in the texts. Based on these opinion annotations, they create a "user-item

rating matrix" to apply collaborative filtering for user-specific item recommendations.

Their approach is based on the intersection of opinion mining and opinion classification,

and correlation with item recommendations. However, this approach is only applicable to

agents making user recommendations on online platforms which means that this approach

is domain-specific. While one could use text to describe tasks and use NLP techniques to

create MDP representations of tasks, this would be error-prone and difficult to implement,

and depending on what important information is needed, there is no guarantee that all

the needed information about a task, from human-readable text, can be extracted to cre-

ate MDP knowledge graphs. For this reason, the considered approach seems to be not

seamlessly applicable for cross-domain applications. For this reason, the agent framework

requests the explicit description of tasks by domain experts who provide the necessary

specifications and conditions under which the tasks can be performed. Furthermore, the

considered approach requires datasets that are produced through user interactions with

the platform.

Alaa et al. propose the application of an ontology to capture and represent target users

and their item preferences and to draw conclusions for the creation of item recommenda-

tions [5]. In this way, the authors hope to overcome the cold-start problem prevalent in

recommender systems for new users and items. The domain ontologies used are constantly

updated according to the dynamic changes in user and item properties. Furthermore, the

architecture consists of components that perform content-based filtering and collabora-

tive filtering to make recommendation predictions and evolve the relevant ontology by

adapting the corresponding ontology to the structure of the dataset used. Therefore, a

reasoner infers similarities between user profiles and recommendations for users based on

the ontology. Thus, user profiles are also needed to represent and infer user preferences.

The problem with the approach considered is that it is not applicable if no data and no

domain-specific knowledge (i.e. domain ontology) are available and no direct user interac-

tions are possible. For this reason, in addition to the use of datasets, the proposed agent

framework also allows for a purely formal and abstract description of task entities that

can be defined and provided by domain experts in advance, so that the task entities can be

used for task simulation purposes. In contrast, the proposed agent framework does not

require ontology evolution as it is generalisable enough to capture and represent tasks

and activities in the mentioned way. Only feedback from the environment (simulated or

real) determines the adaptation of task strategies, i.e. policies. At the beginning of the life

cycle, given the cold-start problem, well-defined default strategies are trained, which can

later be adapted to user preferences and the environmental context, if necessary.

In the approach of Soleymannejad et al., the results of different recommendation methods,

such as collaborative filtering, matrix factorisation, demographic filtering and content-

based filtering, are combined by an operator called ordered weighted averaging operator
(OWA) [283] to mitigate the user cold-start problem [234]. The considered approach can

be considered as an ensemble learning approach where the results of each method are

combined to obtain accurate recommendations for users about whom little or no data

80

3.1. Cold-Start Problem

is available in the recommender system. However, the considered related work requires

still user interactions, some data and guidelines in order to work. In the proposed agent

framework, similarly an ensemble learning approach is applied when predicting and com-

bining strategies in environments with multiple contexts, e.g. home environments, outdoor

environments, etc. The difference, however, is that not only different recommendation

methods are evaluated by the proposed agent framework, but also different strategies are

executed by different agent instances. In this way, policies are comparable in terms of

their performance and utility. The advantage here is that policies that have already been

successful over time are represented in a knowledge graph or dataset, which then serves

as input for embedding vectors that represent different contexts. In this way, alternative

action sequences can be tested in advance and those that lead a task to a successful end

can be combined.

Di Tommaso et al. propose "an unsupervised semantic recommender" called SeRenA that

relies on Wikipedia documents and social media data of users [62]. The Wikipedia doc-

uments and their categories serve as reference for user interests and preferences that

are derived from social media data such as posts and friendship connections. The ap-

proach shows that semantically related knowledge can help to draw conclusions and find

similarities between semantically represented entities. The proposed agent framework

uses also the potential of semantic knowledge representation to represent MDP tasks

and their properties so that the framework can generate prior knowledge in the form of

task simulations. Moreover, strategies can be interlinked so that agents are enabled to

autonomously create and find the knowledge or information they require. The difference

to the approach considered in the agent framework is that semantic categories are not

used as a reference for user interests, but that MDPs are represented as linked graphs,

which then serve as the basis for the simulation framework. In contrast to the proposed

agent framework, the considered related work is domain-specific, i.e. not applicable across

domains, requires data from user interactions and a domain model of the recommender

system.

The authors Jeevamol et al. also propose a semantic recommendation system, but for

e-learning, that makes recommendations for learning content based on an ontology de-

scribing user profiles and learning units [114]. The approach applies machine learning

techniques such as K-means clustering and collaborative filtering to find similarities

between users based on their semantically described learning skills, learning level and

interests. In addition, the used domain ontology enables the dynamic mapping between

user profiles and learning content. In doing so, the approach takes into account changes

in learner interests and abilities as well as changes in learning units by adjusting the

corresponding profiles based on user assessments. However, the considered approach is

domain-specific and even task-specific, requires data and user interactions until it can

address the cold-start problem. Similar to the approach under consideration, the agent

framework uses an ontology and creates a mapping between tasks, agents and policies.

Since policies can change depending on the context, the agent framework also addresses

the adaptation of policies based on environmental feedback. It might be obvious that the

cold-start problem is closely linked to personalisation and dynamic context. However, rec-

81

3. Related Work

ommendation systems rarely consider heterogeneous environments that can also change

dynamically. The agent framework captures this by allowing domain experts to define

and simulate different, varying environments. In addition, reinforcement learning and the

immediate feedback from the (simulated) environment allow the agent to adapt policies to

the environment requirements.

Park et al. propose an approach [191] that extends and combines the Elo rating system
(ERS) [69] approach with the explanatory item response theory (IRT) [58] to solve the

cold-start problem regarding new students within e-learning platforms. In doing so, the

approach takes into account students’ profile information and their success in previous

learning sessions to predict ability levels and thus provide adapted learning session rec-

ommendations. The aim is to provide learning lessons that correspond to the learners’

abilities. However, unlike the proposed agent framework, the approach considered is only

tailored to e-learning environments and requires pre-existing data that other students

have already generated through their learning sessions, as similarities between students

are also identified in order to make recommendation predictions for new students. The

proposed agent framework is not limited to recommendation activities but can simulate

different kind of tasks.

In their work [23], Bharadhwaj et al. propose a "model-agnostic meta-learning" approach

in which "a recommendation model is pre-trained off-line for a wide range of users". The

pre-trained model is then adapted for new users using gradient descent. The authors claim

that their approach would be applicable to all types of recommendation tasks. However,

since they use deep neural networks to train the user recommendation model, they need

data on user ratings, i.e. user feedback, and items. However, this issue points out that

the user cold-start problem is not really eliminated, as no generalisable model can be

trained without existing data and user interactions. The agent framework circumvents this

problem with semantic task definitions that adhere to task-specific guidelines provided

by domain experts. The required states and feedback is then generated by the simulation

component based on the information contained in the task descriptions.

In the paper of Hawashin et al. various multi-label classifiers such as Bayes classifier,

deep neural networks and J48 are used to predict recommendation items based on user

interests [96]. A prerequisite for this approach to work is that the user and his or her

interests are known in advance through user interactions, datasets, and a domain model,

whereby the approach can only be applied domain-specifically. In the agent framework

however, no information about the user is required at the beginning, as the agent learns a

general default strategy to subsequently perform personalisation based on user-specific

and environmental feedback.

3.1.2. Robot Systems

Robot systems are confronted with heterogeneous as well as dynamically changing en-

vironments and tasks of varying complexity, depending on the field of application. The

82

3.1. Cold-Start Problem

deployment of robots in new unknown environments consequently leads to the cold-start

problem as the following related works show.

For instance, Yang et al. face a different kind of cold-start problem in the field of nano/col-

loidal robotics. The authors apply "model-free deep reinforcement learning" [284] to teach

colloidal robots to avoid obstacles and navigate in unknown environments. The presented

approach is based on the idea of considering only immediate state representations, i.e.

binary images, indicating local, i.e. "proxy" obstacles relative to the robot’s position. In

doing so, the robot has to decide between two actions, i.e. ON and OFF, which control

the robot’s "self-propulsion". The authors claim that MDPs cannot adequately solve the

problem of navigation in stochastic or unknown environments that cannot be modelled

in advance. However, in the approach of this dissertation, it is assumed that the imme-

diate presence of obstacles can be modelled as a binary state in an MDP. Furthermore, a

simulation framework for agents could generate generative MDPs through generative ML

approaches (e.g. GANs, variational auto-encoders) to simulate even rare environments

with random obstacles, as proposed in Sec. 7.2 of this thesis. This has the advantage of

creating different and even unlikely environments that the agents can train on the basis of

limited information, which increases the generalisability of the trained models. Unlike the

proposed agent framework, the considered related work is domain-specific and requires

datasets in order to work.

In the paper [182] of Niroui et al., mobile rescue robots explore "unknown, cluttered

environments" by combining Deep Reinforcement Learning (DLR) with occupancy grid
maps that model the relevant environment to find "boundary locations." In their proposed

architecture, a model called world model enables the creation of a 2-D occupancy grid

map that uses sensor data, i.e. odometry data and 3-D depth measurements, to represent

the boundaries of the relevant environment. Similar to the proposed agent framework,

the architecture consists of different components or modules responsible for different

process steps. The state representation of the world model is kept very simple by indicating

whether a grid cell is "open, occupied or unknown". The occupancy grids serve as the

input state for the deep neural network which is a Asynchronous Advantage Actor Critic
(A3C) network used in the exploration module. To train the network, the approach uses a

robot simulation framework, i.e. the stage simulator of ROS1 that represents the simulated

environment via definitions within a world file. The presented approach is very specific to

robot navigation and thus has its focus on exploring unknown environments. In contrast

to this approach, the agent framework proposed here considers the model representation

of heterogeneous domains, tasks and environments in a higher-level, i.e. human- and

machine-understandable and generalisable, way by providing a semantic representation

of MDP tasks that serves as a guideline for simulating possible states and responses.

In the approach of Hu et al., "dynamic Voronoi partitioning" is used together with "model-

free, actor-critic deep reinforcement learning" for "collision avoidance" to enable multi-

robot agents to collaboratively explore unknown environments [109]. The specific goal is

1 http://wiki.ros.org/turtlebot_stage

83

3. Related Work

to coordinate robots in different regions of the environment so that the exploration task

is efficiently correlated and assigned to the appropriate mobile robots. The training of

collision avoidance and thus of the deep neural network is done through demonstration

learning. Demonstration learning requires an infrastructure that allows the agents to

be taught their tasks. This can be a costly, lengthy and error-prone process, as every

possible state has to be played out to provide relevant and sufficient information to the

learning algorithms. Although demonstration and imitation learning is useful in robotics,

there are still domains and tasks that do not have the capabilities to provide resources

and infrastructure for demonstrations. To close this gap, the proposed agent framework

allows the definition of semantically represented MDPs and rules both by log datasets,

e.g. obtained from demonstration learning, and by domain experts specifying relevant

information such as states that can occur and be simulated by the simulation component.

Moreover, the automated collaboration process, i.e. sharing and reusing of trained policies,

via the proposed agent framework, enables overcoming the cold-start problem.

3.1.3. Human Computer Interaction Systems

Human computer interaction (HCI) systems are similar to recommender systems as they

also have to incorporate continuously new users with different characteristics and be-

haviour. Thus, it can be stated that recommender systems are a subset of HCI systems.

The following related works discuss corresponding related works that have other purposes

than recommender systems.

Denaux et al. attempt to solve the cold-start problem for web learning systems with OWL-

OLM, a framework that builds user models based on domain ontologies [59]. Therefore, a

software agent interacts with the corresponding user to conceptualise user models in a

dialogue-driven way. The dialogue with the user is aligned with the underlying ontology,

which depends on the corresponding domain and serves as a default model for the dialogue

flow. In this way, users of web platforms can be guided by a dialogue agent based on their

user profile and capabilities. Similar to the proposed agent framework, Denaux et al. use

ontologies for the purpose of personalisation and to avoid the cold-start problem, whereby

domain ontologies specify how the process flow is performed by an agent. However, in

the related paper, the warm start is limited to dialogue control in web-based learning plat-

forms, while the focus of this thesis is on avoiding the cold-start problem in heterogeneous

domains and agent-driven tasks.

The approach proposed by Banovic et al. aims to allow a warm start for "general-purpose

smart agents" that conduct personalised services by, on the one hand, predicting informa-

tive questions that the agent should ask the user and, on the other hand, automatically

inferring information about the user from the answered questions and their underlying

variables [11]. In doing so, their goal is to consider only a subset of user variables that

allow inferences about the corresponding users of agent services. Although the considered

work is applicable domain-independently, its proposed approach to user variable selection

requires the use of existing and labelled datasets containing different variables about the

84

3.1. Cold-Start Problem

target users. A drawback of the considered approach is that it is not always possible

to find suitable datasets about user groups across different domains and tasks, as they

are not always available for various reasons. Even if the proposed approach allows for

inferences about users, the problem remains how an agent can solve tasks individually and

context-dependently from the beginning of its execution. Inferences about the user are not

always sufficient in this case, and an agent needs to know how to act in a goal-oriented

way at the beginning of its runtime in order to adapt to user preferences and contexts in

the course of its execution.

Zhang et al. propose in their paper [289] to use "cognitive models to pre-train RL agents"

for avoiding the cold-start problem in human-computer-interaction (HCI). By cognitive

models the authors aim at simulating "average" user behaviour in "complex task envi-

ronments". In contrast the proposed agent framework of this thesis is not limited to

human-centred models and simulations but also considers all kinds of states in general.

The abstract and generic character of the proposed agent framework ontology allows

to simulate different kind of environments and tasks that are not limited to human re-

sponses and behaviour. The approach of Zhang et al. covers only a subset of tasks, i.e.

only HCI-related tasks. In contrast, the agent framework also supports tasks beyond

human-machine interaction. Moreover, the HCI models used only represent average

user behaviour without considering RL agent interactions on user interaction. The au-

thors state that only validated cognitive models that include further assumptions and

parameters about the HCI task should be used. The agent framework, on the other hand,

takes into account the effects that an agent has on its environment and interaction partners.

3.1.4. Summary

Considering the related work, it turns out that the related approaches are essentially found

in recommender systems (Sec. 3.1.1), mobile robotics (Sec. 3.1.2) and dialogue systems

(Sec. 3.1.3), where new, unknown users, environments or processes may occur that the

approach should be able to deal with. With the exception of two approaches, almost all

are limited to a specific domain or even a specific task and cannot be applied across domains.

Most of the approaches considered require datasets in advance, which means that in-

teractions with users or user interventions are necessary to generate data. From this

perspective, the cold-start problem is not really solved by the related work, as a cold-start

ultimately means that no data is available and prior knowledge has to be provided to the

system or agent in some other way. Some of the approaches, including the proposed agent

framework, use a domain model and/or knowledge [204, 5, 234, 62, 114, 191, 96, 182, 59,

11, 289] provided by domain experts [182, 109, 289]. However, the corresponding related

approaches are not generic, but relate only to a specific task or domain. Agents that solve

different tasks across domains are not envisaged in these approaches. Among the related

works considered, there are no approaches or agent frameworks that deal with the cross-

domain cold-start of software agents. This gap is filled by contribution C1.1 of the agent

framework presented in this thesis. While the lightweight ontology provides a generic

85

3. Related Work

representation, i.e. concepts and properties, of MDPs that can be used for simulation,

process datasets can also be processed to derive task entities in an automated way. The

prior knowledge required to overcome the cold-start problem can be extended over time

by both domain experts and agents in a semi-automated way, learning and exchanging

their policies in a well-defined procedure.

The novelty of this approach lies in the fact that agents are provided with a framework that

maps their life cycle and supports the agents in the individual phases (integration, training,

application and provision of strategies). When an agent follows the predefined process,

it can autonomously learn strategies and then adapt them depending on the context and

feedback from the environment, and the simulation component prepares the agent for the

corresponding task.

Table 3.1 summarises the studied properties of the considered related approaches. The

table lists whether a) the related work is domain-specific or applicable across domains, b)

requires datasets, c) requires a domain model, e.g. an ontology and/or policies, d) requires

user interactions with the proposed approaches, e) requires domain experts to provide

knowledge about the domain or task in advance, and f) what the approach specifically

does and what techniques it uses.

86

3.1. Cold-Start Problem

Paper
Domain-specific

vs.
Cross-domain

Datasets
required

Guidelines/
Domain-Model

required

User Interaction/
Intervention
required

Domain
Expert
required

Approach

Proposed
agent framework

Cross-domain

agent tasks

No Yes No Yes

Semantic framework ontology

simulation component

reinforcement learning agent(s)

[249] Domain-specific

recommendations

Yes No Yes No

Data Acquisition

Data Transformation

[204]
Domain-specific

Software

Crowd-sourcing

Yes Yes Yes No

Reinforcement Learning

+ Clustering

[196]
Domain-specific

User-specific item

recommendations

Yes No Yes No

Opinion mining/classification

from human readable text

Collaborative filtering

[5] Domain-specific

Item recommendations

Yes Yes Yes No

Domain Ontologies

content-based and collaborative

filtering

[234]
Domain-specific

User-specific

item recommendations

Yes Yes Yes No

Ordered weighted averaging operator

Matrix factorisation, collaborative,

content-based, demographic

filtering

[62]
Domain-specific

Unsupervised semantic

recommender

Yes Yes

Yes

indirectly

(social media)

No

Wikipedia documents

and social media data for

finding user interests

[114]
Domain-specific

Semantic recommendation

system for e-learning

Yes Yes Yes No

Ontology + K-Means clustering,

collaborative filtering,

[191]
Domain-specific

e-learning platform

recommendations

Yes Yes Yes No

Combination of Elo rating system +

explanatory item response theory

[23] Cross-domain

recommender system

Yes No Yes No

Model-agnostic meta learning

gradient descent

[96]
Domain-specific

Prediction of

item recommendations

Yes Yes Yes No

Bayes classifier, Deep neural network

J48 classifier

[284]

Domain-specific

Colloidal robots

in unknown

environments

Yes No No No

Model-free deep

reinforcement learning

[182]

Domain-specific

Mobile rescue robots

in cluttered

environments

No Yes No Yes

Depp reinforcement learning

Occupancy grid maps

World model

Robot simulation framework

[109]

Domain-specific

Exploration of

unknown environments

by multi-robot agents

Collision avoidance

No No

Yes

Demonstration

Learning

Yes

Dynamic Voronoi partitioning

Model-free actor critic

deep reinforcement learning

[59]

Domain-specific

Dialog control in

web-based learning

platforms

No Yes Yes No

Domain ontology +

Interacting agent for

building user models

[11] Cross-domain

user interaction

Yes Yes Yes No

Prediction of

informative questions

Derivation of

informative

user variables

[289]
Domain-specific

Human computer

interaction

No Yes Yes Yes

Cognitive models

for pretraining

RL agents

Simulating user

behaviour

Table 3.1.: Comparison of related works and agent framework w.r.t. the cold-start problem.

87

3. Related Work

3.2. Context-Aware Policies Adaptation and Combination

Policies adaptation and combination is necessary for the personalisation of tasks and

provided agent services since default strategies trained are sometimes not sufficient for

providing adequate services to target users. For this reason, the proposed agent framework

addresses personalisation respectively customisation by approaches (e.g. reinforcement

learning, decision rule mining) that contribute to the adaptation of default policies towards

specific policies. Default policies may be sufficient at the beginning of an agent’s life-cycle.

However, as soon as the environment changes or the agent obtains user feedback the agent

requires to take user preferences and context changes as well as varying environments into

account. In the following three sections, i.e. Sec. 3.2.1-3.2.3, related work on reinforcement

learning, language models as well as rule mining approaches are considered and compared

with the proposed agent framework of this thesis, since the agent framework supports the

adaptation and combination of policies based on context information and feedback. In this

context, the contributions of this work are the following ones:

C2.1.1 A methodology that combines reinforcement learning and rule mining techniques

in order to adapt policies and derive adapted policy rules.

C2.1.2 A methodology for the selection of suitable rule mining algorithms that is based

on the corresponding task description.

C2.1.3 An algorithm for data preprocessing so that the applied approaches can process

and mine the given datasets.

C2.1.4 An approach, i.e. Best Fit Sequence, for deriving rules for sequential tasks that are

divided in stages.

C2.2.1 A methodology for representing and transforming task entity descriptions into a

processable representation that can be used to calculate similarities between task,

state and action entities and to represent and delimit task contexts.

C2.2.2 A methodology for the context-dependent composition of policies that address

tasks and activities.

The columns of the Tables 3.2 and 3.3 represent the criteria, such as a) intended use, b)
domain independence, c) adaptation of policies, d) used algorithms, e) input- and f) output
data that were considered in the related works and proposed agent framework.

3.2.1. Reinforcement Learning Approaches

Reinforcement Learning (RL), especially deep-q-learning [269, 94, 98], is applied in many

different application fields (see e.g. [280, 293, 171, 170, 230, 61, 168, 79, 63, 143]) con-

cerned with computational agents [198], MDPs [40, 190, 269] and decision making. For

instance, den Hengst et al. note that reinforcement learning is increasingly being used in

"human interaction systems" for personalisation purposes. They remark in their paper [97]

88

3.2. Context-Aware Policies Adaptation and Combination

that reinforcement learning is a "robust" paradigm "to apply in contexts that involve

humans" and provide an overview of numerous works that use reinforcement learning

for personalisation in human-machine interaction. The review of den Hengst shows the

relevance of personalisation in heterogeneous domains such as healthcare, web services

and recommender systems. In their survey, the authors find that general applications of

reinforcement learning are used, distinguishing between general "task-related" adaptation

and "user-specific" adaptation. The proposed agent framework addresses both types of

adaptation by representing, i.e. generalising, and processing both user and task characteris-

tics in state entities. However, a drawback of reinforcement learning might be that training

reward-maximizing strategies could require lengthy training procedures, depending on

the complexity of the tasks. In particular, the state and action space of a task determines

the duration of learning appropriate strategies that enable successful task execution.

Da Silva et al. investigate inter-agent teaching respectively transfer learning that is applied

for increasing the learning speed of RL agents [229]. The paper points out that considered

teaching approaches between agents are restricted regarding their ability to generalise to

different domains and application scenarios. Their approach is domain-specific and allows

adaptation only through demonstrations and transfer learning. However, the complexity

of today’s world, as well as the advancing digitalisation, makes it necessary that software

agents can be used more and more universally. For this reason, a generalisation method-

ology is needed that allows agents to operate in different environments, for different

domains and tasks, especially when their services are needed across domains, which might

be the case in IoT environments and service robotics, for example. For this reason, the

agent framework is intended to support cross-domain applications that can be adapted on

demand to new environments, contexts, tasks and users.

The following related works show various applications in which reinforcement learn-

ing is used. For instance, Liu et al. propose in their work [142] a data-driven deep-q-

reinforcement learning framework for learning policies of sequential treatment plans for

patients. The approach combines supervised learning and RL for composing sequences of

dynamic treatment plans. Similar to the approach of the agent framework, their objective

is to reduce the state and action space and derive depending on the patient’s context

(i.e. patient data, vital parameters) suitable treatment plans. However, their approach

is domain-specific and requires medical records of patients in order to adapt treatment

paths. The considered approach thus also requires supervised learning through processable

datasets. In contrast, the proposed agent framework does not necessarily require annotated

data, since domain experts have the option to specify in the framework guidelines, in cases

where annotated data is sparse or not available.

Kanervisto et al. discuss how manipulating (e.g. remove or discretise actions) the action

space in RL problems, can influence positively the performance of RL applications (e.g. in

video games) [116]. The proposed agent framework proposes an alternative approach that

allows to constrain the state and action space and relate states and actions semantically

through entity embeddings and to predict the most reward maximising actions depending

on the agent’s state and context. This also allows to predict which are the most likely

89

3. Related Work

states and actions that are relevant within a context. Furthermore, it seems that Karnevisto

et al. only tested their approach with video games and it is questionable whether their

approach would also apply for real-world use cases and contexts. One aim of the proposed

agent framework is not to be limited to video games, but to support real-world applications

outside of video games.

The approach [92] proposed by Hanawal et al. uses state-action samples representing

intended policies in order to learn generalisable policies by means of 𝐿1 regularised logistic
regression. However, if annotated data are not available or environments and conditions

change, the approach may not be applicable, unlike the proposed agent framework.

Table 3.2 summarises the different properties of the considered related works and the

agent framework. The table shows that many approaches apply reinforcement learn-

ing for adaptation purposes. In particular, simulation and demonstration or imitation

learning play a crucial role in training reinforcement learning agents. Furthermore, the

generalisability of strategies is important in most approaches considered, as the dynamics

of different environments and tasks as well as user preferences have to be taken into

account. In contrast to the considered related works, the agent framework provides a

simulation component that uses expert knowledge in the form of task descriptions as well

as datasets to reproduce and simulate MDP tasks and activities for RL agents. Due to

the formal representation of tasks, the simulation component of the agent framework is

able to simulate heterogeneous tasks, not being limited to specific domains and applica-

tions, while the considered related works are mostly bound to one specific task and domain.

Independent of the considered comparison criteria in Table 3.2, one challenge in RL is

the complexity of tasks that impact how fast RL agents explore and learn useful policies.

In particular, the state space and action space determine how quickly and successfully

strategies are trained by reinforcement learning. Therefore, many approaches concerned

with RL look for ways to reduce the state and action space so that agents arrive at solu-

tions faster. The agent framework also implements an approach that aims to reduce an

agent’s state and action space to immediately assemble, on demand, context-dependent

policies that allow agents to solve context-specific tasks on demand, without having to

learn policies from scratch, unlike in reinforcement learning. While the presented agent

framework applies reinforcement learning for training policies, it is not limited to RL

but also supports other approaches (e.g. rule mining) to quickly find policies by using

knowledge gained through experience, i.e. log records, and abstracted context knowledge

(e.g. entity embeddings).

3.2.2. Language Models for Policies Combination

Language Models are increasingly used for the transformation of natural language de-

scriptions into program instructions for software agents. For instance, the authors Puig

et al. propose an approach that "translates natural language instructions of activities into
programs" [202]. In order to do so, their approach uses two recurrent neural networks
(RNNs), i.e. Long Short-Term Memory (LSTM) [104] networks, as encoder and decoder of

90

3.2. Context-Aware Policies Adaptation and Combination

Paper Intended
Use

Domain
Independence Adaptation Used

Algorithms
Input
Data

Output
Data

Proposed
Agent

Framework

Adaptation of default

policies

Yes Yes

Deep-q-Reinforcement

Learning

Simulation of

environmental

feedback

(rewards,

continuous and

categorical data)

Adapted q-learning

network weights

[229]

Inter-agent

teaching

Acceleration

of policy learning

No No Transfer learning

Agent

demonstrations

Policies

[142]
Learning of

dynamic treatment

plans

No Yes

Deep-q-

reinforcement learning

supervised learning

Datasets

e.g. patient

data, sensed vital

parameters

Sequential

treatment

plans

[116] Performance Increase

of RL applications

Yes Yes

Reinforcement

learning

Manipulation of

Action space

Action space Policies

[92] Learning generalisable

policies

Yes Yes

Sampling of

state-action space

L1 regularised logistic regression

Sampled

State-action

space

Intended

policies

Table 3.2.: Comparison of reinforcement learning approaches

the input instructions. The words of the natural language instructions are represented

throughWord2Vec [164, 163] embedding vectors. Furthermore, they apply reinforcement

learning, i.e. policy gradient optimisation [207], to train policies for the execution of the

encoded activities. The policies are trained based on rewards that are computed through

the longest common subsequence and the feasibility of the executed activities within the

Virtual Home2 simulator.

In their paper Liao et al. propose ResActGraph, a model that "extracts programs directly
from natural language descriptions" [138] in order to support virtual agents to conduct

activities within Virtual Home environments. The related approach allows to generate

activity programs with action sequences based on predicted activity sketches. Their objec-

tive is to extract programs that are generalisable to new environments since environments

may vary and lead to tasks or activities to be adapted. For this reason a context-aware

adaptation of activities is desired. According to Liao et al. "a common sense knowledge
about the world and how to deal with typical situations" [138] is required. For their approach
they use Graph Neural Networks (GNNs) that generate activity programs based on changes

in the environment. For predicting activity programs, activity and environment sketches

serve as input [138] for the ResActGraph model. However, previously sketches have to

be generated from natural language descriptions or demonstration videos of domestic

activities.

Li et al. propose a framework called LID "that uses pre-trained language models for se-
quential decision making" [136]. The authors use pre-trained language models to predict

action sequences based on encoded observation and goal embeddings that enable the

completion of heterogeneous tasks in different environments. The approach implements a

"policy network with pre-trained language models" that predicts the most likely next action

2 http://virtual-home.org

91

3. Related Work

during task execution [136]. In addition, they use "expert demonstrations" to adapt their
pre-trained language models. Their approach also includes a method called "Active Data
Gathering (ADG)" [136], i.e. agents interact with their environment to optimise themselves

in terms of combining strategies and improving their task completion rate.

The considered baseline approaches are compared with the proposed approach of this

work in terms of their completion rate on seen and unseen tasks respectively activities. In

contrast to the related baseline approaches, the implementation of the proposed policy

combination approach is simple and only requires task entities that can be encoded as

entity embeddings. This makes the implementation simpler by eliminating one layer

of complexity, namely natural language preprocessing, which complicates the task of

combining policies according to an agent’s context. Language models nevertheless make

sense if natural language descriptions by domain experts are intended to serve as in-

structions for action by software agents. The policy combination approach is different

in this sense. It uses knowledge graphs with semantic task entities created by domain

experts or derived from time series data as input to combine policies. The advantage is that

irrelevant information can be omitted from the tasks in their representation. Furthermore,

the ambiguity of language in the considered works may lead to worse task completion

rates and generalisation than in the proposed policy combination approach.

3.2.3. Rule Mining and Process Mining

Various methods and approaches are proposed to derive meaningful decision rules from

large log datasets that reflect (user) behaviour and processes. Since the agent framework

also applies rule mining approaches to derive policies from log datasets that emulate MDPs,

the following related work provides insight into how different rule mining approaches are

used to derive decision rules for providing context- and process-oriented policies and to

reproduce goal-directed behaviour in heterogeneous domains.

In the paper of Norambuena, the author outlines the need to integrate process mining

with simulation tools and discusses the challenges that arise when process mining has to

"complement" the simulation of processes [183]. The particular challenges that may arise

are the lack of process knowledge in process-agnostic systems, unstructured, noisy data

and the "level of abstraction" that should be balanced in terms of complexity, precision and

representation of the data. In addition, the paper identifies the evaluation, optimisation

and usability of processing-mining results as challenges that need to be addressed by

appropriate methods and frameworks. The proposed agent framework addresses some of

the mentioned challenges by providing a predefined structure and the provision of datasets

and linked knowledge through ontology concepts. Furthermore, the complexity is reduced

and abstracted by the MDP model representation used in the agent framework, while the

optimisation of standard knowledge is automated by reinforcement learning agents that

adapt existing policies to current requirements. The evaluation is done by taking into

account environmental feedback, i.e. reward signals that help to capture the quality of

actions and activities.

92

3.2. Context-Aware Policies Adaptation and Combination

It turns out that many decision rule mining algorithms are hybrid approaches that com-

bine common data mining techniques and aim to greatly reduce the amount of data in

order to derive significant rules that provide valuable insights into the underlying data.

Most algorithms work on the basis of association rule mining and use frequent item sets,

employing metrics (e.g. support, confidence, lift) and statistics (e.g. Bayes). For instance,

Letham et al. present Bayesian rule lists [135], a statistical approach that does Bayesian

analysis on frequent item sets. While the approach is applicable domain-independently, it

does not allow for policy adaptation as it is required in the proposed agent framework.

Bemthuis et al. present an architecture based on event logs, process mining and agent-

based modelling for mining inherent processes that reproduce supply chains [18]. The

considered approach has the limitation that it is not generalisable and, according to the

authors, requires further modelling efforts to enable its application in heterogeneous

environments. They also mention that the autonomous behaviour of the corresponding

agents could be enhanced and improved by "self-learning" strategies and "automated feed-

back loops". In summary, the considered related approach is neither domain independent

nor does it support adaptation of policies. The proposed agent framework addresses the

mentioned requirements through the simulation component, the framework ontology,

rule mining and reinforcement learning. The framework ontology provides generalisation

of task processes so that it can be used across domains and processes. Furthermore, the

proposed agent framework enables agents to contribute new task-specific process data

that can be used to obtain different task strategies while agents are enabled to learn and

adapt autonomously by RL and rule mining their policies.

Tour et al. propose an "agent system mining" framework that applies business process

mining techniques together with agent-based modelling and simulation on the "micro level"
of business processes [256]. According to the authors, in this way complex, related business

processes can be mined and modelled, both at macro and micro level. However, the authors

mention that "meta models" and "formalisms" are required for representing multi agent

systems. Furthermore, the considered approach is neither domain-independent applicable

nor does it allow the adaptation of rules. The proposed agent framework tries to bridge

this gap by the framework ontology and corresponding decision rules that capture both

the static and dynamic properties of task processes. In addition, the agent framework

defines a methodology for the appropriate selection of rule mining algorithms based on

task characteristics to derive policies for the underlying MDPs from log data.

Roldan et al. propose an approach for process mining that allows the building of process

models for analysing multi-robot tasks [209]. The proposed process steps of the approach

consist of the preprocessing of event logs, the mining of process models through Petri
Nets respectively Inductive Miner [132] and the enhancement and adaptation of the mined

models. The utilised Petri nets are a means for the visualisation of process models, that is

intended for human recipients. Thus, the approach is tailored towards human experts who

would like to analyse log data in order to comprehend processes and optimise interactions

and utilised resources. In particular, model evaluation and model enhancement require the

intervention of human experts and the authors claim that in future works they will address

93

3. Related Work

these topics. The agent framework, on the other hand, aims to automate the majority of

agent tasks so that agents can independently learn, extend and share task policies without

user intervention.

The paper of Polyvyanyy et al. suggests a "probabilistic goal recognition" approach that

allows the prediction of the most relevant goal among different probable (contradicting)

goals [197]. The novelty of this approach is that it does not assume any prior knowledge

or model about the process under consideration. The most relevant goal is derived from

behaviour log data representing the real-world event or activity traces of different agents.

The authors implicitly assume that agents have to choose between heterogeneous goals

while agents in the proposed agent framework try to achieve each sub-goal (i.e. each

stage) required to complete a task. Therefore, agents in the proposed agent framework do

not have to choose between different goals, but only have to choose the right sequence

of actions leading to the sub-goals, since in the conceptual idea of the agent framework,

each sub-goal and stage of the MDP contributes to the solution of the performed task.

Furthermore, the related approach considered only supports stationary environments in

which activity traces do not change. This means that, in contrast to the agent framework,

the adaptation of goals and activities to changing environments is not addressed.

Mesabbah et al. propose an "auto-simulation model builder framework" that utilises clinical

event logs in order to generate simulation models of discrete events in clinical pathway

processes[161]. The framework consists of two components, one for applying process

mining and one for data analysis. The output of the framework are simulation models of

different scenarios providing different KPI
3
estimates. Similar to the agent framework, the

considered auto-simulation builder framework uses datasets, i.e. event logs, in order to

derive a process model that can be utilised for simulation. However, while the work under

consideration aims at providing simulation scenarios to stakeholders, simulation in the

agent framework is intended for software agents to learn to perform tasks autonomously.

In this context, the development of policies that promise a good or even optimal perfor-

mance are one of the main objectives of the agent framework while in the considered

related work, providing business stakeholders insights about their processes is of interest.

In addition, Mesabbah et al. provide an extension [160] of their former approach [161]

that combines data mining, process mining and machine learning approaches for "complex

decision making in resource handling" and performance prediction. In the considered

paper, log data as well as patient records are processed in order to generate simulation

models that help to capture underlying processes and predict future outcomes and the

need of resources in the health care domain. The considered process mining framework is,

unlike the agent framework, in particular intended for and restricted to the medical domain.

Agents within the process mining framework are considered as individual patients that

have to follow a clinical pathway. Identifying clinical pathways can be easily replicated in

the proposed agent framework, while the considered related approach of Mesabbah et al.

3
KPI is an abbreviation for Key Performance Indicator and is mostly used to quantify performance of

economic activities.

94

3.2. Context-Aware Policies Adaptation and Combination

is not applicable in domains other than the medical domain.

Ghazanfari et al. present a "Sequential Association Rule Mining" approach that maintains

the "Hierarchical Structure of Tasks in Reinforcement Learning" [83]. The outcome of the

approach considered, is "hierarchical policies" that capture Markov decision processes. The

decision to derive rules, i.e. policies, instead of directly applying reinforcement learning

(RL) is justified by the authors through the fact that RL can require time-consuming learn-

ing procedures until task suitable polices are trained. The authors assume that sub-goals

are given in tasks that show a certain correlation and allow their hierarchical extraction

by sequential association rule mining. In the proposed agent framework, sub-goals can

also be defined to narrow down the state search space and contribute to the completion

of a task. However, in the agent framework, the state space does not necessarily need

to be constrained by frequent item sets and association rule mining, but is trained and

represented by entity embeddings that already constrain the state and action space by their

spatial distribution and distance. Based on the trained entity embeddings and provided

state information, a novel approach is provided in the agent framework that enables the

immediate composition of policies. However, within the agent framework, some rule

mining approaches are also used that apply frequent item sets to constrain the state space.

In these cases, the agent framework distinguishes which type of rule mining approach is

applied depending on the task characteristics. The proposed agent framework therefore

provides means (e.g. framework ontology) for the semantic specification of task character-

istics that enable the automated selection of the appropriate rule mining approach(es).

The approach of Porhet et al. extracts behavioural rules of virtual patients by means of

sequence mining, i.e. ERMiner, from training data of physicians’ trainings so that virtual

patients can provide appropriate feedback to the physician who is training the delivery of

bad news to a patient [199]. Virtual patients can also be viewed as software agents that

have to apply rules to reproduce contextual, real-world actions, such as giving suitable

feedback. In the approach considered, it is assumed that rule sequences are unordered. In

the context of the considered use case this may make sense, but in other contexts, rules or

policies may be required that presuppose and represent an ordered sequence of states, i.e.

premises, and actions. In contrast to the considered related work, the agent framework

therefore, also addresses the composition of ordered policies (see Sec. 4.5.2), that take into

account the effects of actions on states and their changes.

The approach of Leotta et al. constructs a visual representation, i.e. a model, of human

behaviour by evaluating sensor events from sensor log data and mapping them to actions

that represent human behaviour [133]. Therefore, the approach first filters and transforms

sensor logs into event logs and then applies an "action recognition algorithm". The authors

claim that "smart services" or "ambient intelligence" can be enabled in this way. However, it

is not clear from the paper how the derived behaviour patterns can be reused and improved

if, for example, deviant behaviour is identified. Furthermore, the authors point out that

their approach can only consider discrete data for mining human activities. In contrast,

the proposed agent framework avoids considering raw sensor data, but assumes abstracted

information provided by IoT wrapper components. The IoT wrapper components therefore

95

3. Related Work

need to transform raw sensor data into semantic observation features that conform to

the ontology concepts of the proposed framework. This procedure allows to integrate

any kind of sensor data, as long as an appropriate Wrapper component is provided that

transforms the data into the required format. In addition, the agent framework, unlike

the considered related work, also supports numerical data as input to the rule mining

approaches used.

By Mannhardt et al., an Guided Process Discovery (GDP) approach is proposed that enables

the "uplifting" of low-level events to explainable high-level activities [146]. GDP uses

activity patterns and clusters obtained from low-level events based on the given activity

patterns. The result of this approach are process models that reflect behavioural activities

and enable insights about them. Similar to the proposed agent framework, the approach

under consideration uses domain knowledge to describe low-level events and high-level

activities. The agent framework introduces in its ontology the concepts Task, State and
Action, which can be understood analogously to activity (i.e. task) and event (i.e. state

and action). However, the agent framework does not only allow to describe sequential

processes, but also empowers agents to find alternative strategies to fulfil an activity or

task. While the considered related approach is rather meant to make processes comprehen-

sible to domain experts, the agent framework is rather meant to support agents in finding

reward-maximising strategies. The authors mention that their approach has some limita-

tions for complex activities consisting of more than 250 low-level events. Furthermore,

their approach is only as good as the manual activity patterns described by domain experts.

In the agent framework this is addressed by the application of reinforcement learning, since

it allows the adaptation, i.e. improvement of policies w.r.t. the environmental feedback.

In Mannhardt et al.’s approach, low-level events that occur in more than one activity cannot

be unambiguously assigned to an activity if the cost or fitness function does not provide a

distinction. Lastly, the authors mention that their approach requires high computational

resources for abstracting complex activities. In the proposed agent framework there are

no such restrictions given.

By Kovalchuk et al., a "hybrid approach" and "conceptual framework" combining "data-,

process- and text mining" as well as "rule-based processing" is proposed for the devel-

opment of simulation models that enable the computational simulation of health-care

processes, patient-specific clinical pathways and treatment scenarios [126]. For this pur-

pose the approach mines "electronic health records (EHR)" that reproduce individual

processes that can be simulated. The paper outlines the necessity of model adaptation for

precision medicine since according to Kovalchuk et al. individual patient characteristics

have to be considered for comprehensive simulation purposes [126]. The considered paper

addresses similar requirements and objectives as the proposed agent framework. However,

the considered paper does not claim to be applicable across domains, although the authors

state that their approach is generalisable to processes in the medical domain. This is due

to the fact that EHRs serve as main input for the different mining algorithms. Thus, the

approach is very specific to medical guidelines, policies and data sources and does not yet

96

3.2. Context-Aware Policies Adaptation and Combination

support "diverse datasets".

Viktoratos et al. propose a "hybrid approach" that combines mining of association rules

and contextual information with probabilistic approaches [267]. The approach shows the

necessity of integrating different sources of information (e.g. context data) to derive deci-

sion or recommendation rules. Similar to the agent framework, the considered approach

tries to overcome the cold-start problem and uses Semantic Web technologies for domain-

specific knowledge representation. Here, the user context determines the best ranked

recommendation rules for the most likely points of interest (POIs). In the proposed agent

framework, a similar use case is given where policies need to be composed based on the

agent’s context. However, while the considered paper allows the derivation of individual

recommendation rules, the agent framework allows the complete combination of policy

recommendations that have to follow a specific order. Furthermore, the agent framework

is not limited to the task of making recommendations about POIs. The representation

of the context in the agent framework, unlike in the work under consideration, is kept

generic by the MDP state concept and thus applicable to different tasks.

Sarker et al. extract association rules about user behaviour from smart-phone log data [218].

The focus of this work is on eliminating redundant association rules that reflect user be-

haviour. The goal is to enable intelligent and user-specific services that take into account

and reproduce the user’s needs. However, the considered approach only is applied and

tested for smart-phone log data, i.e. is domain-dependent, and considers only categorical

features for context representation. In order to apply this approach also for continuous

features a data preprocessing step would be required that transforms continuous features

into categorical features. In contrast, the proposed agent framework allows both the

processing of categorical and continuous features.

Sarker et al. aim at addressing the derivation of behavioural rules from smart-phone data

and enable the adaptation of applications and services [217]. The authors propose a five-

stage "context-aware rule learning framework" that applies machine learning techniques to

smart-phone data. According to the authors, the goal is to "build context-aware, rule-based

intelligent systems" in an "automated" way. For the purpose of rule adaptation, they

propose incremental learning, which enables contextual updating of rules by considering

current contextual smart-phone data. The common features of the considered approach

and the proposed agent framework are that both frameworks enable the derivation and

adaptation of rules considering the environmental context. However, while the considered

approach is only intended for smart-phone devices and uses corresponding data, the

proposed agent framework allows the incorporation of diverse data from different domains

and environments, which however have to adhere to the underlying ontology and data

structure of the proposed framework. Moreover, the related paper presents a very high

level view of the proposed architecture and it keeps unclear how their context model as

well as integration of heterogeneous data, applications and services could look like.

Chen et al. use clinician activity logs from electronic medical records to learn clinical

tasks and gain insights into their complexity [41]. For this purpose, tasks are derived

97

3. Related Work

from session events, taking into account the duration of the activities. Although the

approach derives tasks and their sequential process steps, the main focus is on revealing

the complexity of clinical tasks in terms of execution time and repetition of events. The

approach considered is only applicable to electronic health system protocols and thus in

the medical domain. Generalisation to other domains is not envisaged, while the agent

framework proposed in this work generalises the tasks so that the rules for each MDP task

can be derived by corresponding datasets.

Chang et al. propose a methodology that uses "Predictive Association Rule Mining (CPAR)"

to automatically instantiate entities of an ontology for an intelligent tutoring system and

enrich it with mined association rules that define which tutoring actions, i.e. feedback,

need to be performed or given by the tutoring agent based on the student’s learning

progress [38]. The proposed ontology schema for the tutoring system is a simple one with

a few classes and properties that has not much expressiveness and can only be applied in

tutoring systems that provide the corresponding real-world data with matching attributes.

A further drawback of the approach is that the applied association rule mining algorithm

requires threshold definitions for the metrics, such as support and confidence, used for the

rule mining. Depending on the set thresholds the results of the algorithm may strongly

vary regarding the accuracy and significance of mined decision rules. Moreover, only

datasets consisting of categorical features can be mined by the algorithm for association

rules. Continuous features have to be binned into categories and this has to be done by

defining the bin size in advance.

3.2.4. Summary

Table 3.3 indicates that event log data in particular is used to derive either behavioural

patterns or processes that need to be reproduced and analysed. The drawbacks of the

related work considered include several aspects. For example, some of the approaches [18,

256, 209, 161, 160, 199, 133, 146, 126, 267, 218, 217, 41, 38] lack generalisability and extensi-

bility to other domains. They are tailored to specific application scenarios and limited to a

specific target. In addition, some of the approaches, i.e. in [135, 18, 256, 83, 41], do not

provide "self-learning" strategies for agents and thus do not adapt to dynamic changes

in the environment. Other works, i.e. in [18, 256, 209, 161, 160, 199, 133, 146, 126, 267,

218, 217, 41, 38], use log data as input to the rule mining algorithms but do not offer a

formalisation of the input data or only a very sparse one, as they lack meta-models about

the application domains in question. For this reason, the earlier mentioned approaches

are not domain independent. Some of the approaches, i.e. in [18, 256, 161, 160, 126, 41],

and their produced output data are not directed at agents at all, but serve domain experts

to analyse processes.

In some approaches, i.e. in [133, 161, 217, 38], only discrete features are supported as

input data, while continuous features are left out. The automated selection of rule mining

approaches depending on the given features of a dataset is also not supported in the related

work considered. The agent framework addresses the aforementioned shortcomings with

98

3.2. Context-Aware Policies Adaptation and Combination

the contributions C2.1.1 - C2.2.2 mentioned earlier. For instance, the agent framework

allows to narrow down task contexts by entity embeddings, so that context-specific policies

can be assembled on demand faster than e.g. in reinforcement learning. Furthermore, the

semantic task descriptions enable to automatically select adequate rule mining algorithms.

In addition to the task properties, the proposed method also takes into account whether

tasks are divided into phases or subtasks whose sequence is to be observed. In contrast to

the proposed agent framework, the considered related works on decision rules and process

mining do not include feedback, i.e. rewards, and do not support task stages and sub-goals

and are mostly used in other contexts or applications than intended in the agent framework.

In summary, the problem that is not or only partially addressed in the considered related

work is that there are agents (see e.g. service robotics, web agents, swarm agents, etc.)

that operate in different contexts and need to respond to immediate context, environment

and task changes. Therefore, it is important to avoid domain dependency and enable

agents to deal with rapid context and environment changes and to react appropriately. For

this purpose, different sensor values, i.e. discrete and continuous, need to be supported

so that agents can make observations, derive rules and make decisions in all possible

environments. Decision rules derived from collected time series data should enable agents

to act and adapt their policies in different contexts and environments. For this reason, a

formal representation, i.e. an ontology and entity embeddings, is needed that models and

represents tasks and their relevant properties so that rules can be derived from acquired

log datasets and policies can be combined based on context information.

99

3. Related Work

Paper Intended
Use

Domain
Independence Adaptation Used

Algorithms
Input
Data

Output
Data

Proposed
Agent

Framework

Mining of

decision rules

that follow

MDPs

Yes Yes

FP-Growth

OneR

Classification

Tree

Sequential

Covering

Best Fit Sequence

Log Data

i.e. environmental

feedback

continuous and

categorical data

Decision

rules as

policies

[135] Item rules Yes No Bayesian rule lists (Frequent) item sets Rule lists

[18]
Deriving inherent

processes of supply

chains

No No

Process mining

+

Agent-based modelling

Event log data

Processes of supply

chains

[256]

Modelling of

business processes

at macro and

micro level

No No

Business process

mining techniques

agent-based modelling

simulation

Real world

event data

Business process

models

[209]

Analysing

multi-robot

tasks by means

of process models

No Yes

Inductive Miner

Petri Nets

Event log data Process models

[197] Agent goal

reasoning

Yes Yes

Process mining

techniques

Behaviour log data

agent behaviour

traces

Skill models

relevant goals

[161] Simulation models

of discrete events

No Yes

Process mining

data analysis

Clinical event

log data

Varying

simulation models

with

different scenarios

and KPIs

[160] Decision-making in

resource handling

No Yes

Process mining

data analysis

machine learning

Clinical event

log data

patient records

Simulation models

for predictions of

required resources

[83]

Deriving

hierarchical structured

policy rules

for MDP tasks

Yes No

Frequent item sets

sequential

association rule

mining

State transactions

of MDPs

Hierarchical policy

rules

[199] Behavioural rules of

virtual patients

No Yes

Sequence mining

e.g. ERMiner

Data of

physician trainings

Behavioural patient

rules for simulation

[133]
Mining

human behaviour

model

No Yes

Action recognition

algorithm

Sensor log data

Event log data

Human behaviour

patterns

[146]
Mining high level

activities from low-level

data

No Yes

Guided process

discovery

Clustering,

Uplifting of events

Low-level events

Explainable

behavioural activity

patterns and

process models

[126]
Computational simulation

of health care

processes

No Yes

Data-, process-,

text mining

rule-processing

Electronic health

records

Simulation

models for

health care

processes

[267]

User-specific

recommendations

for

Points of Interest

No Yes

Association rule mining

probabilistic approaches

Semantic Web technologies

User ratings

user context

User-specific

recommendation

rules

[218]
Detecting user

specific

needs for services

No Yes Association rule mining

Smartphone

log data

Association rules

of user behaviour

user-specific

services

[217]

Adaptation of

user applications

and services

Context-aware rule learning

No Yes

Classification and

association rule mining

incremental learning

Smartphone

log data

Behavioural rules

[41]

Learning of clinical

tasks and

complexity estimation

Optimising clinical workflows

No No

Unsupervised

machine learning

Mann-Whitney U tests

process mining

Audit logs

from

clinical medical

records

Process steps

of tasks

complexity

metrics

[38]

Recommendations

of tutoring actions depending

on the learning progress of

the student

No Yes

Predictive association

rule mining

Ontology

real-world data

of tutoring systems

Association rules

for tutoring

actions

Table 3.3.: Comparison of rule mining approaches.

100

3.3. Retrieval and Reuse of Policies

3.3. Retrieval and Reuse of Policies

The agent framework allows agents to share their knowledge, i.e. their policies with other

agents who have similar tasks to perform, on the web. For this reason, finding matching

task descriptions and corresponding solution strategies, i.e. policies, plays an important

role in the agent framework. The assumption made is that tasks with similar properties

also require similar solution strategies. Approaches for task retrieval and reuse of policies

is therefore one of the contributions that are addressed and fulfilled by the proposed agent

framework. The goal of the agent framework is to identify similarities between tasks via

their context and at the same time to narrow down the state and action space so that agents

can more quickly find a solution, i.e. composed policies, or similar tasks and adapt their

related policies to their requirements. Below the novel contributions of this work are listed:

C3.1 A methodology that allows the mining of representative decision rules from be-

havioural, operational and task-specific data.

C3.2 A methodology that allows the formal specification and provision of provenance

data and knowledge that can be utilised by agents to assess the suitability of policies.

Related work that is concerned with the mentioned contributions of this thesis, can be

found especially in the field of Case Based Reasoning (CBR), as this field is mainly concerned

with finding similar cases that can be adapted and reused. Analogously, tasks can also be

considered as a kind of cases. For this reason, many related works in this chapter deal

with the retrieval of cases in CBR.

For instance, case representation, indexing of features and similarity metrics are crucial for

the retrieval of similar cases and policies in CBR. Some CBR approaches utilise e.g. a object
oriented, hierarchical, contextual knowledge or frame-based representation [20, 175, 216],

attribute-value pairs, fuzzy attributes or sets [137] and set of activities represented through
temporal constraint networks [46] as case representation to allow measuring the similarity

between cases by different metrics such as e.g. Jaccard index [265], cosine similarity [141],

Mahalanobis distance [4], nearest neighbours [81, 247]. All of these approaches have in

common that they represent cases in an abstracted and formal representation in order

to uncover similarities between cases. The implicit assumption is that similar cases may

have similar solution strategies. Since CBR is a broad scientific field and the literature on

it is abundant, the survey [51] by Cunningham et al. provides a good overview of common

approaches to CBR.

The survey states that structural aspects, e.g. hierarchical structuring, semantic networks,
graphs, flow structures, bag of words, taxonomies etc., among feature values play a crucial

role for case representations and thus in case retrieval [51]. The survey categorises differ-

ent "similarity mechanisms", such as direct, transformation based, information theoretic and
emergent metrics. The mentioned direct metrics compute distance or similarity measures

in feature vector spaces or determine feature overlaps by "set-theoretic" approaches (e.g.

Jaccard index, Dice similarity). According to Cunningham et al., other metrics compare

101

3. Related Work

the probability distribution of features in order to determine case similarity, see Kullback-
Leibler divergence or 𝑥2 statistics. However, the survey points out that direct metrics,

besides their efficiency and advantages, also have the problem of high dimensionality [51].

The survey argues that feature-value vector representations and direct metrics are the

dominant representations and metrics in CBR. The survey also points out that the con-

sidered alternative approaches have their advantages in terms of certain aspects, such as

higher accuracy or simplified case design. However, the alternative approaches can be

"computationally expensive" and thus require specific retrieval strategies [51].

Cunningham’s survey identifies different classes of similarity metrics and approaches used

in case retrieval. Based on the classification of these metrics and approaches, related work

was selected and considered.

Bergmann et al. represent cases in an object-oriented way by class hierarchies and attribute

relations in order to derive similarities between case objects [20]. One assumption of

the approach is that cases belonging to common classes are similar to each other. In the

considered paper, different metrics are presented that vary by the semantics of different

queries and rely on object-oriented relationships such as inheritance, aggregation, etc.

An object-oriented view is to some extent equivalent to semantic entity representations

within a knowledge graph. However, knowledge graphs are more expressive and pow-

erful when it comes to reasoning about entity relations, as they inherently consider and

model subsumptions, relations (e.g. transitive, (a)symmetric, reflexive) between object

properties and constraints [105] in a natural way that is "close to the human cognitive
thinking" [254]. Due to the above advantages, the proposed agent framework represents

agents and tasks by semantically related entities that form a knowledge graph. In this

way, relationships between task entities can be inferred and embeddings of entities can

be trained for ML algorithms, while a knowledge graph can be easily extended with

new entities. The advantage is that arbitrary complex tasks can be represented in an

abstract and machine-interpretable way in order to enable agents to find semantically

related tasks and policies. The fact that agents can autonomously find other similar tasks

and policies through semantic task entities is novel compared to the approaches considered.

Shi et al. suggest a "model" to assess the similarity of cases [227]. The approach considers

different feature types, i.e. numeric, symbolic and ordinal features, and applies differ-

ent similarity measures depending on the type, such as Hamming distance. In addition,

weighting coefficients that determine the importance of each feature are calculated for each

feature by an adopted procedure called G1. Based on the determined feature similarities

and the calculated overall similarity, the authors apply the Nearest Neighbour algorithm
to a case base to compare and find for a problem similar cases. Depending on the cases’

feature size, the complexity of computation operations increases and many conditions,

that require domain knowledge from domain experts, have to be evaluated in order to

apply the right metrics to the right features and retrieve similar cases.

102

3.3. Retrieval and Reuse of Policies

Liao et al. propose a hybrid approach that applies fuzzy sets and crisp sets in combination

to search for similar cases [137]. Therefore, domain experts need to assign linguistic

variables and weights to the features under consideration to describe fuzzy sets of different

types of features. The problem here is that human intervention/knowledge is required,

while in the proposed agent framework, process data can be used to create and store

semantic task entities that agents can access over the Internet to compute task similarities

and find available strategies for reuse.

Xiong et al. propose a "fuzzy rule reasoning approach" to evaluate the similarity and

utility of cases, where the similarity determines the utility [282]. Moreover, the consid-

ered approach learns the corresponding fuzzy rules from the cases in the case database

using a genetic algorithm. Here, the cases are represented by their feature values and

the referenced solution, while the problem requirements are also represented by feature

values. Depending on the problem, either classification or regression tasks are performed.

However, the considered approach may not be suitable for agent-based MDP tasks, where

an environment provides stochastic feedback and is not necessarily based on datasets.

Moreover, the authors’ assumption that "similarity" is "equivalent" to "usefulness" might be

problematic, as similarity of cases does not necessarily imply that the solutions of already

existing cases are useful for solving a problem, as other cases with different characteris-

tics might provide better strategies. For this reason, a feedback mechanism and a more

meaningful formalisation of cases or tasks is needed to evaluate more similarity indicators

than just general features. In addition, it requires to be evaluated whether the utility of

a solution is actually given as assumed, before the solutions found, can be adopted and

adapted. In the proposed agent framework, a simulation is therefore carried out afterwards

to show whether and how the solution found fits and needs to be adapted. To achieve this,

tasks are formalised as semantic graph entities and their property relationships to relevant

entities are spatially mapped by embedding vectors. The mapping into an embedding

vector space shows the semantic proximity of tasks and allows the use of the embeddings

in ML algorithms due to the resulting numerical representation.

By Nunez et al. cases are considered and classified as "operational situations" that take

place in an arbitrary environment [184]. From this point of view, the retrieval of similar

cases is considered as a classification task, where cases in a case database are annotated

with labels characterising "operational situations". Similarity between cases is determined

by the proposed L’Eixample metric, which evaluates preprocessed feature vectors repre-

senting cases. In the preprocessing step, continuous features are assigned to discrete terms

to obtain discrete categories. The relevance and weighting of case features is determined by

the proposed class-value distribution approach, which takes into account the probabilistic

distribution of features and their correlation. Also here, depending on the feature types,

distinctions (i.e. heuristics) have to be made with regard to the calculation of similarities.

The approach considered requires several elaborate intermediate steps involving prepro-
cessing of data, determination of relevant features, discretisation of continuous features and
weight assignment. The accuracy of the results obtained depends on the quality of the

data that represent cases. The drawback here may be that complex case relationships

cannot be modelled by a pure feature-based approach. For this reason, the agent frame-

103

3. Related Work

work, considers no features for finding tasks, but semantic task entities that interlink e.g.

actions and states into comparable entities. The spatial distribution of these entity en-

codings in the embeddings space allows the determination of similar tasks, states or actions.

Leake et al.’s approach estimates the adaptability of existing cases based on case similar-

ity [131]. Therefore, the authors propose a "similarity assessment approach" that relies

on adaptation experience. The approach is a transformation based approach where the

costs are estimated and compared for adapting existing cases to a new given case. The

required knowledge for adapting a case is also considered for their estimates. Therefore,

the considered approach first detects unresolved problems in the new case and then looks

up cases that solve the according problem class. One drawback of this approach might be

that a case library about adaptation costs has to be maintained while the relevance of cases

has to be estimated. Hence, it is not clear how relevance is clearly defined. The authors

mention that they select the most relevant cases by "coarse-grained semantic similarity

criteria" what sounds quite vague and needs to be further specified, since relevance depends
also on objectives and can mean different things in different contexts.

3.3.1. Summary

From the related work considered, it can be observed that most retrieval approaches

view cases as feature vectors whose similarity within a vector space is measured. The

problem with this view, however, is that it does not take into account the relationships

between cases. A knowledge graph representation is a more appropriate representation

because knowledge graphs persist, reveal links and describe semantically relevant entities.

Furthermore, knowledge graphs can be extended with additional knowledge and queried

to obtain knowledge about task properties and application policies. The implementation of

semantic knowledge graphs enables compliance with FAIR4 Data principles that make data

findable, accessible, interoperable and reusable. In terms of the proposed agent framework,

software agents can benefit from these principles to solve complex tasks.

With the help of semantic graph entities, cases or tasks can be encapsulated, related,

stored and retrieved more efficiently. If the entities are transferred, i.e. encoded, to an

embedding space, the advantage is that these entities and their proximity to each other

can be expressed numerically, visualised and thus better processed and understood. The

mapping between numerical and semantic representation thus enables an explainability

of determined similarities between cases because embeddings can be visualised by dimen-

sionality reduction techniques. Moreover, embedding vectors can be efficiently referenced

or retrieved by their semantic task entities and reused in machine learning algorithms as

they preserve the properties of the semantic entities in their numerical representation.

A positive side-effect is that similar task contexts can be represented as well by entity

embeddings through their spatial distribution in the embedding space. In addition, the

4
FAIR stands for Findable, Accessible, Interoperable, Reusable. See also https://www.go-fair.org/fair-

principles/

104

3.3. Retrieval and Reuse of Policies

contextual proximity of the embeddings enables an implicit delimitation of the state and

action space, so that suitable strategies can be found and assembled more quickly than

with other approaches (see Sec. 4.5.2).

It has to be mentioned that a significant difference is given between task entities and cases

in CBR. While task entities in the context of this work represent problems with objectives

that have to be solved by software agents, cases are already solutions for given problems.

In the agent framework ultimately policies are considered as strategies or solutions to a

certain task. In order to find suitable policies, tasks are evaluated in terms of similarity,

since an assumption in this thesis is that similar problems require similar solutions that can

be easily adapted by reinforcement learning and the simulation of the new task. The task

knowledge graph representation is an alternative means that allows the retrieval of similar

tasks through plain SPARQL queries that look up property and object intersections. In

cases where no numerical representation is required for ML algorithms, SPARQL queries

for task retrieval may be sufficient.

The review of related work on CBR has shown that some of the CBR retrieval approaches

considered are only suitable for classification or prediction tasks. This is because they

define the similarity of cases only on the basis of common feature values and do not take

into account the extent to which semantic similarities or relationships exist. In MDP tasks

that map a sequential process with goals, such CBR approaches might be not useful, since

tasks, actions and environments of agents may vary and tasks may be more complex than

just making predictions about class memberships of cases. It should also have become

apparent that domain- or problem-specific knowledge is a prerequisite for most approaches

to work at all. Therefore, the agent framework combines both knowledge graphs and

entity embeddings to represent tasks and contexts in a way that is understandable to

humans, agents and (ML) algorithms.

Further, the contributions C3.1 and C3.2 enable, on the one hand, the derivation of rules

from behavioural data and, on the other hand, a way for agents to specify and assess

meta-information about tasks. The novelty of these contributions is that agents are enabled

to create and exchange policies independently, so that they can benefit from the knowledge

and experience of other agents from other domains on the World Wide Web. This also

means that agents are no longer bound to one application domain or task, but can share

their strategies to solve heterogeneous tasks in different contexts and environments.

105

3. Related Work

3.4. Summary of this Chapter

In this chapter, related works that address similar problems and apply comparable ap-

proaches and algorithms to the proposed agent framework were examined. In doing so,

the contributions of this thesis were compared with the approaches of related works.

In Sec. 3.1 it was pointed out that many of the considered approaches that deal with the

cold-start problem are fundamentally intended for recommender systems and are either

limited to specific domains or tasks. In other words, some approaches [249, 204, 196, 5,

234, 62, 114, 191, 96, 284, 182, 109, 59, 289] lack generalisability as they are tailored to

specific applications. Moreover, a significant number of approaches still rely on datasets

that need to be collected before the approaches can address the cold-start problem. This

implies that the cold-start problem has not been fully solved in its intended sense. The

search for related work dealing with agent-based systems has shown that there are not

many approaches that address the cold-start problem in agent-based systems. This gap

is addressed by the proposed agent framework, which provides a formal and generic

representation of MDP tasks, as well as a simulation component that uses this formal task

representation for simulation purposes. In this way, software agents can train standard

strategies and evaluate them before they are used in a real environment. In addition, the

agent framework also supports the mining of datasets to derive semantic simulation task

entities. This means that both the knowledge of domain experts and log datasets can be

used to create formal task descriptions.

In Sec. 3.2, it was shown that several approaches also lack generalisability and extensibility,

as they only address a specific objective and application domain. Enabling agents to

autonomously adapt their policies is also not supported in many of the works considered.

Depending on the complexity and structure of the tasks, some approaches [229, 142, 135,

18, 256, 83, 41] do not provide a formal representation or meta-models that enable the

representation, adaptation and extension of domain knowledge. However, the most serious

drawback may be that some approaches [133, 161, 217, 38] only support discrete features

and require pre-processing or discretisation of data for continuous features. Depending

on the feature type, it may also be necessary to use different rule mining algorithms.

In contrast to the approaches considered, the agent framework selects the appropriate

algorithms depending on the given feature types. In addition, the related works consid-

ered do not support a division of datasets into stages and sub-goals. However, process

data can be structured to include and represent stages. In the approach presented, se-

quential stage goals and feedback from the environment are also considered and addressed.

It was outlined that some baseline approaches [202, 138, 136] use language models to

represent contexts and predict the next actions to be performed based on these contexts.

However, the baseline approaches considered require natural language processing and

exhibit some degree of complexity and ambiguity, while the proposed approach on the

agent framework refrains from transforming natural language text into agent instructions.

In contrast to the related approaches, the agent framework uses task descriptions from

process datasets or task knowledge graphs and in this way avoids the costly pre-processing

106

3.4. Summary of this Chapter

of natural language text and inherent ambiguities.

In Sec. 3.3, mainly CBR approaches have been studied because an important part in CBR

systems is the search and reuse of similar cases and the agent framework also needs to

perform the search and reuse of similar task strategies. The findings obtained from the

related works show that many CBR approaches have a simplified case representation,

which basically consists of feature-value vectors that are not meaningful when it comes to

case relationships. Moreover, the CBR systems considered mostly deal with classification

or prediction tasks where feature-value pairs may be sufficient. However, the agent frame-

work deals with complex, environment-specific tasks involving entity relations that go

beyond classification and prediction applications. This observation suggests the use of

more meaningful representations such as knowledge graphs that encode property relation-

ships between entities. These relationships contain important knowledge, e.g. about task

similarity. The added advantage is that entities can be learned as entity embeddings that

provide a numerical representation of the corresponding entities. This numerical represen-

tation can in turn be processed by ML algorithms and is used for similarity detection on the

one hand and for context representation and constraining the state and action space on the

other hand, which is useful for speeding up policy retrieval and composition. In addition,

the agent framework also supports task retrieval through simple SPARQL queries that filter

tasks with overlapping features and values. The SPARQL queries have the advantage that

they are humanly understandable and indicate why certain tasks are considered similar.

Depending on which features are important and most relevant, corresponding SPARQL

queries can be defined that search for similar, i.e. overlapping, task features, which helps

to explain task similarities.

107

4. Approach

In this chapter on the approach, the concepts and methods of the proposed agent frame-

work are presented. The intended goal is to disclose how the elaborated concepts and

framework components are brought together to build and apply the proposed agent

framework. Furthermore, this chapter shows how the framework’s provided functionality

addresses the individual RQs in order to tackle the previously discussed challenges and

problems.

Section 4.1 gives a general overview of the framework’s architecture and its inherent

software components. The individual phases of the framework are highlighted and related

to the life cycles of the intended software agents. In addition, different user groups with

different goals can use the agent framework. For this reason, this section identifies and

describes intended user roles of the agent framework.

Section 4.2 discusses the underlying knowledge representation, i.e. the ontology, of the

proposed agent framework that is required for knowledge exchange and the simulation of

tasks. Furthermore, the representation and use of configurable mathematical models (e.g.

differential equations) to simulate real-world phenomena in order to estimate the effects

of certain courses of action is essential for simulation tasks, as it is often necessary to gain

insight into the short- and long-term effects of actions and the corresponding evolution of

phenomena (e.g. a pandemic). Therefore, domain experts require means to describe natural

phenomena and (task) processes, which are provided by the framework and enable the

simulator to simulate the phenomena and processes for software agents. For this reason,

the proposed task simulation framework also addresses the requirement to apply rules and

mathematical models that indicate how phenomena can evolve over time (see Section 4.2.1).

Furthermore, the different components as well as the agents need the knowledge for

processing information in order to make intentional and contextual decisions that lead to

subsequent goal-oriented actions and policies. The objective is to create a common and

shared understanding within the framework that enables agents to learn and solve tasks

by using the framework. In particular, the share and reuse of newly generated knowledge

(i.e. policies, rules) plays an important role because different implementations of agents

should be enabled to share their strategies with each other for a beneficial cooperation via

the framework and shared knowledge graph, see Section 4.2.2.

Section 4.3 addresses the cold-start problem (see RQ1) by means of the simulation com-

ponent, which allows agents, e.g. reinforcement learning agents, to train strategies (i.e.

policies) from scratch that can be adapted and shared with other agents. This pre-training

step is necessary because, at the time of deployment, the agents in question would have

109

4. Approach

no knowledge of how to solve an assigned task. They have to train previously appro-

priate strategies to successfully solve the task by perceiving state changes and feedback

(i.e. rewards) from the simulation component. The simulation component, in turn, re-

quires the generic task representation to update states based on the actions performed

by the agent. In addition, the simulation component needs to know what feedback (i.e.

rewards) to send to the agent(s) involved. Furthermore, the agent framework aims at

simulating long- and short-term effects that depend on executed actions in order to provide

beforehand information about the course of tasks. The corresponding section describes in

detail how the simulation component works and communicates with the concerned agents.

Target users who interact or operate in real-world environments produce valuable data

that can be used to adapt and improve strategies (i.e. policies), as the underlying data

reproduce the task processes and characteristics as well as the behaviour and strategy

performed by the user. This assumption makes it necessary to derive representative and

meaningful rules from the produced log data (see RQ3). Section 4.4 illustrates the devised

concepts that allow the agent framework to derive representative rules, which in turn can

be reused by rule-based agents without having to learn new strategies from scratch.

The proposed agent framework aims at providing a platform for software agents to share

and reuse their knowledge. For this reason, agents who are deployed to participate in

the proposed framework have to adhere to certain rules or guidelines when contributing

new solution strategies. Section 4.5 discusses an approach of the framework that enables

agents the retrieval and combination of suitable policies for their own tasks.

Furthermore, the agent framework aims at supporting different agent implementations

that are able to autonomously adapt their behaviour depending on their current con-

text (see RQ2). Therefore, a number of algorithm implementations (e.g. reinforcement

learning, genetic algorithm, Naive Bayes Optimisation) are provided that can be used

by an agent depending on the given problem (i.e. task) and its properties. Section 4.6

introduces the concepts underlying the agents of the framework. It also outlines the algo-

rithms used and their problem-specific extension and application by the framework agents.

Prior to the conceptualisation of the proposed agent framework, several design decisions

and assumptions had to be made that set the boundaries of the agent framework. Sec-

tion 4.7 outlines these assumptions and shows the limitations of the agent framework.

Finally, Section 4.8 discloses and concludes important aspects and findings of the proposed

agent framework.

The concepts, methods and approaches discussed here are based on the following published

papers: [152], [155],[158], [159], [156] and [157].

110

4.1. Overview of Roles and Framework Phases

4.1. Overview of Roles and Framework Phases

Before the framework architecture is considered, it may make sense to look at the intended

business process, i.e. usage, of the framework architecture from different perspectives

and requirements. The perspectives considered include different user roles (i.e. domain

expert, agent developer and software agent) that will interact with the framework. In

addition, there may be users who use or are supported by the agents’ services in their

daily lives. Therefore, the framework needs to address different goals and requirements of

the respective target users. The following section briefly highlights the different roles and

their requirements to the framework.

Domain Expert The domain expert (e.g. physician, technician) has a specific domain

knowledge and contributes this knowledge, which can be based on guidelines as well as

experience. The domain expert does not need to have programming skills or knowledge of

formal languages. He/she may be an expert in his/her field, but may not have experience

or knowledge in handling computer technologies. His/her role in the context of the

framework is to provide and deploy generally valid task descriptions that reflect relevant

task characteristics (i.e. possible states, observable features, executable actions) and enable

a software agent to solve the task at hand.

Agent Developer The agent developer has the task of implementing problem-specific

optimisation or machine learning algorithms for agents. This also includes determining

hyper-parameters needed for the corresponding algorithm. Since task execution sequences

can be unpredictable and stochastic during coding time, an agent developer needs to rely on

algorithms that allow the agent to independently learn dynamic and flexible strategies that

are context-dependent and sometimes unknown. Moreover, task and user requirements

may change, making it necessary to enable agents the adaptation of their strategies during

run-time to new upcoming situations. Within the proposed framework, the agent developer

therefore contributes implementations of algorithms to extend the range of agents and

problem-specific solutions. If algorithms are already available in the framework, an agent

developer can reuse them by defining semantic agent entities and parametrising them.

The extension and programming of algorithms for the framework is only necessary if

the existing algorithms are not suitable for a new task and its characteristics. Usually,

the agent developer has to follow provided interfaces of the framework that allow the

integration of new agent implementations.

Software Agent Software agents and their different properties have already been dis-

cussed in the foundations Section 2.1. The framework distinguishes and supports two

types of software agents, a) worker agents that learn, develop and share their strategies

and b) consumer agents that retrieve and reuse provided strategies. The latter agents are

independent from the framework and communicate via the World Wide Web (WWW)

with the framework, while the first ones are integrated in and controlled by the framework.

However, there are also hybrid agents that are both worker and consumer agents, which

means that they combine both agent types and can switch their role from one mode to the

111

4. Approach

other depending on the purpose and requirements.

Worker agents are basically agents that implement machine learning (ML) and optimisation

algorithms, while consumer agents can include all kinds of software agents that only have

the requirement to adhere to the APIs and protocols of the framework. In the context of

the presented framework, worker agents are considered as individual software program

entities that have a corresponding semantic representation and follow determined, com-

mon procedures, but differ in their applied algorithms and hyper-parameters. In particular,

worker agents are an integral part of the framework and are used where knowledge is to

be generated and shared. At the time of deployment, a worker agent has neither prior

knowledge nor does it know how to solve the task at hand, since the task strategies are

unknown in advance. Therefore, it is necessary to first learn a strategy, i.e. an intended

behaviour, that enables the agent to achieve the task’s goal(s). For this reason, the agent

has to observe and evaluate the environmental feedback it receives for its performed

actions, also to determine the termination of its learning process. The termination of

training procedures depends on the convergence of the trained ML model and the achieved

performance, i.e. utility, of the agent.

After the training, the worker agent generates and shares provenance data about the

training it has completed (e.g. training iterations, task learned, performance measured by

rewards). This provenance data is intended for consumer agents who would like to assess

the suitability of the trained strategies provided. Furthermore, provenance data about the

origin of strategies ensures accountability so that consumer agents are enabled to decide

whether the provided strategies meet their quality criteria.

End-Users End-users are the last category of user roles that are part of the framework

life cycle. They usually interact with the agent or the framework by given IoT devices

(i.e. wearable devices, stationary sensors, actors, applications). In this context, end-

users provide direct and active or indirect and passive feedback that is utilised by the

corresponding agents in order to adapt their strategies to user-specific needs, preferences

and requirements. It is important to note that end-user preferences and domain expert

objectives may diverge. A made assumption and design decision of the agent framework

is that in these cases the objectives of the domain experts (e.g. physician) have a higher

priority than the end-user (e.g. patient) preferences. This assumption makes sense because

domain experts are considered as stakeholders who specify the intended task objectives. If

end-users want to utilise the provided services they have to agree and adhere to the given

objectives and corresponding strategies.

The Framework Phases The framework is modularly designed because its process flow

covers different aspects that address different requirements. The subsequent paragraphs

deal with the mentioned process flow and its inherent framework components. In the

scope of this work, five phases have been identified that are considered representative and

useful for the process flow of the agent framework. The appropriate phases are discussed

112

4.1. Overview of Roles and Framework Phases

Figure 4.1.: Big picture of the presented approach.

and highlighted by coloured numerical labels in Fig. 4.1. Some phases are subdivided and

represented by lower-case letters. The list below identifies the different process phases:

1. Semantic task and agent instance creation.

2. Policies training.

3. Policies share.

4. Policies adaptation.

5. Policies retrieval and reuse.

(1) Semantic task and agent instance creation a) The developed agent framework requires

a user interface (UI) (e.g. a chatbot application, see Fig. 4.2) that guides domain experts to

create an assertional (A-box) representation of task instances stored in a knowledge graph

(KG), which in turn should be part of the linked open data (LOD) cloud. The representation
of assertional task instances is based on the underlying terminological knowledge (T-box)

defined by the corresponding light-weight framework ontology (see Sec. 4.2). Therefore,

UI applications (e.g. web applications, chat bots, content management systems) that are

intended to access the agent framework need to implement the semantic concepts of

the developed T-box. In this first phase of the framework, domain experts specify task

instances that contain relevant information about task properties and enable the simu-

lation component to create, update and evaluate states of the task in order to provide

feedback (i.e. reward values) to worker agents (e.g. reinforcement learning agents). The

113

4. Approach

Figure 4.2.: The definition of a task instancewith the guidance of a chat bot web application.

task description provides a domain-specific but abstract and generalised perspective and

representation of the task that can be computationally processed by the components of

the agent framework. The task entities are serialised in a semantic representation format

and stored in the corresponding task knowledge graph.

The task description enables the simulation component to recognise states and update

them depending on the last state and action performed. In addition, the simulation compo-

nent determines what feedback (i.e. reward value) should be returned in a certain state for

a performed action. It is important to note that in contrast to the simulation component,

the agent does not have a strategy, i.e. policies, to solve the given task. The agent only has

the ability to learn a strategy based on the given feedback by the simulation component

and its inherent utility function. The reason why the agent has to learn strategies first,

instead of immediately using the task description as a procedure specification, is that the

task description only provides a general representation of the task properties, but not a

strategy for solving the task. Some tasks are stochastic and thus their progress cannot

be predicted in advance, so that the strategies required depend to a large extent on the

dynamics of the environment, the preferences and requirements of the users. Thus, the

targeted tasks usually have no one-fits-all strategies. For this reason, the agent needs to

be able to make flexible adjustments depending on the current context and end user, so

that reprogramming of hard-coded procedures, i.e. strategies, is no longer necessary, but

the adaptation of the strategy is made by the agent based on received contextual feedback.

b) Independent of domain expert knowledge, there may also be data records available

that contain important information about task processes and agent activities (e.g. Virtual

Home Dataset (VH)
1
). However, these records sometimes cannot be used directly by the

framework because they may be unstructured or have their own structure and thus do not

1 http://virtual-home.org/

114

4.1. Overview of Roles and Framework Phases

conform to the proposed framework ontology. In these cases, wrapper components have

to provide a remedy by transforming these datasets into processable task representations.

The framework requires the ability to be expandable with dataset specific wrappers so that

different datasets can be transformed into semantic task descriptions. Thus, the framework

also allows the automated generation of semantic task instances that are subsequently

stored within the provided knowledge graph of the framework.

Wrapper components can be provided by developers or domain experts who want to utilise

unstructured datasets from data sources about tasks within the agent framework. Since

the syntax and semantics of such unstructured data can vary, specific wrapper implemen-

tations need to know the T-box of the framework on the one hand and the structure of the

underlying dataset on the other. For the evaluation, for instance, the activities of the VH

dataset were transformed into framework-specific semantic task entities. Section 6.3.3.2

demonstrates how the transformation from activity descriptions (i.e. agent programs) of

the VH dataset to semantic task entities has been conducted in the scope of the evaluation.

It is important to note that the proposed agent framework is extendible by various wrapper

components since it is modularly built. Wrappers can register to the framework and are

executed by the framework regularly (i.e. in defined time intervals) in order to adopt new

datasets and updates.

c) In the same manner as domain experts, agent developers can create semantic entities of

agents that subsequently are utilised by deployed worker agent programs as configuration.

In this context, it has to be distinguished between semantic agent entities and agent programs.
An agent entity is the semantic representation that supplies the properties respectively

configuration of the worker agent while the running software instance of the worker agent

is executed program code that follows a predefined program procedure and implements

the execution of the agent. The semantic agent entity is required because a worker agent

needs to know which task to solve and which actions it is allowed to conduct. Depending

on the implemented optimisation or machine learning algorithm also hyper-parameters

(e.g. learning rate, number of episodes, greedy parameter, etc.) are required that have to

be provided by the agent developer before the agent program is deployed and running on

the framework.

(2) Policies Training As soon as the assertional task entity and agent entity are created and

stored within the knowledge graph, a Controller component is informed that controls the

process of policy training. Thus, in addition to a server for bidirectional communication,

the controller also launches a program instance of the simulation component and an

instance of a working agent. Currently, the framework supports three different types of

worker agents: a) reinforcement learning, genetic algorithm and naive Bayesian agent (see

Sec. 4.6).

The simulation component as well as the worker agent subscribe to the communication

server by sending the event, i.e. topic, names they are interested in. Each topic name is

115

4. Approach

referenced within the semantic task and agent entity.

A topic is an abstract representation that encapsulates IoT device events and messages.

Via the communication server the agent as well as the simulation component instance

are enabled to publish their ownmessages and to subscribe to other publishers of messages.

In the next step, the simulation component requests the semantic entity of the previously

assigned task name from the knowledge graph while the worker agent requests its config-

uration.

With the provided knowledge, the agent starts its training. First, it randomly selects an

action from the possible set of actions and publishes a message containing the selected

action URI to the simulation component via the communication server. The simulation

component in turn updates the current maintained state depending on the interlinked

effects of the published action and simultaneously determines the reward value of the

new state. Both information, i.e. new state and reward value, are then sent back by the

simulation component to the agent. Based on the rewards received and the updated states,

the agent iteratively trains the policies to perform actions depending on the observed

states, usually, in many thousands of episodes, either until a convergence of the agent’s

utility function or performance with respect to the rewards is achieved or until the defined

number of episodes has been performed. Each training episode ends as soon as the goal

and final state of a task is accomplished. Each task can have either one initial state or a set

of initial states, that begin the task execution. The simulator component selects one of

these initial states either randomly or in a round-robin fashion to start a new task episode.

(3) Policies Share During the training, the worker agent maintains meta data about its

machine learning model or optimisation algorithm and statistics (e.g. achieved mean

positive/negative reward, number of training episodes, etc.) about the training process.

After the training has finished, the agent stores these meta data as provenance data together

with the trained model that represents the learned strategy to solve the corresponding

task. The shared policies are generic policies that represent a general valid task strategy.

As outlined below, these general task strategies can be adjusted by user and environmental

feedback for personalisation purposes.

(4) Policies Adaptation The policies adaptation phase addresses the personalisation re-

spectively customisation of task policies. Agents that execute shared policies during their

runtime, collect data about their conducted activities, perceived observations (e.g. sensor

values) and feedback (i.e. rewards). These datasets are valuable in that sense that they can

be utilised in order to adapt and personalise agent services to contextual and personal

requirements.

In this context, adaptation of strategies is achieved in two ways: 1) by adapting the models

(e.g. weights) of the trained strategies, and 2) by rule mining techniques that use the

collected datasets to derive representative and significant rules that reproduce the adapted

116

4.1. Overview of Roles and Framework Phases

(i.e. personalised) behaviour of individual agents or users. This implies that a task can

produce numerous versions and variations of task-solving strategies that can be reused by

agents who need to solve similar tasks to the existing ones.

(5) Policies Retrieval and Reuse A central assumption in this work is that similar tasks, in

terms of their semantic characteristics, require similar solution strategies, i.e. policies. This

assumption leads to the idea that similarity measures reflecting semantic task properties

need to be applied to help consumer agents assessing the suitability of task strategies in

relation to their own tasks to be solved.

The framework facilitates the retrieval and reuse of task strategies by worker and consumer

agents through entity embeddings (i.e. task embeddings) that represent semantic task

entities by numerical vectors and enable the retrieval of strategies by determining the

similarity (i.e. spatial distance within a high-dimensional vector space) of task embeddings.

The more similar two tasks are to each other, the closer they are spatially distributed in a

high-dimensional vector space.

a) The TaskEmbeddingTrainer component of the framework encodes each newly created

semantic task entity and related other entities (e.g. actions, states, features, etc.) of the

knowledge graph by means of a deep neural network as an embedding vector that contains

the trained weights of the neural network. This numerical embedding vector is then stored

as web resource to interlink it in the semantic task entity.

b) In the case that a consumer agent searches for suitable task policies for its own task, it

has to provide a T-Box conform semantic task entity as input to the framework so that

the TaskEmbeddingTrainer encodes also a task embedding for the searching consumer

agent. Subsequently, the framework computes a predefined number of the most similar

task entities and provides the requesting customer agent with corresponding task URIs

as a result. The consumer agent can then retrieve the most similar tasks as well as the

policies associated with them using the task URIs from the corresponding knowledge

graph and try out the provided policies using the available simulation component. Based

on the evaluated performance, the consumer agent can decide on one of the retrieved

policies. The advantage is that the consumer agent does not have to learn the policies

from scratch, but can reuse existing policies that are suitable for its own tasks.

This section gave an overview about the proposed framework architecture, user roles

and life-cycle phases. In the next sections single framework components are discussed in

detail.

117

4. Approach

4.2. Framework Ontology: Formal Representation of
Domain-Independent Knowledge

In this section, the knowledge representation (i.e. ontology) developed for the proposed

agent framework is presented and discussed. The concepts presented are based on the

following published works: [159, 158, 155, 152], where parts of the ontology have already

been presented.

The framework as well as the agents require an ontology in order to have a shared under-

standing of relevant concepts and their relationships among each other. Ontologies allow

agents to infer knowledge that is implicitly given in semantic facts and their relationships

to each other (see also Sec. 2.2).

Many ontologies and vocabularies [47, 34, 270, 124, 243, 43, 221, 296, 50] are available

for different domains and application fields in the World Wide Web (WWW). However,

nevertheless a new use case and application specific ontology was conceptualised for the

agent framework because it required less effort to conceptualise an own ontology than

extend already existing ontologies that do not provide all required concepts and properties

reflecting certain task- and agent characteristics.

One objective regarding the framework’s knowledge representation was to have a low

complexity of the ontology, so that a simplified usage and adoption of the ontology is facil-

itated. For this reason, a light-weight ontology was defined that is not too overloaded but

sufficiently generic and expressive to share and process common task- and agent-specific

knowledge across domains and applications.

In the analysis and design of the concepts and their relationships, a common denominator

was sought that characterises the commonalities between tasks and the commonalities

between agents. The common denominator of tasks was found by the Markov decision

process (MDP) character of each considered task. Hence, the MDP and its vocabulary

served as role model for the conceptualisation of the ontology. Elements (e.g. states,

actions, rewards) representing the formal vocabulary of MDPs were adopted into the

ontology and additional concepts (e.g. effects, observables, equations, variables, etc.)

and properties were derived that go beyond the MDP vocabulary, as tasks can also have

different characteristics that make them distinguishable from each other and imply a

differentiated handling by platforms (e.g. simulation component) and agents. Therefore,

these characteristics need to be reflected within the proposed ontology. The following

bullet points list the various considered characteristics and differences that a task may

have and that affect the handling of the task within the proposed simulation framework

and within agent programmes.

• Varying number of participants, i.e. single or multi agent tasks.

• Consists of sub-goals and stages that first have to be fulfilled before the final state is

reached.

118

4.2. Framework Ontology: Formal Representation of Domain-Independent Knowledge

• (A-)synchronous handling of state updates in multi-agent environments, i.e. for the

update of states, the simulation framework has either to wait or not to wait until

each agent has performed its action.

• The task requires for its solving, fixed ordered action sequences versus no fixed

ordered actions.

• The task describes effects and corresponding state changes by rules and/or differential

equations, see Sec. 4.2.1.

• The task consists of states that are represented by continuous and/or discrete obser-

vation features.

The framework ontology that addresses these task characteristics, consists of 15 concepts,

23 object properties and 34 data properties. It represents semantic concepts that can

be adopted and extended, e.g. by subsumptions or property relationships, to achieve

interoperability between different domains. Sec. 4.2.1 outlines the requirements to support

domain experts in simulating natural phenomena using mathematical models. In Sec. 4.2.2

all concepts, their meaning and purpose are described.

4.2.1. The Simulation of Phenomena by Mathematical Models

In real-world scenarios, natural phenomena and events play a crucial role, since they

follow natural laws and patterns that can be represented and simulated by mathematical

models [246, 71, 26]. For instance, upcoming pandemics (e.g. COVID-19) [119] or social

and political phenomena (e.g. president elections, terrorism, etc.) evolve according to

certain laws, patterns, events and causes [248]. These natural or artificial laws, patterns,

events and causes can be recorded in data [294] and modelled by mathematical equations

(e.g. differential equations, fuzzy logics) [148], consisting of parameters and variables that

reproduce, i.e. emulate, the dynamics (e.g. rate of change) of the appropriate phenomena.

This thesis proposes a very generic model representation that allows domain experts to

create their own task and environment specifications for simulation purposes without

requiring programming knowledge and without being limited to game environments.

Since the treatment of real-world phenomena, driven by decision making, requires ap-

propriate mathematical models in the virtual world, a simulation framework for (RL)

agents has to be able to utilise these mathematical models in order to simulate states that

follow the emerging changes. This is particularly relevant for complex phenomena whose

non-linear and non-parametric models cannot be derived or computed directly by the agent.

Pre-condition for the simulation of phenomena and dynamics is that the appropriate

mathematical models are formally represented and serve for processing and emitting state

changes. An important aspect thereby is that model parameters, reflecting the impact

of measures and actions, can help to control according state changes in the appropriate

environment. Usually, prior knowledge through data [198] and assumptions of domain

119

4. Approach

experts guide the parametrisation and mathematical modelling process [19, 147], whereby

their implications need to be formally represented and transformed by feature engineer-

ing [198] into processable state representations (e.g. numeric and/or categorical) so that

RL agents can learn to deal with pending states to achieve predefined and intended goals.

An interesting aspect is that implications (effects) of actions can be simulated in order to

evaluate the more or less beneficial impact and utility of action sequences to the according

process and environment. Moreover, agents can learn to handle trade-offs with respect to

contradicting goals [168]. The challenge thereby is to find action sequences that serve for

heterogeneous objectives of a task. If some reconciled actions sequences are found, they

can be formalised as concise decision rules and shared with rule-based agents.

An additional aspect of describing and simulating phenomena and tasks can be that not just

one but multiple actors (agents) can influence mutually the process and environment by

their performed actions and behaviour (e.g. cooperation, collaboration, competition) [14,

72, 200]. This observation shows the necessity of having an agent-based simulation frame-

work that can synchronise actions [277] and deal with multiple actors (agents) influencing

by their actions separately the course of a task process.

Furthermore, it may be useful for a simulation framework to be able to represent and sim-

ulate mathematical models in addition to rules to show the long and short term effects of

actions taken by one or more agents. Therefore, professionals and researchers who do not

know programming languages may need means to specify and configure the behaviour of

simulation environments through mathematical equations, such as differential equations.

This may be important because a simulation framework should also take into account

trade-offs between competing goals of agents through mathematically modelled effects.

The presented work aims at providing an approach to define and integrate different

environments into the simulation framework that contain rules and mathematical models

for state generation and state updates depending on executed actions and their effects. The

framework ontology presented in Sec. 4.2.2 enables a configurable agent framework that

allows also not technically inclined domain experts to specify and integrate simulation

environments with rules and differential equations for simulating phenomena and short-

and long-term effects of actions and measures.

4.2.2. Concepts and Properties

State

A state is a concept that represents and encapsulates possible and measurable observation

features within a task. Thus, a state aggregates all possible features that can be perceived

and evaluated by an agent. Four types of states are supported: initial, interim, final and
goal state. The initial state indicates the starting point of the given task. Interim states are

states that occur between initial and final state. The final state terminates the task. It is

important to note that a distinction between final and goal state is made, because a task

120

4.2. Framework Ontology: Formal Representation of Domain-Independent Knowledge

can comprise several goal states that do not necessarily terminate the task but indicate

that parts of the task were successfully solved. The state concept can be considered the

equivalent of states in Markov decision processes (see Sec.2.3.9).

The hasExpression property references string literals and allows the agent to recognise the

state. An expression can be considered as rule with logic operators (𝐴𝑁𝐷,𝑂𝑅,𝑋𝑂𝑅, 𝑁𝑂𝑇)

and range expressions (<=, >=, <, >) that prescribe conditions and limits of the state. For

instance the conditions in Example 4.1 might apply to the state NormalBodyTemperature.
Thus, the mentioned state would reference the illustrated expression. An agent that moni-

tors the body temperature of a person, might decide in this way whether the person has a

low, normal or high body temperature. Based on the recognised state, it then could decide

its next action to perform. It is important that all observation features that are stated in

the expression require to be referenced by the state’s property called hasObservationFeature.

ObservationFeatures are measurement variables that are indicators of a state and are

observed by the agent in order to recognise states. The corresponding rules can be

represented in different rule languages, e.g. SWRL, Notation3, SPARQL (see Sec. 2.2.3,

2.2.4, 2.2.5). In Sec. 4.3 examples will be provided that demonstrate how rules are created

and utilised for reasoning purposes.

(BodyTemperature ≥ 36.0) ∧ (BodyTemperature ≤ 37.4)
→ NormalBodyTemperature (4.1)

Concept: State
Roles/Properties Range Mandatory Cardinality

:hasObservationFeature :ObservationFeature Yes ≥1
:isGoal xsd:boolean Yes 1

:isInitialState xsd:boolean Yes 1

:isFinalState xsd:boolean Yes 1

:hasExpression xsd:string Yes 1

Table 4.1.: State concept and its properties.

Observation Feature

Observation features are observable quantities that define entirely the given state by

their properties. For instance, different observation features that are relevant for the task

execution process, allow the recognition of states and contexts through their evaluation in

combination.

An observation feature can have, depending on the measurable variables, different value

ranges. For instance, a temperature sensor can only measure a certain range of values

(e.g. from 0 to 100). Depending on available sensors and their sensitivity and capability to

121

4. Approach

measure, the value ranges of the features have to be defined. Therefore, the properties

hasRangeStart, hasRangeEnd reference the corresponding range limits.

Observation features can have various statistical properties, e.g. mean, median, mode,

variance and probability distributions, i.e. probability density functions (PDFs) or prob-

ability mass functions (PMFs), which need to be parametrised to extract the most likely

values from the distribution for simulation purposes. For simplicity, standard distributions

are specified in the observation feature concept, e.g. Gaussian normal, Poisson, binomial,
uniform and exponential distribution, which are commonly used in descriptive statistics.

It is optional whether the domain expert specifies the statistical properties and a data

distribution for the corresponding observation characteristic. If no feature distribution

is specified, NONE has to be selected for the property hasProbabilityDistribution. The
statistical properties are useful and show their strength when domain experts know which

statistical properties and data distributions they want to simulate or when tasks and thus

observation features are derived and created from datasets. The corresponding distri-

butions and parameters, such as mean and variance for a normal distribution or e.g. _,

success/failure rate for the binomial and exponential distribution, can be estimated from

the given data and specified in the observation feature entity.

Each observable feature variable is defined by its feature type and its current value. A

feature can be either a categorical, i.e. nominal, feature or a numerical, continuous feature.

Thus, the property hasFeatureType indicates the corresponding feature type while hasValue
indicates the observed value at a certain time.

Since quantities are measured in units, there is also a hasUnit property that specifies the

corresponding unit string literal (e.g. Fahrenheit or Celsius degree).

Topic

A topic is a concept that encapsulates one or multiple observation features. As soon as

an observation feature changes in the environment, the subscribed agent is informed. In

this event-driven way, new upcoming states can be observed by agents. The term topic is
adopted from the MQTT application protocol where topics deal as entity for messages

that can be subscribed by clients that would like to receive appropriate messages.

The observable features that are aggregated in a topic are referenced by the hasObserva-
tionFeature property.

Each topic can have a human readable name that is stated by the property hasName.

Action

Actions that are interlinked to the task and the agent, represent actions that can be con-

ducted by the agent and may be related to objects (e.g. operating elements such as devices,

122

4.2. Framework Ontology: Formal Representation of Domain-Independent Knowledge

Concept: ObservationFeature
Roles/Properties Range Mandatory Cardinality
:hasRangeStart xsd:double Yes 1

:hasRangeEnd xsd:double Yes 1

:hasMeanValue xsd:double No ≤ 1

:hasVariance xsd:double No ≤ 1

:hasStandardDeviation xsd:double No ≤ 1

:hasMedian xsd:double No ≤ 1

:hasModeValue xsd:double No ≤ 1

:hasLambda xsd:double No ≤ 1

:hasNumberSuccesses xsd:integer No ≤ 1

:hasSuccessRate xsd:double No ≤ 1

:hasFailureRate xsd:double No ≤ 1

:hasNumberExperiments xsd:integer No ≤ 1

:hasProbabilityDistribution

{NONE, GAUSSIAN, BINOMIAL,

UNIFORM, EXPONENTIAL, POISSON}

Yes 1

:hasFeatureType {NOMINAL, NUMERICAL} Yes 1

:hasUnit xsd:string No 1

:hasValue xsd:double No ≤ 1

Table 4.2.: ObservationFeature concept and its properties.

Concept: Topic
Roles/Properties Range Mandatory Cardinality

:hasName xsd:string Yes 1

:hasObservationFeature :ObservationFeature Yes 1

Table 4.3.: Topic concept and its properties.

123

4. Approach

actors) that are invoked or triggered by the actions.

An action can have a description in natural language that is intended for human experts or

users who would like to comprehend the purpose of an action what might be interesting

especially regarding the explainability of agent behaviour.

Since some actions may have counteractions that cause complementary effects, a property

called hasCounterAction is defined to indicate whether an action is a complementary action

with opposite effects. Opposing effects may sometimes be required, as an agent may get

stuck in a state and need to perform an action that undoes a previous action and lets the

agent move back out of the state. Complementary actions are particularly needed when

new policies are trained. Once the simulator detects that the agent is stuck, it calls itself a

complementary action that returns to a previous state where the agent can continue its

training.

The property hasTransition is optional and only useful if corresponding knowledge graphs

can be created fromMDP datasets and state transitions that have occurred can be extracted

from the data. An action can have any number of state transitions, depending on the

number present in the corresponding dataset.

It is conceivable that an action may also have a cost associated with it. For instance, it

could be that it costs an agent energy or battery life to perform actions. For this reason,

the Action concept also includes the hasCost property, whereas the use of this property
is optional. However, if costs are to be modelled, these costs are added to the reward

values of subsequent states of an action by the simulation component during the simulation.

The most important property of an action might be hasEffect that references instances of
the effect concept. Defining effects is especially required for simulation purposes since the

simulation component updates states based on performed actions and their effects that

directly impact observable features in the agent’s environment. Hence, an effect describes

how an observable feature will most likely change.

Concept: Action
Roles/Properties Range Mandatory Cardinality
:hasDescription xsd:string No ≥0

:hasEffect :Effect Yes ≥0
:hasCounterAction :Action No ≥0
:hasTransition :Transition No ≥0

:hasCost xsd:double No ≥0

Table 4.4.: Action concept and its properties.

124

4.2. Framework Ontology: Formal Representation of Domain-Independent Knowledge

Effect

The ontology represents impacts of actions through the concept Effect. An effect references

(differential) equations or constant values to update the values of observable features based

on different defined operators linked through the property hasImpactType. The impact

types define the possible operations to update the corresponding feature variables. It is

possible to compute a feature value by an equation linked through the property hasEquation
or to change feature values by the following operators increase/decrease, convert, on/off
and constant. In case the impact type is set to constant, the feature is assigned a constant

value that is immutable.

Concept: Effect
Roles/Properties Range Mandatory Cardinality

:hasObservationFeature :ObservationFeature Yes ≥ 1

:hasImpactType

{INCREASE, DECREASE,

CONVERT, ON, OFF,

CONSTANT, COMPUTE}

Yes 1

:hasEquation :Equation No ≤1

Table 4.5.: Effect concept and its properties.

Transition

The Transition concept is only relevant when semantic task entities are automatically

created from datasets representing MDPs. In these cases, the Transition concept can be

used to represent state transitions in an MDP caused by actions performed by an agent.

This implies that each transition consists of an initial state, a subsequent state, an action

and a transition probability, as this is also defined in MDPs. The transition probability

takes into account the degree of uncertainty of an environment, and in deterministic

environments this probability is usually 1 or 0, while in stochastic environments this value

can vary. Transition probabilities are derived from the data.

Concept: Transition
Roles/Properties Range Mandatory Cardinality
:hasPreviousState :State Yes 1

:hasNextState :State Yes 1

:hasAction :Action Yes 1

:hasTransitionProbability xsd:double Yes 1

Table 4.6.: The Transition concept and its properties.

125

4. Approach

Virtual Influencer

The Virtual Influencer is a concept that specifies random and exceptional events that can

occur independently of the agent acting in the environment and thereby training policies.

A virtual influencer can be particularly important when the agent being trained has also

to respond to unpredictable events that may occur randomly and outside of the agent’s

control. Thus, the virtual influencer has the task of introducing uncertainty into the

environment in order to prepare the agent also for unforeseen or random events.

A Virtual Influencer entity is of type Agent and emits a stochastic event that can be

controlled by three different conditions: 1) a probability of occurrence, 2) a time frequency

of occurrence or 3) a pre-conditional state, see Table 4.7.

Concept: VirtualInfluencer
Roles/Properties Range Mandatory Cardinality
rdfs:subClassOf :Agent Yes 1

:hasEffect :Effect Yes ≥1
:hasProbability xsd:float No 1

:hasExecutionIntervall xsd:float No 1

:hasPrecondition :State No 1

Table 4.7.: VirtualInfluencer concept and its properties.

Strategy

Strategy is a concept that describes strategies of agents to solve respectively conduct a task.

Thus, a strategy instance aggregates and references by the property hasPolicy, policies
that define the action instructions for each probable state.

Since reinforcement learning agents train policies first before they apply them to a task,

each policy and thus strategy is derived by an agent. Therefore, the hasAuthor property
references agents as authors of the corresponding strategies.

Concept: Strategy
Roles/Properties Range Mandatory Cardinality

:hasPolicy :Policy Yes ≥1
:hasAuthor :Agent Yes 1

Table 4.8.: Strategy concept with its properties.

Policy

Policies were already introduced in Sec. 2.3.10. In analogy to policies in reinforcement

learning, a semantic Policy concept maps a state to an action. The objective, especially

126

4.2. Framework Ontology: Formal Representation of Domain-Independent Knowledge

for RL agents is to train policies that promise a reward maximising behaviour. The

policy concept is implemented in two alternative ways, e.g. as reification by subsuming

a rdf:Statement or SWRL rules. Reification allows to make statements about statements

what is useful in this case because a policy is considered as a statement that expresses

which action instance is required by a given state instance (see Sec. 2.2). In this context,

rdf:subject references instances of the state concept, rdf:predicate references a property
named requiresAction and rdf:object references instances of the concept action. Reification
can be used without requiring a specific rule engine. Listing 4.1 illustrates an example

for a COVID policy that relates the state named COVIDSymptoms to the action named

StayAtHome.

Listing 4.1: Reification used for a COVID-19 policy.

1 :COVIDPolicy rdf:type rdf:Statement.

2 :COVIDPolicy rdf:subject :COVIDSymptoms.

3 :COVIDPolicy rdf:predicate :requiresAction.

4 :COVIDPolicy rdf:object :StayAtHome.

As an alternative to reification, a policy can also be expressed by predicate logic (e.g. SWRL

rule, see Sec. 2.2.4), which is represented by a string literal in the agent framework. The

hasRule property refers to the corresponding literal. This literal can be retrieved and

processed by rule-based agent programs to derive the action to be performed when a state

defined by the rule is true. Example rule 4.2 is analogous to the previous reification example

and describes the conditions that allow to infer the state called COVIDSymptoms. The rule
specifies that the variable ?p is an instance of the class Person. The person requires to

satisfy 3 different symptoms (e.g. DryCough, Fever, Nausea) concatenated by conjunctions.

If all 3 expressions are true, the rule infers that the state COVIDSymptoms is given.

Person(?p) ∧ hasSymptom(?p,DryCough)
∧ hasSymptom(?p, Fever) ∧ hasSymptom(?p,Nausea)

→ State(COVIDSymptoms) (4.2)

Analogously to the previous examples, if the agent infers from the observed symptoms

that the state COVIDSymptoms is present, it can deduce from the example SWRL rule

shown in Eq. 4.3 that the action named StayAtHome needs to be performed. In this way,

policies can be described as rules.

Agent(?a) ∧ Action(StayAtHome) ∧ State(COVIDSymptoms)
∧ recognisesState(?a,COVIDSymptoms)

→ requiresAction(COVIDSymptoms, StayAtHome) (4.3)

Parameter

Since equations are required for expressing some effects, the ontology provides the Param
concept. Param represents parameters that are immutable, fixed values and are used within

127

4. Approach

Concept: Policy
Roles/Properties Range Mandatory Cardinality
rdfs:subClassOf rdf:Statement Yes 1

rdf:subject :State Yes 1

rdf:predicate :requiresAction Yes 1

rdf:object :Action Yes 1

:hasRule xsd:string Yes 1

Table 4.9.: Policy concept and its properties.

an equation in order to influence dependent variables, i.e. observation features. A Param
concept consists of a hasName property that defines the name of the parameter, a hasValue
property that references the parameter value and a hasDescription property that describes

the purpose of the parameter.

Concept: Param
Roles/Properties Range Mandatory Cardinality

:hasName xsd:string Yes 1

:hasValue xsd:double Yes 1

:hasDescription xsd:string No 1

Table 4.10.: Param concept and its properties.

Equation

An equation concept is important for mathematically describing the effects (e.g. rate

of change) of actions that allow updating states. An equation concept consists of a

mathematical expression that is represented through a string literal and referenced by the

property hasExpression. The parameters and variables of the equation are referenced via

the hasParam property. An equation can have an arbitrary number of parameters that

have to rely to the parameter names that are stated in the corresponding expression. A

property called hasDescription allows to refer to text that describes the purpose of the

equation.

Concept: Equation
Roles/Properties Range Mandatory Cardinality
:hasExpression xsd:string Yes 1

:hasParam :Param Yes ≥1
:hasDescription xsd:string No 1

Table 4.11.: Equation concept and its properties.

128

4.2. Framework Ontology: Formal Representation of Domain-Independent Knowledge

Algorithm

The Algorithm concept represents the algorithms that agents implement for solving their

tasks. The algorithm concept is especially required when an agent entity is defined that

specifies for the agent the algorithm to select. The properties are: hasName, that references
the name of the algorithm, hasParam that references hyper-parameter instances that are

required for initialising and configuring the algorithm and hasDescription that describes in

natural language text the purpose of the algorithm.

Concept: Algorithm
Roles/Properties Range Mandatory Cardinality

:hasName xsd:string Yes 1

:hasParam :Param No ≥1
:hasDescription xsd:string No 1

Table 4.12.: Algorithm concept and its properties.

Agent

The Agent concept describes the semantic representation of agents that conduct tasks.

The objective is to provide relevant information about agent instances that allow the

initialisation and configuration of agents.

For instance, agents can use the hasTopic property to determine which Topic entities they
need to subscribe to in order to be informed as soon as associated observation features

change.

The property named hasAlgorithm references the corresponding algorithm that is imple-

mented by the agent.

Since agents, especially RL agents, train strategies in numerous episodes, the property

hasEpisodes indicates how many episodes the agent should train to learn appropriate task

strategies.

Depending on the agent’s abilities or competencies, the agent has a set of actions that allow

the agent to act within a task. The appropriate actions are referenced via the hasAction
property.

Depending on the observable features and the state representation, it may be necessary to

encode states using hash functions. The property isHashing indicates whether or not the

agent should apply hashing to observable features.

Usually agents are responsible for certain tasks and therefore, the property named hasTask
allows the agent developer to assign the appropriate tasks to the newly created and

deployed agent.

129

4. Approach

Concept: Agent
Roles/Properties Range Mandatory Cardinality

:hasName xsd:string Yes 1

:hasAlgorithm :Algorithm Yes 1

:hasEpisodes xsd:integer Yes 1

:hasAction :Action Yes ≥1
:isHashing xsd:boolean Yes 1

:subscribesFor :Topic Yes ≥1
:hasTask :Task Yes 1

Table 4.13.: Agent concept and its properties.

Use Case

A UseCase is a concept that represents real-world use cases, (e.g. coaching a patient,

making the household, etc.). It consists of an arbitrary number of tasks that have to be

conducted in order to implement the use case.

Concept: UseCase
Roles/Properties Range Mandatory Cardinality

:hasName xsd:string Yes 1

:hasTask :Task Yes ≥1

Table 4.14.: UseCase concept and its properties.

Task

The task concept represents tasks that are intended to be solved by software agents. It

encapsulates all relevant information (i.e. properties) of a task and interlinks all MDP

concepts such as e.g. States that can occur within a task execution and that allow the

agent to decide which action to take next. The different characteristics of a task impact

framework specific processes (e.g. the selection of suitable algorithms, the process flow of

the simulation component, etc.).

A task can be in three different stati (OPEN, INPROGRESS, DONE) that indicate whether
an agent currently conducts a task or has already solved the task. Since a numerical

representation of tasks may be required for (machine learning) algorithms, tasks can refer

to corresponding web resources of entity embeddings via the property hasEmbedding,
which represent the task numerically in an embedding space (see Sec. 2.3.12).

The hasStrategy property references semantic representations of strategies that were al-

ready trained by agents. In this way agents can access available strategies and reuse them

in order to retrain and adapt the strategies for their own purposes.

130

4.2. Framework Ontology: Formal Representation of Domain-Independent Knowledge

The subscribesFor property references Topic entities that are required for agents that want

to get informed about task-related state changes in the environment. By means of topic

entities agents are enabled to subscribe to dedicated topics that encapsulate messages from

sensors and peripheral devices. These topics are referenced as well in the corresponding

task concept so that the agent knows which topics are relevant for the corresponding task.

Tasks that belong to one use case can also be sequentially interlinked or executed in parallel.

This is expressed through the properties hasPreviousTask, hasNextTask, hasParallelTask.

Multiple VirtualInflucencer entities can be referenced by a task, as they may be required to

initiate unpredictable, i.e. random, and infrequent environmental events (e.g. the power

goes out or a sudden obstacle appears) that directly affect the agent’s perceived state,

although the agent does not directly influence these events through its own actions per-

formed.

In single- or multi-agent environments either one or multiple agents can participate a task

and influence each others state representation (see Sec. 2.1). In order to indicate whether

the task is executed in a multi-agent or single-agent environment, the hasNumberOfActors
property references the number of agents that conduct the task.

State updates can be performed by the simulation framework either synchronously or

asynchronously. The property hasCommunicationType specifies, especially in a multi-

agent environment, whether a state is updated only after all agents have performed

synchronously their action or after each agent has performed its action individually, i.e.

asynchronously.

Sometimes a task may only be solvable if a fixed order of actions is performed and thus

these tasks are referenced as sequential tasks. The property isSequential indicates through a
boolean literal whether the corresponding task is a sequential ordered one or an unordered

one. All the concepts and properties presented serve the agent framework for knowledge

representation and communication between agents and the framework. For example,

the simulation component of the framework is able to simulate tasks based on the given

concepts (T-box) and their instantiations (A-box) (see Sec. 2.2), which is presented in

Sec. 4.3. In addition, agents can perform reasoning to recognise states and infer policies. If

concepts are insufficient or missing, the ontology can be extended with additional concepts

and properties, as well as references to other existing ontologies. For this reason, the

framework ontology was developed because it brings the advantages mentioned above.

131

4. Approach

Concept: Task
Roles/Properties Range Mandatory Cardinality

:hasState :State Yes ≥1
:hasAction :Action Yes ≥1

:hasObservationFeature :ObservationFeature Yes ≥1
:hasStatus {OPEN, INPROGRESS, DONE} Yes 1

:hasEmbedding :Embedding No ≥0
:hasVirtualInfluencer :VirtualInfluencer No ≥0

:hasStrategy :Strategy No ≥0
:susbscribesFor :Topic Yes ≥1
:hasPreviousTask :Task No ≥0
:hasNextTask :Task No ≥0

:hasParallelTask :Task No ≥0
:hasNumberOfActors xsd:integer Yes ≥1

:hasCommunicationType {asynchronous, synchronous} Yes 1

:isSequential xsd:boolean Yes 1

Table 4.15.: Task concept and its roles respectively properties.

132

4.3. Simulation of MDP Tasks

4.3. Simulation of MDP Tasks

Task simulation is required for agents that need to learn policies for assigned tasks before

they can perform them in real environments. Thus, the simulation component, i.e. the

simulator, addresses two different goals: a) avoiding the cold-start problem by allowing

the agent to train a default strategy (i.e. policies), and b) revealing short- and long-term

effects of actions to be performed in order to classify how demonstrated behaviour might

play out in the future.

Figure 4.3 is adopted from the paper [155]. It illustrates the process flow between simulator

and agent. First, domain experts create task descriptions as JSON-LD serialisation and

the framework stores the task descriptions in a knowledge base respectively knowledge

graph. The simulation framework utilises the task description in order to simulate the

task. Therefore, the simulator and corresponding agent exchange messages that contain

instantiations about states, rewards and actions. The outcome of the simulation process

are trained policies or ML models, e.g. Deep-Q-Neural-Network (DQNN), that serve as

default strategy for solving a task. The program of the simulator performs four main

Figure 4.3.: The simulation process between agent and simulator [155].

procedures, namely (i) updating and managing states based on received actions, (ii) in-

ferencing and providing feedback through reward signals to the agent, (iii) initialising

a task once the simulation is started and terminating the task once the final state is reached.

Figure 4.4 illustrates the temporal sequence of the simulation. The sequence starts with

the initialisation of the agent programme and the simulator. Then the agent sends an

initial message to the simulator specifying the task to be simulated and containing the

task instance as a Turtle RDF or JSON-LD serialisation with all the required information.

The simulator then sends the initial state representation of the task to the agent. Since

an agent usually needs many episodes until its utility function converges and it learns a

desired behaviour, a program loop is executed that runs for n episodes. The number of

episodes is specified in the agent’s semantic entity by the developer.

Then the agent programme enters a second loop that stops as soon as the condition that a

final state is reached is met. Iteratively, the agent incorporates the received reward values

into its algorithm (e.g. reinforcement learning) and takes the received state representation

as input to its machine learning algorithm, which returns the index of the action to be

performed. The agent then sends a message with the action name to the simulator, which

updates the given state based on the action and its effects and determines the new reward

value based on the new updated state. Both the updated state and the reward value are

133

4. Approach

Figure 4.4.: The UML sequence diagram illustrates the flow of the simulation and the

interaction between agent and simulator.

sent back to the agent. The training episode and the communication between agent and

simulator are terminated once a final state is reached and once all predefined episodes

have been run.

4.3.1. Message exchange

The communication between agent and simulator is conducted through JSON messages.

The following example shows a message that is sent by the agent to the simulator. The mes-

sage contains a time-stamp, the message status that indicates that a training is conducted

and the action with its effect called Set_LampOn that is to be invoked. The information

provided to the simulator enables it to update the given state and compute the reward

value for the sent action. The following code in Listing 4.2 shows the sample message that

the agent sends with the action command to switch on a lamp:

Listing 4.2: Message exchange between agent and environment.

1 {"timestamp": "2021-06-10T14:33:04.955Z",

2 "status": "training",

3 "action": {

4 "Switch_LampOn": {

5 "HasText": "Switching a lamp on.",

6 "IsNegation": false,

7 "HasEffect": {

8 "Set_LampOn": {

9 "HasImpactType": "ON",

134

4.3. Simulation of MDP Tasks

10 "HasObservationFeature": {

11 "IsLampOn": {

12 "HasRangeStart": 0,

13 "HasRangeEnd": 1,

14 "HasFeatureType": "NOMINAL",

15 "HasUnit": "",

16 "HasProbabilityDistribution": "NONE"

17 }

18 }

19 }

20 }

21 }

22 },

23 "step": 1}

Listing 4.3 is an exemplary response of the simulator given with information about the

last state, updated state, reward value and last sent action together with its related effect.

The message also indicates whether the updated state is a goal state. Furthermore, the

stateNames key references the reasoned human readable names of the given states. It

can be noted that the task context can be represented by an arbitrary number of states

that describe observations. The listed example message adheres to the concepts of the

previously discussed framework ontology:

Listing 4.3: Message sent to agent by simulator.

1 {"timestamp": "2021-06-10T14:49:37.601Z",

2 "status": "training",

3 "state": {

4 "HasObservationFeature": {

5 "IsLampOn": {

6 "HasRangeStart": 0,

7 "HasRangeEnd": 1,

8 "HasFeatureType": "NOMINAL",

9 "HasUnit": ""

10 "HasValue": 1

11 }

12 },

13 "HasReward": 0.25,

14 "IsGoal": false,

15 "IsInitialState": false,

16 "IsFinalState": false,

17 "HasExpression": "IsLampOn == 0"

18 },

19 "lastState": {

20 "IsLampOn": {

21 "HasRangeStart": 0,

22 "HasRangeEnd": 1,

135

4. Approach

23 "HasFeatureType": "NOMINAL",

24 "HasUnit": ""

25 "HasValue": 0,

26 ...

27 }

28 },

29 "lastAction": {

30 "Switch_LampOn": {

31 "HasText": "Switching a lamp on.",

32 "IsNegation": false,

33 "HasEffect": {

34 "Set_LampOn": {

35 "HasImpactType": "ON",

36 "HasObservationFeature": {

37 "IsLampOn": {

38 "HasRangeStart": 0,

39 "HasRangeEnd": 1,

40 "HasFeatureType": "NOMINAL",

41 "HasUnit": ""

42 }

43 }

44 }

45 }

46 }

47 },

48 "stateNames": [

49 "LampOn"

50]}

A simulator, depending on the task description, can also have multiple agents subscribing

to the simulator and vice versa.

4.3.2. Reasoning of States

Internally, the simulator performs two reasoning steps, one for state updates and one for

identifying the reward value that depends on the given state and performed action.

The representation of the task instance provides rules, e.g. SPARQL CONSTRUCT query

snippets, that allow the simulator to make inferences based on the underlying knowledge

base and additional statements that are added to the knowledge base before reasoning and

after state feature variables are updated. For example, if we assume a medical use case in

which an agent continuously observes a person’s vital signs, the person’s health state is

determined and recognised through the changes of the measured vital signs. Listing 4.4

provides an example that shows RDF statements that might be put to the given knowledge

base by the simulator. The RDF statements express that three RDF instances (i.e. Heartrate,
SystolicValue, DiastolicValue) of type ObservationFeature are given. For each observed

136

4.3. Simulation of MDP Tasks

vital sign feature a measured value is prevalent. As soon as the simulator receives an

action message by the agent, it updates depending on the related effects of the action,

single ObservationFeatures. For instance, if the agent advises the person to go for a walk,

then the corresponding task description might define that the action of going for a walk

increases the heart rate and blood pressure values. In this example case, the simulator

would increase the corresponding state values and create the following RDF statements to

add to the knowledge base. The knowledge base with RDF statements is managed in the

random access memory (RAM) and thus, can be updated immediately [159].

Listing 4.4: Measurements expressed as Turtle statements.

1 :Heartrate rdf:type :ObservationFeature.

2 :SystolicValue rdf:type :ObservationFeature.

3 :DiastolicValue rdf:type :ObservationFeature.

4 :Heartrate :hasValue "75"^^xsd:integer.

5 :SystolicValue :hasValue "155"^^xsd:integer.

6 :DiastolicValue :hasValue "80"^^xsd:integer.

To define rules that describe each state, SPARQL CONSTRUCT queries are a possible

means to reason states according to certain state conditions. If the conditions in the

WHERE clause are met, the triple in the CONSTRUCT part applies. Listing 4.5 shows

an example CONSTRUCT query that suggests that an agent instance perceives the state

named PersonRelaxed. In the WHERE clause, the first triple indicates that the variable

?agent is of type Agent. Subsequently, the triples for each vital sign indicate that they

have a value variable. The function called FILTER then defines the conditions, i.e. the

value range, for each vital sign variable, while the terms are concatenated by logical &&
operators. The conjunction by && specifies that all conditions need to be satisfied for the

constructed triple indicating the state. The rule expresses that the stated condition exists

exactly when the value of the heart rate is between 60 and 70 and the systolic value is

between 120 and 140, while the diastolic value should be between 60 and 75. In the case

that the instructions previously added to the knowledge base fulfil the query conditions,

the simulator derives the new state with the name PersonRelaxed.

Listing 4.5: A CONSTRUCT query for defining a state rule.

1 CONSTRUCT {?agent :perceivesState :PersonRelaxed.}

2 WHERE {

3 ?agent rdf:type :Agent.

4 :Heartrate :hasValue ?heartrate.

5 :SystolicValue :hasValue ?systolicValue.

6 :DiastolicValue :hasValue ?diastolicValue.

7 FILTER(?heartrate >= 60 && ?heartrate <= 70

8 && ?systolicValue >= 120 && ?systolicValue <= 140

9 && ?diastolicValue >= 60 && ?diastolicValue <= 75)}

137

4. Approach

4.3.3. Reasoning of Rewards

The second reasoning task that the simulator has to carry out is the derivation of reward

values that serve as reinforcing feedback for the agent. The assignment of rewards depends

on various aspects, which relate on the one hand to the type of task and on the other hand

to the effects that an executed action causes within a given state.

Depending on whether a sequential or non-sequential task is given, the reward function

changes. In the design and implementation of this work, it has become apparent that in

the sequential case, the rewards of the states have to be different in order for the states

to be easily distinguished from each other, as the agent learns the sequence of actions

and states with incrementally increasing rewards and has to be enabled to recognise that

each correctly executed state maximises its utility. In non-sequential tasks, the agent does

not adhere to a strict sequence of actions and states but mainly focuses on the states and

actions that promise a high reward. The agent therefore only needs to learn actions that

lead to reward-maximising states, whereby the order of execution is unimportant.

However, also penalising values are required, if the agent performs actions that lead

to undesired states. Thus, a reward function requires to consider whether a) a task is

sequential or not, and b) the given state and performed action lead to a desired, i.e. reward

maximising, state.

Rewards are calculated by the simulator in two different ways, either by semantic reason-

ing using SPARQL queries or by implementing a reward function that extends the reward

function API.

When an action is sent to the simulator, it creates an RDF statement about the action and

adds it to the knowledge base, similar to the state reasoning discussed earlier. To give an

example, the corresponding statement might look as in the following Listing 4.6.

Listing 4.6: Statements about an agent that performs an action.

1 ?agent rdf:type :Agent.

2 ?agent :performedAction :AddOneSpoonCoffeePowderToMachine.

3 ?agent :numberActionRepetitions "2"^^xsd:integer.

The RDF statement expresses that an agent instance performed 2 times an action called

:AddOneSpoonCoffeePowderToMachine since actions can repeatedly conducted by an agent.

This statement is added to the knowledge base. Subsequently, an appropriate SPARQL

query is executed by the simulator that infers the reward value based on the given state

and performed action.

Listing 4.7 demonstrates a SPARQL CONSTRUCT query [159] that allows the simulator to

derive a positive reward of 1.0, when the statements in the WHERE clause are satisfied.

The SPARQL query shows that depending on the number of action repetitions and the

138

4.3. Simulation of MDP Tasks

effect of an action, and depending on the state that the agent perceives, a positive reward

is returned. In this example, a UNION operator is also provided to indicate that only

one of the states, either PersonLovesStrongCoffee or PersonIsTired, need to be true for the

constructed and inferred statement to be valid. In this way, the UNION operator makes it

possible to consider several states that could be relevant to the induced effect.

The FILTER function allows the simulator to evaluate the number of action repetitions

that could affect the impact of an action.

The depicted CONSTRUCT query expresses that if a person loves strong coffee or the

person is tired and the agent performs an action that increases the amount of coffee powder,

the effect of the performed action to increase the amount of coffee gives a reward value of

1.0.

Listing 4.7: SPARQL CONSTRUCT query for defining a reward rule.

1 CONSTRUCT {:IncreaseCoffeeAmount :hasReward "1.0"^^xsd:double.}

2 WHERE {

3 ?agent :performsAction ?action.

4 ?agent :numberActionRepetitions ?numRepeat.

5 ?action :hasEffect :IncreaseCoffeeAmount.

6 {?agent :perceivesState :PersonLovesStrongCoffee.}

7 UNION

8 {?agent :perceivesState :PersonIsTired.}

9 FILTER(?numRepeat < 2)

10 }

Listing 4.8 shows a counter-example. For the same action and effect, the agent receives

a negative reward value of -1.0, if the person prefers weak coffee or is already turned

up. Both examples demonstrate that it is context- and thus state-dependent whether an

action is reward maximising or not. If the conditions in the WHERE clause and the FILTER

function are not met, the query will not return a result, i.e. not a constructed statement as

defined in the CONSTRUCT clause.

Listing 4.8: SPARQL CONSTRUCT query defining a rule for negative rewards.

1 CONSTRUCT {:IncreaseCoffeeAmount :hasReward "-1.0"^^xsd:double.}

2 WHERE {

3 ?agent :performsAction ?action.

4 ?agent :numberActionRepetitions ?numRepeat.

5 ?action :hasEffect :IncreaseCoffeeAmount.

6 {?agent :perceivesState :PersonLovesWeakCoffee}

7 UNION

8 {?agent :perceivesState :PersonIsTurnedUp.}

9 FILTER(?numRepeat > 1)

139

4. Approach

10 }

Besides SPARQL queries, developers have also the possibility to implement a function that

calculates and returns reward values. Algorithm 10 in Appendix A shows a function that

exemplary computes rewards for sequential tasks.

Since the properties of a state have also to be updated by the simulation component, the

corresponding Algorithm 11 in Appendix B illustrates how state updates are performed.

140

4.4. Adaptation and Mining of Policies

4.4. Adaptation and Mining of Policies

Figure 4.5.: Process flow of the rule mining approach for deriving policy rules.

After RL agents have learned generally applicable default policies, these can be applied in

real operations and adapted to user- and environment-specific requirements. Typically,

an environment or user provides feedback to the agent, directly or indirectly, about its

performed actions. This valuable data can be used to customise or personalise default

policies, as individual feedback from the user and environment can be taken into account

and used to derive rules that represent personalised policies.

Mostly, datasets are used by machine learning (ML) algorithms to learn representative

models that capture and reproduce the patterns of the corresponding dataset. Therefore,

ML models usually need to be trained in lengthy data preprocessing and learning proce-

dures.

To avoid lengthy ML pipelines in pattern learning, the proposed agent framework pro-

cesses task-specific datasets in advance to extract policy-compliant and personalised rules

that can be directly adopted and applied by agents without the need to learn policies

through elaborate ML algorithms (see Sec. 4.1 and Fig. 4.1).

The approach implemented in the presented agent framework is that RL agents adapt

their models (e.g. neural network parameters) directly at runtime by feedback from the

environment, collect data and make them available to the framework. By applying different

rule mining approaches, the framework derives representative and policy-compliant rules

141

4. Approach

and makes them available to rule-based agents through a knowledge graph. This enables

agents that reuse the rules to perform a task directly.

4.4.1. Selection of Rule Mining Algorithm

Since rule mining algorithms have certain prerequisites that have to be met by the underly-

ing data, the framework has to be able to decide when to apply which rule mining approach.

Thus, the proposed agent framework considers task properties to determine which data is

given and which rule mining algorithms to apply. In Section 4.2 it was discussed which

properties (e.g. (non-)sequential, feature type) distinguish tasks from each other. Table 4.16

gives an overview and lists which algorithms are applied based on the corresponding

task’s properties. In a task that requires a fixed sequential order of actions and whose state

representation consists of categorical features, the algorithm FPGrowth (see Section 2.4.1)

is applied in combination with Algorithm 12 and Algorithm 7, since the latter algorithm

makes it possible to consider and maintain the order of actions underlying the dataset

under consideration. If numerical features are also present in a sequential task, a transfor-

mation, i.e. binning, into categorical features can be performed.

For non-sequential tasks whose execution does not depend on a specific action sequence,

the feature types of the prevailing states determine whether the OneR (see Sec. 2.4.3) or

sequential covering (see Sec. 2.4.4) algorithm is applied. For example, the OneR algorithm

can only process categorical features, which requires the conversion of numerical features

into categorical ones, whereas sequential covering can process both categorical and nu-

merical features because it mines rules that may consist of terms describing feature value

ranges, e.g. 𝑎𝑔𝑒 > 18 ∧ 𝑎𝑔𝑒 ≤ 30.

Sequential covering is applied in this framework in combination with a classification
and regression tree (CART) implementation. Based on the underlying dataset, the CART

determines the rules that describe the dataset while the sequential covering algorithm

partitions and stores the rules that reproduce the data samples in the dataset.

Whether OneR or sequential covering is the best choice depends also on a) the prevalence

of well-separating features and b) how fine-grained and accurate the decision rules require

to be. If not many features for decision making have to be considered by the agent, OneR

might be the choice while when the agent has to take multiple relevant conditions into

account, sequential covering might be the more suitable algorithm. The agent framework

executes for non-sequential tasks both algorithms and thus, the choice which decision

rules to take are left to the decision of the agent that requests the rules.

4.4.2. Dataset Structure of Input

A data sample (D) that represents feedback and serves as input for the rule mining

algorithms is defined by the following set of features: D := {OxAxR}, where O stands for

observations, A for performed actions and R for received reward values. A derived rule is

142

4.4. Adaptation and Mining of Policies

Action Order Categorical Features Rule Mining Algorithm
Sequentially Ordered Categorical FP-Growth

Unordered Categorical OneR

Unordered Categorical/Numerical Sequential Covering + CART

Table 4.16.: Selection of rule mining algorithm based on task characteristics.

structured as in Eq. 4.5. The agent’s observations define a state (see Eq. 4.4) and represent

the antecedent that is followed by the consequent, i.e. action, of a rule, see Eq. 4.5.

Staten := {o1, o2, ..., on} (4.4)

Rulen := {o1, o2, ..., on} ⊓ {an} (4.5)

4.4.3. The Relation between Data Samples and Rule Items

The UML
2
class diagram (see Fig. 4.7) shows a different perspective of elements that make

up a dataset for the rule mining approach presented. The diagram represents that a dataset

is composed by an arbitrary number of data samples. Each data sample consists of a reward

value and an arbitrary number of rule-items, where each rule-item aggregates exactly one

action and one state. The state, in turn, aggregates observable features that have a key

string and a measured value.

The reason why there can be an arbitrary number of rules for each sample is that a task

can be divided into stages, which can contain a sequence of actions that require first to

be executed in order to complete the corresponding stage and thus achieve a partial goal

of the task. An example of such a task with several stages and sub-goals would be, for

example, the completion of an online order, in which different stages (e.g. consecutive

views) have to be processed one after the other, with several action steps per stage, until

the order is completed. Figure 4.6 illustrates an example of a task with three stages and

corresponding sub-goals, where the agent is required to perform a sequence of actions in

each stage (e.g. enter destination, enter flight date, press search button, etc.) to complete

the corresponding stage and move to the next stage. The rule mining algorithms thus need

to be able to identify action sequences that occur within each task stage. The presented

structuring allows the processing of the datasets by the considered algorithms. An agent

that wants to provide its own collected datasets have to follow this data structuring.

4.4.4. Data Preprocessing and Rule Mining Algorithms

The mining of process datasets is divided into two parts. First, a data pre-processing step

is performed that filters the data for the corresponding rule mining algorithm based on

the existing reward values. This requires a threshold for the rewards, which determines

which samples are selected and which are filtered out. In the second step, depending on

2
Unified Modelling Language

143

4. Approach

Figure 4.6.: Stages, goals and actions of a flight booking task.

Figure 4.7.: UML class diagram representing the datasets that serve as input for the dis-

cussed rule mining algorithms.

144

4.4. Adaptation and Mining of Policies

the task properties, the framework selects the rule mining algorithm and applies it to

the pre-processed data samples. The result of the rule mining algorithm is a set of rules

consisting of a state (antecedent) and a corresponding action (consequence) (see Eq. 4.5).

Figure 4.8.: The automated selection of the rule mining approach.

4.4.4.1. Data Preprocessing

In the preprocessing step (see Algorithm 12 in Appendix C), the FPGrowth algorithm is

applied whereas the implemented algorithm distinguishes between sequential and non-

sequential tasks. This data preprocessing step is required in order to reduce the amount of

collected data and gain frequent item sets that are more likely to represent a rule and can

be further processed in order to mine representative decision rules as outlined in the next

subsection.

4.4.4.2. Rule Mining Algorithms

In Section 2.4, several algorithms were considered and adopted for the purpose of rule

mining. In addition, an algorithm called Best Fit Sequence was devised and implemented

specifically for sequential task datasets as part of this work and is presented in this section.

145

4. Approach

Since FPGrowth, OneR and Sequential Covering are adopted respectively reused algorithms

and have already been presented in the foundations chapter, their application is only briefly

discussed in the context of the agent framework.

FPGrowth For sequential tasks that require sequentially ordered actions, the FP-Growth

algorithm that extracts frequent item sets was adopted and implemented because it is much

faster than the well-known A-Priori algorithm and can process a large amount of data in a

very short time [91]. FP-Growth is used as a preprocessing step in the agent framework

to find frequent state-action combinations in the dataset and reduce the amount of data

significantly since only frequently occurring samples are considered that also contain an

action.

OneR is a simple decision rule mining algorithm that was first presented in the publi-

cation [106] of Holte. It extracts a representative and well-separating feature from the

dataset. Given a dataset with observations and actions, the goal in the scope of the agent

framework, is to find an observation feature that can be used to identify the most promising

action. To find the most significant feature and the corresponding rules (i.e. feature-value

pairs), the prevalence of the predictive classes is considered in a cross-table. For each

feature-value pair, the most frequent prediction class is considered the correct prediction

class, while the co-occurrence of other prediction classes together with the corresponding

feature-value pair is considered a classification error. The cross-table counts these classifi-

cation errors and allows the feature with the lowest classification errors to be selected as a

representative rule candidate. A prerequisite for the application of the OneR algorithm is

the conversion of numerical data (e.g. by binning) into categorical data. The advantage of

OneR is its simplicity (e.g. one representative feature that determines the rules) and its

comprehensibility through short rules, especially in the context of explainable ML.

Sequential Covering is a algorithm that follows the principle of divide and conquer. The
implementation in the presented approach is based on Molnar’s [173] description of the

algorithm. The algorithm repeatedly eliminates rules represented by data points from

the mined dataset and simultaneously maintains a rule list with learned rules that are

indicated as significant. The appropriate rules are determined by another algorithm that

allows to learn specific rules from the given dataset (see example in Fig. 4.9).

The agent framework implements a classification and regression tree (CART) as rule-learning
algorithm for the sequential covering algorithm. Thus, it is not required to bin the data

samples for sequential covering, since the CART algorithm learns rules that represent

among categorical conditions (e.g. colour = brown) also numerical range conditions (e.g.

heart rate > 120).

To build a rule expression, the algorithm starts from the tree’s leaf node that features

the highest accuracy and traverses backwards all subsequent nodes until the root node

is reached. The most prevalent class (i.e. action) and corresponding rule is specified

as default rule, that applies if no other rule applies within the maintained rule list. In

146

4.4. Adaptation and Mining of Policies

order to create a rule for each prevalent action, the algorithm concatenates the single

interim node expressions maintained in the rule-list with AND-operators to create the

antecedent, so that each predictable action (i.e. consequent) has exactly one rule for

decision making. The traversal of the example tree in Fig.4.9 results in the derived rule:

IF Infected > 500 ⊓ AvailableBeds ≤ 5% ⇒ A1. The yellow nodes represent the path

that leads to the action (A1) with the highest classification accuracy.

Figure 4.9.: Example of rule-learning from CART.

Best Fit Sequence In the scope of this work, an approach, i.e. algorithm, called Best Fit
Sequence (BFS) was developed for sequential tasks with categorical data. The aim of the

algorithm is to find for each stage of a task by means of logged process datasets, an ordered

sequence of actions that follow matching rule conditions. The actions and corresponding

rule conditions are derived from frequent item sets that are previously obtained through

the FPGrowth algorithm and datasets that reproduce task activities and corresponding

outcomes. Such datasets are usually acquired through imitation or demonstration learning

and incorporate sensor observations, performed actions and feedback, e.g. reward values,

assigned by domain experts or obtained by user feedback.

The proposed algorithm Best Fit Sequence is implemented through three different functions,

which are presented in Algo. 12 in Appendix C, Algo. 6 and Algo. 7, 8.

Fig. 4.10 illustrates the data and process flow from function to function. The chronologically

collected data samples, as described in Fig. 4.7, are first preprocessed by Algo. 12. The

results of the preprocessing step are a cleaned dataset of positively rewarded actions and a

collection of actions ordered by their occurrence in the dataset, as the datasets maintain a

specific order of actions performed that resulted in a positive reward. The preprocessed

samples serve as input to the FPGrowth algorithm, which creates frequent item sets that

contain both observed features and one action per sample. Based on these frequent item

sets, the createRuleExpressions function is used to create concatenated rules, each of which

derives an action. Based on the rule expressions, action sequences, and state observations

147

4. Approach

received at runtime, the algorithm Best Fit Sequence derives action sequences for each

stage of a sequential task.

Figure 4.10.: Data flow between the presented function. First, the collected data samples

are preprocessed, then item sets and ordered action sequences are derived and

based on these frequent item sets and ordered action sequences the Best Fit
Sequence algorithm derives for each sequential task stage the corresponding

action sequence.

The concrete idea of the algorithm is to evaluate a set of rules 𝑇 . The rules that derive

possible actions for each observed state of a set 𝑆 with a metric, are formed from frequent

item sets. The metric measures how many of the given state features and rule items or

expressions match by some length L. As already mentioned, a state is represented by

observed features and their given values, whereas rule expressions describe state feature

expressions as preconditions for performing an action. Thus, the more conditions (i.e.

expressions of a rule) and state observation features are fulfilled, the higher the probability

that an action derived by the corresponding rule is specific to a state and will accomplish

the state requirements. The metric thus measures how many state conditions match the

expressions of the respective action rule.

The metric takes into account the length 𝑅 = |𝑇 | of the rule, i.e. the number of concate-

nated expressions, each of which describes exactly one observed feature of the state, as

well as the number of state features 𝐿 = |𝑆 | that correspond to the conditions of the rule.

However, if an observation feature occurs in several expressions of a rule, only one of the

expressions is considered for the length specification 𝐿 of the rule. Eq. 4.6 defines the sets

𝑇 and 𝑆 of rules and states.

148

4.4. Adaptation and Mining of Policies

Expression B featuren == valuen

Rule B expression1 ∧ expession2 ∧ ... ∧ expressionr → actionm

T B {rule1, rule2, ..., rulen}
S B {feature1 = value1, feature2 = value2, ..., featurel = valuen} (4.6)

Depending on whether the number of rule expressions, i.e. 𝐿 < 𝑅, is larger or the number

of a state’s feature values, i.e. 𝑅 < 𝐿 is larger, a distinction, i.e. selection, is made between

two metrics that calculate the match score of the rule. In the case that 𝐿 = 𝑅, no dis-

tinction is made and either metric can be used for calculating the rule-state matching score.

Only the rule expressions that describe features in the state are then considered, while

the additional expressions are considered undefined and are not included in the rule score

calculation. Eq. 4.7 shows the corresponding calculation formula if the number of rule

expressions is greater than the number of feature values of a state. Eq. 4.8 shows the

corresponding calculation formula if the number of features of an observed state is greater

than the number of distinct rule expressions.

The metrics take into account that the more rule conditions fulfil the observed state

characteristics, the more specific and representative a rule is for a state.

ScoreL<R(T, S) B
1

𝐿

∑︁
𝑡∈𝑇
𝑓 ∈𝑆

k, k =

{
1 t matches f

0 otherwise

(4.7)

where 𝐿 is the total number of features a state consists of, 𝑡 is an expression of the rule 𝑇

that either satisfies or does not satisfy a feature instance 𝑓 of the state 𝑆 and 𝑘 is a constant

that is either 1 if the considered rule expression and the state feature match, or 0 if both

do not match.

ScoreR<L(T, S) B
1

𝑅

∑︁
𝑡∈𝑇
𝑓 ∈𝑆

k, k =

{
1 f matches 𝑡

0 otherwise

(4.8)

where 𝑅 is the total number of expressions a rule consists of, 𝑡 is an expression of the rule

𝑇 that either satisfies or does not satisfy a feature instance 𝑓 of the state 𝑆 . 𝑘 is again a

constant that is either 1 if a rule expression and state feature match or 0 if both do not

match to each other.

In both metrics a rule is considered a match to an observed state and its features only if

the obtained rule score is 1.

The input parameters of the function CreateRuleExpressions() (see Algo. 6) are the pre-
viously preprocessed frequent rule item sets, each consisting of an action and a set of

149

4. Approach

features and their corresponding observed values. The output of the function includes a

list of rules that are processed in the subsequently executed functions.

The function starts with variable declarations for arrays and objects that store the inter-

mediate results and the outcomes of the function (line 2 - 4).

Then a for-loop goes through all the frequent samples and creates a rule object for each

sample containing all the associated features and their values and assigns them to the

corresponding action (line 5 - 16).

For each action, the corresponding features are stored in a hash map called ruleExpressions
(line 13 - 16).

A third for-loop removes all objects with actions that do not reference feature-value pairs

from the ruleExpressions map (line 17 - 19).

Finally, the function returns an array of stored rule elements, i.e. rule expressions, con-

taining a list of arbitrary feature-value pairs for each action (line 20).

Algorithm 6: CreateRuleExpressions
Input: Map<K,V> frequentSamples

Output: Map<K,V> ruleExpressions

1 Function CreateRuleExpressions(frequentSamples):
2 ruleExpressions = Map()

3 actions = []

4 forall sample IN frequentSamples do
5 rule = Map()

6 action = undefined

7 forall expression IN sample.rule.items do
8 if expression !== "Action" then
9 rule[expression] = sample.rule.items[expression]

10 else
11 action = sample.rule.items[expression]

12 if action NOT IN ruleExpressions then
13 ruleExpressions[action] = []

14 if Object.keys(rule).length > 0 && rule NOT IN ruleExpressions[action] then
15 ruleExpressions[action].push(rule)

16 forall exp IN ruleExpressions do
17 if ruleExpressions[exp].length <= 0 then
18 delete ruleExpressions[exp]

19 return ruleExpressions

150

4.4. Adaptation and Mining of Policies

With the array of rule objects generated, the function BestFitSequence is now able to

obtain action sequences for any given task stage by applying the previously introduced

metrics (see Eq. 4.7 and Eq. 4.8). The required input parameters of the function are the

previously created and provided array of rule objects consisting of actions and related

feature value pairs and the given state that an agent, within a task stage, perceives. Based

on the observed state and the rule objects the algorithm determines a sequence of actions

that fulfil the completion of the current task stage.

Therefore, a for-loop passes through the hash map containing all action objects with their

associated rule items and generates an expression per rule item consisting of the given

state and the given rule (line 3 - 14). Inside the for-loop, a variable called ratingCounter
is declared and initialised to 0 (line 4). This variable is incremented by 1 each time the

current features representing the given state match the associated conditions of the rule

expression evaluated in the function eval() (line 15 - 16).

Listing 4.9 shows an example expression, i.e. statement, consisting of the observations

made by the agent at runtime (line 1-2) and a rule (line 3) derived and constructed in

Algo. 7, which is passed to the function eval(). The result for this expression would be true

because the two observed feature expressions match the conditions of the following rule

expression, which consist of two terms concatenated by logical && (AND) operators.

Listing 4.9: Observed state and derived rule defined in JavaScript.

1 let PushButtonClicked = 0; # State observation

2 let DateEntered = 1; # State observation

3 PushButtonClicked == 0 && DateEntered == 1; # Constructed rule from data samples

For each true statement the ratingCounter variable is incremented (line 16) to determine

how many conditions are met by the given state because the higher the number of condi-

tions that match the given state, the more representative and state-specific a rule is. In the

next step, the current action of the considered rule is stored in an array called actions (line
18), if the action is not yet prevalent within the array (line 17). The obtained number

of matches is then incremented in the array named actions by adding the value of the

rating counter, which indicates how many rule conditions related to an action occurred

and matched the currently considered state (line 19).

The array named actions is sorted in descending order based on the obtained rule scores

(line 20). The action whose rules yield the highest score is selected as it is assumed to

be the most state-specific (line 22 - 24). However, it may happen that rules yield equal

score values. This means that these rules and their corresponding actions have the same

relevance for the currently considered state and the order between these equal relevant

actions does not matter and is interchangeable. In these cases, all actions that have the

same rule score are pushed into the array of actions to be performed (line 25 - 26). In
the second and last part of the algorithm, the sequence of actions for each task stage is

151

4. Approach

Algorithm 7: BestFitSequence - Part 1
Input: Map<K,V> ruleExpressions, orderedActionSequences[], Map<K,V>

currentState

Output: sequenceOfActions[]
1 Function BestFitSequence(ruleExpressions, orderedActionSequences, currentState):
2 actions = []

3 forall action IN ruleExpressions do
4 ratingCounter = 0

5 forall expression IN ruleExpressions[action] do
6 expr = “

7 rule = “

8 forall feature IN expression do
9 if feature IN currentState then
10 expr += ‘${feature} = ${currentState[feature]}; ‘

11 rule += ‘${feature} == ${expression[feature]} && ‘

12 rule = rule.substring(0, rule.lastIndexOf(’&&’)).trim()

13 rule += ‘;‘

14 statement = expr + rule

15 if eval(statement) then
16 ratingCounter += 1

17 if actions.length <= 0 | | actions[actions.length - 1][0] !== action then
18 actions.push([action, 0])

19 actions[actions.length - 1][1] += ratingCounter

20 actions.sort((a, b) => b[1] - a[1]

21 obtainedSequence = []

22 forall i = 0, j = 1; i < actions.length; i++, j++ do
23 if i == 0 then
24 obtainedSequence.push(actions[i])

25 if j < actions.length && actions[j][1] == actions[0][1] then
26 obtainedSequence.push(actions[j])

27 else
28 break

152

4.4. Adaptation and Mining of Policies

determined. First, it is checked whether the determined sequence of actions contains

more actions than only 1 (line 30). If the condition is not fulfilled, i.e. only one action

was found, the determined action is assigned to the variable named sequenceOfActions
(line 43). However, if the condition is met and multiple actions were found, a for-loop
will run through the hash map called orderedActionSquences, which was created during

preprocessing of the raw dataset and which contains all the non-identical action sequences

found in the dataset (line 31 - 40).

A variable called matcher counts how many of the actions received, match the actions in

the ordered action sequence (line 32, 36). If the number of matches is equal to the length

of the ordered action sequence, the sequence is stored in the array called seq along with

its sequence number (line 39).

Subsequently, the outer for-loop is exited by a break instruction, as exactly one matching

action sequence is required for a task stage (line 40). Next, the sequence of actions ob-
tained is sorted in ascending order by the sequence number, since the order of actions is

to be maintained (line 41).

Finally, the action or sequence of actions obtained is assigned to the variable named

sequenceOfActions, which is returned to the caller of the function (line 41, 43, 44). The

Algorithm 8: BestFitSequence - Part 2
29 seq = []

30 if obtainedSequence.length > 1 then
31 forall sequence IN orderedActionSequences do
32 matcher = 0

33 if Object.keys(sequence).length >= obtainedSequence.length then
34 forall obtSeq IN obtainedSequence do
35 if obtSeq[0] in sequence then
36 matcher += 1

37 if matcher == obtainedSequence.length then
38 forall act IN sequence do
39 seq.push([act, sequence[act]])

40 break

41 sequenceOfActions = seq.sort((n, m) => n[1] - m[1])

42 else
43 sequenceOfActions = actions

44 return sequenceOfActions

Best Fit Sequence algorithm is applied during task execution and thus executed directly in

real-world operations to obtain action sequences based on datasets collected at runtime

153

4. Approach

through user feedback or in advance through demonstration learning.

Listing 4.10 shows an example of a possible end result of the algorithm serialised in JSON

format, consisting of action names that refer to a list of state features respectively con-

ditions that require the corresponding action. The keyword default indicates whether
the action will be executed by default if no state and thus no suitable action match the

observed state of the agent. It can be seen that a rule expression consists of expressions

linked by ampersands representing logical And operators. Each expression is made up of a

feature name and a corresponding assigned value.

Agents can parse this JSON representation containing the rules and compare their observed

feature representations with the conditions in the rule expressions and, in case of a match,

perform the corresponding action.

Listing 4.10: Action rules.

1 {

2 "Find_textbook": {

3 "default": false,

4 "rules": [

5 {

6 "rule": "IsWalk_living_room == 1 && IsWalk_textbook == 1

7 && IsFind_textbook == 0 && IsGrab_textbook == 0

8 && IsWalk_chair == 0 && IsFind_chair == 0

9 && IsSit_chair == 0 && IsRead_textbook == 0"

10 }

11]

12 },

13 "Grab_textbook": {

14 "default": false,

15 "rules": [

16 {

17 "rule": "IsWalk_living_room == 1 && IsWalk_textbook == 1

18 && IsFind_textbook == 1 && IsGrab_textbook == 0

19 && IsWalk_chair == 0 && IsFind_chair == 0

20 && IsSit_chair == 0 && IsRead_textbook == 0"

21 }

22]

23 },

24 ...

25 }

154

4.5. Retrieval of Policies

4.5. Retrieval of Policies

As described in Sec. 2.2, the Semantic Web is a networked infrastructure that enables the

structured exchange of knowledge through Linked Open Data (LOD). The agent framework

uses the Semantic Web stack to enable computational agents the sharing and retrieval of

meta data about tasks and policies, that have proven successful in solving a corresponding

task. During the life cycle of the agent framework, one aim is to provide already learned

default policies, that can be adapted and reused by agents to perform their own task for

which they are responsible.

An important aspect of this is to find suitable policies that allow an agent to complete

its task successfully and in a reward-maximising manner until all target states and the

terminating final state are reached.

The agent framework thus implements two methodologies that a) make tasks numerically

representable and comparable in terms of their similarity and b) allow the combination

of policies based on the current context, i.e. state, of the acting software agent. In the

following sections, the mentioned methodologies for finding and composing suitable

policies are discussed.

4.5.1. Retrieval of Reusable Task Policies

To assist agents in finding suitable, i.e. reusable, task policies, the proposed framework

determines the semantic similarity between already existing task instances and the agent’s

provided semantic task instance, as it is assumed that similar tasks require similar poli-

cies for their execution. If several similar tasks are found by the agent framework, the

requesting agent reuses the policies of the most similar task and adapts them as necessary

to solve its own task.

Tasks and their properties are formally represented by semantic task entities that adhere

to the task ontology as outlined in Sec. 4.2. These task entities are transformed into a nu-

merical representation in the framework as soon as a task entity is created and referenced

in the corresponding knowledge graph by training an entity embedding vector for each

newly created task instance. Entity embedding vectors and their properties have already

been introduced in Sec. 2.3.12. The use of entity embedding vectors allows the framework

to represent semantic properties or similarities of task instances in numerical form in an

embedding vector space. This numerical vector representation is used to calculate the

similarity or spatial distance of two tasks using common metrics, such as Cosine distance
(see Eq. 2.38) or Euclidean distance (see Eq. 2.39).

In the context of the agent framework, entity embedding vectors are trained by a deep

neural network (DNN). However, it would also have been possible to represent task in-

stances numerically by one-hot encoded vectors. However, it turns out that the one-hot

encoding approach has two disadvantages, which are overcome by entity embeddings.

The first disadvantage is that the dimension of one-hot encoded vectors can easily become

155

4. Approach

unmanageable when the number of unique tasks becomes very large, since the vector size

has to be increased for each new task. The second disadvantage is that one-hot encoded

vectors do not take into account the semantic similarity or spatial distribution of tasks, as

the representation says nothing about the spatial arrangement of the task within a vector

space. Thus, no conclusions can be drawn about the semantic relatedness and similarity

of tasks. Since the framework aims at finding similarities between tasks, it makes sense

to utilise entity embeddings for representing task instances and their related properties.

Figure 4.11 illustrates the process flow for encoding and storing task embedding vectors.

The idea of using entity embeddings to calculate task similarity and recommend the most

similar policies was inspired by the case studies in the Deep Learning Cookbook [187].

Entity Embeddings are used in the scope of the agent framework in two application

scenarios that are a) finding similar, i.e. suitable task policies (see Sec. 4.5.1), and b)

composing policies based on the agent’s context, i.e. state (Sec. 4.5.2).

Figure 4.11.: Retrieval of reusable policies by Entity Embeddings. An agent sends its task

entity description to the agent framework. The corresponding DNN is re-

trained with the new task entity description. The encoded entity embedding

of the new task is stored in the database and used to find the most similar

task embeddings in the database using similarity metrics. The top-n of the

most similar tasks are returned to the requesting agent who had provided the

new task entity description.

156

4.5. Retrieval of Policies

To train task specific entity embeddings, a DNN with 5 network layers is implemented

in the agent framework. The corresponding DNN topology is depicted in Fig. 4.12. The

first layer represents the input layer. Each task is represented by an index number that

serves as the input for the DNN. The approach requires to train entity embedding vectors

also for linked semantic action entities, because each task strategy ultimately consists of a

sequence of actions and the more actions that occur together in two compared tasks, the

more similar the required policies are likely to be. The connection of actions and tasks

through trained embedding vectors in turn means that a binary classification problem is

given, since the DNN trains whether a task and action appear together. The assumption

made is that if a task and an action are related, they are closer together in the embedding

vector space than actions and tasks that have no relationship to each other, and tasks that

have several actions in common with other tasks are semantically closer to each other

than tasks that have no overlap in terms of their actions.

The inputs, i.e. task indices, are provided in batches that contain positive and negative

data samples for the output of the DNN. A negative data sample means in this context

that the intended task entity has no property relation to a considered action entity. Vice

versa, a positive data sample means that the task entity references the corresponding action.

The most important layer is the second layer, whose weights represent the entity embed-

ding vector of a task in a multi-dimensional vector space, which are used to determine the

similarity of tasks and thus policies. The embedding layer can include any number of units

for each task and action. However, experiments have shown that 50 units are sufficient to

achieve promising results.

The third layer is a dot product layer that merges the embedding weights of tasks and

actions. The fourth layer reshapes the dot products of the embedding weights to a single

number, so that a Sigmoid activation function that leads to the binary output of the DNN,

can be applied. The output indicates whether a task and action occur together. The adopted

optimisation algorithm then adjusts the weights of the embedding layers.

Due to its advantages, the optimisation algorithm used is Adam Optimiser [120] by Kingma

et al. which is an extension of the stochastic gradient descent optimisation. The advantages

are stated in the corresponding paper [120] of Kingma et al. In addition, Binary Cross
Entropy is suitable as a loss function because the co-occurrence of tasks and associated

actions is trained, resulting in a binary classification problem. However, for classification

problems of a different nature, other loss functions may be more appropriate.

The most important result of the DNN training is the trained weights of the embedding

layers for each task. To determine the similarity of tasks, it is then necessary to apply

a similarity or distance metric on compared entity embedding vectors. In this case, as

discussed earlier, Cosine distance and Euclidean distance are used as both are common

metrics that give equal reliable results.

157

4. Approach

To retrieve suitable policies for its own task, an agent requires to provide a semantic task

entity representation that provides at least the name of the task and its property relations

to the considered actions. The DNN then computes the corresponding embedding vector

of the considered task and retrieves the most similar tasks as previously outlined. The

tasks found are sorted and returned according to their decreasing similarity.

The trained weights of the task’s embedding layer are stored in an accessible knowledge

base and linked to the corresponding semantic task entity in the knowledge graph.

A limitation of this methodology is that tasks are required to have a known, i.e. intersect-

ing, state and action space. However, this is usually given because in a corresponding

knowledge graph, state and action entities are shared between tasks. Moreover, the knowl-

edge graph can be extended with new entities, and a mapping between different state and

action spaces is also possible through, e.g. owl:sameAs relationships, between semantic

entities of different knowledge graphs that exhibit related concepts and entities.

Figure 4.12.: Deep Neural Network Architecture for training task and action embeddings.

4.5.2. Context-Dependent Combination of Task Policies

The approach presented in this section as well as in Sec. 5.4 and Sec. 6.3 stems from a re-

cently accepted journal paper
3
[152] entitled "Context-Aware Composition of Agent Policies

3 https://semantic-web-journal.net/content/context-aware-composition-agent-policies-markov-

decision-process-entity-embeddings-and-0

158

4.5. Retrieval of Policies

by Markov Decision Process Entity Embeddings and Agent Ensembles"4. The corresponding
paper is also published as a pre-print on Arxiv

5
[153]. Additional material to the paper

such as the developed and evaluated ontology, datasets and source code are documented

and openly available on Github
6
and Figshare

7
[154].

The context, i.e. the (internal and external) state, of an acting agent determines which

actions should be performed. However, sometimes one-fits-all solutions to policies are not

sufficient, and since tasks can be performed in different, i.e. alternative, ways, pre-trained

task policies may not always match contextual requirements one-to-one. In addition,

agents, (e.g. in service robotics or World Wide Web contexts), sometimes need to work in

stochastic environments and across tasks, so their contexts can change frequently during

their runtime and they need to react to this quickly and act correctly. The solution to such

a problem is addressed by the agent framework through the approach presented here that

enables the flexible and context-aware combination of policies without the requirement

that agents train policies or know which activities or tasks to perform in advance. In this

use case scenario, the agent only observes and knows its current state, while possible tasks

or activities of the agent are determined only by its context. The agent requests from the

agent framework the best actions to perform in its current state. Since alternative actions

may be useful in a given context, the framework determines the most context-appropriate,

i.e. the most useful, actions in a context and informs the agent about them.

The proposed approach allows a) to restrict the state- and action search space, b) to avoid,

in contrast to e.g. reinforcement learning, lengthy training procedures for learning policies

and c) to anticipate likely contextual states and alternative actions that may occur in

specific task contexts. This enables agents to act flexibly and across contexts to complete

their tasks in multi-context environments.

The proposed approach combines two methods. One method enables context representa-

tion through entity embeddings and the second method, implemented by an algorithm,

enables the search for the nearest state-related actions. However, before discussing the two

methods, the application scenario and process flow of the policies combination approach

are introduced (see Sec. 4.5.2.1).

4.5.2.1. Application Scenario

Fig. 4.13 illustrates the application scenario of the approach, which consists of 12 process

steps. The general use case foresees that one or more agents within an environment are

constantly observing their environment. Based on these observations, an agent makes a

request to a web server (step 4), which forwards the request with the corresponding state

information to a component called Agent Ensemble Manager (step 5). The Agent Ensemble
Manager loads pre-trained entity embedding vectors representing actions and states in an

4 https://www.semantic-web-journal.net/
5 https://arxiv.org/
6 https://github.com/nmerkle/SW_Journal
7 https://doi.org/10.6084/m9.figshare.22215079.v1

159

4. Approach

Figure 4.13.: Process flow and architecture of policies combination approach [152].

n-dimensional entity embedding vector space from a database (step 6).

These entity embedding vectors are continuously trained for agent tasks
8
, their associated

states and atomic actions as soon as a new semantic task entity is either directly created

by a domain expert (step 0) or automatically derived from provided datasets (e.g. log

data) (step 1) reflecting performed task processes (e.g. during imitation or demonstration

learning).

Section 4.5.2.2 outlines how such MDP activities are derived from corresponding datasets.

For the simulation of arbitrary activities and contexts, the simulation component uses the

activity knowledge graph, which is built and extended both by domain experts and from

derived Hidden Markov Models (HMM) [205, 206].

The Agent Ensemble Manager determines the actions closest to the given state based on

their given entity embedding vectors. A set of the nearest actions is selected for execution.

Then, theAgent Ensemble Manager generates an ensemble of agents (step 7). The ensemble

size depends on the set of selected actions, since each agent of the ensemble executes

exactly one action in each execution step (step 8). The action commands in turn are sent

by the respective ensemble agents in parallel threads to their simulation component, which

updates for the corresponding ensemble agent the corresponding states depending on the

executed actions. Therefore, the ensemble agents implement and invoke a simulation func-

tion that implements the simulation process. The simulation function sends the updated

state representation along with the resulting reward for each action-state pair of each

ensemble agent to the Agent Ensemble Manager, which then ranks and selects the actions

that yield the highest reward values (step 9). The semantic representation of activity, state

and action concepts is defined by the underlying framework ontology, which represents

8
The terms Task and Activity are considered synonymous in this work

160

4.5. Retrieval of Policies

MDPs and is the basis for the corresponding KG. It is important to note that the simulator

knows all contexts in advance, as it can query all prevailing task, state and action entities.

For this reason, the simulator can manage and update state representations and provide

feedback through rewards, as all the necessary information is stored in the knowledge

graph.

The found policies, i.e. action sequences, are managed by the Agent Ensemble Manager
in a data structure, e.g. a list, until the executed activity is terminated by its goal and

final state, which determines the end of the activity. Then, the policies are assembled as a

sequence of actions in the Agent Ensemble Manager component, and sent back via the web

server (step 10) to the agent that initiated the request and provided the corresponding

state information (step 11).

It is important to note that the web server provides two different modes for requesting

policies. The first mode called single-policy-mode, allows the agent to request a rated single
policy for the observed state at each execution step, while the second mode called task-
completion-mode, allows the agent to request all policies at once that have been combined

to complete the corresponding activity. Thus, the first mode requires for each new state a

request, while the request of the second mode returns a complete solution, i.e. sequence

of policies, for an activity.

In single-policy-mode, only one action is returned per agent request. However, even here,

the 2nd, 3rd or n-best actions are also returned, ordered by the reward value they received

when executed. Only single actions that resulted in a positive reward value are returned

as alternative actions to the best action found in single-policy-mode.

In this way, agents in heterogeneous environments are able to request policies from the

web server based on their observed states. This saves the agents time-consuming learning

processes, as the required knowledge is already implicitly encoded in task or activity

specific entity embedding vectors representing corresponding contexts.

In the used MDP model representation, semantic activity entities encapsulate states and

actions that have an implicit semantic relationship, since an activity may consist of dif-

ferent states and require different actions that affect the observed states. These activity

entities are accessible through the corresponding KG.

A simulation component, adhering to the framework’s ontology, is thus able to simulate

activities based on the provided activity entities and logged datasets that replicate the

feedback and preferences of the target user. As outlined in Sec. 4.3, the main purpose

of the simulation component is to update states based on executed actions and provide

feedback on the utility of the executed action. This feedback is represented by reward

values, where a reward value < 0 indicates undesirable or incorrect actions.

It is important to note that the simulation component might also use task descriptions

extracted and generated from real operational data produced by demonstrations of human

161

4. Approach

agents. In these cases, the simulation component could incorporate different MDP contexts,

allowing for a wider range of individual contexts that reflect different environments and

activities of the agents.

4.5.2.2. MDP Model Generation by Activity Datasets

To enable the simulation of contexts and the prediction and evaluation of action effects

in the framework, task or activity descriptions have to be either provided by domain

experts or derived from datasets that emulate activities of humans or agents. Activities

respectively their inherent processes can be described in terms of the probability distribu-

tion (i.e. probability mass function (PMF) and probability density function (PDF)) of states,
actions performed, and observations made by agents within a state. The implicitly given

probability distribution of entities (i.e. states, actions, observations) in datasets enables

the derivation of Markov decision process models. In the following, it is explained how

the agent framework derives MDPs from operational datasets in order to be able to use

these MDPs for the simulation of action effects and state changes.

The prerequisite for this approach to work is that agents
9
collect and provide data during

their runtime that they perceive from their environment. The basic assumption made in

the framework is that agents collaborate by providing their knowledge or experience in

the form of activity log data and meta data about the log data. The meta data is needed to

describe the properties of the record so that the wrapper component of the framework can

process the record and convert it into a task entity description. Therefore, it is proposed

in this approach to represent the meta data as semantic annotation, i.e. linked data that

can either be embedded as RDFa
10
in the web page of the referenced dataset or provided

via a SPARQL endpoint that maintains the linked meta data. The advantage is that the

meta data can be automatically retrieved and interpreted by the framework to understand

different log datasets and process them into task entity descriptions.

It is important to mention that the meta data provided should not be sensitive data that

can be misused by third party access. The protection of personal data should be ensured by

additional privacy and security measures to prevent unauthorised data access. Therefore,

an access restriction should be set up where personal or private data is to be used or

provided as meta data. However, it is out of the scope of this work to address security and

privacy issues.

The ontology concepts and properties of the proposed meta data are depicted in Table 4.17.

To show the instantiation of the proposed meta data concepts for log records, an example in

Turtle format is shown in Listing 4.11. The dataset that serves as the basis for the example

listing was adopted from Kaggle
11
. It contains 4736 samples for 64 countries on confirmed

9
Agents can also be human beings or other living beings that perform activities and display behaviour.

10
see for more information: https://www.w3.org/TR/rdfa-primer/ and https://rdfa.info/

11 https://www.kaggle.com/davidoj/covid19-national-responses-dataset?select=countermeasures_

db_johnshopkins_2020_03_30.csv

162

4.5. Retrieval of Policies

Roles/Properties Domain Mandatory Cardinality
Concept: Dataset

:hasSample :Sample Yes ≥1
:hasReferenceURL xsd:string Yes 1

Concept: Sample
:hasFeature :Feature Yes ≥1
:hasAction :Action Yes ≥1

:hasSampleSize xsd:integer Yes 1

:hasStartDate xsd:date No 1

:hasEndDate xsd:date No 1

Concept: Feature
:hasType {:Continuous, :Ordinal, :Nominal} Yes 1

:hasUnit xsd:string No 1

:hasRangeStart xsd:double No 1

:hasRangeEnd xsd:double No 1

Table 4.17.: Ontology concepts and properties of the meta data describing log records.

COVID-19 cases and deaths, and the interventions implemented by governments. In total,

the dataset consists of 28 columns. Of these, the confirmed COVID-19 cases and deaths are

considered as features, while the remaining 24 columns describe the actions taken. The

data samples are delimited by the feature country. Listing 4.11 shows turtle statements

that describe the samples for the country Germany. Analogously, this is done for every

country in the dataset. Data samples can also be divided according to features other than

the country. In this example, however, it made sense to classify and select the data based

on the corresponding country.

Listing 4.11: Meta data example for log records.

1 prefix p: <http://example.org/Property#>

2 prefix c: <http://example.org/Concept#>

3 prefix e: <http://example.org/Entity#>

4 prefix xsd: <http://www.w3.org/2001/XMLSchema/>

5 e:COVID-19_Country_Measures a c:Dataset;

6 p:hasSample e:Germany;

7 p:hasReferenceURL "http://example.org/data/covid-19.csv"^^xsd:string.

8 e:Germany a c:Sample;

9 p:hasSampleSize "102"^^xsd:integer;

10 p:hasStartDate "2020-01-23"^^xsd:date;

11 p:hasEndDate "2020-05-04"^^xsd:date;

12 p:hasFeature e:Confirmed_Cases_Germany,

13 e:Deaths_Germany.

14 e:Confirmed_Cases_Germany a c:Feature;

15 p:hasType e:Continuous;

163

4. Approach

16 p:hasUnit "people"^^xsd:string;

17 p:hasRangeStart "0"^^xsd:integer;

18 p:hasRangeEnd "83149300"^^xsd:integer.

19 e:Deaths_Germany a c:Feature;

20 p:hasType e:Continuous;

21 p:hasUnit "people"^^xsd:string;

22 p:hasRangeStart "0"^^xsd:double;

23 p:hasRangeEnd "83149300"^^xsd:integer.

24 e:Germany p:hasAction e:Symptomatic_isolation_-_targeted,

25 e:Symptomatic_isolation_-_blanket,

26 e:Asymptomatic_isolation_-_targeted,

27 e:Asymptomatic_isolation_-_blanket,

28 e:Domestic_travel_restriction,

29 e:Nonessential_business_suspension,

30 e:International_travel_restriction,

31 e:Testing,

32 e:Contact_tracing,

33 e:Mask_wearing,

34 e:Hand_washing,

35 e:Gatherings_banned,

36 e:Healthcare_specialisation,

37 e:Public_education_and_incentives,

38 e:Assisting_people_to_stay_home,

39 e:Public_cleaning,

40 e:Miscellaneous_hygiene_measures,

41 e:Public_interaction_and_hygiene,

42 e:School_closure,

43 e:Activity_cancellation,

44 e:Resumption,

45 e:Diagnostic_criteria_loosened,

46 e:Diagnostic_criteria_tightened,

47 e:Testing_criteria.

The example Listing 4.11 describes that the dataset named COVID-19_Country_Measures
consists of samples belonging to the country Germany (line 5 - 6). The samples contain

two observable features named Confirmed_Cases_Germany and Deaths_Germany (line 12
- 13). Both features are continuous features that have as their unit the number of people

who are either confirmed cases or have died (line 15 - 16, 20 - 21). The range or carrying
capacity of the features depends on the population size of Germany at the time the samples

were observed and created (line 18, 23). The remainder of the samples from Germany

relate to various government interventions that have been implemented to contain cases

and deaths (line 24 - 47). In addition, the number of samples and the date range in which

the samples were created are given (line 9 - 11). With this meta-information, the wrapper

component of the framework can now derive MDPs and task entity descriptions, which

will be discussed later in this chapter. Agents delivering log records to the agent framework

are required to provide a meta-description of their record that conforms to the concepts

164

4.5. Retrieval of Policies

and properties of the proposed linked meta data representation provided in Table 4.17.

It is assumed that only data is provided by agents that reflect the successful behaviour of

the agent in the corresponding environment. Success or failure is determined by reward

values that are either directly assigned by the environment or implicitly derived by the

agent.

Deviating from the proposed meta data representation, each row of the dataset has to

consist of the following attributes: 𝑆𝑛, 𝐴𝑛,𝑂𝑛,𝑚, 𝑅𝑛, 𝑆𝑛+1, where 𝑆𝑛 is an observed state at

time 𝑛, 𝐴𝑛 is an executed action in state 𝑆𝑛, 𝑂𝑛,𝑚 is an arbitrary number𝑚 of observed

features that constitute state 𝑆𝑛 at time 𝑛, 𝑅𝑛 is the reward or feedback value received

for the executed action 𝐴𝑛 in state 𝑆𝑛 and 𝑆𝑛+1 is the subsequent state observed with the

observation features 𝑂𝑛+1,1...𝑛+1,𝑚 .

It is important to note that datasets usually do not have state labels that summarise and

describe the current values of the features. For this reason, state labels are artificial and

have to be derived and assigned through various heuristics. This is also the reason why

the meta data specification for datasets does not include a concept for State. To circumvent

this problem, possible approaches are now considered that allow states to be derived based

on the corresponding dataset.

For instance, one problem that might occur in recorded data is when only continuous

observation values representing a state are provided, but not the associated state label

itself. In such situations, the dataset needs to be pre-processed and the ranges of values

of the continuous observation features split into states by binning. In this way, different

states covering different value ranges of the feature can be defined for each individual

observation feature. The binning approach could be guided by the actions performed

at each time step. Based on the collected feature values observed before an action is

performed, the lower and upper limits of these feature values can serve as range limits for

a state. This in turn means that the actions prescribe the derived states.

Another approach for deriving states for continuous feature values would be to divide the

mathematical progression curves of the data into sections at their inflection points, which

then represent the corresponding state changes and thus new states. An inflection point is

given when the growth factor of the curve becomes 1. Mathematically, a non-linear curve

changes direction at the corresponding inflection points or curvatures
12
and can thus be

divided into the following 3 sections or states: Ascending13, Descending14, and Constant15.
One approach for determining the curvature of function graphs approximating the mea-

sured data is to consider, for each observed data value, the two neighbouring data values

measured at the previous and subsequent time step, see Fig. 4.14 and Eq. 4.9. This means

12
In general, curvatures of a function graph are calculated from the second derivative of the function.

Individual data points may be used to approximate the trend of a function.

13
i.e. concave upwards

14
i.e. concave downwards

15
i.e. inconclusive

165

4. Approach

that the average difference of differences between the currently observed data point 𝑓 (𝑥) and
the neighbouring data points 𝑓 (𝑥 +ℎ) and 𝑓 (𝑥 −ℎ) can be calculated to determine whether

the function at the corresponding data point 𝑓 (𝑥) is ascending, i.e. 𝑑 𝑓
𝑑𝑥

> 0, or descending,

i.e.
𝑑 𝑓

𝑑𝑥
< 0, or inconclusive, i.e.

𝑑 𝑓

𝑑𝑥
= 0. Equivalently, the second derivative, i.e.

𝑑2 𝑓

𝑑𝑥2
, (see

Eq. 4.10) [251, 238] can be calculated for each acquired data point 𝑓 (𝑥) in relation to the

neighbouring data points 𝑓 (𝑥 +ℎ) and 𝑓 (𝑥 −ℎ). As a side effect, the second derivative also
allows to recognise whether an extremum of a curve is a local maximum or minimum [251].

The advantage of this categorisation is that non-linear curves can be simplified by sam-

pling, so that state changes and linear correlations
16
between different features can be

detected and conclusions about the mutual effects of actions on features and state changes

can be investigated, (see Fig. 4.15).

(a)

(b)

(c)

Figure 4.14.: The second derivative at single points (here x) indicates whether the un-

derlying function is increasing, decreasing or constant. E.g.: (a) Shows an

increasing, i.e. concave upward, slope of a function with a local minimum. (b)

Illustrates that the slope of the function is constant, i.e. inconclusive. This
may indicate that an inflection point is reached. (c) Illustrates a decreasing,
i.e. concave downward, slope of a function with a local maximum.

16
see Pearson’s correlation

166

4.5. Retrieval of Policies

df (x)
dx

=
1

2

((
𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)

)
−

(
𝑓 (𝑥) − 𝑓 (𝑥 − ℎ)

))
(4.9)

where
df (x)

dx is the derivative w.r.t. data point 𝑥 and ℎ is the distance on the x-axis between

point 𝑓 (𝑥) and its neighbouring points 𝑓 (𝑥 + ℎ) and 𝑓 (𝑥 − ℎ). The equation describes the

average difference of the differences.

𝑑2𝑓

𝑑𝑥2
(𝑥) lim

ℎ→0

=
𝑓 (𝑥 + ℎ) − 2𝑓 (𝑥) + 𝑓 (𝑥 − ℎ)

ℎ2
(4.10)

where
𝑑2 𝑓

𝑑𝑥2
(𝑥) is the derivative w.r.t. 𝑥 , ℎ is the distance from data point 𝑥 on the x-axis to

each of its two neighbouring points. ℎ goes against zero.

The agent framework could thus detect effects from data, via calculation of the (mean)

growth/decay rate (see Eq. 4.11) and growth/decay factor (see Eq.4.12), and update states

or features depending on the given state and action performed. In Eq. 4.11, 𝐹𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the

current feature value, while 𝐹𝑠𝑡𝑎𝑟𝑡 is the last feature value considered. 𝑛 is the number

of samples that lie between the current and the last feature value considered. The basic

assumptions here are that a) the feature values are measured at frequent time intervals

and b) that the features of the dataset are correlated and directly influenced by the actions

performed by the agent.

GRmean =

(
𝐹𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝐹𝑠𝑡𝑎𝑟𝑡

) (1

𝑛

)
− 1 (4.11)

GF = 1 + GR (4.12)

Based on the current feature value and the growth factor for a certain period of time, the

next feature value can be calculated with Eq. 4.13 if an exponential growth is assumed.

The exponential growth/decay function can also be expressed as in Eq. 4.14 where 𝑁 (𝑡)
is the observation feature at time 𝑡 , 𝑁 (0) is the observation feature at time zero, 𝑒 is the

Euler number, 𝛼 is the growth/decay rate and 𝑡 is the time steps to be considered [237].

However, depending on the problem, i.e. task, a logistic curve is usually more suitable,

since the growth of a considered feature can reach a maximum capacity which stops the

growth. For completeness, the corresponding logistic function for computing the rate of
change is shown in Eq. 4.15, where 𝑘 is a growth constant, 𝑁𝑡 is the current feature value,

𝑁𝑡𝑜𝑡𝑎𝑙 is the carrying capacity that feature 𝑁𝑡 cannot exceed, and 𝑡 is the time interval for

which the updated feature value is computed.

167

4. Approach

Figure 4.15.: The sampling of states by inflection points. The dashed lines mark and delimit

the samples in the time series data that represent different states of a given

feature (y-axis) among time steps (x-axis). A total of 4 states (e.g Suscepti-
bleDecreased, SusceptibleConstant, RecoveredIncreased, RecoveredConstant) are
sampled in the example, i.e. 2 for each of the two observation features.

168

4.5. Retrieval of Policies

Fnext = Fcurrent ∗ GF𝑡 (4.13)

N(t) = N(0) · e
𝛼 ·𝑡

(4.14)

𝑑𝑁

𝑑𝑡
= 𝑘

(
1 − 𝑁𝑡

𝑁𝑡𝑜𝑡𝑎𝑙

)
Nt (4.15)

Based on such a dataset and the Bayes theorem, transitions, i.e. conditional probabilities,

between states and observation features and actions performed can be determined. The

goal is to derive aHidden Markov Model (HMM) (see [236]) that represents the stochastic dy-
namics of the underlying activity or task. Using Markov chains, the simulation component

is able to determine probable state transitions based on observations made and an action

performed to simulate the corresponding activity dynamics. Thus, depending on a given

state 𝑆𝑛 and an action performed, the next most likely state can be inferred. Fig. 4.16 shows

which transition probabilities within the HMM are determined and considered by the

simulation framework. Starting from a state 𝑆𝑛 , probable transitions to subsequent states

are determined by the conditional probability 𝑃 (𝑆𝑛+1 | 𝑆𝑛). The conditional probabilities
for observations and actions are determined accordingly with 𝑃 (𝑂𝑛 | 𝑆𝑛) for observations
and 𝑃 (𝐴𝑛 | 𝑆𝑛) for actions. Based on such a HMM, the expected maximum probability

of transitions can be either estimated by the Viterbi [75] or Baum-Welch [205] algorithm,

which allow the simulation component to simulate the most probable sequences of actions

and states for any given state observation within the HMM.

Figure 4.16.: A (hidden) Markov model that represents hidden states, state transitions and

state observations [152].

For determining the conditional probability of observation features, a distinction has to be

made between different types of features and data distributions. For example, in the case of

169

4. Approach

categorical and binary features, the (relative) frequency of occurrence is counted, whereas

in the case of continuous features, e.g. the Gaussian function (see [275]) is applied. In these

two ways, the conditional probability of each feature in each state can be determined.

However, pre-condition is that the data is normally distributed, i.e. Gaussian. Though, if no

prior assumptions can be made about the data distribution and probability density function,

then kernel density estimation, also named Parzen-Rosenblatt Window [211, 192], can be

applied with different kernel functions (e.g. Gaussian, tophat, exponential, Epanechnikov,

linear, cosine) and a pre-defined bandwidth parameter ℎ that smooths the estimated density

function curve. For assumed Gaussian distributions the optimal bandwidth parameter ℎ

can be estimated by Silverman’s equation [231], see Eq. 4.16.

h =

(
4
3

) 1

5

𝜎n− 1

5 = 1.06𝜎n− 1

5 , (4.16)

where 𝜎 is the standard deviation and 𝑛 is the sample size.

Equation 4.17 shows the corresponding kernel density estimator [211, 192] function of the

probability estimate,

pK(y) = 1

ℎ𝑁

𝑁∑︁
𝑖=1

(
𝑦 − 𝑥𝑖

ℎ

)
(4.17)

where K is the kernel function, h is the bandwidth parameter for smoothing the curve,

y is a considered data point and 𝑥𝑖 . . . 𝑥𝑛 is a group of surrounding data points from the

dataset for which the distribution is to be estimated
17

Then, by generating samples from the present sample space the mean squared error be-

tween the original data and sampled data can be computed for each kernel and density

estimator in order to select the kernel with the lowest error rate.

Fig. 4.17 illustrates an example of a bimodal data distribution (see blue distribution) and

the estimated density curves (see red curves) of the applied kernel functions. It can be

seen that the kernels adapt differently to the given data distribution depending on their

estimation and relatedness to the data distribution.

For personalisation purposes user feedback is either directly requested from the user or

defined and annotated by domain experts. The obtained feedback is stored in the collected

datasets as reward values. Since the reward values are supposed to reflect the value or

utility of all the state-action pairs present, the proposed approach calculates the mode

17
In this way, each data point is used to estimate the underlying data distribution. Based on the estimated

data distribution, the probability of the observed (continuous) features in the collected datasets can be

approximated to obtain transition probabilities of the Markov model.

170

4.5. Retrieval of Policies

(a) Gaussian kernel (b) Epanechnikov kernel (c) Tophat kernel

(d) Exponential kernel (e) Cosine kernel (f) Linear kernel

Figure 4.17.: Bimodal data distribution (in blue) and different estimated density curves (in

red) by different kernel density estimators and with bandwidth 2.

values of the rewards associated with each state-action-state transition in the dataset. The

proposed agent framework’s simulation component uses this information, i.e. mode value

of rewards, in order to determine the expected reward for a state and provide feedback to

the agent that trains policies. Thus, it is assumed that an ordered, finite and unique set of

reward values is collected and provided in the dataset that can be obtained in each state.

The derived and created HMM is transferred into a semantic task entity, see Sec. 4.2, that

serves as input for the context-dependent policy combination [152] approach, so that entity

embedding vectors can be trained, as explained in Sec. 4.5.2.3. In addition, the simulation

component uses the task entity of the HMM to provide feedback to the ensemble of agents

for their performed actions, see Sec. 4.5.2.4.

4.5.2.3. Learning of Entity Embeddings for MDP Entities

The DNN that is presented in this section is an extension of the DNN that was presented

in Sec. 4.5.1 and Fig. 4.12. Instead of only considering tasks and corresponding actions,

also task-state, task-action, and state-action co-occurrences are taken into account in the

extended DNN architecture.

The prerequisite for this approach to work is that datasets that reproduce sequences of

tasks and activities, e.g. through imitation learning or real-time data from agents, are

used as the basis for training entity embeddings. A corresponding dataset would consist

of samples 𝐷𝑖 := {𝑇𝑚, 𝑆𝑛+1, 𝐴𝑛, 𝑅𝑛}, where 𝐷𝑖 is a data sample, 𝑇𝑚 is an executed task or

activity, 𝐴𝑛 is a performed action, 𝑆𝑛+1 is a state subsequent to the performed action 𝐴𝑛 ,

and optionally 𝑅𝑛 is a reward value indicating the success of the performed action. The

reward value might be necessary for data sampling because only data samples that yield a

171

4. Approach

positive reward are of interest for learning promising, i.e. context-appropriate, policies.

From the data samples the following features are extracted: (activity id, action id, subse-
quent state id) in order to serve as input to the deep neural network (DNN) that trains the

entity embeddings. The mentioned features represent binary features and can therefore

either have the value 0 for no co-occurrence and 1 for co-occurrence. For example, a data

sample consisting of (activity𝑖 = 1, state𝑛+1 = 1, action𝑛 = 0) indicates that the referenced

activity and state co-occur but the action does not. A co-occurrence is determined by the

fact that activity entities reference (i.e. link) the corresponding state or action entities,

while a co-occurrence between state and action entities exists when an action has directly

led to the corresponding subsequent state. Thus, the data samples are generated by two

different sources of information, namely the activities and their relationships to states

and actions, and observations indicating which actions were performed and which state

changes were caused by them. To obtain representative entity embeddings and avoid

imbalanced datasets, it is necessary to provide as many positive as negative examples of

co-occurring entities.

The concerned entities are encoded by index numbers since a DNN can only process

numerical inputs. Therefore, a dictionary for each entity concept has to be maintained

that maps the entity names to the corresponding index numbers. In each training iteration,

batches of training samples are assembled in order to serve as input for the DNN. The

DNN that trains the entity embeddings for each concept, i.e. activity, state and action, is

depicted in Fig. 4.18 and consists of the following network layers: input, embedding, dot

product that joins the embedding layer outcomes, a layer for reshaping the dot product

outcomes to a shape of one and a fully connected dense layer as output layer that projects

by the Sigmoid activation function, the reshaped vector value to a binary output of 0 or 1.

The embedding layer can consist of an arbitrary number of units, but experiments have

shown that 50 units are sufficient to achieve convincing results. The optimisation of the

embedding layer was performed by the adopted Adam optimiser [120] algorithm. However,

other optimisation algorithms (e.g. stochastic gradient descent) are also possible. It is

important to note that for each entity of activities, states and actions, an embedding vector

(see example embedding below) is trained that represents the corresponding entity in

the embedding vector space. Thus, the main goal is to obtain representative embedding

vectors that indicate the semantic relatedness of entities through their observed context.

Fig 4.19 visualises entity embeddings in Tensorflow’s Embedding Projector18 web application.

®(𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑛) =
©«

0.344394855487582

−0.35454000765544

0.339430778676755

...

𝑛

ª®®®®®¬
18 https://projector.tensorflow.org/

172

4.5. Retrieval of Policies

Figure 4.18.: Arrangement of the deep neural network for training entity embedding vec-

tors that represent activity contexts [152].

173

4. Approach

Figure 4.19.: The trained embedding vectors of activities, states and actions are merged

and visualised in a 3-dimensional space in the Tensorflow Projector. The

colouring of the embedding vectors (shown as dots) indicates how spatially

far away other embedding vectors are from a selected embedding vector

(here, e.g. in light red Wash_drinking_glass_1_Done). The darker the hue of

a neighbouring embedding vector, the closer it is to the selected vector. The

distances in this illustration were measured with the Euclidean distance [152].

174

4.5. Retrieval of Policies

As loss function that measures the error rate during training, cross-entropy is recommended

since it is intended for binary classification problems as required in the given DNN.

It is important to note that as soon as new tasks are deployed into the environment and

agent framework, Transfer Learning [253, 73], i.e. a retraining of the DNN, is performed in

order to incorporate the new task into the trained embedding model.

4.5.2.4. Policies Combination Algorithm

Once the entity embedding vectors are trained and the corresponding task entities are

deployed into the agent framework, policies can be combined by ensembles of agents based

on the sent state information of a requesting agent. It is worth noting that the agent does

not need to send task-related information in its request, since it does not know in advance

what activity to perform and it is determined by the context what behaviour is expected

from the agent. Thus, the activity, and corresponding sequence of actions, is derived only

from the observed state information. The algorithm for composing state-based policies is

shown in Algo. 9.

The input parameters required for the algorithm are the given state representation sent by

the requesting agent and the trained entity embedding vectors of each state and action

entity referenced in the KG maintained by the agent framework (line 1). The returned
output of the algorithm is an array of policies. The algorithm tracks and stores the given

state, which is the starting point for each ensemble agent (line 3). To store the policies

found, a data structure, i.e. a list of arrays (see Table 4.18), is declared (line 4). Then
a while-loop is started, which stops as soon as a goal state, that terminates the current

activity, is reached (line 5). The while-loop starts with the selection of the embedding

vector representing the sent state (line 6.). The embedding vector of the state is needed to

find the nearest embedding vectors of the nearest actions (line 7). Therefore, a similarity

metric (e.g. cosine distance, Euclidean distance) is used to calculate the distance between

embedding vectors in an n-dimensional embedding vector space. An array stores, for

each agent in the ensemble, its feedback received from the simulation component (i.e. the

updated state and the reward received) (line 9).

For each action that is within the specified search radius, a new agent is created and

initialised with the corresponding state information and the action to be performed (line
8 - 10). Then, each agent calls the function simulate which executes the respective action

of the agent (line 11). The function simulate() then returns the updated state with the

corresponding reward value that is sent back to the Agent Ensemble Manager. The updated
state object is stored in the results array (line 12). This is done within a for-loop for each

agent of the ensemble (line 9-12).

The advantage of using agent ensembles is that actions can be executed in parallel threads

and each thread with its own simulation function updates and manages its own state. The

ensemble agents are then synchronised in the main thread by selecting the best, i.e. reward

maximising, state to continue the MDP and initialise the next generation of ensemble

175

4. Approach

Algorithm 9: PoliciesCombination

Input: initialState, stateEmbeddings, actionEmbeddings, maxDistance

Output: policies
1 Function PoliciesCombination(initialState, stateEmbeddings, actionEmbeddings,

maxDistance):
2 radius = maxDistance

3 currentState = initialState

4 policies = []

5 while !currentState.isGoal do
6 stateVector = stateEmbeddings[currentState]

7 closestActions = findClosestActions(stateVector, actionEmbeddings, radius)

8 results = []

9 forall action IN closestActions do
10 agent = new Agent()

11 updatedState = simulate(agent.exec(currentState, action))

12 results.push(updatedState)

13

14 bestResult = selectBestResultByReward(results)

15 if bestResult.reward <= currentState.reward then
16 radius += 0.25

17 else
18 policies.push(result.state, result.action)

19 currentState = bestResult

20 radius = maxDistance

21 policies.push(bestResult.state, bestResult.action)

22

23 return policies

24

Rank (m) Sequence (n)
1 Action1,1 Action1,2 · · · Action1,𝑛

2 Action2,1 Action2,2 · · · Action2,𝑛

· · · · · · · · · · · · · · ·
m Action𝑚,1 Action𝑚,2 · · · Action𝑚,𝑛

Table 4.18.: Data Structure with the combined actions resp. policies. The rank determines

the quality of the actions based on the reward values obtained [152].

176

4.5. Retrieval of Policies

agents.

After all ensemble agents have performed their assigned actions, a function called selectBe-
stResultByReward() is called that sorts all obtained states in descending order by their

reward values (line 14). The action that achieved the state with the highest reward value

compared to the last obtained reward value is then selected as the best action and the

policies array stores this action together with the corresponding previous state and updates

the variable currentState to the new state that provided the best result (line 17-19). In
Algo. 9 only the best action sequence is selected and no alternative action sequences. This

means that a rank 1-combination of policies is performed. In case the agent should also

be provided with alternative action sequences, the algorithm can be adapted to store the

second, third, n-best action sequence in the policies data structure.

In (line 20), the variable radius is reset to the originally set value of maxDistance, since
only the closest actions should be considered again for the next policy search, which

saves computing time and resources, since the number of actions to be performed by

agents increases or decreases proportionally to the search radius of the state. However,

if the current rewards received are less than or equal to the last best reward, then the

variable radius is increased by 0.25 each time the algorithm gets stuck and does not return

reward-maximising actions (line 15-16). The parameter named maxDistance is thus a
hyper-parameter and initially defines the radius boundary within which the nearest action

embedding vectors have to be located (line 2). The function exits and returns the array of

policies once the target state of the current activity is reached (line 22).

One problem that can occur with this approach is that when the agent executes the pro-

posed policies, the state changes in the environment may not match the state changes of

the received policies. In these particular cases, where the states of the received policies

are inconsistent with the actual evolving states, the agent has to make a new request to

the platform with the currently detected state so that a new policy or set of policies can be

determined by the policies combination platform. This in turn means that the requesting

agent has to compare the actual detected state and the state of the provided policy in each

execution step.

In addition, the platform offers in its response to the single-policy-mode query, several
alternative actions ranked according to the reward value they have caused and received.

Thus, if the action determined to be the best leads to an inconsistent state, the action

ranked as the second best, for example, can simply be executed by the requesting agent

and checked whether an intended, i.e. policy-compliant state, could be achieved.

The presented approach aims at enabling agents to act across contexts in a predictive

manner and thus arrive at decisions more quickly. Moreover, it addresses policy require-

ments of agents and allows them to perform activities without having to train policies

beforehand [152].

177

4. Approach

4.6. Conceptualisation of Agents

In the previous sections, concepts and approaches of the agent framework were introduced.

However, agents that wish to communicate with the agent framework and use its services,

have to comply with certain conditions and prerequisites also in order to provide the

framework with data and policies that are to be of use to other cooperating agents. This

means that participating agents require to adhere to procedures and interfaces that enable

a smooth interaction between agents and the framework. Thus, developers of worker,

consumer or hybrid agents have to implement these proposed procedures and interfaces

in order to communicate and comply with the agent framework.

In the next section, the general structure of agent programs will be discussed, then both

the worker agent and the consumer agent and their functionality (e.g. training policies,

providing provenance data) and purpose will be outlined.

The approach that is presented here, is based on previous work [155] and was already

published at the K-Cap
19
2019 conference.

4.6.1. General Structure and Flow of the Agent Program

As already described in Sec. 4.1, the agent framework distinguishes between three types of

agents, namely the worker agent, the consumer agent and the hybrid agent. Due to their dif-
ferent roles, purposes and functionality, the first two types of agents have to comply with

different prerequisites, while the third type is an amalgamation of the two and therefore

does not need to be discussed further. However, all types of agents have some processes

in common and therefore need to implement certain basic functions or interfaces that

correspond to the workflow steps defined by the agent framework. Independently of this,

all agents can implement any algorithms (e.g. Naive Bayes classifier, genetic algorithms,

neural networks, etc.) that are required for decision-making and knowledge generation

(see Sec.2.3 and 2.4).

Figure 4.20 illustrates the general agent program that an agent of the framework has to

implement. The first thing a deployed agent has to do, is to request its agent profile and the

appropriate task entity description that is provided via a SPARQL endpoint, since agent

profiles as well as task descriptions are maintained in a knowledge base or knowledge

graph.

Based on the referenced topics within the task entity, the agent subscribes for the cor-

responding topics to an Internet of Things (IoT) or Web of Things (WoT) (see Sec. 2.2.7)

platform that handles the event-driven, bi-directional communication between agent and

environment.

19 https://www.k-cap.org/2019/

178

4.6. Conceptualisation of Agents

Figure 4.20.: The general programme to which an agent of the framework is obliged to

adhere.

Depending on whether default policies already exist or not, the agent either executes the

policies or first trains policies by interacting with the corresponding simulation component.

In case the worker agent trains first the task policies, it will track the convergence of its

value, utility, loss or fitness function. At convergence, the agent assumes that its policies

are sufficiently trained and stores them together with the corresponding provenance data

in the knowledge base.

Listing 4.12 and Listing 4.13 are taken from the published K-Cap paper [155] and show an

example of a policy represented as both a SPARQL CONSTRUCT query and a Notation3

rule. The sample policy belongs to an evaluated web task (see Sec.5.1.2), in which the

corresponding task asks the agent to check a check-box with a synonymous identifier.

Both formal representations therefore express the same policy and can be used depending

on which language, i.e. SPARQL or Notation3, an agent would like to support and imple-

ment. One condition, however, is that the serialisation supported is a standardised one

that corresponds to the Semantic Web, since agents are supposed to be able to exchange

knowledge through shared concepts and languages.

The two representations of the policy express that the action labelled ClickCheckBoxBySyn-
onym should be executed if there is a check box in the given state representation but it is

not yet ticked and the label next to the check box does not appear in the instruction text

of the web page.

Agents who train policies have the requirement to create formal representations of their

policies and make them available to other agents via the framework. The two examples for

SPARQL andNotation3 show how this can be done. In the SPARQL query, the CONSTRUCT

expression with the corresponding statement defines what action is to be performed, while

179

4. Approach

the WHERE clause lists the triples and conditions that specify a corresponding state

representation.

Listing 4.12: SPARQL CONSTRUCT query example for defining a policy [155].

1 CONSTRUCT {?state :hasAction :ClickCheckboxBySynonym.}

2 WHERE {

3 ?state rdf:type :State.

4 :IsCheckboxExisting :hasValue ?exists.

5 :LabelsIsInInstructionText :hasValue ?intxt.

6 :IsCheckboxClicked :hasValue ?checkboxClicked.

7 FILTER(?exists = 1 && ?intxt = 0 && ?checkboxClicked = 0)}

The Notation3 rule first specifies an existential quantifier (i.e. @forSome), followed by

observable features, i.e. IsCheckBoxExisting, CheckboxClickedBySynonym, whose values

determine the corresponding condition. If the listed conditions, i.e. triples, are true, the

consequence is that the action, i.e. ClickCheckboxBySynonym, is derived.

Listing 4.13: Policy example defined as N3 rule [155].

1 @forSome :IsCheckboxExisting, :CheckboxClickedBySynonym,

2 :LabelsIsInInstructionText.

3 {:IsCheckboxExisting :hasValue "1".

4 :CheckboxClickedBySynonym :hasValue "0".

5 :LabelsInInstructionText :hasValue "0".}

6 => {[:hasAction :ClickCheckboxBySynonym.]}

If the agent is a consumer, it requests policies from the framework that match to its assigned

task and adapts them based on feedback that is either provided by a real environment or

by the simulation component that utilises the corresponding task entity representation.

To adapt the default policies, the agent has to be able to incorporate feedback, i.e. reward

signals, into its model representation. It turns out that agents that implement reinforce-

ment learning are predestined for policy adaptation. However, other algorithms, such as

genetic algorithms, are also possible, since they can adapt their model on the basis of a

fitness function and thus incorporate feedback from the environment.

Once the agent recognises the convergence of its positively evolving reward function, it

assumes that the reused model is adapted to its own task and can be applied. In addition,

the agent needs to create a formal representation of policy and provenance data that can be

interpreted and reused by other agents with similar tasks. In this way, the frameworkmeets

the requirement that agents can cooperatively share and reuse their acquired policies. The

provenance or meta data about the policies acquired should a) ensure accountability and

b) enable agents to assess the suitability and quality, i.e. Quality of Service (QoS), of the

policies provided. Therefore, the provenance data has to provide statistical information

about how the policies were trained and obtained. The RDF serialisation (see Listing 4.14)

shows an example of provenance data referencing the origin of the policies and describing

180

4.6. Conceptualisation of Agents

statistical metrics for policies of a task.

The meta description of the policies contains the version number of the task description

and the number of episodes needed to train the policies. It also specifies the threshold value

that separates positive from negative reward values and indicates the percentage of positive

and negative reward values that were achieved during an evaluation run. The obtained

average positive/negative reward value is also given. This is followed by information

about the originator (agent) of the policies as well as information about the algorithm used

and the configuration parameters, i.e. hyper-parameters with which the corresponding

algorithm was initialised. The example also references the developer of the agent and the

task for which the agent trained the policies. At the end, a URL is given that references

the web resource location of the policies. Of course, the provenance or meta data can be

extended with additional relevant information.

Listing 4.14: Example of a semantic policies meta description trained for a task [155].

1 :CheckboxBySynonymTaskPolicy :version "1.0".

2 :CheckboxBySynonymTaskPolicy :numberTrainedEpisodes "1000"^^xsd:integer.

3 :CheckboxBySynonymTaskPolicy :hasReward _:reward.

4 _:reward :hasValue _:positiveValue.

5 _:reward :hasValue _:negativeValue.

6 _:reward :hasThreshold _:threshold.

7 _:threshold :hasValue "0.7"^^xsd:double.

8 _:positiveValue :greaterThanOrEqual _:threshold.

9 _:positiveValue :occurenceFactor "0.89"^^xsd:double.

10 _:negativeValue :lowerThan _:threshold.

11 _:negativeValue :occurenceFactor "0.11"^^xsd:double.

12 :CheckboxBySynonymTaskPolicy :hasMeanPositiveReward "0.8"^^xsd:double.

13 :CheckboxBySynonymTaskPolicy :hasMeanNegativeReward "0.2"^^xsd:double.

14 :CheckboxBySynonymTaskPolicy :trainedBy _:agent.

15 _:agent rdf:type :Agent.

16 _:agent rdf:label "DQNNAgent".

17 _:agent :appliesAlgorithm "DQNN".

18 _:agent :discountfactor "0.75"^^xsd:double.

19 _:agent :learningRate "0.01"^^xsd:double.

20 _:agent :greedyValue "0.1"^^xsd:double.

21 _:agent :trainedForTask :MiniWobTask.

22 _:agent :developedBy :Jon_Doe.

23 :CheckboxBySynonymTaskPolicy :url <http://sem-agent-fw#Policy1>.

Since agents can also monitor their activities and changes in the environment, they can

also provide valuable log records that can be used to derive MDPs and corresponding task

entity descriptions. As outlined in Sec. 4.5.2.2, meta data about the dataset is required for

the automatic derivation of MDPs via a wrapper component. For this reason, agents who

want to make their datasets available to the agent framework also have to provide meta

181

4. Approach

data about their produced datasets.

It is up to each developer how their agent implements decision-making processes internally.

However, in order to be compatible to the agent framework presented here, the process

should correspond to the main process described here and the purpose, i.e. knowledge

generation and exchange, of an agent should correspond to the goals of the agent frame-

work.

In the following, it is illustrated how the main program of an agent that is participating in

the framework, might look like. The first part of the agent program deals with querying

the task and agent profile to initialise the agent and provide information about the topics

the agent wants to subscribe to.

Subsequently, a client instance is generated that allows the agent the event-driven and

bi-directional communication with the devices or control elements of the task environment.

The client establishes a permanent connection with the provided server URL and the agent

subscribes for the topics referenced in the task profile.

Then some variable declarations have to be made in order to store interim results.

Since the communication between agent and environment is event-driven, a callback

function is implemented that handles incoming messages from topics the agent subscribed

for. It is then in the agent’s responsibility to handle, i.e. parse and pre-process, the received

messages that contain information about state and environmental feedback. The agent

extracts from the message the updated state information and the corresponding reward

value that serves as feedback from the environment to the agent.

The agent also keeps track about whether a final state was reached that terminates the task

and closes the client. However, as long as no final state is reached, the agent maintains

within an array or list the obtained data consisting of the last state, the new state, the last

performed action and the obtained reward value for the last performed action.

The agent incorporates the new reward value into its learning algorithm in order to update

its internal model representation, e.g. weights of a DNN.

After the agent has incorporated the new feedback into its utility function and model,

it selects an action based on the given state and sends via the client instance a message

containing information about the action to conduct.

In Sec. 4.5.2.2, semantic concepts and properties were proposed to also specify and provide

meta data about records that can be autonomously generated by agents based on their

observations. This meta data is used by the wrapper component of the framework to

derive corresponding MDPs and task entity descriptions from the log records. The function

createMetadataForDataset(), as explained in Sec. 4.5.2.2, creates semantic RDF statements,

182

4.6. Conceptualisation of Agents

over the corresponding dataset.

Finally, the agent’s main program returns the rules, provenance data and generated records

together with their meta data for further use.

4.6.2. Worker Agent

Figure 4.21.: Simulator-based online training of a worker (e.g. DQNN) agent [155].

Worker agents have the main purpose to explore and generate reusable knowledge, i.e.

policies and meta data, and thus pass three different phases during their execution as listed

in the following.

i. Knowledge generation – i.e. training/mining of default policies.

ii. Tracking of their training progress.

iii. Share of default policies and provenance data – i.e. provide meta data about the

learning process.

Worker agents have to be able to incorporate feedback from the environment and to train

their model based on received reward signals. Since reinforcement learning agents fulfil

the mentioned requirements, all worker agents of the framework implement reinforcement

learning.

The trainings procedure for the worker agent is as shown in Fig. 4.21. A domain expert

creates a task profile and stores it as RDF serialisation in a RDF knowledge base that is

accessible via a SPARQL endpoint. The agent requests the corresponding task- and agent

profile from the knowledge base. Simultaneously, the simulator platform subscribes at

the IoT platform for the agent’s ID and requests the task profile from the knowledge base.

The agent and simulator communicate via the IoT platform until a final state is reached

and the task is terminated. Afterwards, the worker agent stores its trained default policies

and the corresponding provenance data in the knowledge base and adds for the policies

and provenance data a semantic reference to the task entity description.

183

4. Approach

4.6.3. Consumer Agent

Consumer agents are not closely related to the agent framework and can be agents that

operate in heterogeneous environments, e.g. on the web, at home, in cyber-physical

environments, etc. Thus, they do not belong to the agent framework, but consume the

knowledge provided by the framework. However, they are encouraged to also provide

their researched knowledge or experience in the form of real operational data so that all

agents can benefit and reuse their expertise.

By adapting provided default policies, consumer agents can further improve these policies

and eliminate possible ambiguities that may arise during task execution. Ambiguity is

also a problem that arises when human domain experts provide task specifications that

are either not concrete enough regarding the state representation and provide incomplete

information or contain logical errors. For this reason, agents require the ability to adapt

policies in order to a) close the gap of incomplete information and b) eliminate the impact

of (logical) erroneous state specifications that do not reflect the contextual requirements.

In this way, on the one hand a diverse collection of policies can be provided for different

tasks and on the other hand the validity of policies can be ensured. The process steps the

consumer agent has to comply with, are as follows:

i. Retrieval of suitable policies.

ii. Adaptation of policies – i.e. adapting policies from feedback of real-world environ-

ments.

iii. Reuse of adapted policies.

iv. Provision of real operational data with corresponding meta data and provenance data

to the agent framework.

Figure 4.22 illustrates that the consumer agent requests via the agent framework policies

that might match to its task properties and requirements. The consumer agent reuses then

the policies and adapts them based on the feedback, i.e. rewards, that is provided by the

environment. Section 4.5 already outlined different methods implemented in the agent

framework that allow the retrieval of suitable policies.

In order to receive state updates and feedback from the environment, the consumer

agent subscribes as well as the worker agent to a IoT platform and communicates via the

platform with its task environment. Therefore, wrapper components of the IoT platform

transform the action commands into device specific commands and device events that

provide measured quantities into topic features. However, the transformation between a

high level representation into a low level, i.e. device specific, transformation is out of this

work’s scope and is therefore not investigated further. Though, a recommendation is to

use the Web of Things (WoT) (see Sec. 2.2.7) as an approach in order to allow a mapping

between semantic entities and device specific implementations.

184

4.6. Conceptualisation of Agents

Figure 4.22.: Adaptation and reuse of policies for performing novel tasks conducted by the

consumer agent [155].

185

4. Approach

4.7. Assumptions and Limitations

Any scientific work is usually based on design decisions and assumptions made beforehand,

which also set the boundaries of the work, especially if the assumptions can only cover

a subset of the problems to be solved in the scientific work. This chapter discusses the

assumptions made and limitations of the proposed approach.

A1. Domain experts and developers know what they do. The proposed agent framework

covers many aspects, such as domain-independent knowledge representation of hetero-

geneous tasks, training and deployment of agents, and adaptation or personalisation of

policies. However, it does not address control mechanisms for avoiding risks or such issues

as privacy and security problems that may arise when, for example, agent developers

introduce new program code that may violate the privacy and security of target users. In

addition, people may make incorrect assumptions out of ignorance or carelessness that

could put the target audience at risk. For instance, domain experts might give wrong

benchmarks for states in their task description or fail to consider or forget relevant and

important information.

Thus, one assumption made in this work is that the information or task descriptions

and configurations provided by domain experts and agent developers are evaluated, safe,

correct or well-intentioned and correspond to what the agent is supposed to do.

A2. Deployed tasks are MDPs The proposed agent framework only supports, i.e. simulates,

tasks that are MDPs, see Section 2.3.9. This implies that task entities are modelled as MDPs

consisting of specific Markov properties and concepts, such as states, actions, rewards for

states and actions performed. It is also assumed that agents operate in a fully observable
environment [213], which means that all sensors necessary for the tasks to be solved are

available to observe the environment, while the sensor measurements are denoised in a

pre-processing step so that agents do not have to deal with noisy and error-prone data. In

addition, a state should be defined in each MDP that occurs as soon as an uncertain or

undefined observation occurs. In these cases, the agent either does not need to perform

any action or only one action that leads the agent to a safe and defined state.

A domain expert defining a task description needs to know what states can occur within

the task, by what features the states can be measured and how the states are rewarded.

In addition, he/she requires to know which actions can be performed by an agent that is

supposed to solve the task and what immediate effects the actions have on the environment

and thus on the fully observable states. Tasks that are not specified as MDPs cannot be

processed by the agent framework. Moreover, performed local optimal actions are assumed

to lead to a global optimal strategy of the agent, since dynamic programming [17] is applied
using the Bellman equation [17], which is used for the agent’s reward function. The iterative
execution of actions in different states contributes to the internally maintained reward

function reflecting the (long-term) impact and value of the executed actions in each visited

state. This also means that every task that can be handled by the agent framework, is a

deterministic or stochastic decision process.

186

4.7. Assumptions and Limitations

A3. Only finite and discrete action spaces are supported Action spaces can consist of

either discrete or continuous actions. In the agent framework, it is assumed that each

task has a finite set of discrete actions that can be performed by an agent. To give an

example of continuous actions, we could imagine that a driving agent needs to control

the steering wheel of a car. In this case, the degree of the steering angle is between 0 and

360 degrees and can take on an infinite number of real numbers to control the steering

wheel. In contrast, a discrete action does not require a real number of a continuum to

determine the scope of the action. The reason why only finite and discrete actions should

be supported in the agent framework was that infinite, continuous actions would have

greatly increased the complexity of the agent framework and ontology. Thus, dealing

with infinite, continuous action spaces is beyond the scope of this work. However, it is

possible to convert continuous actions into discrete actions if, for example, binning is

performed. In the example of the steering wheel, two actions, e.g. Stir_Left_1_Degree,

Stir_Right_1_Degree, might be sufficient to convert continuous actions into discrete actions.

Thus, most problems can be solved with discrete actions determined by the finite number

of actuators an agent is allowed to control.

A4. Only sequential, i.e. time series data with state labels are supported. Datasets that map

MDPs are usually sequential data that show a development based on states and actions

performed over time. For this reason, datasets used to generate task entities have to be

time series datasets that contain, for each time step, the previously recorded observation

features, the action(s) performed and the subsequent observation features showing the

change caused by the action(s) performed. One additional requirement is that to the

previous as well as subsequent observations, state labels are assigned that characterise

different possible states. For instance, the power of entity embeddings, which encode task,

state and action entities and are used in the context of task and policy retrieval, can only

be exploited if continuous observation features are annotated by predefined state labels.

A5. Communication via semantic task entities The communication between agents and the

agent framework is only possible if the agents adhere to the provided framework ontology.

This means that task entities and associated entities are required for communication.

Therefore, domain experts or agent developers need to know the concepts and properties

of the ontology in order to use the services of the agent framework and implement their

tasks and agents. For instance, in Section 4.6 et seq., a procedure is defined that needs to

be implemented by an agent programme to be used in the framework. Another example

can be found in Section 4.5.1, which explains that when searching for similar tasks and

their associated policies, a consumer agent needs to provide the framework with its own

task entity that corresponds to the ontology and allows comparison with given tasks.

A6. Openness and accessibility of the agent framework The agent framework is intended

to be open, i.e. agents can access it via the World Wide Web, and the underlying ontology

is available to agents and human users. This implies the need for domain experts and agent

developers to make their task descriptions and agent program implementations openly

available, e.g. via a knowledge graph, so that others can also benefit from the knowledge

187

4. Approach

generated, i.e. the task descriptions and shared policies. Thus, proprietary use and access

is not supported by the agent framework. The idea is that the knowledge generated by

process records, agents and domain experts should be iteratively extended with new task

entities and policies that can be shared and reused by everyone on the web.

188

4.8. Summary of this Chapter

4.8. Summary of this Chapter

In this chapter, concepts and methods have been introduced to address various identified

problems and challenges (e.g. cold-start problem, policy adaptation and search) using the

proposed agent framework.

The agent framework envisions different roles (i.e. domain expert, developer, target user,

worker/consumer/hybrid agents) involved in different life-cycle steps supported by the

agent framework. One particular role supported by the framework are the worker and

consumer agents, which serve different purposes within the framework. While the worker

agent is closely related to the framework, the consumer agent can be any kind of agent

that uses the services of the framework, e.g. for policy retrieval and the reuse of policies

for own tasks.

The proposed agent framework supports different process steps such as the deployment

of task entity descriptions and agent entity descriptions by domain experts and agent

developers as well as the training, provisioning, discovery and customisation of default

policies. Each process step was explained in the context of the agent framework.

It has been motivated that the agent framework has the requirement to support among

logical rules, the integration of mathematical equations to describe and simulate natural

phenomena and processes. The intention was to illustrate that domain experts require the

possibility to describe tasks by formal representations such as logical rules or mathematical

equations.

Then an ontology developed for the agent framework was presented, which has the pur-

pose of ensuring a shared understanding between different agents and the framework.

Furthermore, the ontology is used to enable domain experts, developers and agents to

create task and agent entity profiles. The defined concepts and properties provide a means

to model relevant knowledge for the agent framework and also to make implicitly encoded

knowledge explicit by reasoning techniques. It has been shown that the concepts are

designed to represent Markov decision processes in an abstracted way, enabling agents to

exchange and evaluate information.

An important component of the agent framework is the simulation component. It has

the task of training reinforcement learning agents on newly created tasks by using the

knowledge provided in semantic task entity descriptions to update states based on actions

performed by agents. In this way, reinforcement learning agents train standard policies

to solve the corresponding tasks. The simulation component also enables predictions

to be made about short- and long-term effects of behaviour. Agents who follow certain

strategies, for example, can thus determine what effects their actions will have and can

also select among several policy options those that are the most reward-maximising for

them.

189

4. Approach

For this reason, the simulation component has to be able to determine states based on

observable features, update them and infer reward values based on effects and subsequent

states. In addition, the simulation component has to be able to handle different types of

tasks, e.g. sequential, (a)synchronous. Approaches, e.g. devised algorithms, have been

discussed that address exactly these simulation tasks.

The agent framework also uses behavioural data from user demonstrations and consumer

agents to extract knowledge, i.e. policy rules, from this behavioural data. Several proven

approaches (e.g. FPGrowth, OneR, sequential coverage) have been presented that pre-

process the data and derive policies or decision rules depending on the type of observed

features and the type of task the corresponding agent has to perform. Thus, the framework

has to be able to select the right rule mining algorithms based on the formalised task

characteristics. This chapter has outlined selection strategies that enable the framework

to select the appropriate rule mining algorithms.

As part of this work, an algorithm (i.e. Best Fit Sequence) was also developed that allows

rules to be derived from behavioural data that correspond to an intended, fixed sequence.

Stages within tasks are considered and reward-maximising sequences extracted from the

corresponding dataset are converted into rules. In this way, it is possible to derive specific

policies or rules that can then be reused by agents for their tasks.

It has been argued that (time series) datasets reflecting user behaviour and task processes

can also be used to derive hidden Markov models and action effects that can be used for

simulation through the agent framework. For this reason, the corresponding datasets

have to a) follow a specific representation and b) be pre-processed to sample HMMs and

underlying probability distributions that allow the determination of feature trends and

labelling of associated states. In order for the framework to interpret the records, meta data

describing the characteristics of the records is needed. Semantic concepts and properties

have been proposed for structuring meta data to describe and comprehend log datasets.

This meta data structure is also relevant for agents who want to provide records and need

to describe the records accordingly, see Sec. 4.6.1.

Since the agent framework provides policies for general use, methods are needed to enable

agents to find suitable policies based on the characteristics of their task. In this work, two

approaches are presented that enable the discovery of suitable policies. Both approaches

use entity embedding vectors to transform tasks and their property relationships into

a numerical representation and constrain the agent’s context, i.e. the agent’s state and

action space. The first approach is to identify similar tasks using entity embeddings to find

strategies that can be reused to solve a task. For this purpose, the task entity description

of an agent is used and the similarity is compared with already existing and solved tasks.

The policies of the most similar task that is then found are returned to the requesting agent.

In the second approach presented, single policies or sequences of policies for solving a task

are assembled based on the current context, i.e. the state of the agent. To do this, the entity

embedding context is considered and the actions closest to a given state are executed in a

190

4.8. Summary of this Chapter

simulation using an ensemble of agents. The action that promises the highest reward is

then selected and stored in a list. This is repeated for each state in the sequence until a

final state is reached. The list of determined policies is then returned to the requesting

agent. As part of this work, an algorithm called Policies Combination was devised and

presented that performs this very task of composing policies based on determining closely

related states and actions.

The penultimate section on the approach discussed the conceptualisation of agents, as

agents using the framework are required to fulfil certain criteria and interfaces. The

corresponding section presented the general programme structure of agents that want to

use the framework. A distinction was made between worker agents and consumer agents,
as both serve different purposes. An agent developer who wants to develop and integrate

a new agent for the framework has to follow the proposed guidelines presented.

The final section on the approach illustrated the assumptions and constraints made in the

proposed agent framework. A total of six different limitations were identified, concerning

privacy, security, the data model used, the ontology and the communication with and

accessibility of the agent framework. To overcome some of these limitations future work

would be required.

191

5. Use Cases

The objective of this work is to provide a framework for software agents that is domain-

independent applicable for heterogeneous tasks. To show the universal applicability of

this approach, this chapter provides some descriptions of use cases that served as case

examples for the implemented agent framework. The considered application domains

comprise the healthcare (HC), the epidemiological domain as well as domestic activities

and the execution of automated web tasks. The following sections provide a detailed

description of the use cases that were considered during the conceptualisation, imple-

mentation and evaluation of the presented approach with respect to the posed research

questions (RQ1-RQ3).

The considered tasks do not only vary regarding their domains but as well regarding their

task characteristics, that are listed in Table 5.1. The task characteristics comprise sequential
versus unordered execution, synchronous versus asynchronous execution and single-agent
versus multi-agent participation.

Sequential means in this context that the appropriate task is only solvable if ordered action

sequences are executed. For instance, the automated web tasks are sequential tasks for
which the agent has to learn ordered action sequences, while the other use cases do not

require fix ordered action sequences for achieving the envisioned task objectives.

A synchronous task is a task where the environment’s state only changes after every

participating agent has performed its action. Thus, the framework waits until all agents

completed their actions, while in an asynchronous task, every agent acts independently

from the other agents. There are also use cases in which multiple actors (agents) cooperate

synchronously by their actions and influence the state of the environment and lastly the

outcome of all actors. The state of the environment is updated only if every agent has

performed its action in each time step. Thus, discrete execution steps of all agents over

time characterise the task progress.

Tasks can contain rules as well as differential equations that enable the framework to

simulate phenomena and their changes with respect to time and external impact factors.

This means that some tasks require mathematical models that base on simplified assump-

tions in order to represent the evolution of states. The COVID-19 measures task is a task

that is simulated by differential equations (i.e. compartmental models) that describe how

the number of COVID-19 cases evolve depending on the taken measures respectively

actions. The difference here compared to the other tasks is the adoption of differential

equations in order to simulate the task dynamics while the other tasks are specified by

simple rules represented by boolean expressions. Moreover, the COVID-19 measures task

193

5. Use Cases

has contradicting objectives, i.e. public health versus growth and stability of the economy,

leading to a trade-off that has to be addressed by the acting RL agent.

Task Communication Single/Multi Execution Diff. Equations
Web Tasks Asynchronous Single Agent Sequential No

Clinical Pathway Asynchronous Single Agent Unordered No

COVID-19 Measures Asynchronous Single Agent Unordered Yes

Domestic Activities (A)synchronous Single/Multi Agent Sequential No

Table 5.1.: Characteristics of the use case tasks.

5.1. UC1: Automated Execution of Web Tasks

The following use case specification is taken from the paper [155] that has been published

and presented at the K-Cap 2019 conference in Marina del Rey, California.

Web agents can perform on behalf of the user, tasks on the web, such as scraping websites

or filling out web forms in order to submit orders or book flights. To do so, an interpretable

state representation of the corresponding web page is required. Web pages are usually

structured as a Document Object Model (DOM) tree. This DOM tree consists of numerous

web interaction elements, such as buttons, text fields, selectable lists, check-boxes, radio

buttons, etc. Based on this DOM tree the current state of a web page is represented

and can be parsed. Every user interaction on a web page invokes a state change on the

representation of the web page. For instance, if a radio button was clicked, then the radio

button changes into the state selected and the next interaction can be performed in order

to finalise a web task.

Certain web pages require the execution of sequential actions that follow a predefined

process path. This implies that web agents require to learn ordered action sequences for

solving a web task successfully.

In addition, textual instructions are necessary that provide information and guide the

agent through the task completion process. These textual instructions are considered also

as part of the state representation and can vary depending on individual requirements of

the task.

To evaluate the performance of web agents, the MiniWob++1 benchmark is utilised. Mini-

Wob++ is stated on its Github page as an extension of theOpenAIMiniWob [228] benchmark.

MiniWob++ provides a set of mini web tasks that can be accessed and solved via the Sele-
nium WebDriver2. The Selenium WebDriver is a browser automation tool that empowers

web agents to test, request, parse and interact with web applications. Selenium supports

1 https://stanfordnlp.github.io/miniwob-plusplus/
2 https://www.selenium.dev/

194

5.1. UC1: Automated Execution of Web Tasks

different web browsers, such as Firefox, Chrome, Internet Explorer and Opera.

For this work, different web tasks were tested and evaluated. The tasks are: clicking check-
boxes by their label or by synonymous labels, selecting list options by their label, clicking
buttons by their label, clicking button sequences and booking either the cheapest or the shortest
flight. The tasks vary from easy tasks (e.g. select list options) to more complex tasks (e.g.

book a flight). The complexity is given by the length of required action sequences that

have to be performed. In the following sections every evaluated task is shortly introduced.

One of the RL agents was pre-trained using the simulation component of the proposed

agent framework in order to later evaluate whether the pre-training by the proposed agent

framework has a positive impact on the performance of the evaluated RL agent using the

MiniWob++ benchmark. The goal of the corresponding evaluation is to test whether the

cold-start problem can be solved using the proposed agent framework and its integrated

simulation component.

5.1.1. Flight Booking Task

The flight booking task requires interactions on two subsequently following pages. On

the first page, the agent has to select the departure airport and the destination airport as

well as the flight date from a date picker element. Afterwards, the given search-button has

to be clicked. A second page is loaded if the previous actions were successfully performed.

On the second page, the agent gets randomly the instruction to book either the shortest or

the cheapest flight. Only if the correct flight is chosen and submitted by the agent, it is

rewarded by a positive value for the finalisation of the task. The maximum reward, an

agent can get is 1 and the maximum punishment value is -1.

Every task is time restricted. For instance, for the flight booking task, the agent has at

maximum thirty seconds time to finalise the booking. Is the time passed and the agent has

not yet finished the task, a penalty that yields in a negative value (i.e. -1), is assigned to

the agent by the benchmark.

Figure 5.1 depicts the MiniWob++ task representation of the flight booking task. The

corresponding web elements on the first page (see Fig. 5.1a) are two lists for selecting

the departure and destination airport as well as a date picker element for selecting the

flight date. The search button is for submitting the flight search request. Subsequently, the

second page (see Fig. 5.1b) is loaded with the found flights that are categorised by the costs

and duration of a flight. The envisioned flight can be selected by the corresponding Book
Flight button. On top of the page in the yellow text area, textual instructions are listed. In

the flight booking task, the agent has either to select on the second page, the cheapest or

the shortest flight. On the right panel, some statistics (e.g. last reward, average reward,

already done episodes) and the time limit and remaining time for finalising the task are

depicted. The web tasks can be executed in several iterations in order to get the average

performance of the acting agent.

195

5. Use Cases

(a) The first page of the flight booking task.

(b) The search results of the flight booking

task.

Figure 5.1.: The flight-booking task execution sequence

5.1.2. Click Check-box by Label or Synonymous Label

The check-box task has two variants. In the first variant, the agent has to select one or

multiple check-boxes, with respect to the labels that are listed in the instruction text. In

the second variant, the agent has to select check-boxes that relate to the synonyms of the

labels that are listed in the instruction text. Therefore, an internal dictionary dissolves the

appropriate synonymous labels.

The difficulty for the agent is that the DOM state representation is equal between both

tasks, while the textual instructions and actions for solving the task are different. This

leads to an ambiguous state representation that is first resolved during the execution of

the task by the dynamically appearing text instructions. However, when the agent learns

the policies by means of the agent framework’s simulation component, it only perceives

the general DOM tree as a state representation without the instruction text, since the

instruction text is unknown during the simulation and learning phase and only appears

depending on the goal and context of the task. This ambiguity of the task can be used

to evaluate whether the agent is able to dynamically adapt its policies to the emerging

instructional requirements.

The objective is to demonstrate, that the agent is able through RL to adjust its default

policies to upcoming requirements and to resolve ambiguity. Figure 5.2a and Figure 5.2b

show the two variants of the check-box selection task.

5.1.3. Click Button and Button Sequence

In the click button task, the objective is to click appearing labelled buttons depending on

the labels that are listed in the instructions text, while in the button sequence task, the
objective is to click buttons in a certain predefined sequence. The difficulty in the latter

task is that sometimes buttons are partly covered by other buttons so that the agent has

196

5.1. UC1: Automated Execution of Web Tasks

(a) Clicking check-boxes by the listed labels.
(b) Clicking check-boxes by synonymous la-

bels.

Figure 5.2.: The two variants of the check-box task.

to decide which of the buttons to click first. Figure 5.3 depicts the views of both button

related tasks. The time for finalising this task is 10 seconds.

(a) Clicking buttons by label.

(b) View of the button sequence task.

Figure 5.3.: Button related web tasks.

5.1.4. Click List Option by Label

In this web task, the agent has to select list options by their label depending on the listed

labels in the instruction text. Subsequently, the agent has to click a Submit button for

finalising the task. The time for solving the task are 10 seconds.

The previously discussed web tasks and their properties are described in an aggregated

task specification (JSON-LD file)
3
consisting of possible states, state rules, properties and

actions. The corresponding possible actions are listed below, while the state rules are

specified afterwards. The task representation consists of twelve states with corresponding

rules, which are used to detect whether a certain defined state applies or not. The state

WebTaskFinished is the target or final state that ends the task. Each state rule consists of

3 https://raw.githubusercontent.com/nmerkle/K-Cap-2019-Demo/master/task.json

197

5. Use Cases

(a) Selection of list options

(b) Open List view

Figure 5.4.: List Option Task

categorical features (e.g. IsLabeledButton) that can either have the value 1, which stands

for true and 0, which stands for false. The features are linked via comparison and Boolean

operators, i.e. <, >, ≤, ≥, ==, AND, OR, XOR.

For the web tasks, a total of eleven actions were defined that can be executed to interact

with the corresponding web elements, such as labelled buttons, submit button, list options,

check boxes, date picker. The corresponding actions trigger different user interface (UI)

elements and allow selection by label or by synonym. An implemented demonstrator with

installation and execution instructions can be found on Github
4
.

The following listing shows the actions that an agent can perform within the considered

and evaluated web tasks, see also [155]:

(1) SelectOptionByLabel – Selects a list option by the label given in the instruction text.

(2) ClickCheckboxByLabel – Clicks check-boxes by the label given in the instruction

text.

(3) ClickCheckboxBySynonym – Clicks check-boxes by the synonymous words given

in the instruction text. The synonyms can be obtained from a dictionary or can be

requested from the web
5
.

(4) ClickSubmitButton – Clicks a submit button. This finishes the web task.

(5) ClickButtonByLabel – Clicks a button by its label specified in the instruction text.

(6) EnterFlightDate – Enters the flight date, specified in the instruction text.

(7) EnterFlightTo – Enters the flight destination, specified in the instruction text.

4 https://github.com/nmerkle/K-Cap-2019-Demo
5
see https://www.openthesaurus.de/ or https://api-ninjas.com/api/thesaurus

198

5.1. UC1: Automated Execution of Web Tasks

(8) EnterFlightFrom – Enters the departure location, specified in the instruction text.

(9) ClickSearchButton – Clicks the search button for searching flight offers.

(10) BookCheapestFlight – Books the cheapest flight from the given list of search results.

(11) BookShortestFlight – Books the shortest flight from the given list of search results.

The following listing represents the rules that determine the corresponding states (here in

in bold) of the web task. The rules help the framework’s simulation component as well as

rule-based agents to recognise environmental states:

1. OptionSelectableByLabel:
IsOption == 1 AND ListOptionClickedByLabel == 0 AND LabelsInInstructionText == 1

AND IsCheckbox == 0 AND IsFlightDatePicker == 0 AND IsFlightFromField == 0 AND

IsFlightToField == 0

2. CheckboxSelectableByLabel:
IsCheckbox == 1 AND LabelsInInstructionText == 1 AND CheckboxClickedByLabel ==

0 AND IsOption == 0 AND IsFlightDatePicker == 0 AND IsFlightFromField == 0 AND

IsFlightToField == 0

3. CheckboxSelectableBySynonym:
IsCheckbox == 1 AND LabelsInInstructionText == 1 AND CheckboxClickedBySynonym

== 0 AND IsOption == 0 AND IsFlightDatePicker == 0 AND IsFlightFromField == 0

AND IsFlightToField == 0

4. SubmitButtonClickable:
(IsSubmitButton == 1 AND SubmitButtonClicked == 0) AND ((IsCheckbox == 1 OR

IsOption == 1) AND (CheckboxClickedByLabel == 1 OR ListOptionClickedByLabel ==

1))

5. ButtonSelectableByLabel:
(IsLabelButton == 1 OR IsSubmitButton == 1 OR IsSearchButton == 1) AND But-

tonClickedByLabel == 0 AND LabelsInInstructionText == 1 AND IsCheckbox == 0

AND IsOption == 0 AND IsFlightDatePicker == 0 AND IsFlightFromField == 0 AND

IsFlightToField == 0

6. FlightDateSelectableByPicker:
IsFlightDatePicker == 1 AND FlightDateEntered == 0 AND IsCheckbox == 0 AND

IsOption == 0 AND IsSubmitButton == 0 AND IsLabelButton == 0 AND IsSearchButton

== 1 AND IsFlightFromField == 1 AND IsFlightToField == 1

7. SearchButtonClickable:
(IsSearchButton == 1 OR IsSubmitButton == 1 OR IsLabelButton == 1) AND SearchBut-

tonClicked == 0 AND IsCheckbox == 0 AND IsOption == 0 AND IsFlightDatePicker ==

1 AND IsFlightFromField == 1 AND IsFlightToField == 1 AND FlightFromEntered == 1

AND FlightToEntered == 1 AND FlightDateEntered == 1

199

5. Use Cases

8. FlightFromEnterable:
IsFlightFromField == 1 AND FlightFromEntered == 0 AND IsCheckbox == 0 AND IsOp-

tion == 0 AND IsSubmitButton == 0 AND IsLabelButton == 0 AND IsFlightDatePicker

== 1 AND IsSearchButton == 1 AND IsFlightToField == 1

9. FlightToEnterable:
IsFlightToField == 1 AND FlightToEntered == 0 AND IsCheckbox == 0 AND IsOption

== 0 AND IsSubmitButton == 0 AND IsLabelButton == 0 AND IsFlightDatePicker == 1

AND IsFlightToField == 1 AND IsSearchButton == 1

10. ShortestFlightBookable:
IsBookCheapest == 0 AND IsBookShortest == 1 AND FlightDateEntered == 1 AND

FlightFromEntered == 1 AND FlightToEntered == 1 AND SearchButtonClicked == 1

11. CheapestFlightBookable:
IsBookCheapest == 1 AND IsBookShortest == 0 AND FlightDateEntered == 1 AND

FlightFromEntered == 1 AND FlightToEntered == 1 AND SearchButtonClicked == 1

12. WebTaskFinished:
SubmitButtonClicked == 1 OR ButtonClickedByLabel == 1 OR CheapestFlightBooked

== 1 OR ShortestFlightBooked == 1

200

5.2. UC2: Virtual Coaching based on Clinical Pathways

5.2. UC2: Virtual Coaching based on Clinical Pathways

Nowadays, in the healthcare (HC) domain, intelligent agents (i.e.virtual coaches) play
an increasing role for supporting sustainably the treatment and well-being of patients

and elderly persons. The European Union (EU) commission promotes and funds many

calls and projects (i.e. vCare
6
, council of coaches

7
), in the healthcare domain, with the

long-term objective to provide high-end assisting technologies in hospitals and at home

that support on the one hand healthcare professionals in their work and on the other

hand, patients and elderly people to live a healthy, self-determined, socially active and

independent life as long as possible. For this reason, the health sector automates medical

tasks concerning examinations, treatments and after-care so that patients get an all around

care, while healthcare professionals are relieved of their workload. In the long-term, costs

and (human) resources are intended to be decreased by technological, i.e. IoT and smart

devices and intelligent agents. This trend requires that medical treatments and clinical

pathways (CPs) have to be reproduced by formalised healthcare processes. Agents have to

be enabled to follow the CP inherent processes and make context and user dependent deci-

sions regarding supportive actions that contribute to the recovery and health of the patient.

In particular, the objective is to empower virtual coaching agents to make activity rec-

ommendations based on medical guidelines, the patient’s medical records, the current

health state and context. Thereby, different data are provided that drive the decisions

and recommendations of the virtual coaching agent. These data comprise categorical and

numerical features, e.g. diseases, preferences, health states and corresponding rules, based

on medical guidelines. However, before this section dives into the details of medical use

cases that are considered within this work, first a definition of clinical pathways shall

be adopted that lays the foundation for a common understanding. A clinical pathway

according to De Bleser et. al. is defined in [57] as:

Def.: "... a method for the patient-care management of a well-defined group of patients

during a well-defined period of time. A clinical pathway explicitly states the goals

and key elements of care based on Evidence Based Medicine (EBM) guidelines, best

practice and patient expectations by facilitating the communication, coordinating

roles and sequencing the activities of the multidisciplinary care team, patients

and their relatives; by documenting, monitoring and evaluating variances; and by

providing the necessary resources and outcomes. The aim of a clinical pathway is to

improve the quality of care, reduce risks, increase patient satisfaction and increase

the efficiency in the use of resources."

Taking this definition into account, clinical pathways can be described by MDPs, since

they consist of decision points, respectively (health) states that drive subsequent treatment

actions. The patient history can be represented in predefined states that summarise the

given health status of the patient to fulfil the Markov property of MDPs. Pathway-based

6 https://vcare-project.eu/
7 https://council-of-coaches.eu/

201

5. Use Cases

coaching is expected to have a positive effect on the patient’s health status in the long term.

Usually, one or several caregivers and physicians work together while care professionals

provide a patient profile that abstracts relevant information for the agent’s decisionmaking.

Demographic data about the patient as well as medical records of disease history are

proving important for tailoring treatment plans, activity and exercise recommendations

that are integrated into activities of daily living to promote the patient’s recovery. The

problem, however, is that these various data about the patient and the corresponding

medical guidelines are usually not available electronically and machine-readable, and

treatment recommendations are often based on different expert opinions and ultimately

on the individual experience of the physicians. Thus, a computationally processable repre-

sentation is needed that reflects commonly agreed medical guidelines and relevant medical

data.

The agent framework requests from domain experts a formal representation that abstracts

from the complexity of information and allows to incorporate and aggregate heterogeneous

data from different sources, i.e. medical records, guidelines, vital signs observations, etc.,

into a simplified task representation that guides the agent’s policy learning procedure.

The personalisation is then accomplished by adapting the learned default policies by data

obtained from user feedback.

To demonstrate how the agent framework facilitates the coaching abilities of virtual coach-

ing agents, one CP use case is considered and evaluated on the basis of medical guidelines,

datasets and clinical pathways.

The considered and evaluated Cardiac Disease (CD) use case is inspired by Kaggle’s heart
disease dataset8 that consists of recorded vital sign data of cardiac patients.

The presented use case represents a clinical pathway (CP) that is applied for CD pa-

tients. The following section discusses in detail the corresponding task, its task specific

representation and its objectives as well as how the task is incorporated into the agent

framework.

5.2.1. Cardiac Disease Pathway

The derived CD pathway that is based on Kaggle’s heart disease dataset
9
, consists of

vital sign indicators (blood pressure, blood sugar, cholesterol, etc.), demographic data (i.e.

gender, age) and states (e.g. UserHasDiabetes, UserHasCholesterol, UserHasHeartdisease
etc.) that reflect the health state of the patient. The dataset provides a means for deriving

characteristic patterns and recognising cardiac diseases in order to intervene by medical

treatment measures.

8 https://www.kaggle.com/tentotheminus9/what-causes-heart-disease-explaining-the-model
9 https://www.kaggle.com/tentotheminus9/what-causes-heart-disease-explaining-the-model#The-

Data

202

5.2. UC2: Virtual Coaching based on Clinical Pathways

The dataset features are adopted for the specification of states that reflect possible health

states of the patient. The activity recommendations follow medical guideline sources that

were published online
10 11 12

. According to the guidelines, indicators and risk factors

for a heart disease are high blood pressure, overweight, high cholesterol, diabetes and

the prevalence of heart disease cases in family history. Moreover, factors like stress and

activities like smoking and frequent alcohol consumption can foster the emergence of heart

diseases. Demographic factors, i.e. age, gender can also have an impact to the susceptibility

to heart diseases. Moreover, life-style behaviour culminating in a lack of physical activity,

poor nutrition, etc. can also negatively influence the health of the heart. To counteract

heart disease facilitating behaviour, appropriate recommendations and treatments can be

made that improve the patient’s health state.

For the CD pathway, demographic features were omitted, since they turn out to be not

reliable as risk factor indicator for heart disease. Furthermore, the objective is that an

agent shall only learn to make recommendations based on its made vital sign observations.

The considered features, states, state rules, actions and effects for the decision process are

listed in the Tables 5.2, 5.3, 5.4:

Features Type Range
Cholesterin Categorical 0 or 1

Diabetes Categorical 0 or 1

Smoker Categorical 0 or 1

Physical Active Categorical 0 or 1

Heart Disease Categorical 0 or 1

BMI Numerical 15 to 35

Heartrate Numerical 30 to 160

Systolic Value Numerical 50 to 220

Diastolic Value Numerical 30 to 160

Table 5.2.: Features of heart disease pathway.

Table 5.2 lists observable features that are either categorical or numerical and can have

specific ranges of values. For categorical features, the possible values that a feature can

take are either 0 or 1.

Table 5.3 shows possible states and their corresponding rule expressions that determine

the appropriate state. The rules allow the agent framework the recognition of states. For

instance, if the feature PhysicalActive is set to 1, it means that the patient is currently phys-

ically active. The expressions can be also more complex by concatenating the expressions

10 https://www.mayoclinic.org/diseases-conditions/heart-disease/diagnosis-treatment/drc-

20353124
11 https://www.heartfoundation.org.au/heart-health-education/are-you-at-risk-of-heart-

disease
12 https://www.heart.org/en/health-topics/heart-attack/understand-your-risks-to-prevent-a-

heart-attack

203

5. Use Cases

with boolean operators (e.g. see FinalHealthState).

States Rules
PatientIsActive PhysicalActive == 1

PatientIsInactive PhysicalActive == 0

FinalHealthState

Cholesterol == 0 AND Diabetes == 1

AND (SystolicValue >= 100 AND

SystolicValue <= 120 AND

DiastolicValue >= 60 AND DiastolicValue <= 80) AND

(HR >= 60 AND HR <= 80) AND

(HeartDisease == 1 OR HeartDisease == 0) AND

(PhysicalActive == 0 OR PhysicalActive == 1)

InitialHealthState

Cholesterol == 1 AND Diabetes == 1 AND

(SystolicValue >120 AND DiastolicValue >80) AND

(HR >80) AND HeartDisease == 1 AND

PhysicalActive == 0

NormalBP

SystolicValue >= 100 AND SystolicValue <= 120 AND

DiastolicValue >= 60 AND DiastolicValue <= 80

HighBP SystolicValue >120 AND DiastolicValue >80

LowBP SystolicValue <100 AND DiastolicValue <60

NormalHR HR >= 60 AND HR <= 80

HighHR HR >80

LowHR HR <60

HasHeartDisease HeartDisease == 1

HasDiabetes Diabetes == 1

HasNoDiabetes Diabetes == 0

HasCholesterol Cholesterin == 1

HasNoCholesterol Cholesterin == 0

Table 5.3.: States and rules of the heart disease pathway. For implementation purposes,

InitialState and FinalState have been introduced as states, although they violate

the requirement that an MDP cannot be in two different states at the same

time. However, it can be said that a context or state consists of all partial states

defined here and all partial states are observable in each time step and specify

an overall state and context.

Table 5.4 lists the actions that cause state changes by their effects, see Sec. 4.2.2. An action

can have one or more effects to the current state of the environment. For instance, eating

low fat nutrition will yield long-term in a decreased BMI. Every effect description allows

the agent framework to update states based on performed actions.

204

5.2. UC2: Virtual Coaching based on Clinical Pathways

Actions Effects
EatLowFat DecreaseBMI

EatFruitAndVegetables DecreaseBMI

EatLowSodium DecreaseSystolicValue, DecreaseDiastolicValue

ModerateExercise IsPhysicalActive

QuitSmoking IsNotSmoker

TakeBPMedication DecreaseSystolicValue, DecreaseDiastolicValue

TakeCholesterolMedication IsNotCholesterol

TakeDiabetesMedication IsNotDiabetes

MuscleRelaxation IsPhysicalActive

DeepBreathing DecreaseHR

Table 5.4.: Actions and their effects in the heart disease pathway.

205

5. Use Cases

5.3. UC4: COVID-19 Measures for Public Health and Economy

In the beginning of the year 2020, the emerging COVID-19 pandemic led to numerous

attempts of the government and investigations of science [22, 80, 84, 35, 272] to develop

strategies, means and computational applications that aimed at understanding and con-

taining the pandemic. Every country in the world reacted more or less restrictive to the

pandemic by imposing measures with the aim to keep the COVID-19 cases low. The rea-

sons for this were the high number of infections and the scarce resources of the healthcare

system. The high contagion rate forced the government to impose lock-downs and severe

restrictions of public life. As the example of Italy showed, an overload of the healthcare

system led to high death rates, especially among the older population. The reproduction

number (R) was taken by epidemiologists as indicator for the spread or decrease of COVID-

19 infections. In this context, the objective was to keep the reproduction number as low as

possible, i.e. 𝑅 < 1, which means that one infected person infects less than one additional

person. However, the reproduction number was at the beginning of the pandemic higher

than 3 due to a lack of knowledge and experience with the novel virus and its consequences.

The fast spread of the COVID-19 virus forced some people to shut down all social and

public life. The entire economy was more or less down in some countries, except the

system relevant branches, such as e.g. health sector and food markets. This development

in turn led to heavy economic losses, such as the saving of jobs, unemployment, home

office and short-time work. The lack of knowledge as well as the trade-off between public

health and economy, made it difficult for politicians to make wise and target-oriented

decisions that address both interests, i.e. saving health and lives of the citizens as well as

fostering the stability and at best the growth of the economy.

The attempts of science to combat COVID-19 led to different investigations in order to

understand the impact and dynamics of the COVID-19 pandemic. Considering the science

of epidemiology, the prediction and simulation of pandemics in order to understand them,

play a crucial role. In epidemiology, there are known compartmental models (e.g. SIR, SEIR,
SIS, SIRD, MSIR, SEIS, MSEIR, MSEIRS13) that allow the simplified mathematical modelling

of infectious diseases and facilitate the simulation and knowledge about the development

of pandemics, whereby in this work only two of these models, i.e. SIR and SEIR are

considered, since they are sufficient for demonstrating their applicability within the agent

framework. Researchers apply these models to predict how pandemics can evolve, depend-

ing on certain influential factors. Understanding the dynamics of an infectious disease is

crucial for taking countermeasures that help to control and combat the pandemics.

In the following two sections the SIR and SEIR compartmental models are introduced,

since the SEIR model was utilised in order to train a RL agent to take measures (e.g. total

confinement, soft confinement, some restriction, no restriction) that address the previously

discussed trade-off between saving the public health and keeping up the economy. In

particular, the objectives are to keep the number of infections lower than the number of

13 https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology

206

5.3. UC4: COVID-19 Measures for Public Health and Economy

available hospital beds as well as not to restrict entirely the public life and economy.

The agent can perform in total four measures to control the economy and the spread of

the virus. Table 5.5 explains the performable measures. Every measure can be classified by

a restriction level from 1 to 4, while 1 stands for the highest governmental restriction and

4 for no restriction.

This use case was inspired by and adopted from this paper [168] that was written by

Miralles-Pechuán et. al. and published at the CIKM 2020 conference. One objective of

this thesis, is to demonstrate that the representation and implementation of the COVID-

19 use case that was described by Miralles-Pechuán et. al., is feasible by the proposed

agent framework, in that sense that RL agents are empowered to learn strategies that

address different objectives, even if these objectives are contradictory. For this purpose,

the considered use case was transferred into a task representation that allows the agent

framework to simulate the dynamics and impacts of the COVID-19 disease as it is described

in this work [168].

Measures (Actions) Description Restriction Level

Total Confinement

Total Lock Down.

Only system-relevant branches

of economy are running.

1

Soft Confinement

Masking obligation.

Only doctor visits or

going to market are allowed.

Only contact with persons

of the same household.

2

Some Restriction

Meeting of people

from other households

are allowed up to 5 persons.

Masking obligation only

in closed buildings.

Activities outdoors are allowed.

3

No Restriction

No restrictions.

Everything is as before COVID-19.

No safety measures.

Economy is fully active.

4

Table 5.5.: COVID-19 Measures with decreasing restriction level.

5.3.1. The SIR Model

SIR stands for Susceptible Infectious Removed, respectively Recovered. The SIR model

divides the considered population into the three mentioned categories. At the beginning

of an epidemic the number of susceptible persons is usually high while the number of

207

5. Use Cases

infectious people is low. In the course of time, the number of susceptible persons de-

creases the more people are infected by the infectious part of the population. The infected

people then change over to the category of recovered or removed people which means

that the infected persons are either recovered or dead by the effects of the disease. More-

over, the assumption in the SIR model is that recovered people are immune and cannot

become again susceptible or infectious. Persons who are vaccinated fall also into the

category of recovered people. It is important to note that the population size in total

never changes while only the size of the corresponding categories is changing, depending

on the number of infections and recoveries. The members of the population are on any

time in one of those 3 categories and switch from one category to another, while the

size of the categories can be never less than zero. The changes respectively transitions

(see Fig. 5.5) that happen between these three categories are proportional to each other

and depend on differential equations that represent the rate of change by partial derivatives.

Every category can be described by these partial derivatives (see Equations 5.1 - 5.5) in

Leibniz notation. The rate of change for the susceptible category is computed by the

differential Equation 5.1, whereby 𝛽 represents the contact rate of one person with other

persons and I the number of infected persons. Since the number of susceptible persons S
decreases with each infection, the minus sign in front of 𝛽 indicates the decreasing slope

of the susceptibility curve.

dS
dt

= −𝛽IS (5.1)

Equation 5.2 allows the computation of the infections curve, whereby 𝛾 represents the

duration rate of infected persons until their recovery. For instance, if the average recovery

time of a infected person lasts D days, then 𝛾 is determined by 1/𝐷 . Since the decreasing
number of susceptible people is proportional to the number of infections through infected

people, the number of infected people I is multiplied with the number of susceptible people

S, whereby the rate of recovered people 𝛾 I is subtracted from the number of new infections.

dI
dt

= 𝛽IS − 𝛾 I (5.2)

Equation 5.3 represents the recovery rate that is the recovery rate 𝛾 times the number of

infected people.

dR
dt

= 𝛾 I (5.3)

5.3.2. The SEIR Model

The SEIR model is an extension of the SIR model. It introduces Exposed as an additional

category that reproduces the fact that people may be infected but not yet infectious, since

it depends on the incubation time of the virus, when an infected person is also infectious

208

5.3. UC4: COVID-19 Measures for Public Health and Economy

to susceptible persons. Thus, this model is more fine-grained and accurate than the SIR

model which is why the SEIR model was preferred in this work rather than the SIR model.

Equation 5.4 is computed by the contact rate 𝛽 times the number of susceptible people times

the number of infectious people minus the rate of people that passed by the incubation

time, whereby a is the average incubation time period defined by 1/𝑎 respectively 𝑎−1
.

Figure 5.5.: Transition model of the SEIR [1] categories.

dE
dt

= 𝛽SI − aE (5.4)

The rate of infections I with respect to time t, is reproduced by Equation 5.5. The equation

depicts that from the rate of exposed people who passed the incubation period, the number

of infected people who recovered, is subtracted.

dI
dt

= aE − 𝛾 I (5.5)

Since the introduced differential equations maintain a closed system, neither people are

lost nor added to the population N which is reflected in Equation 5.6.

S + E + I + R = N (5.6)

Since in this use case scenario, the number of available or missing hospital beds shall

be related to the development of COVID-19 cases, additional rates and equations have

to be considered within the representation of the task specification. To reproduce and

simulate how the rate of available hospital beds is increasing or decreasing over time with

respect to infections and recoveries, differential Equation 5.7 was devised in the scope

of this work, whereby B is the current number of available hospital beds, Btotal the total

number of hospital beds within a country, 𝛿 the average rate of infections that require

hospitalisation, I the number of infections and 𝜔 the average recovery rate of hospitalised

patients.

dB
dt

= −(I ∗ 𝛿) + ((Btotal − B) ∗ 𝜔) (5.7)

Additionally, it has to be modelled how taken measures respectively actions (see Table 5.5)

influence the rate of change of susceptible and exposed persons. The action related impact

factor that expresses the influence of the given measures to the number of cases, is

209

5. Use Cases

represented by the parameter 𝛼 . The lower the action impact factor 𝛼 is, the higher is the

restrictive character of the measure and this in turn lowers the number of new infections.

Therefore, Equation 5.1 and 5.4 have to be expanded by parameter 𝛼 to Equation 5.9 and

Equation 5.10, whereby the value of 𝛼 ranges between 0 and 1, see Definition 5.8. As

example, the action TotalConfinement might have an impact factor of 0.25, while taking

the action named NoRestriction would probably yield in an impact factor of 1.0. In this

case, the number of susceptible persons decreases by factor 3/4 faster than in the case of a

total confinement measure.

{𝛼 ∈ R : 0 ≤ 𝛼 ≤ 1} (5.8)

dS
dt

= −𝛼𝛽IS (5.9)

dE
dt

= 𝛼𝛽SI − aE (5.10)

With the previously defined differential equations based on the SEIR model, the agent

framework is enabled to simulate the dynamics of a COVID-19 pandemic with respect to

the given SEIR categories and the number of available hospital beds. However, what still

is missing, is a metric that allows taking into account the impact of the given measures to

the economy. Here the agent framework provides by its feedback mechanism a means

that allows the expression and simulation of economic importance.

The importance of economy can be represented by reward values that are assigned to

agents, for imposing a measure. The more restrictive a measure might be, the lower is

the reward an agent receives for imposing this measure. However, this also depends

highly on factors such as the number of severe illnesses with respect to available hospital

beds. The provision of healthcare is likely to be more important than the stability and

growth of economy. It depends finally on the value system, priorities and objectives how

reward values are assigned for the corresponding measures. If the public health in a

country has a high priority, then imposing most restrictive measures will yield in a high

reward while less restrictive or no measures will yield in a low reward or even punishment.

The domain expert respectively user of the agent framework has finally to decide the

prioritisation of objectives and the accompanying measures. Table 5.6, Table 5.7 and

Table 5.8 show three example configurations for rewards that are assigned, depending on

the performed measure’s restriction level and available hospital beds. For instance, if less

than 5% of the existing hospital beds are available and a total confinement is conducted,

then the configuration of Table 5.7 suggests to assign a reward value of 10 to the agent.

Since the objective is to keep the exposures and infections low, the proposed configuration

of Table 5.7 fosters a high restrictive measure by the high reward value, while the con-

figuration of Table 5.6 punishes in total the upcoming situation of missing hospital beds.

210

5.3. UC4: COVID-19 Measures for Public Health and Economy

Table 5.8 is a variation of Table 5.6 that keeps the range of rewards and the punishments

small, i.e. between -1 and 1 instead of between 1 and -10.

Considering the economic objectives, in all three configurations a high restrictive measure

with more than 5% available hospital beds yields in a lower reward value than a less

restrictive measure. In this way, the trade-off between saving the public health and the

preservation of economy are addressed by fostering measures that contribute to both

contradicting objectives.

Later, in the evaluation, the configuration of Table 5.6, Table 5.7 and Table 5.8 are adopted

to show what impact the reward assignment configurations and varying hyper-parameter

configurations have to the SEIR categories and the performed action sequences.

Measures (Actions) Available Hospital Beds Assigned Reward Values
Total Confinement ≤5% -2.5

Total Confinement > 5% 0.25

Soft Confinement ≤ 5% -5,0

Soft Confinement > 5% 0.5

Some Restriction ≤ 5% -7.5

Some Restriction > 5% 0.75

No Restriction ≤ 5% -10.0

No Restriction > 5% 1.0

Table 5.6.: First configuration of reward assignment based on hospital beds and taken

measure.

Measures (Actions) Available Hospital Beds Assigned Reward Values
Total Confinement ≤5% 10

Total Confinement > 5% -1

Soft Confinement ≤ 5% 5

Soft Confinement > 5% -0.5

Some Restriction ≤ 5% -5

Some Restriction > 5% 0.5

No Restriction ≤ 5% -10.0

No Restriction > 5% 1.0

Table 5.7.: Second configuration of reward assignment based on hospital beds and taken

measure.

211

5. Use Cases

Measures (Actions) Available Hospital Beds Assigned Reward Values
Total Confinement ≤ 5% -0.25

Total Confinement > 5% 0.25

Soft Confinement ≤ 5% -0.5

Soft Confinement > 5% 0.5

Some Restriction ≤ 5% -0.75

Some Restriction > 5% 0.75

No Restriction ≤ 5% -1.0

No Restriction > 5% 1.0

Table 5.8.: Third configuration of reward assignment based on hospital beds and taken

measure.

212

5.4. UC5: Domestic Activities

5.4. UC5: Domestic Activities

Agents, e.g. in service robotics, operating in domestic environments need to be able to

switch between different contexts, i.e. heterogeneous locations, goals and activities, and

therefore, have to be able to decide on an appropriate action for each state. A prerequisite

here is that agents have to know all action sequences and their relatedness to states in

advance before they can be applied in domestic environments. Heterogeneous domestic

activities require heterogeneous strategies and the larger the state and action space, the

more difficult it is for agents to learn context-appropriate policies. Moreover, contexts

may be closely related and actions may be available as options across contexts. In addition,

a task or activity can be performed in alternative ways and a challenge for the agent is to

find, depending on observed states, the best action sequence that the domestic context

requires.

However, the capabilities an agent might have, depends also on its environment and con-

text, since context and environment determine which devices, i.e. actuators, are available

and accessible. For instance, in the kitchen an agent may have other devices and thus,

options for action than in the living room.

In order to evaluate the earlier discussed problems and challenges in domestic environ-

ments, the Virtual Home (VH) [202] dataset serves as ground-truth, as it provides agent

programmes consisting of ordered action sequences for domestic activities. Furthermore,

it provides for many of the activities also alternative agent programs, so that varying

action sequences for same or similar activities and purposes can be considered within the

foreseen evaluation (see Sec. 6.3).

The VH dataset consists of 1563 agent programs (i.e. action sequences) of domestic activi-

ties, e.g.make coffee, with 1973 atomic actions that can be performed by virtual agents.

The dataset is needed for simulating environmental contexts and feedback, enabling the

evaluated agents to learn or compose policies.

An agent programme always has the same structure in the given dataset, as shown

in Listing 5.1. The agent programme first starts with the name of the activity, then a

description text is given in the second line, which characterises the activity. Finally, an

action with associated objects is defined in each new line. The enumeration of actions gives

a fixed order that is to be followed from top to bottom. The index numbers in each line

refer to the corresponding objects on which the action is performed. The index numbers

are necessary because the objects are to be addressed distinguishably by the corresponding

actions. An activity (see example in Listing 5.2) is thus determined by its action sequence.

For this reason, in the context of this thesis activity and task are viewed synonymously:

Listing 5.1: Virtual Home dataset structure [153].

1 Name of the activity

2 Natural language description of the activity.

213

5. Use Cases

3

4 [Action 1] <object> (index of object)

5 [Action 2] <object> (index of object)

6 ...

7 [Action n] <object> (index of object)

Listing 5.2 illustrates an example activity namedWatch_TV_49 implementing the structure

of the VH dataset.

Listing 5.2: Watch_TV_49 data sample [153].

1 Watch TV

2 walk to living room, find couch, sit on couch, find remote control,

3 turn on tv by pressing button

4

5

6 [Walk] <living_room> (1)

7 [Walk] <couch> (1)

8 [Find] <couch> (1)

9 [Sit] <couch> (1)

10 [Find] <remote_control> (1)

11 [Find] <television> (1)

12 [TurnOn] <television> (1)

What is noticeable is that no states are taken into account in the VH dataset. In the context

of the agent framework, the lack of state definitions makes it necessary to define a task

description with states that determine the completion of a single action. This is because an

agent interacting with the simulation component of the agent framework cannot proceed

to the next action and continue the activity until the last action has been successfully

executed and the new state has been reached or, detected by the simulator, in which the

next action can be executed. Listing 5.3 shows a task entity description of the previously

shown domestic task (Watch_TV_49, see Listing 5.2) with an example state, observation

feature, optional transition, action, and effect entity.

Listing 5.3: The semantic entity description of the activity named Watch_TV_49 in Turtle

format [153].

1 # Prefix, i.e. Namespace, Definitions

2 @prefix entity: <http://example.org/Entity/> .

3 @prefix property: <http://example.org/Property/> .

4 @prefix concept: <http://example.org/Concept/> .

5 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

6 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

7 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

8

9 # Activity Entity (Watch_TV_49) (Mandatory)

214

5.4. UC5: Domestic Activities

10 entity:Watch_TV_49 a concept:Activity;

11 property:isSequential "true"^^xsd:boolean;

12 property:hasNumberOfActors "1"^^xsd:integer;

13 property:hasCommunicationType "Asynchronised"^^xsd:string;

14 property:hasState entity:Walk_living_room_1_Done;

15 property:hasState entity:Walk_couch_1_Done;

16 property:hasState entity:Find_couch_1_Done;

17 property:hasState entity:Sit_couch_1_Done;

18 property:hasState entity:Find_remote_control_1_Done;

19 property:hasState entity:Find_television_1_Done;

20 property:hasState entity:TurnTo_television_1_Done;

21 property:hasState entity:InitialState_Watch_TV_49;

22 property:hasState entity:FinalState_Watch_TV_49;

23 property:hasObservationFeature entity:IsWalk_living_room_1;

24 property:hasObservationFeature entity:IsWalk_couch_1;

25 property:hasObservationFeature entity:IsFind_couch_1;

26 property:hasObservationFeature entity:IsSit_couch_1;

27 property:hasObservationFeature entity:IsFind_remote_control_1;

28 property:hasObservationFeature entity:IsFind_television_1;

29 property:hasObservationFeature entity:IsTurnTo_television_1;

30 property:hasAction entity:Walk_living_room_1;

31 property:hasAction entity:Walk_couch_1;

32 property:hasAction entity:Find_couch_1;

33 property:hasAction entity:Sit_couch_1;

34 property:hasAction entity:Find_remote_control_1;

35 property:hasAction entity:Find_television_1;

36 property:hasAction entity:TurnTo_television_1;

37

38 # An Exemplary State Entity (Mandatory)

39 entity:Walk_living_room_1_Done a concept:State;

40 property:isGoal "false"^^xsd:boolean;

41 property:isFinalState "false"^^xsd:boolean;

42 property:isInitialState "false"^^xsd:boolean;

43 property:hasExpression "IsWalk_living_room_1 == 1"^^xsd:string;

44 property:hasReward "0"^^xsd:double;

45 property:hasObservationFeature entity:IsWalk_living_room_1;

46 property:hasAction entity:Walk_couch_1 .

47 ...

48

49 # An Exemplary Observation Feature Entity (Mandatory)

50 entity:isWalk_living_room_1 a concept:ObservationFeature;

51 property:hasRangeStart "0"^^xsd:double;

52 property:hasRangeEnd "1"^^xsd:double;

53 property:hasFeatureType "NOMINAL"^^xsd:string;

54 property:hasUnit ""^^xsd:string .

55 ...

56

215

5. Use Cases

57 # An Exemplary Action Entity (Mandatory)

58 entity:Walk_living_room_1 a concept:Action;

59 property:HasTransition entity:bec16c1e-b08e-496b-ba10-95e85be65fb9;

60 property:HasEffect entity:SetWalk_living_room_1.

61 ...

62

63 # An Exemplary Transition Entity (Optional)

64 entity:4cd8f07f-c79f-45f9-b872-25b8cbb0e42f a concept:Transition;

65 property:HasPreviousState entity:Walk_living_room_1_Done;

66 property:HasNextState entity:Walk_couch_1_Done;

67 property:HasAction entity:Walk_couch_1;

68 property:HasTransitionProbability "1"^^xsd:double.

69 ...

70

71 # An Exemplary Effect Entity (Mandatory)

72 entity:SetWalk_living_room_1 a concept:Effect;

73 property:hasImpactType "ON"^^xsd:string;

74 property:hasObservationFeature entity:IsWalk_living_room_1 .

75 ...

The heterogeneity of contexts in domestic settings is a desirable feature for the intended

evaluation, especially with regard to a) the composition of policies in multi-context settings

(see Sec. 6.2.3.2), and b) the retrieval and adaptation of similar task policies (see Sec. 6.2.3.1).

216

5.5. Summary of this chapter

5.5. Summary of this chapter

In this chapter four different use cases and tasks of heterogeneous domains were discussed.

The use cases respectively tasks range from domestic activities, automated web tasks,

clinical pathways to measures for combating the COVID-19 spread while saving the econ-

omy. In this context, it was shown which formal concepts are required to implement the

use cases within the agent framework. Furthermore, the MiniWob++ benchmark was

introduced that has been adopted and utilised for evaluating the automation of web tasks,

such as for instance, booking flights. Furthermore, DOM trees as state representation of

automated web tasks were introduced.

Considering the medical domain, a clinical pathway (CD) and its task representation with

respect to MDPs have been outlined. We have seen that heterogeneous data (i.e. medical

records, vital sign data) have to be used and consolidated for clinical pathways, in order

to allow agents patient-specific (i.e. personalised) treatment and activity recommendations.

The previously discussed related works regarding the COVID-19 pandemic, inspired and

motivated the penultimate use case of this work. In this scope, different existing com-

partmental models, i.e. SIR and SEIR, were introduced and utilised for the corresponding

COVID-19 task. The main objective in this use case that was adopted for demonstration

purposes from [168] is to address the trade-off between the safety of public health and

stability of economy. In particular, the aim is to demonstrate that the agent framework is

able to formally represent and implement (i.e. simulate) different mathematical models

that reproduce natural phenomena and long- or short-term effects with respect to time.

The presented COVID-19 use case serves as means for the evaluation of the agent frame-

work. The objective is to demonstrate the applicability and flexibility of the framework in

heterogeneous domains and for different types of tasks, as outlined in Table 5.1.

Domestic activities play a particularly important role in service robotics. Agents in do-

mestic environments are confronted with different and changing contexts and have to

react adequately. This can be a challenging task, especially with a high number of possible

states and actions. The agent framework also tries to implement approaches here that

enable the agents to adapt policies on the one hand and to request context-adapted action

sequences, i.e. policies, on the other hand.

As a description of domestic activities, the Virtual Home
14
dataset was introduced, which

was transformed into semantic task descriptions for evaluation purposes and serves as

ground-truth for several of the conducted evaluations in Sec. 6.

Lastly, the understanding of the use cases provides the foundation for understanding and

assessing the evaluation of the agent framework with respect to the presented use cases.

14 http://virtual-home.org/

217

6. Evaluation

This chapter presents the evaluation carried out as part of the doctoral thesis and its

results with regard to the use cases presented in Chapter 5 and the research questions and

hypotheses presented in Chapter 1.

Each evaluation aspect introduced with the overall objectives of the proposed agent

framework is outlined in terms of the posed RQs and hypotheses. In addition, further

evaluation-related hypotheses are derived that substantiate the assumptions about the

agent framework and the provable evaluation objectives. Subsequently, the objectives,

corresponding questions and applied metrics of the conducted evaluation are outlined.

The evaluation should show that the agent framework fulfils the goals and requirements

of the established hypotheses, RQs and use cases across domains.

6.1. RQ1: Cold-Start Problem

Chapter 1 outlined that prior domain knowledge from the beginning of an agent’s lifespan

is crucial, because the agent should display immediately, in real environments, a well-

defined behaviour in order to solve assigned tasks appropriately. Otherwise, a cold-start

of the agent leads to undefined and risky behaviour that can cause damage to the environ-

ment, the user and the agent itself. Moreover, the agent has usually no unlimited time to

adapt its behaviour to the appropriate task and its requirements. Thus, a fast adaptation

to upcoming, individual requirements is not only desirable but necessary.

To show that the agent framework prevents cold-start for RL agents, two other indepen-

dent agents, i.e. a rule-based agent and an untrained RL agent, were evaluated and their

performance was compared with the performance of the RL agent that was trained by the

simulation component of the proposed agent framework.

The untrained RL agent faces the cold-start problem, since it has no prior knowledge and

has to learn the appropriate policies for solving a task from scratch.

The rule-based agent serves as baseline since it has prior knowledge provided by the task

description and the contained state rules that allow the agent to recognise the current

state and act appropriate to the related actions that are defined within the semantic

task specification. In the use case Chapter 5.1 such state rules are provided as example.

Equation 6.1 shows a general representation of state rules. An arbitrary number of

219

6. Evaluation

observations and their assigned values build terms that are logically concatenated and

indicate together the corresponding state.

rule := {observation1 = value1, observation2 = value2, ...observationn = valuen} → {staten}
(6.1)

In the task entity description to every state a set of possible actions is assigned and the rule-

based agent can select on each execution step, one of the provided actions. Pre-condition

is that the domain expert provides in the related task description the state rules and the

related actions. However, if multiple actions are related to one state, the rule-based agent

has only the opportunity to decide randomly which action to conduct while it stays unclear

if the selected action is the best one that can be selected from the set of alternative actions.

This restriction indicates the problem that is given in plain rule-based approaches. The

rule-based agent cannot evaluate and determine which of the given actions is the one that

maximises the utility and contributes for solving the task in an intended manner. The

ambiguity that is given in both check-box tasks (see Chapter 5.1.2), demonstrates as well

the limitations of the rule-based approach.

Retrospect RQ1:

RQ1 Can the presented agent framework train different kinds of software agents by formal

specification and simulation of tasks in such a way that they show a well-defined

and beyond state-of-the-art behaviour in solving different tasks from the beginning

of their runtime or at least within a short period of time?

Retrospect H1:

H1 Simulating tasks based on a thorough semantic formalisation of Markov decision

processes (MDPs) allows, for software agents, a warm-start in terms of a fast adaptation

and positive feedback that reflects the performance of the RL agent.

6.1.1. General Goals addressing RQ1

The aim is to enable domain experts to provide formally specified prior domain knowledge

in an abstracted and relative simple way to one or multiple agents, even if the domain

experts are not technically inclined and have no knowledge of formal and rule-based lan-

guages. At the same time, immediately or after a few execution steps, a high performance

in terms of maximising the agent’s utility function, should be achieved by the agent. Thus,

agents of this framework shall be enabled to achieve a high performance (i.e. positive,

increasing cumulative reward) in a relatively short timespan, i.e. a few execution steps

and increase or keep this performance constantly high. Considering the problem and

requirements of RQ1, the following evaluation questions (EQ) were derived and have to

be answered by the corresponding evaluation.

EQ1 Does the agent achieve a high performance, i.e. positive, increasing cumulative

reward, within a low number of execution steps?

220

6.1. RQ1: Cold-Start Problem

Based on hypothesis H1, the following evaluation hypotheses can be stated:

EH1.1 The RL agent, trained by the agent framework, requires for the most performed

web tasks on average less episodes than the untrained RL agent and the rule-based

agent, until it achieves a high performance, i.e. a cumulative reward > 0, especially

if ambiguous tasks (see check-boxes tasks) are given, whose state representations

are not clear during training time.

EH1.2 The RL agent that is trained by the agent framework, achieves on average a higher

reward per episode and consequently a higher cumulative reward for all executed

web tasks than the untrained RL agent and the rule-based agent.

Based on these two hypotheses, metrics were derived that are outlined in the next section.

6.1.2. Metrics

The utility or performance of an agent can be measured both by the cumulative reward
(see Sec. 2.3.7), the agent receives for its performed actions as well as by the number of
execution steps, the agent requires to solve a task within an episode. A task is solved and an

episode finished, if all specified goal states and a final state of the task are achieved.

Which criterion to evaluate, depends on whether an agent should solve a task quickly

(i.e. with a low number of execution steps) or by gaining the maximum expected reward

until the task is solved. Since, in the conducted training phase, the number of episodes are

defined by domain experts and therefore are fixed, the objective is to demonstrate that

an agent, trained by the framework, can achieve compared to other agents, a high perfor-

mance in a relatively short timespan, i.e. in a few episodes, while keeping this performance

high with respect to the received rewards. The assumption is that both observations, i.e.

number of episodes until a utility maximising behaviour is achieved and the received cumu-

lative reward along performed episodes, indicate whether an agent faces a cold-start or not.

To assess whether the agent framework prevents a cold-start the following metrics are

applied:

M1.1 The policy adaptation or learning speed is measured by the mean number
of episodes until the agent receives increasing positive cumulative rewards (i.e.

reward > 0), (see Eq. 6.2).

M1.1 :

1

𝑁

∑︁
1≤𝑖≤𝑁
1≤ 𝑗≤𝑇

kij, kij =

{
1 𝑟𝑖 𝑗 ≤ 0

0 𝑟𝑖 𝑗 > 0

rij ∈ R, kij ∈ N, (6.2)

where 𝑟𝑖 𝑗 is the obtained cumulative reward value per run and episode, 𝑘𝑖 𝑗 is a constant

that depends on the 𝑖 𝑗 𝑡ℎ episode’s cumulative reward, 𝑁 is the total number of performed

evaluation runs and 𝑇 is the total number of episodes within one run.

221

6. Evaluation

M1.2 The performance of the appropriate agent is evaluated by themean cumulative
reward among all performed episodes, (see Eq. 6.3).

M1.2 :

1

𝑁

𝑁∑︁
𝑖=1

ri, ri ∈ R, (6.3)

where 𝑟𝑖 is the cumulative reward per episode and 𝑁 the total number of episodes required.

In the following sections, the set-up of the experiments as well as the results are presented

and discussed in detail.

6.1.3. Set-up

Five of the web automation tasks that were introduced in Chapter 5.1, are evaluated by

means of the MiniWob++ benchmark and were presented in the K-CAP 2019 conference

paper [155], together with a demo application that is available on Github
1
. For this purpose,

it was required to implement a NodeJS based JavaScript program that allows the different

agent types to interact via the Selenium Webdriver with the web tasks of the MiniWob++

benchmark. This program, respectively script contains three agent related functions that

allow the execution of the agent-specific program.

Each agent (i.e. rule-based, (un-)trained RL agent) utilises the same semantic task entity

description, that defines the task representation in terms of states, actions, features, effects,

etc. Thus, every agent has the same set of actions available from that it can select actions

to solve the given task at hand. Moreover, every agent is restricted in its execution to 1000

episodes per task. These 1000 episodes are executed 10 times for every agent so that in

summary every agent performs 10000 episodes per task. Then the mean of the obtained

rewards is adopted for each episode. The execution of 10 runs ensures the elimination of

noise and the receipt of more reliable data.

It is important to note that the trained RL agent was trained with the simulator component

of the proposed agent framework and not with the MiniWob++ benchmark. This is due to

the fact that the training and test data have to be different in order to make an unbiased

and valid evaluation, see also the description of the use case in Chapter 5.1. Furthermore,

the aim is to evaluate whether the proposed agent framework has a positive effect on the

performance of the trained RL agent compared to the other two agents evaluated.

For each agent, the reward per episode as well as the cumulative reward are determined in

order to evaluate and compare the performance of the different agents. Figure 6.1 depicts

the set-up of the previously described evaluation.

1 https://github.com/nmerkle/K-Cap-2019-Demo

222

6.1. RQ1: Cold-Start Problem

To show that the reward scores obtained per episode were significantly different, the effect
size, i.e. Cohen’s d [44] (see Eq. 6.4) together with confidence intervals [179] (see Eq. 6.5)
were applied to the reward value probability distributions of the compared agents with

a coverage of 95%. Confidence intervals, provided they do not overlap, clearly indicate

whether two probability distributions are significantly different, while effect size indicates
how pronounced the differences between two probability distributions are. According to

Cohen, an effect size between 0.2 and 0.5 indicates a small effect, between 0.5 and 0.8 a

medium effect, and an effect size greater than 0.8 a strong effect [44].

Eq. 6.4 depicts Cohen’s d effect size calculation:

d =
𝑥1 − 𝑥2√︃
(𝑠2

1
+ 𝑠2

2
)/2

(6.4)

where 𝑥1 and 𝑥2 are the mean values and 𝑠1 and 𝑠2 the standard deviations of the compared

distributions.

Eq. 6.5 shows the calculation of confidence intervals assuming that a Gaussian
2
. probability

distribution is given.

xl, xu = x̄ ± z · 𝑠
√
𝑛

(6.5)

where 𝑥𝑙 is the lower bound, 𝑥𝑢 is the upper bound of the confidence interval, 𝑥 is the

mean value, 𝑧 is the z-score value3, 𝑠 is the standard deviation and 𝑛 is the sample size of

the considered probability distribution.

Both RL agents (i.e. trained and untrained) utilise Karpathy’s reinforcejs
4
library that im-

plements different RL algorithms, i.e. SARSA, Q-Learning, Deep-Q-Neural Network (DQNN),
Tabular Temporal Difference Learning and Stochastic/Deterministic Policy Gradients. For
the evaluation the RL agents apply the DQNN algorithm, since it supports continuous

state features and discrete actions, while the other provided RL algorithms are restricted

to finite state spaces.

The trained and untrained RL agent are configured with the same hyper-parameters, i.e.

learning rate (alpha): 0.01 and greedy value (epsilon): 0.1, discount factor: 0.75,
number of hidden units: 100 and batch size: 5000. This configuration was determined

by hyper-parameter optimisation as the best performing one. The rule-based agent does

not require hyper-parameters and acts only based on the corresponding state rules and

related actions that are provided by the defined task entity description
5
.

The MiniWob++ benchmark serves as the ground-truth, since it assess the performed

actions and determines the finalisation of the mini web tasks, while it provides numerical

2
Due to the sample size of the evaluation, it can be assumed that the distributions are Gaussian.

3
For covering 95% of the distribution’s data, the used z-score value is 1.96.

4 https://cs.stanford.edu/people/karpathy/reinforcejs/
5 https://raw.githubusercontent.com/nmerkle/K-Cap-2019-Demo/master/task.json

223

6. Evaluation

Figure 6.1.: Set-up for the evaluation of automated web tasks. The trained RL agent was

previously trained with the simulation component of the proposed agent

framework.

224

6.1. RQ1: Cold-Start Problem

feedback to the agent by reward values that range from -1 to +1. If a task is solved cor-

rectly and as quick as possible, the agent receives a reward value that is located nearly +1,

while not solving the task in time, leads to a punishment of -1. Since the reward value

decreases over time, an agent can never receive an exact reward of +1 due to latency when

performing an action. In every task episode the agent performs an arbitrary number of

actions (i.e. action sequence) in order to solve the task. Ultimately, the agent requires to

learn the right sequence of actions in order to solve the web tasks successfully.

To visualise the agent’s performance, CSV
6
files are generated that contain for every run

and every episode the received mean reward and the cumulative reward. The development

of the average reward for all steps completed in an episode and the cumulative reward

per episode are visualised by scatter plots. The x-axis of the scatter plots represents the

episodes while the y-axis represents the reward values and cumulative reward values.

Furthermore, the plotted histograms show the frequency and distribution of positive and

negative rewards among all performed tasks.

By means of these plots, it can be determined which agents achieve a high performance

within a certain timespan. A steep increase of the curve indicates that the agent learns

fast by increasing its utility function with positive reward values. At a certain point the

performance stays constantly what shows that the agent has reached its level of optimal

experience and stops to learn.

6.1.4. Results and Discussion

This section presents, discusses and interprets the evaluation results, concerning the

cold-start problem. Table 6.1 lists for each evaluated agent and web task, the obtained

evaluation results.

As previously outlined, the number of episodes until the agent maximises its utility as

well as the mean reward per episode and cumulative reward for solving the entire task,

were assessed.

Considering the results, it is evident that the RL agent that was trained beforehand by the

proposed agent framework achieves for almost every task, besides of the click button and

click button sequence task, the best results regarding the observed and evaluated indicators.
It turns out that the trained RL agent shows its strength especially regarding the click
check-boxes tasks and the flight booking task. This can be explained by the fact that both

click check-boxes tasks have an ambiguous state representation because the task descrip-

tion provides for both tasks the exact same state representation. Thus, the agent needs

to randomly select one of the two possible actions (i.e. clicking check-boxes by label or

clicking check-boxes by synonym) that meet the requirements of the task. The distinction

between the two tasks is only possible for the agent if the MiniWob++ benchmark gives

instructions at runtime as to whether the agent should click check-boxes with the exact

6
Comma-separated values.

225

6. Evaluation

labels or with synonymous labels of the words listed in the instruction text.

The rule-based agent fails most of the time in this task, since it strictly follows the rules that

are provided by the task description, and since these rules do not provide a clear distinction

between both check-box state representations, the agent can only randomly select one

of the click check-box’s actions which leads to a 50% probability of either selecting the

right or wrong action. The hypothesis and conclusion from the above observations is that

the rule-based agent lacks flexibility and thus generalisability because it can only address

deterministic decision processes that show no ambiguity and no uncertainty.

In other words, the rule-based agent has the disadvantage that a) it cannot include ad-

ditional rule-independent information in its reasoning process, since this information is

unknown before runtime and b) it adheres strictly to the given rules and learns nothing

and therefore cannot adapt itself to the requirements of the task. In order to enable the

rule-based agent to perform well, the rules have to be extended and adjusted by the de-

veloper, what shows that the rule-based agent is inflexible to changing and previously

unknown requirements and states.

In contrast, the trained RL agent has the advantage, that it has previously learned to

perform the click check-box actions and by the feedback of the simulation framework, it

adjusts its learned policies to the correct actions that are requested by the instruction text.

Therefore, the trained RL agent incorporates the words of the instructions text into its

state representation which helps to adjust the policies appropriate to the task requirements

of the MiniWob++ benchmark.

The RL agent that is untrained and learns its policies from scratch, also manages to perform

the task correctly by means of the benchmark’s feedback that in turn helps to eliminate

the state representation related ambiguity. However, the untrained RL agent requires

many more training episodes than the trained RL agent, until it learns the corresponding

policies what reveals the cold-start problem.

It can be observed that the results obtained differ significantly in terms of performance

(i.e. mean reward scores collected per episode) across agents, as shown by the effect sizes

and confidence intervals in Table 6.2 and Table 6.3. For instance, the lower and upper

bounds of the different confidence intervals that delimit the distribution of reward scores

for each agent do not overlap, indicating that the distributions of the data are outside

the 5% mutual significance level and implying that the distributions of reward scores are

significantly different. In addition, absolute effect size values greater than 0.8 indicate

that strong effects cause the strong differences in the performance of the evaluated agents.

Based on these statistics, it can be assumed that the pre-training of RL agents via the

simulation component has a significant and strong effect on their performance. Table 6.3

illustrates that between the compared reward value distributions, medium and strong

effect sizes prevail depending on the task performed.

226

6.1. RQ1: Cold-Start Problem

Agents Tasks

Select
List

Option

Click
Button

Click
Button

Sequence

Click
Check-
boxes
by

Synonym

Click
Check-
boxes
by

Label

Book
Flight

Rule-
based
Agent

Episodes
until
pos.
cum.
reward

1 1 1 2 15 1000

Cum.
Reward 736.822 967.848 767.911 21.756 15.747 -513.63

Reward
per

Episode
0.737 0.968 0.768 0.022 0.016 -0.514

Trained
RL

Agent

Episodes
until
pos.
cum.
reward

1 1 1 37 61 6

Cum.
Reward 823.847 759.728 654.491 780.974 826.733 269.2

Reward
per

Episode
0.824 0.760 0.654 0.781 0.827 0.269

Untrained
RL

Agent

Episodes
until
pos.
cum.
reward

1000 3 3 852 1000 1000

Cum.
Reward -72.873 931.947 232.615 92.954 -729.033 -924.13

Reward
per

Episode
-0.073 0.932 0.233 0.093 -0.729 -0.924

Table 6.1.: Performance table for every agent and web task with respect to the number of

episodes, cumulative reward and mean reward per episode. The bold values

show the best results.

227

6. Evaluation

Agent type/Task
Confidence
interval
95% coverage

Select
List
Option

Click
Button

Click
Button
Sequence

Click Checkboxes
By Synonym

Click Checkboxes
By Label Book Flight

Rule-based Agent min. value 0.731 0.966 0.756 0.063 -0.002 -0.557

max. value 0.743 0.970 0.779 0.123 0.034 -0.469

Trained RL Agent min. value 0.813 0.756 0.641 0.768 0.811 0.239

max. value 0.835 0.763 0.668 0.794 0.842 0.298

Untrained RL Agent min. value -0.098 0.926 0.217 0.003 -0.744 -1

max. value -0.048 0.937 0.249 0.04 -0.714 -1

Table 6.2.: The table shows the confidence intervals of the rewards received by the agents

per web task. The confidence intervals represent a 95% coverage of the reward

values. It can be seen that the confidence intervals do not overlap and thus the

results differ significantly.

Compared Agents
Select
List
Option

Click
Button

Click
Button
Sequence

Click Checkboxes
By Synonym

Click Checkboxes
By Label Book Flight

Trained RL Agent /
Rule-based Agent 0.62 -4.44 -0.55 2.97 2.95 1.31

Trained RL Agent /
Untrained RL Agent 2.91 -2.31 1.74 1.83 6.2 3.81

Untrained RL Agent
Rule-based Agent -2.78 -0.53 -2.37 0.18 -2.74 -0.98

Table 6.3.: The table displays the Cohen’d effect size between the different distributions of

reward values obtained by the evaluated agents. The interpretation of effect

size values is as follows: +/-0.2 till 0.5 small effect, +/-0.5 till +/-0.8 medium

effect, > +/-0.8 strong effect.

228

6.1. RQ1: Cold-Start Problem

Table 6.1 shows in detail that for the list option, click button and click button sequence task,
the rule-based agent as well as the trained RL agent require the same number of episodes

until they obtain a positive cumulative reward. However, for solving the list option task,

the trained agent obtains a higher mean reward per episode and consequently a higher

cumulative reward than the rule-based agent, while the rule-based agent outperforms the

trained RL agent in both click button tasks regarding both performance indicators.

In the list option task, the untrained RL agent fails to obtain a positive reward. It can be

assumed that the untrained RL agent requires many more episodes to achieve a comparable

performance as the rule-based agent and trained RL agent.

A surprising result is that the untrained RL agent turns out to perform better w.r.t. the

obtained cumulative reward than the trained RL agent when it comes to solve the click
button task. However, the trained RL agent performs better in the click button sequence
task, which requires more action steps than the click button task. However, the trained RL

agent requires only 1 episode while the untrained agent requires 3 episodes. Although, at

first glance, the trained agent seems to be outperformed by the rule-based agent regarding

both click button tasks, it turns out that its performance is nevertheless sufficient and

close to the rule-based agent.

For the click check-boxes tasks, the trained RL agent requires a few episodes more than

the rule-based agent until it receives a positive cumulative reward. However, the trained

RL agent outperforms significantly the rule-based agent and untrained RL agent when it

comes to assess the obtained mean reward per episode and cumulative reward.

The flight booking task is the most complex task of the evaluated web tasks. Considering

this task, the trained agent shows its superiority in terms of performance and adaptation

speed, while the rule-based agent and untrained agent show an insufficient performance.

The following plots confirm the discussed results visually.

Considering the performance and adaptation time span of the trained agent, the plots show

in almost all tasks, the steep increase of obtained rewards in a relatively short timespan

(i.e. number of episodes). This observation seems to confirm the assumptions posed in

H1.1 and H1.2. Hence, it can be stated that the agent framework helps RL agents to avoid

a cold-start and enables a fast adaptation to task requirements.

229

6. Evaluation

(a) Select list option task. (b) Click button task.

(c) Click button sequence task. (d) Click checkboxes by synonym task.

(e) Click checkboxes by label task. (f) Flight booking task.

Figure 6.2.: Every agent’s cumulative reward for every evaluated web task.

230

6.1. RQ1: Cold-Start Problem

Figure 6.3.: Performance of each agent w.r.t. the select list option task [155].

231

6. Evaluation

Figure 6.4.: Performance of each agent w.r.t. the select click buttons task [155].

232

6.1. RQ1: Cold-Start Problem

Figure 6.5.: Performance of each agent w.r.t. the select click button sequence task [155].

233

6. Evaluation

Figure 6.6.: Performance of each agent w.r.t. the click checkboxes by synonym task [155].

234

6.1. RQ1: Cold-Start Problem

Figure 6.7.: Performance of each agent w.r.t. the click checkboxes by label task [155].

235

6. Evaluation

Figure 6.8.: Performance of each agent w.r.t. the flight booking task [155].

236

6.2. RQ2: Context-Aware Policy Adaption and Disambiguation

6.2. RQ2: Context-Aware Policy Adaption and Disambiguation

Adaptation Domain knowledge is usually hidden in guidelines and domain or application

specific data. Thus, an objective is to enable software agents the learning and reproduction

of provided knowledge, while eliminating existing ambiguity and biases. This is necessary

because the abstraction and formalisation of human knowledge can lead to distorted, in-

complete, biased domain knowledge and wrong, ambiguous rules and policies. In addition,

generally applicable policies do not necessarily provide the best strategy in specific individ-

ual cases where customisation and personalisation of tasks is required. Different factors,

such as taking into account the target user characteristics, certain preferences, restrictions,

etc. can make it necessary, to adapt general strategies to individual requirements. For

this reason, general valid guidelines, which take all eventualities into account, should be

adaptable to individual requirements, such as e.g. restrictions, wishes and needs.

As an example, an agent can learn general valid policies for a clinical pathway (CP) that

specifies the medical treatment of patients with a heart disease (see use case at Chap-

ter 5.2). The according CP considers all relevant information, concerning the medical

history, diagnosis and possible health states of potential patients. Therefore, all relevant

and disease specific possibilities and eventualities have to be taken into account. How-

ever, every individual patient with a heart disease might differ regarding medical history,

health constitution, demographic data, etc. In these individual cases, the CP needs to be

adapted to the diagnosis, medical history, context and health constitution of the appro-

priate patient. A patient with diabetes and overweight might be treated different than a

patient who has no diabetes, but is a smoker. Therefore, recommendations in these cases

need to focus more on treatments that address the patient’s individual impairments, phys-

ical constitution, life circumstances and lifestyle, as is mainly required in precision medicine.

Another example that makes adaptation necessary, has been outlined as the two click
check-boxes web tasks were evaluated in Section 6.1. The ambiguity of the corresponding

tasks required the ability of the agent to adapt its policies in order to disambiguate the

decisions and policies. While a state representation of similar tasks can be identical, in

the task entity specification, it may vary during runtime as additional data is available

that helps to distinguish the tasks and enhances the state representation. If the agent has

learned generally applicable policies for solving a web task, it has to be able to adapt its

policies to the current task through the newly given information.

Context-Awareness Agents that have to perform activities in very different contexts,

such as in service robotics, have to be able to switch instantly between heterogeneous

contexts and adapt their behaviour. In such environments, the state and action space can

be very large, making it difficult for agents to find or learn policies that are appropriate

to the context and fulfil implicit goals. In particular, when there are many alternatives,

i.e. actions, to choose from, an agent has to be able to find and execute the best, i.e. most

reward-maximising, sequence of actions without having the necessity to learn all policies

in advance [152].

237

6. Evaluation

In addition, new contexts can arise at runtime, e.g. when new tasks are created and entered,

or devices are added that the agent should be able to use. In such cases, the agent does not

have the time to relearn policies, as it has to be able to deal with the new context immedi-

ately. For this reason, the agent framework has to be able to provide context-dependent

policies by narrowing the search space for policies, i.e. actions and states, especially when

there are many solution options from which the agent can choose.

Retrospect RQ2.1 and RQ2.2:

RQ2.1 Can the proposed framework empower a RL agent to correct wrong, ambiguous

or unspecific guidelines (i.e. policies) it has learned and adapt them to individual

task and user requirements and contextual needs?

RQ2.2 Can the agent framework combine reward-maximising policies across contexts,

i.e. across activities, that contribute to the fulfilment of activities and speed up

the provision of policies in terms of less training episodes and steps, compared to

agents that apply reinforcement learning, i.e. deep-q-learning neural networks

(DQNN), for policies learning?

Retrospect H2.1 and H2.2:

H2.1 RL agents can deal with incorrect, ambiguous guidelines and adapt their policies

(behaviour) either by changing the task representation or by feedback (e.g. datasets)

that provide user and task specific information.

H2.2 The agent framework can numerically represent the context, i.e. the state and action

space of tasks or activities, through entity embedding vectors and, based on the

spatial distance of the vectors, narrow down the agent’s context as well as speed up

policy provision. This is done by selecting action candidates that are semantically

close to the currently observed state of the agent and running them in parallel in a

simulation to determine which action promises the best result for the current state.

6.2.1. General Goals addressing RQ2.1 and RQ2.2

6.2.1.1. Goal Policies Adaptation

Learned ambiguity in domain knowledge and incorrect rules and policies should be adapted

or corrected by means of currently observed data and reinforcement learning, so that

generally valid guidelines (policies) can be refined and adapted to the specificity of the

task, the current context and the preferences and characteristics of the target user. This

consideration leads to evaluation question EQ2.1.

EQ2.1 Can agents learn specific actions or strategies via the proposed framework that

meet individual requirements and desired behaviour (i.e. high frequency of utility

maximising actions) in terms of positive feedback (i.e. cumulative reward)?

The discussed goals and question lead to the following evaluation hypothesis regarding

policies adaptation:

238

6.2. RQ2: Context-Aware Policy Adaption and Disambiguation

EH2.1 RL agents that learn default policies via the agent framework, can adapt their

policies according to feedback from the environment and the user, since the feed-

back reinforces actions that contribute to a positive reward, while it eliminates

actions from the data distribution that contribute to negative rewards. Thus, the

environment and context determines the performed actions, i.e. future behaviour

of the agent.

6.2.1.2. Goal Context-Aware Policies Combination

Agents operating in multi-context environments should be enabled to perform activities

without having to learn policies for each context-specific activity. The framework should

therefore combine optimal policies that are derived from the agent’s context. Even if there

are many actions to choose from, an agent should be given the action sequence that is most

reward-maximising and helps the agent to obtain the activity that is required and possible

in the context. The evaluation questions EQ2.2.1 - EQ2.2.4 as well as the hypotheses H2.2.1

- H2.2.4 outline what aspects of the posed goals are to be evaluated.

EQ2.2.1 Can the presented approach combine reward-maximising policies across contexts,

i.e. across activities, that contribute to the fulfilment of activities?

EQ2.2.2 Is this approach able to speed up the provision of policies in terms of less training

episodes and steps, compared to agents that apply reinforcement learning, i.e.

deep-q-learning neural networks (DQNN), for policies learning?

EQ2.2.3 Can the proposed approach generalise well to unseen tasks, i.e. can it assemble

adequate policies that contribute to the successful completion of unseen tasks?

EQ2.2.4 Does the approach show comparable or even better performance than related

baseline approaches in terms of executing (unseen and seen) activities consistent

with the Virtual Home dataset?

H2.2.1 Entity embedding vectors of Markov Decision Process (MDP) entities (i.e. states,

actions) help to constrain the state and action space of the agent so that optimal

policies for performing activities can be assembled.

H2.2.2 Constraining context through task-related entity embeddings as well as the applica-

tion of ensembles of agents enable the selection of optimal, i.e. reward-maximising,

strategies much faster than applying reinforcement learning, i.e. deep-q learning.

H2.2.3 The proposed approach is able to compose policies even for unseen tasks, provided

that the states of the unseen tasks are present in the embedding vectors. Alternative

actions can then be combined that lead to the corresponding subsequent states.

H2.2.4 The proposed approach shows comparable performance to considered baseline

approaches.

239

6. Evaluation

6.2.2. Metrics

6.2.2.1. Metrics Policies Adaptation

By adding or removing states in the task specification, immediately upcoming individual

task requirements can be simulated. For example, if a patient has diabetes, a corresponding

state indicating diabetes needs to be included in the task entity representation so that the

agent is able to recognise the corresponding state and include it in its decision-making. In

doing so, each newly arising condition requires a corresponding action to be taken when

the condition is met.

M2.1 To evaluate whether an agent has adjusted its policies to task specific requirements,

the frequency distribution of all performed actions during task execution has to be

considered, (see Eq. 6.6). If the occurrence frequency of an action is 0, this means

that the corresponding action has been unlearned, while actions that have a high

occurrence frequency have been reinforced by the agent.

M2.1 : 𝐹 (𝐴) =
𝑁∑︁
𝑖=1

ai, ai =

{
1 action 𝑎𝑖 was performed

0 action 𝑎𝑖 was not performed

(6.6)

where 𝐹 (𝐴) is the frequency distribution of all possible actions 𝐴 = 𝑎𝑖 that were executed.

In a successful policies adaptation, actions that are no longer required due to the individual

task requirements, have to be completely eliminated from the distribution of performed

actions or just only occur as single outliers. Vice versa, if new upcoming states are added

to the task representation, the agent has to learn and perform the related actions frequently

what leads to an increased occurrence of the according actions.

Comparing the distribution of performed actions, resulting from trained and adjusted

policies, it can be visualised by bar charts which actions were performed frequently and

which actions were eliminated after the trained polices were adjusted.

6.2.2.2. Metrics Context-Aware Policies Combination

Different aspects, i.e. metrics, are relevant to the evaluation of the context-sensitive policy
combination approach. The evaluation takes into account the complexity of an activity by

determining the action sequence length required to complete an activity. Activities with

different complexity, i.e. action sequence length, were tested. Since the policy combination
approach is compared to deep-q-learning, which is an implementation of reinforcement

learning, the speed of policy combination and the number of successfully completed

activities are evaluated through different metrics, listed in the following:

M2.2.1 The speed of policy combination is defined by the number of execution
steps required to train or combine policies for each activity.

M2.2.2 The speed of policy combination is defined by the number of episodes
required to train or combine policies for each activity.

240

6.2. RQ2: Context-Aware Policy Adaption and Disambiguation

M2.2.3 The activity completion rate is determined by the number of successfully
completed activities, (see Eq. 6.7). An activity is considered successfully com-

pleted when the action sequence specified in the ground-truth dataset is followed.

M2.2.3 :

1

𝑁

𝑁∑︁
𝑖=1

ki, ki =

{
1 activity successfully completed

0 activity failed

(6.7)

whereby 𝑁 is the total number of performed activities and 𝑘𝑖 is a constant that depending

on the activity completion success, evaluates to 1 or 0.

M2.2.4 The development of cumulative rewards achieved for each activity, indicates
whether the approaches evaluated are performingwell, as the reward curve reflects

whether the maximum expected reward was obtained or whether more steps were

required, due to incorrect actions, before an activity could be completed, (see

Eq. 6.8).

M2.2.4 : at =

𝑁∑︁
𝑖=1

rti, 𝑟 ∈ R (6.8)

where 𝑎𝑡 is the cumulative reward of the 𝑡 𝑡ℎ activity, 𝑁 is the total number of performed

actions within an activity, 𝑟𝑖 is the reward value obtained for the 𝑖𝑡ℎ action.

M2.2.5 In order to test how error-prone and thus time-consuming an agent was when

combining or training policies, the number of incorrect policies was averaged

over all activities carried out (see Eq. 6.9).

M2.2.5 :

1

𝑁

𝑁∑︁
𝑖=1

𝑇∑︁
𝑗=1

kij, kij =

{
1 action 𝑎𝑖 𝑗 is incorrect, i.e. if 𝑟𝑖 𝑗 ≤ 𝑟𝑖 𝑗−1

0 action 𝑎𝑖 𝑗 is correct, i.e. if 𝑟𝑖 𝑗 > 𝑟𝑖 𝑗−1

(6.9)

where 𝑟𝑖 𝑗 ∈ R is the 𝑗𝑡ℎ reward value of the 𝑖𝑡ℎ activity, 𝑁 is the total number of evaluated

activities, 𝑇 is the total number of actions performed within an activity, 𝑘𝑖 𝑗 is a constant

that indicates whether the 𝑗𝑡ℎ action was performed correctly within the 𝑖𝑡ℎ activity.

6.2.3. Set-up

The evaluation is divided into two parts. First, the adaptation of ambiguous policies is

considered, then the context-sensitive combination of policies, which enables the agent

to request policies from the framework according to its current context. The next two

sections deal with the appropriate evaluation set-up for each evaluation carried out.

241

6. Evaluation

6.2.3.1. Adaptation and Personalisation

For the purpose of evaluation, the clinical pathway (CP) use case (sse Sec. 5.2) for heart

disease patients was evaluated. The objective is to demonstrate that the policies can be

adjusted to patient specific characteristics.

Figure 6.9 depicts the corresponding evaluation set-up. First, Agent 1 trains default policies
(i.e. a DQNN) by a generic task entity representation, that omits some patient specific

states (e.g. Patient has diabetes). The training duration is restricted to 1000 episodes.

Subsequently, the agent stores a CSV file with the performed actions and received rewards

as well as the trained DQNN configuration as JSON file.

A second agent (Agent 2) loads and reuses this DQNN configuration for its own task

execution. At the same time, the simulator loads an enhanced task specification that

consists of additional states (e.g. Patient is smoker, patient has diabetes).

Agent 2 performs its actions according to the trained DQNN and adjusts by the feedback

from the simulator the DQNN weights. This adaptation takes also 1000 episodes.

Subsequently, Agent 2 reuses its adapted DQNN in a second run, while it sets the epsilon

parameter to zero, in order to omit exploration steps and only execute (i.e. exploit) trained

and adapted actions. Afterwards, Agent 2 saves for every execution step the performed

actions and received rewards in a CSV file that later can be inspected for getting insights

about the task specific adaptation by plotting the distribution of the actions.

In contrast to the evaluation set-up, in practice agents can either train default policies

using the simulator and a corresponding semantic task description and then use them

directly for their task, or they can search for already trained default policies that match

their task and its requirements. In the latter case, the agents that reuse the policies would

need to use their own task description and the framework simulator to adapt the default

policies to their own task description through transfer learning. This can be achieved, as

shown in the evaluation, by changing the composition of states and actions, i.e. adding or

removing states and/or actions from the semantic task description.

6.2.3.2. Policies Combination in different Contexts

The evaluation and results presented in this section were adopted from an accepted journal

paper
7
[152] published in the Semantic Web Journal (SWJ)

8
.

The descriptions of domestic activities provided by the Virtual Home (VH) platform serve

as the dataset for training the required entity embedding vectors (see Sec. 5.4). In addition,

the VH dataset represents the ground-truth against which the success of the combined

7 https://semantic-web-journal.net/content/context-aware-composition-agent-policies-markov-

decision-process-entity-embeddings-and-0
8 https://www.semantic-web-journal.net

242

6.2. RQ2: Context-Aware Policy Adaption and Disambiguation

Figure 6.9.: Evaluation set-up regarding the policy adaptation scenario.

policies is tested. Since the VH dataset consists only of activity names and sequential

actions, but does not provide named state entities, it was required to construct semantic

entity descriptions that also contain states and serve as the basis for the used simulation

platform and DNN. The semantic entity descriptions are based on the concepts of the

framework’s task ontology. Some activities of the VH dataset have redundant names, but

differ in some of their actions and in the order in which the actions are performed. To

make all activities of the VH dataset unique and unmistakable, the activity names were

supplemented with consecutive numbers.

Then, the implemented DNN was trained with entity embedding vectors for all VH ac-

tivities, states and actions within 1000 iterations. In each iteration, 15 training epochs

were executed and a generator function generated a batch of 1024 positively and negatively

labelled samples for each entity combination.

Fig. 6.10 illustrates the evaluation set-up for the proposed policies combination approach

with agent ensembles. The VH dataset is transformed into semantic activity descriptions

that are stored in a knowledge graph (step 1), while the VH dataset also serves as input for

training entity embeddings that replicate the semantic relationship of states, actions, and

activities (step 2,3). The requesting agent randomly selects an activity in the knowledge

graph and from this activity a state and sends it to the Agent Ensemble Manager (step 4,5),
which requests the entity embeddings and the dictionary that maps the states and actions

to the corresponding embedding vectors (step 6). The Agent Ensemble Manager generates

243

6. Evaluation

a predefined number of agent instances corresponding to the number of nearest actions

(step 7). The ensemble agents execute their action in parallel threads (step 8) and the

Agent Ensemble Manager receives from the assigned and running simulator instances the

corresponding rewards and subsequent states stored in the semantic activity descriptions

(step 9). The Agent Ensemble Manager stores the action that yielded the highest reward in

an ordered list and examines whether it is a target or end state. Step 9 iteratively continues

until a final state has occurred. Then, a list with the action sequence and the received

rewards and state sequences is reported back to the requesting agent (step 10,11). In this

way randomly 52 activities with different sequence length were evaluated.

Figure 6.10.: Evaluation set-up of the agent ensemble approach [152].

In order to obtain representative samples that offer activities of varying complexity, it

was required to categorise the data samples (i.e. the activities) according to the length

of their action sequences and randomly select a certain number of samples from each

category. The reason for this categorisation is that the complexity and difficulty of an

activity increases as the length of the action sequence increases. Since there were a total of

52 different action sequence lengths and thus categories, one activity from each sequence

length category was selected, resulting in a sample size of 52 activities that were assessed.

The action sequence lengths of an activity can range from a minimum of 2 actions to a

maximum of 80 actions (see Fig. 6.11).

To compare reinforcement learning (RL) with the proposed agent ensemble approach in

terms of policy delivery speed, a JavaScript library
9
that implements the Deep-Q-Neural-

Network (DQNN) algorithm [170] and trains it for each previously selected activity was

used. In parallel, the proposed approach combined policies based on the trained entity

embeddings and the feedback of the simulation component for the same activities. For both

approaches the required number of episodes, execution steps and the number of incorrectly

9 https://github.com/karpathy/reinforcejs

244

6.2. RQ2: Context-Aware Policy Adaption and Disambiguation

Figure 6.11.: Distribution of the action sequence length (y-axis) among all 52 activities

(x-axis) evaluated [152].

245

6. Evaluation

executed actions where the reward is < 0 were monitored.

The DQNN was initialised with the following hyper-parameters: learning rate = 0.05,
greedy10 value = 0.9 and discount factor = 0.9. To determine whether the corresponding

policies were successfully learned by the DQNN, the greedy parameter was set to 0 after

each training episode to avoid the agent performing random actions, and then the task was

executed again with the trained policies. Then the number of executions performed within

an episode and the actual sequence length of the current activity were compared, and

if both were equal, the policy training of the DQNNwas considered successfully completed.

The maximum number of episodes within which the DQNN had to train policies was

limited to 1, 10 and 100 episodes, because without episode limitation it would have taken

several days to successfully train the policies for all 52 activities with the DQNN. In

addition, the approach was intended to be able to address contextual policy requests

immediately or quickly, and therefore the DQNN used for comparison with the proposed

approach also had to meet the requirement of delivering policies quickly. For this reason,

the DQNN algorithm was challenged to learn policies for each activity within 1, 10 and

100 episodes. Otherwise, if the number of episodes was exceeded, the training for the

corresponding activity was terminated and considered incomplete.

The proposed algorithm has one hyper-parameter that represents the search radius, i.e.

cosine distance, inside which the nearest actions in the embedding space are searched (see

Algorithm 9). In the evaluation, the radius parameter was initially set to 0.25 in order to

keep the search radius small. Fig. 6.12 shows the obtained distribution of radius values

over all evaluated activities.

It is evident that the required mean search radius value lies between a range of 0.6 and

0.8 what suggests that this is the best, i.e. most successful, parametrisation for finding

suitable and reward maximising actions. Furthermore, it can be assumed that the mean

search radius of about 0.725 is sufficient to narrow down the surrounding action search

space of a state, since in most states at least one action found within the radius has proven

to be reward-maximising and conducive to activity completion.

The framework’s simulation platform used for providing feedback (i.e. state-updates,

rewards), allocates rewards that increase by a value of 0.25
11
for each action correctly

performed within the sequence. This incremental reward allocation is necessary because

the algorithm can repeat found actions infinitely often and thus get stuck in cycles if states

within a sequence are not distinguishable by their increasing and thus different rewards.

10
Specifies the rate of randomly executed actions and thus controls the exploration and exploitation of the

policies.

11
The value 0.25 is an arbitrarily chosen number. It could also have been another number by which the

reward value is increased. The important aspect here is that the reward value needs to increase in

comparison to the previous state.

246

6.2. RQ2: Context-Aware Policy Adaption and Disambiguation

Figure 6.12.: Density plot and histogram of the search radius value ranges (x-axis) in which

the most suitable and related action embeddings for submitted, i.e. observed

states, were found [152].

In order to evaluate the generalisability of the proposed policy combination approach for

unknown tasks, a second evaluation run was conducted with a 10-fold cross-validation [213]
in which the Virtual Home dataset was shuffled for randomisation and divided into 10

equally sized folds. In each iteration, nine of the 10 folds served as training data, while

one fold was omitted from training and served as an evaluation dataset. Since a total of 10

folds were evaluated, 10 different embedding models were trained to evaluate each left-out

fold of the data. The performance indicators of the trained models that were evaluated

were the number of steps required to perform a task, the number of wrong decisions made

during task execution, the ratio of successfully completed tasks, and the cumulative reward
obtained during task execution. For each measured value of the evaluated folds, the mean,
standard deviation and standard error were calculated, see Table 6.6. In order not to let the

tasks run endlessly, the execution of a task was stopped as soon as the search radius, i.e.

the cosine distance, for the search of actions was greater than or equal to 2, because with a

larger search radius it can be assumed that no (close) relationship or semantic similarity to

the neighbouring entities is given. This means that no alternative or semantically similar

actions to the current state can be found. The interrupted tasks therefore count as unsolved

tasks on which the ensemble approach failed.

6.2.4. Results and Discussion

This section discusses the results of two questions. Section 6.2.4.1 deals with the adap-

tation of ambiguous policies. The evaluation results are intended to answer RQ2.1 and

evaluate hypothesis H2.1. Section 6.2.4.2 discusses the results regarding contextual policy

combination. The evaluation results are intended to answer RQ2.2 and evaluate hypothesis

247

6. Evaluation

H2.2.

6.2.4.1. Results of Policies Adaptation

As depicted in Fig. 6.13, an agent can perform for the heart disease task 10 different actions

that address different disease and patient states.

First, Agent1 learns default policies for a default task representation with all possible

actions. Afterwards, Agent2 reuses the default policies to adjust them to a reduced task

specification that does not require all given actions. In order to achieve this, the reduced

task representation does not include all states.

Agent2 performs all actions by means of the provided default policies and is punished by

the agent framework for 3 of the actions (i.e. QuitSmoking, EatLowFat, EatFruitAndVegeta-
bles). Figure 6.13a shows that performing the 3 mentioned actions leads constantly to a

punishment by the agent framework with a reward of -1. Consequently, Agent2 learns to
avoid these 3 actions corresponding to the omitted states.

In the second run (see Fig. 6.13b), Agent2 exploits its adjusted policies by setting its epsilon
value to zero. The results indicate that it completely omits to perform the 3 considered

actions that previously led only to punishments. This observation indicates that RL agents

can adjust reused and ambiguous policies through the simulation component of the agent

framework that punishes or reinforces actions, depending on the task description. The

observed result suggests that H2.1 might apply. To contradict hypothesis H2.1, evidence

would have to be provided to demonstrate that the RL agent does not learn new, i.e.

required, actions or unlearn redundant, i.e. no longer required, actions due to changes in

task descriptions and feedback from the simulation component.

(a) Reinforced actions during training.

(b) Learned actions after training, i.e. adaptation

of policies.

Figure 6.13.: Occurrence of actions and assigned rewards during and after training.

248

6.2. RQ2: Context-Aware Policy Adaption and Disambiguation

6.2.4.2. Results of Context-Aware Policies Combination

EQ2.2.1: Activity Completion The evaluation results suggest that the proposed approach

was able to successfully generate policies for all 52 activities within one episode each, while

the DQNN agent needed at least 100 episodes to learn policies for 14 out of 52 activities (see

Fig. 6.14 andmetric M2.2.3). For the remaining 38 activities, the DQNN agent would have

needed many more episodes before learning reward-maximising and correct sequential be-

haviour, because as the action sequence length increases, the state space and action choices

also increase, making it more difficult and time-consuming for the agent to learn correct

action sequences. Fig. 6.14 illustrates that the DQNN agent could not successfully learn any

of the activities within 1 and 10 episodes, while after 100 episodes it had learned at least 14

activities with minimum and maximum action sequence lengths of 2 and 14 (seemetric
M2.2.2). For activities with a sequence length greater than 14, the DQNN agent failed to

learn the correct action sequence within the 100 episodes (seemetricsM2.2.2 andM2.2.3).

(a) 1 Episode (b) 10 Episodes

(c) 100 Episodes (d) Ensemble agent approach with 1 Episode

Figure 6.14.: Distribution of successfully trained (right bar) and unsuccessfully learned

(left bar) activities by the ensemble agent approach after 1 episode and the

RL, i.e. DQNN, agent after 1, 10 and 100 training episodes. The colour shades

indicate the action sequence length of the respective activities. In contrast to

the RL agent, every task performed could be successfully completed by the

proposed agent ensemble approach [152].

Fig. 6.15 shows for the proposed approach (blue dots) and for the DQNN agent (red dots)

the cumulative rewards (see metric M2.2.4) obtained during policy training and com-

bination. The scatter plots illustrate that the proposed ensemble agent approach shows

reward maximising behaviour and thus composes the right policies, while the DQNN agent

tends to show a reward minimising behaviour. This is reasonable because the principle

249

6. Evaluation

of reinforcement learning is to learn policies by trial and error and therefore the DQNN

agent performs a certain number of exploration steps depending on the greedy value set,

which can lead to wrong decisions and negative rewards, and since the DQNN agent needs

many more episodes than the ensemble agents to learn policies, the penalties add up (see

metric M2.2.1).

(a) 1 Episode (b) 10 Episodes (c) 100 Episodes

Figure 6.15.: Cumulative reward (y-axis) for each activity (x-axis) obtained during combi-

nation by ensemble agents (blue dots) and during training by RL agent (red

dots) after 1, 10 and 100 Episodes [152].

As described before, 52 different activities with different action sequence lengths and

thus difficulty levels were evaluated and for all 52 activities the presented approach was

able to compose VH dataset, i.e. ground-truth, compliant policies. Therefore, it can be

concluded for EQ2.2.1 that the proposed policies combination approach is able to compose

reward-maximising policies across contexts, i.e. across activities, that contribute to the

fulfilment of activities without having to train policies in advance.

EQ2.2.2: Velocity of Policies Provision To evaluate whether the proposed policy combina-

tion approach outperforms the DQNN agent in terms of velocity, the steps executed were

counted until correct, i.e. activity description compliant, policies could be provided for

each activity (seemetric M.2.2.1). Fig. 6.16 depicts that the presented policies combination

approach needs significantly fewer steps than the DQNN agent to provide correct policies

for each tested activity.

The speed required for policy combination can also be measured by the number of wrong

decisions an agent makes, because the more wrong decisions an agent makes, the more

steps it has to go through until it finds the right action sequence. For this reason, the

number of wrong, i.e. reward-minimising, actions performed by both approaches for each

evaluated activity was also counted to show how error-prone and slow the compared

agents are when composing or training policies, (see Table 6.4 andmetric M2.2.5).

Figure 6.17a and Table 6.4 show that the ensemble agents perform significantly more

wrong actions (see metric M2.2.5). However, Figure 6.17b and 6.17c illustrate that the

more episodes the RL agent has to perform, the more wrong actions it shows. Further-

more, it has to be taken into account that the ensemble agents considered all potentially

possible actions of all activities in the VH dataset, whereas the RL agent only knew the

possible actions of the corresponding activity. Thus, the ensemble agents could also make

250

6.2. RQ2: Context-Aware Policy Adaption and Disambiguation

(a) 1 Episode (b) 10 Episodes (c) 100 Episodes

Figure 6.16.: Required steps (y-axis) of ensemble agents (blue dots) and RL agent (red dots)

per activity (x-axis) until policies are composed or trained. The turquoise

dots show the number of required policies among each activity. The plots are

scaled and displayed in logarithmic scale to make overlapping values visible

in the plots [152].

(a) 1 Episode (b) 10 Episodes (c) 100 Episodes

Figure 6.17.: Number of incorrect decisions (y-axis) made for each activity (x-axis) during

a) policy combination by ensemble agents (blue dots), and b) policy training

by the RL agent (red dots) [152].

Approach 1 Episode 10 Episodes 100 Episodes
RL Agent 1079.615 10203.92 84521.58

Agent Ensemble 10690.48 - -

Table 6.4.: Average number of incorrect actions performed for each activity within 1, 10

and 100 episodes (seemetric M.2.2.5). A total of 52 activities were evaluated

for each of the approaches considered. The agent ensemble approach required

only 1 episode for each task, thus values for 10 and 100 episodes are not given.

251

6. Evaluation

significantly more mistakes, as they could choose actions from a much larger action space

encompassing all activities. In addition, the simulation platform also penalised actions of

the ensemble agents that were not listed in the current activity description, although they

had the same purpose as the intended actions. Furthermore, the RL agent did not provide

reliable policies after 1 training episode. As explained earlier, the RL agent required at

least 100 episodes to provide correct policies for at least 14 activities with a maximum

action sequence length of 14, while the proposed agent ensemble approach could provide

correct policies for all tested 52 activities within only 1 episode.

Considering the evaluation results of both approaches, it can be concluded for EQ2.2.2
that the proposed approach is indeed able to speed up policy delivery in terms of fewer

training episodes and steps compared to agents using reinforcement learning (i.e. DQNN).

EQ2.2.3: Generalisability of the Policies Combination Approach The 10-fold-cross valida-

tion shows that the policy combination approach is generalisable to a certain extent. On

average, 73.42% of all evaluated tasks could be solved with the approach (see metric
M2.2.3), while the standard error is 0.058378. In the evaluation on the generalisability

of the approach, not all states were known, i.e. were given in the vocabulary, so it becomes

explainable why a certain part of the tasks could not be solved. Since a strict sequential

processing of the states would have been necessary to successfully complete an activity,

even just one unknown state could lead to a task not being solved. A higher success rate

of even 100% could be achieved if all possible states, i.e. also the states from unknown

tasks or activities, are known in advance in the trained vocabulary and thus embedding

model. In such cases, alternative actions or strategies leading to the corresponding states

could presumably be found and assembled.

The average cumulative reward (seemetric M2.2.4) achieved is 70.74531 for all suc-

cessfully completed tasks, with the approach taking an average of 102.2408 steps (see

metric M2.2.1) to combine policies per task, and a total of 74175.76 false decisions
(see metric M2.2.5) being made in the ensemble until policies can be assembled. The

evaluation results show that the performance of the policy combination approach tends to

reproduce the successful results of EQ2.2.1, even if the embedding models were not trained

on all datasets. Figure 6.18 - Figure 6.21 show that the agent using the policy combination

approach significantly outperforms the RL agent by requiring on average significantly

fewer execution steps (seemetric M.2.2.1) to solve tasks and is therefore faster and can

solve significantly more tasks within one episode (seemetric M2.2.2). For instance, the
bar charts in Figure 6.18 illustrate that the RL agent requires at least 100 episodes in order to

complete around 50% of the tasks and have an almost comparable success rate to the policy

combination agent, while the policy combination agent is able to solve the majority, i.e.

on average 73.42%, of the evaluated tasks in 1 episode (metric M2.2.2). However, Fig. 6.21
depicts that the policy combination approach causes more incorrect execution steps (see

metric M2.2.5) than the RL approach in the first run with one episode, but later with 10

and 100 episodes the RL agent performs significantly more incorrect actions than the agent

using the proposed approach. This makes sense, as the framework’s policies combination

252

6.2. RQ2: Context-Aware Policy Adaption and Disambiguation

approach only needs one episode and has a limited search area where it has to seek for

semantically related actions to solve appropriate tasks, whereas the RL agent performs

more incorrect actions, which result in a negative reward value, to explore strategies with

more training episodes. Thus, it can be assumed that the proposed approach generalises to

unseen tasks, provided that all states and actions are known in advance and are encoded in

the embedding model. For this reason, a knowledge graph (KG) is necessary that provides

all possible state and action entities to ensure that newly deployed tasks consisting of

an unknown sequence of policies can also be solved using the policy combination approach.

It may sound like a contradiction that despite the generalisability of the approach, all

states and actions have to be known in advance. However, the algorithm does not know at

runtime in which order and combination of actions the activities should be executed by

an agent. The proposed approach computes context-dependent, i.e. state-dependent, the

appropriate sequence of actions that leads to the execution of an activity matching the

context.

Fold/Model Mean
Steps

Standard Deviation
Steps

Mean
Wrong

Decisions

Standard Deviation
Wrong Decisions

Mean
Cumulative Rewards

Standard Deviation
Cumulative Rewards

Ratio of Successful Completed
Tasks

1 48.30128 31.79215 6749.506 9202.326 72.76122 96.16414 0.75

2 118.2692 86.36616 96655.24 69026.88 81.89423 140.3923 0.7628

3 122.8974 93.64512 100309.7 72714.3 88.86218 169.9565 0.7179

4 52.64103 35.07043 5750.878 8079.803 82.35577 109.651 0.8333

5 113.8013 79.68733 95561.93 62987.27 68.69231 108.4526 0.7307

6 107.7821 77.4701 87136.28 58276.37 67.0625 114.2231 0.6859

7 124.3205 81.52498 101042.5 61886.1 79.35256 119.4853 0.6795

8 106.0128 82.70882 89122.44 67571.99 65.14423 127.8612 0.7756

9 73.95513 61.45771 30134.42 20998.12 46.11859 138.7159 0.7756

10 115.5962 77.63278 94667.5 61356.65 69.19391 109.2988 0.6306

Total 98.35769 Standard Error: 28.95776 70713.04 Standard Error: 39758.7 72.14375 Standard Error: 12.03673

Mean: 0.7342

Standard Error: 0.058378

Table 6.5.: Evaluation results of the 10-fold cross validation for the proposed ensemble

approach. Here the results of all tasks were considered, i.e. also the ones that

were aborted after a certain time because no solution could be found within a

predefined radius.

Fold/Model Mean
Steps

Standard Deviation
Steps

Mean
Wrong

Decisions

Standard Deviation
Wrong Decisions

Mean
Cumulative Rewards

Standard Deviation
Cumulative Rewards

Ratio of Successful Completed
Tasks

1 45.47863 32.16943 2080.957 3594.237 70.44231 96.46974 0.75

2 123.8487 83.96434 101512.2 67464.97 82.02941 132.7949 0.7628

3 121.0268 87.37487 99281.79 69028.09 75.08929 144.0891 0.7179

4 53.18462 35.1649 2910.638 4000.664 86.575 110.9935 0.8333

5 122.4211 79.91233 103169.6 63230.7 71.36184 111.7522 0.7307

6 117.3084 77.95408 96250.3 59737.22 69.63084 112.6236 0.6859

7 129.9717 84.65127 108104 64376.4 78.47642 127.7595 0.6795

8 115.8512 87.60334 98003.36 72001.17 73.13017 142.1648 0.7756

9 68.07438 43.43466 26076.76 16718.89 29.46281 37.1089 0.7756

10 125.2424 78.31453 104367.9 62006.22 71.25505 109.7531 0.6306

Total 102.2408 Standard Error: 32.88568 74175.76 Standard Error: 44629.17 70.74531 Standard Error: 15.52223

Mean: 0.7342

Standard Error: 0.058378

Table 6.6.: Evaluation results of the 10-fold cross validation for the proposed ensemble

approach. Here only the results of completed tasks were considered.

EQ2.2.4: Comparison to Baseline Approaches In Sec. 3.2.2, related works [202, 138, 136]

were discussed that propose to use language models to combine policies for Virtual Home

253

6. Evaluation

(a) RL approach in 1 Episode (b) RL approach in 10 Episodes

(c) RL approach in 100 Episodes (d) Ensemble approach in 1 episode.

Figure 6.18.: Distribution of successfully finished (true value at x-axis, right bar) and

unfinished (false value at x-axis, left bar) tasks by the RL and ensemble

approach. The RL agent had 3 different training times, i.e. 1, 10 and 100

episodes while the proposed ensemble approach required only 1 episode.

(a) 1 Episode (b) 10 Episodes. (c) 100 Episodes.

Figure 6.19.: Development of cumulative reward (y-axis) for each performed and numeri-

cally encoded activity (x-axis) during training for the ensemble approach (blue

dots) in 1 episode and the RL approach (red dots) in 1, 10 and 100 episodes.

254

6.2. RQ2: Context-Aware Policy Adaption and Disambiguation

(a) 1 Episode (b) 10 Episodes. (c) 100 Episodes.

Figure 6.20.: Required steps (y-axis) for each performed and numerically encoded activity

(x-axis) during training for the ensemble approach (blue dots) in 1 episode

and the RL approach (red dots) in 1, 10 and 100 episodes. The turquoise dots

show how many actions an activity requires in order to be solved. The plots

are scaled and displayed in logarithmic scale to make overlapping values

visible in the plots.

(a) 1 Episode (b) 10 Episodes. (c) 100 Episodes.

Figure 6.21.: Number of wrongly executed actions (y-axis) for each performed and numeri-

cally encoded activity (x-axis) during training for the ensemble approach (blue

dots) in 1 episode and the RL approach (red dots) in 1, 10 and 100 episodes.

255

6. Evaluation

activities. These related works serve as baseline for evaluating the activity completion

rate (see metric M2.2.3) in seen and unseen Virtual Home activities and comparing the

performance in this regard with the above baseline approaches. Table 6.7 shows the results

extracted from the related works and compared with the obtained evaluation result. The

results suggest that the proposed approach to combine policies gives superior results

for both seen and unseen Virtual Home activities. However, it is worth mentioning that

the evaluation set-ups and goals differ to some extent, and the considered approaches

have an additional layer of complexity as they transform natural language descriptions of

activities into word embeddings using RNNs, LSTMs, and Transformer architectures before

using reinforcement learning to combine policies. In contrast, the proposed approach uses

semantic task entity representations and trains from these entity embeddings to search for

possible actions to perform. For this reason, the results are only comparable to a certain

extent. Nevertheless, the baseline approaches were used for comparison, as it was intended

to investigate whether the proposed approach could keep up with related works in terms

of policy combination and successful activity execution.

Approach Executability of novel, unseen activities in (%)
i.e. Compliance to Virtual Home dataset

Executability of known, i.e. trained, activities in (%)
i.e. Compliance to Virtual Home dataset

ResActGraph
[138] 49.3 % unknown

PG(LCS)
[202] 35.5 % unknown

PG(LCS+Sim)
[202] 39.8 % unknown

LID-Text
[136] 58.2 % 87.6 %

LID-ADG
[136] 25.5 % 46.7 %

Ensemble Policy Combination
(proposed approach) 73.42 % 100 %

Table 6.7.: Baseline approaches compared to the proposed policy combination approach in

terms of their feasibility and conformance to the Virtual Home dataset activities.

It is important to note that the experimental set-ups are different. For this

reason, the results are only comparable to a certain extent.

256

6.3. RQ3: Share and Reuse of Policies

6.3. RQ3: Share and Reuse of Policies

At runtime in real operation, agents also produce and observe data that can be used to

derive corresponding rules, which in turn can be made available to agents on the World

Wide Web (WWW) that have to solve similar tasks. In this way, expert knowledge can be

shared, retrieved, reused and adapted as needed, without the requirement of passing long

and costly learning procedures. Furthermore, not every agent implements ML algorithms

but only applies a rule- and ontology-based reasoning approach. This type of agents needs

also to be supported through the exchange of knowledge.

The proposed agent framework provides a methodology to derive rules from the data pro-

duced by the agents that can be made available to other agents in a formal representation,

via provenance data and task embedding vectors.

Provenance data is seen in this work as meta information that enables other agents to

retrace the authorship and application area of provided policies in order to assess their

utility and applicability for their own task requirements while task embeddings allow the

detection of similar tasks and thus the detection of reusable policies.

As the provision of provenance data is only a question of formal definition, it does not

need to be evaluated. Therefore, only the application of derived rules is evaluated together

with the retrieval of reusable policies by task embeddings.

Retrospect RQ3:

RQ3 Are rules and policies obtained via mining techniques from the collected data reflect-

ing agent behaviour validly applicable and as accurate and effective as the originally

trained behaviour inherent to the data, and do the rules derived from the data ac-

tually mirror the behaviour that enables the providing agent to achieve a reward

maximising behaviour?

Retrospect H3:

H3 Rules derived and formalised from recorded demonstration data can enable agents in

a multi-agent environment to solve given tasks on demand without the requirement

and effort of training policies from scratch.

6.3.1. General Goals addressing RQ3

Provenance data mainly contains information about the authorship and extraction of

derived rules. On the web, this information is to be made available together with the

mined rules and task descriptions in a machine-readable representation, enabling other

web agents to reuse the provided expert knowledge, i.e. rules.

In addition, it is assumed in this thesis that similar tasks also require similar policies.

Therefore, a methodology is required that allows agents to compare task entities with

257

6. Evaluation

respect to their similarity in order to find the corresponding policies. Consequently, if

policies can be reused, web agents do not have to go through long learning processes and

can directly apply the provided expert knowledge.

In addition, precise and significant rules are also comprehensible to humans, which is

conducive to the explainability of decisions. In the scope of the evaluation, the following

evaluation questions, EQ3.1 - EQ3.2, are posed.

EQ3.1 Are the obtained rules derived from collected data using frequent item sets and/or
decision rule mining techniques validly applicable and as powerful as the originally

trained policies of the agent that provided the dataset?

EQ3.2 Is the application or reuse of task policies, which are determined by the similarity

of entity embeddings representing semantic task entities, as efficient in terms of

reward development, as their use for the originally intended task?

The evaluation hypotheses EH3.1 and EH3.2 summarise the made assumptions and ex-

pected outcomes.

EH3.1 Data produced by RL agents in real environments can be exploited respectively

mined in order to derive significant rules that allow other (rule-based) agents

to solve the corresponding task on demand and without the necessity of going

through long-running and costly ML procedures. The assumption is that the found

rules are sufficientlymeaningful to enable the agent to engage in utility-maximising

behaviour as measured by an increase in the obtained positive cumulative reward.

EH3.2 Task representations that have similar or partly identical properties and require-

ments, can require policies that aremutually usable by agents. In order to determine

the similarity of tasks with respect to their properties, task entity embeddings have

to be trained that allow the numerical representation of tasks in a n-dimensional

vector space. Policies that are found for one task can then be reused for other

similar tasks.

6.3.2. Metrics

M3.1 For evaluating the derived rules and retrieval of task policies by task embeddings,

the reward distribution of a finite set of reward values is considered. This metric

is used to assess the coverage of rewards, as it indicates whether all possible rewards

could be achieved in the course of each task, because a task can only be completed

if the correct sequence of actions and thus the corresponding rewards have been

obtained.

M3.1 : P(x) =
𝑁∑︁
𝑖=1

ri, ri =

{
1 reward value 𝑟𝑖 = x

0 otherwise

(6.10)

258

6.3. RQ3: Share and Reuse of Policies

whereby 𝑃 (𝑥) is the frequency of reward value 𝑥 ∈ X while 𝑋 is a finite set of reward

values, 𝑟𝑖 is a constant indicating whether each possible reward value 𝑥 was (not) obtained

and 𝑁 is the total number of rewards that can be obtained.

M3.2 The cumulative rewards along episodes and action steps are considered (see

Eq. 6.11).

M3.2 :

𝑇∑︁
𝑡=1

rt, rt ∈ R (6.11)

whereby 𝑡 is either an execution step or an episode and 𝑟𝑡 is either an obtained reward

value for an execution step 𝑡 or a cumulative reward for an episode 𝑡 .

M3.3 For the evaluation of the COVID-19 use case (see Sec. 5.3), the development of
the SEIR categories and available hospital beds among execution steps, i.e.

days, are considered. Thus, the evaluation assesses the number of days until
the number of infections stops increasing, i.e. 𝑓 (𝑡) ≤ 1 and the number of
hospital beds starts increasing, i.e. 𝑔(𝑡) > 1, (for corresponding equations see

Sec. 5.3.2 and Eq. 6.12). The reasoning for this metric is: The more steps, i.e. days,

are required to stop the increase in infections and decrease in hospital beds, the

worse the actions taken by the agent to contain the COVID-19 pandemic, are.

M3.3 :

𝑇∑︁
𝑡=1

dt dt =

{
1 1 < g(t) ∧ f (t) ≤ 1

0 otherwise

(6.12)

whereby 𝑇 is a time variable and represents the total number of considered steps, i.e.

days, 𝑑𝑡 is a constant with value 1 representing one day, g(t) = ΔIt
ΔIt−1

is the growth factor
of infections and f (t) = ΔBt

ΔBt−1
is the growth factor of available hospital beds. When the

inflection point of the growth factor is reached at a growth rate of 1, it means that the

growth is flattening and the carrying capacity is saturated, which means that the number

of infections stops increasing and, in the case of hospital beds, the number of available

beds starts increasing because infected people no longer occupy beds.

M3.4 The distribution of performed actions and the rewards obtained for them are

considered in Eq. 6.13.

M3.4 : P(a) =
𝑇∑︁
𝑡=1

kt, kt =

{
1 performed action 𝑎 in time step 𝑡

0 otherwise

(6.13)

whereby 𝑇 is the total number of execution steps, 𝑃 (𝑎) is the frequency of action 𝑎 ∈ A,
A = {a1, a2, ..., an} is a finite set of actions, 𝑘𝑡 is a conditional constant indicating whether

action 𝑎 was (not) executed.

259

6. Evaluation

The performance of executing the mined rules (policies) as well as the retrieved similar

policies are compared to the performance of executing the policies for the originally

intended task. The objective is to evaluate whether by the application of mined rules and

similar policies at least the same as or even a higher performance than by the trained

policies can be achieved.

6.3.3. Set-up

Two different evaluations were conducted regarding the share and reuse of trained policies

within the agent framework. The first evaluation demonstrates how datasets, generated by

RL agents during real-time execution, can be mined for deriving significant rules that allow

rule-based agents to perform tasks on demand without a performance loss and without the

necessity of passing long preprocessing and learning procedures. The second evaluation

addresses the utilisation of task embeddings within the agent framework. In particular,

the focus is on the retrieval of matching policies, based on the similarity of related task

embedding vectors. The objective is to evaluate the feasibility and effectiveness of the

presented approach.

The tasks that were evaluated are the web automation (see Sec. 5.1) and the COVID-19

measures in Sec. 5.3. For the web automation task it was an objective to mine rules that

adhere the learned order of actions. Therefore, frequent item sets were applied while the

adopted and devised algorithms, i.e. sequential covering, OneR, Best Fit Sequence, observed
and preserved the order of performed actions within the frequent item sets. The most

frequent action sequences were then selected by the approach as potential rules. The

obtained results that will be discussed in Sec. 6.3.4, show that this approach was successful.

It is worth mentioning that the developed Best Fit Sequence algorithm was applied to the

Flight Booking task because the task at hand is divided into stages and the said algorithm

addresses tasks with stages and sub-goals.

Furthermore, the public Virtual Home (VH) dataset
12

that consists of instructions (i.e.

agent programs) for household agents, was adopted and transferred into semantic task

descriptions (JSON-LD) in order to enable the agent framework to process the task spec-

ification and demonstrate the ability of the agent framework to find similar tasks and

reusable policies. The corresponding dataset has the advantage of providing numerous

alternative agent programs for one activity and supporting a broad range of household

activities.

It can be assumed that alternative programs that relate to one activity, will have a high

similarity in their presentation and application what proves to be useful for the evaluation

of the task embeddings approach. Similar programs however can vary regarding the re-

quired actions or the order of action sequences, while solving the same household activity.

The VH dataset is briefly described in Sec. 6.3.3.2.

12 http://virtual-home.org/tools/explore.html

260

6.3. RQ3: Share and Reuse of Policies

Since both evaluations have different objectives and requirements, two different set-ups

were implemented that are described in the next two subsections.

6.3.3.1. Rule Mining Evaluation

Figure 6.22 shows the structure and processing of the evaluation with regard to the pro-

posed rule mining approaches.

First, a RL agent trains the policies for the appropriate task Task1 and then executes the

task with the trained policies. During task execution, the epsilon parameter of the RL

algorithm is set to zero, because the agent shall only execute its learned polices without

performing exploration steps, since the made assumption is that the agent has already

achieved an optimal performance.

The agent tracks its perceived states and performed actions. After a predefined number

of episodes (i.e. 1000), the agent stores a CSV file with the tracked states and performed

actions. Second, this CSV file is preprocessed and mined by means of different approaches

(i.e. frequent item sets, sequential covering and OneR algorithm) by a rule mining agent.
The rule mining agent stores for every approach the corresponding rules as a JSON file.

Third, subsequently, a rule-based agent requests and reuses these rules in order to solve

the same task and store its performance via a CSV file. By comparing the performance of

both agents, the evaluation tests whether the previously posed hypotheses H3.1 and H3.2

are true.

The same evaluation is also conducted with an agent that implements a genetic algorithm

(GA), since the proposed framework also supports a GA implementation that can be selected

for the configuration of an agent instance. The hyper-parameters of the GA algorithm are

the following ones: population size: 200, gene size: 200,mutation probabilities: 0.3,
0.2, 0.1, 0.01, 0.001, crossover probabilities: 0.8, 0.75, 0.7, 0.65, 0.6. To terminate and thus

detect convergence of the GA algorithm, a maximum number of iterations in which the

best fitness value does not change, need to be defined. The maximum number of iterations

to detect convergence was set to 200. It is evident that some hyper-parameters were

evaluated with a list of different values to test different configurations. Each gene within

one chromosome represents a COVID-19 measure per day. The containment measures

are optimised for 200 days, since 200 genes build a chromosome in the experiment. The

order of genes plays an important role, since the sequence of genes influences the success

of the measures to contain the pandemic and keep the economy stable. Hence, in the al-

gorithm’s mutation or crossover operations, permutation strategies of genes are performed.

For every task specification, an initial configuration respectively instantiation is required.

Exemplary, Table 6.8 and Table 6.9 show the initial configuration of the COVID-19 mea-

sures task description. For the evaluation set-up, a population size of 100000 is assumed.

Furthermore, the configuration defines that 1000 persons of the population are exposed

261

6. Evaluation

Figure 6.22.: Set-up for rule mining evaluation

and infected, while recovered people are initially set to 0.

Population
Size Susceptible Exposed Infected Recovered Available

Beds
100000 98000 1000 1000 0 250

Table 6.8.: Configuration of initial conditions for the COVID-19 measures task.

As outlined in Chapter 5.3, the SEIR model equations require model parameters that are

defined in Table 6.9. The mentioned parameters impact the rate of change and are described

in detail, in the referenced chapter about the considered COVID-19 use case.

Recovery
Factor

Risk
Patient
Factor

Avg.
Incubation

Time
(Alpha)

Contact
Rate
(Beta)

Infection
Duration

Rate
(Gamma)

0.01 0.05 0.1923 0.0000049 0.1724

Table 6.9.: Initial model parameters for the COVID-19 measures task.

262

6.3. RQ3: Share and Reuse of Policies

6.3.3.2. Task Embeddings Evaluation

In order to evaluate whether policies of similar tasks can be reused, the Virtual Home (VH)
dataset has been utilised. The VH dataset belongs to an activity knowledge base

13
on the

web and provides action sequence specifications (i.e. programs), related to interactive

household objects. The dataset consists of instructions that enable software agents to

perform different activities within a household. Moreover, the dataset serves for the

simulation and visualisation of household activities within the corresponding multi-agent

platform
14
. The provided dataset is separated in 12 categories (e.g. leisure, work, social

interaction, etc.) and consists of 1563 activities (e.g. Prepare coffee, Clean room, etc.), re-
spectively agent programs and 1307 actions.

For the purpose of evaluation, each activity however, had to be transformed into a pro-

cessable semantic task entity specification, since the agent framework requires these

specifications in order to simulate tasks and train agents. An activity, respectively agent

program of the VH dataset is structured as in Listing 6.1 and starts with the name of the

activity (line 1):

Listing 6.1: A Turn on light activity from the Virtual Home dataset.

1 Turn on light

2 Walk into living room. Find wall. Find light button. Switch on light button.

3

4 [Walk] <living_room> (1)

5 [Walk] <light_switch> (1)

6 [Find] <light_switch> (1)

7 [SwitchOn] <light_switch> (1)

Subsequently, the activity is described by a short natural language text (line 2). Finally, an

ordered sequence of actions, related to interaction objects (e.g. light switch, living_room),

follows (lines 4-7). Every household object has an assigned object id number that indicates

whether an action should be performed on the same object or on a different object instance.

In this example the activities are performed always on the same object (i.e. light switch),

since the ids of the object are identical. More detailed information regarding the dataset

can be found at the project’s Github
15
page.

Since for evaluation purposes, task representations were generated based on the agent

programs of the Virtual Home dataset, states and observation features had to be artificially

derived that correspond to single actions. The observation features that indicate a state,

were defined as categorical features that either take the value 0 for false or 1 for true.

The observation feature labels were generated by adding an "Is" in front of each action

label. For instance, the corresponding feature related to the action Walk_living_room

13 http://www.virtual-home.org/tools/explore.html
14 http://virtual-home.org
15 https://github.com/xavierpuigf/virtualhome/blob/master/dataset/README.md

263

6. Evaluation

would be transformed into IsWalk_living_room. Every related state was created by adding

the expression "_Done" at the end of every action label. Analogously, according action

effects were created by concatenating the word "Set" in front of the action label, so that

SetWalk_living_room is obtained.

Since the VH dataset sometimes contains identical task names, it was required to enumer-

ate tasks that have identical names in order to make the tasks separable and unique. This

fact implies that tasks in the dataset can exist in numerous variations so that these tasks

are comparable regarding their characteristics (i.e. number of actions, order of actions)

and objectives.

Figure 6.23 represents an example MDP of a task entity representation, derived from

the task Turn on light 15 (see Table 6.10). The states of the MPD are derived by the

corresponding actions that lead to the states. The edges also represent what reward

is given when the agent performs an action in the corresponding state. The state (i.e.

SwitchOn_lightswitch_Done, following the last action, represents the final target state,

since it can be assumed that the last action of the activity leads to a target state, indicating

the successful completion of an activity. Therefore a reward of 1.0 is given for the last

action of the sequence while the interim actions yield in a reward of 0.5.

It is important to note that the sequence of actions is fixed defined for each agent task and

needs to be learned and followed by the respective agent. However, is this not the case,

the agent is not able to solve the task successfully.

Figure 6.23.: A generated MDP for the Turn on light 15 task.

The JSON-LD excerpt in Listing 6.2 shows exemplary how for one action (i.e. Walk living

room) of the agent program, an appropriate task specification with a state (lines 3-41),

an observation feature (lines 43-70), an action (lines 72-93) and action effect (lines 95-

110), are derived and represented. For every action the task description was enhanced

by these instances (state, observation feature, action, effect). Moreover, an artificial state

(i.e.InitialState) was specified that represents the initial state of the MDP.

Listing 6.2: An exemplary task specification as JSON-LD serialisation.

264

6.3. RQ3: Share and Reuse of Policies

1 [

2 # An exemplary state

3 {

4 "@id": "http://example.org/Entity/Walk_living_room_Done",

5 "@type": [

6 "http://example.org/Concept/Category-3AState"

7],

8 "http://example.org/Property/Property-3AHasObservationFeature": [

9 {

10 "@id": "http://example.org/Entity/IsWalk_living_room"

11 }

12],

13 "http://example.org/Property/Property-3AHasAction": [

14 {

15 "@id": "http://example.org/Entity/Walk_living_room"

16 }

17],

18 "http://example.org/Property/Property-3AIsGoal": [

19 {

20 "@type": "http://www.w3.org/2001/XMLSchema#boolean",

21 "@value": false

22 }

23],

24 "http://example.org/Property/Property-3AIsInitialState": [

25 {

26 "@type": "http://www.w3.org/2001/XMLSchema#boolean",

27 "@value": false

28 }

29],

30 "http://example.org/Property/Property-3AHasExpression": [

31 {

32 "@value": "IsWalk_living_room == 1"

33 }

34],

35 "http://example.org/Property/Property-3AHasReward": [

36 {

37 "@type": "http://www.w3.org/2001/XMLSchema#double",

38 "@value": 0.5

39 }

40]

41 },

42 # The according observation feature

43 {

44 "@id": "http://example.org/Entity/IsWalk_living_room",

45 "@type": [

46 "http://example.org/Concept/Category-3AObservationFeature"

265

6. Evaluation

47],

48 "http://example.org/Property/Property-3AHasRangeStart": [

49 {

50 "@type": "http://www.w3.org/2001/XMLSchema#double",

51 "@value": 0

52 }

53],

54 "http://example.org/Property/Property-3AHasRangeEnd": [

55 {

56 "@type": "http://www.w3.org/2001/XMLSchema#double",

57 "@value": 1

58 }

59],

60 "http://example.org/Property/Property-3AHasFeatureType": [

61 {

62 "@value": "NOMINAL"

63 }

64],

65 "http://example.org/Property/Property-3AHasUnit": [

66 {

67 "@value": ""

68 }

69]

70 },

71 # The according action

72 {

73 "@id": "http://example.org/Entity/Walk_living_room",

74 "@type": [

75 "http://example.org/Concept/Category-3AAction"

76],

77 "http://example.org/Property/Property-3AHasText": [

78 {

79 "@value": ""

80 }

81],

82 "http://example.org/Property/Property-3AIsNegation": [

83 {

84 "@type": "http://www.w3.org/2001/XMLSchema#boolean",

85 "@value": false

86 }

87],

88 "http://example.org/Property/Property-3AHasEffect": [

89 {

90 "@id": "http://example.org/Entity/SetWalk_living_room"

91 }

92]

93 },

266

6.3. RQ3: Share and Reuse of Policies

94 # The effect of the according action

95 {

96 "@id": "http://example.org/Entity/SetWalk_living_room",

97 "@type": [

98 "http://example.org/Concept/Category-3AEffect"

99],

100 "http://example.org/Property/Property-3AHasImpactType": [

101 {

102 "@value": "ON"

103 }

104],

105 "http://example.org/Property/Property-3AHasObservationFeature": [

106 {

107 "@id": "http://example.org/Entity/IsWalk_living_room"

108 }

109]

110 }]

The implementation of the task embeddings evaluation is performed in 2 subsequent steps.

Figure 6.24 illustrates the appropriate set-up.

First, for every given task specification an embedding vector is trained within the frame-

work. Then, an arbitrary number of tasks (see Table 6.10) are randomly selected. Subse-

quently, for every selected task (i.e. Task1, Task2), the framework determines the most

similar tasks by computing the cosine distance between the task embedding vectors. The

task that is most similar to the randomly selected one is then chosen by the framework

to assess the re-usability of task strategies for similar tasks. To do so, the framework

generates, as previously described, a task specification for each of the selected tasks, i.e.

the randomly selected task and its most similar task, and consolidates both tasks in one

specification.

Agent1 trains policies for Task1 via the agent framework and the appropriate task specifica-

tion, and Agent2 adopts and reuses subsequently the policies that were trained by Agent1
for Task1 and applies these policies to Task2. In this way, the evaluation can demonstrate

by assessing the agents’ performance (i.e. cumulative reward and order of performed

action sequences) that policies that were trained for slightly different tasks, can be reused

and adapted for similar tasks successfully.

6.3.4. Results and Discussion

This section presents and discusses the obtained results of the conducted evaluation. First,

the evaluation results of the rule mining approach (Sec. 6.3.4.1) and afterwards the results

of the task embeddings approach (Sec. 6.3.4.2) are outlined in terms of feasibility and

performance.

267

6. Evaluation

Figure 6.24.: Setup for task embeddings evaluation

6.3.4.1. Results of Rule Mining Evaluation

Web Automation The plots of Figure 6.25 suggest that the derived rules for the web au-

tomation tasks, have been successfully reused for performing the corresponding web tasks.

The plots for each web task illustrate that, on average, an agent that applied the mined

rules, received an almost maximum positive reward for each episode, see alsometricM3.2.

Only for the flight booking task, which was more difficult and complex to solve, the agent

received some negative rewards
16
. However, this is explainable by the fact that searching

for destination and departure airports from a long list of airports, took some time, what

led to the situation that sometimes the task could not be solved in time (i.e. within 30

seconds). However, this is acceptable, as the aim of this evaluation was not necessarily

to complete the task quickly, but to perform it correctly. Furthermore, the agent had no

influence on the duration of the airport search since the MiniWob++ benchmark conducted

the database search.

The histograms of Figure 6.26 confirm and reproduce as well the results of the scatter plots

in Figure 6.25. It turns out that almost all web automation tasks result only in positive

rewards while in the flight booking task the number of positive rewards exceeds the

number of negative rewards per episode, seemetric M3.2.

Virtual Home Dataset In order to reproduce the results also for heterogeneous application

areas, the VH dataset was evaluated in the same manner as the web automation tasks,

because the VH dataset provides also sequential tasks. The only difference between the

web tasks and the domestic tasks is that the web tasks additionally include stages that

16
The rules that were applied for the Flight Booking task, were derived by the Best Fit Sequence algorithm.

268

6.3. RQ3: Share and Reuse of Policies

Figure 6.25.: Performance of agents that reused for the web tasks the mined rules.

269

6. Evaluation

Figure 6.26.: Histograms of rewards that were achieved by utilising the mined rules.

270

6.3. RQ3: Share and Reuse of Policies

summarise sequences of actions to fulfil a sub-goal. However, in both tasks, the agent has

to comply again with the order of actions.

It is important to note that each action of a VH task, performed in the correct order,

is rewarded with a 0.5 reward. Only the final action that leads to the final state results

in a reward of 1, which is illustrated by the histograms in Figure 6.27, see alsometric M3.1.

The histograms imply that the derived rules are consistent with the correct sequence of

actions. The cumulative reward also confirms that the performance and compliance of the

derived and applied rules is comparable to the original guidelines, seemetric M3.2.

(a) Turn light on task. (b) Read book task.

(c) Go to toilet task. (d) Cumulative Reward development of all 3 tasks.

Figure 6.27.: Virtual Home dataset tasks, executed with mined rules.

The coloured bar charts of Figure 6.28 give insights about the distribution of performed

actions during the evaluation run. The different colours (i.e. red, blue) represent the reward

values that were assigned for every performed action, seemetrics M3.1 andM3.4.

The blue coloured bar charts depict the actions that led to the completion (i.e. target

state) of the corresponding task and resulted in a reward value of 1. Since every listed

271

6. Evaluation

action has to be performed in order to complete the task at hand, every bar chart exhibits

consequently the same frequency of performed actions, seemetric M3.1.

(a) Turn light on. (b) Read book.

(c) Go to toilet.

Figure 6.28.: Performed actions and rewards of Virtual Home dataset, executed with mined

rules.

COVID-19 Measures The agent framework also supports the processing and simulation

of unordered tasks that do not require a fixed order of actions. For this reason, the rule

mining approach has to be evaluated in terms of applicability with respect to unordered

tasks.

The COVID-19 measures is a use case and task that complies with the requirement of

being unordered because the action sequences are not predetermined and each possible

action can be executed in an occurring state. However, this also implies that different

rule mining algorithms are required than for sequential tasks. In the proposed approach,

the algorithms that address rule mining of unordered tasks, are sequential covering and

OneR. Therefore, both algorithms were implemented, executed and compared, in order to

272

6.3. RQ3: Share and Reuse of Policies

determine differences regarding performance and applicability.

Figure 6.29 depicts the cumulative reward of both algorithms and allows the comparison to

the RL algorithm that previously provided the data for mining the rules, see metric M3.2.
The comparison with the RL algorithm is necessary because it serves as a ground-truth

and the aim of the evaluation is to show that the rules obtained do not lead to a loss of

performance.

Figure 6.29a illustrates that sequential covering and OneR outperform the RL algorithm

in terms of improvement speed. Initially, a descent in reward scores is obtained for all

three agents. However, the descending cumulative reward value turns into an increasing

cumulative reward value after some time. The RL agent needs 250 time steps
17
, i.e. days,

for its cumulative reward value to turn to an increase, while sequential covering and OneR

only need half the time (i.e. 125 days) to achieve a positive effect, seemetrics M3.2 and

M3.4.

The curve of the RL agent is lower than the curves of the mined rules. However, the OneR

algorithm best approximates the behaviour of the RL agent, as both have the same but

time-shifted curve shape. The sequential covering curve has a flatter increasing cumulative

reward, since its measures are more restrictive and less economy friendly than at the

other two agents. The action steps for each evaluation run are restricted to 1000 steps and

therefore no conclusion can be made about how the cumulative reward of each agent will

evolve after more execution steps. Nevertheless, it is important to note that especially

for the COVID-19 measures task, a fast increase of high performing measures is desirable

because the faster the course of the disease can be contained, the more risks can be avoided

and the more helpful are the imposed measures, seemetric M3.3.

Considering the results, it can be concluded that mined rules exploit in particular useful

actions from the data that is provided by the RL agent. This can be explained by the fact

that the approach conducts a data preprocessing step in which data samples with low val-

ued respectively rewarded actions are filtered out. The corresponding histograms as well

reproduce the outcome of the cumulative reward plot, see alsometric M3.2. Furthermore,

the rule mining algorithms extract significant patterns from the positively rewarded data

samples. These patterns reproduce the successful actions of the RL agent.

The sequential covering algorithm is less powerful than the OneR algorithm because its

cumulative reward curve is flatter and rises more slowly because the OneR algorithm

receives higher reward values (e.g. 0.5 and 0.25) for its actions, while the sequential

covering algorithm only receives a reward value of 0.25 for its restrictive measure (i.e.

TotalConfinement). However, in the first 125 days, both rule mining algorithms are equal,

while they outperform the RL agent in this period. This in turn suggests that both rule

mining algorithms allow the derivation of significant rules that lead to an increase in the

17
One time step represents one day

273

6. Evaluation

agent’s performance.

(a) Cumulative reward of sequential covering,

OneR and RL algorithm over time, i.e. days.

(b) Reward histogram of RL agent.

(c) Reward histogram of OneR algorithm.

(d) Reward histogram of Sequential Coverage al-

gorithm.

Figure 6.29.: COVID-19 measures: RL agent performance versus mined rules performance.

Figure 6.30 depicts for every evaluated algorithm, the distribution of performed actions, see

metric M3.4. It might be interesting to see that the number of performed actions differs

between the algorithms. For the task concerning COVID-19 measures, it was possible

to execute 4 actions, however the RL algorithm and the OneR algorithm performed in

summary only 2 of 4 actions (i.e. TotalConfinement, SoftConfinement) that were for both
identical, while the sequential covering algorithm managed to solve the task with only 1

action (i.e. TotalConfinement). The actions SomeRestriction, NoRestriction were omitted by

all considered algorithms. This seems to make sense, because the trade-off between public

health and economy had to be addressed by the simulation model. While one objective

was to preserve the public health in a large part by keeping the number of infections low

and the number of hospital beds sufficient, the other objective was to keep the economy

up and stable. The reward assignment configuration in Table 5.8 tried to address both

274

6.3. RQ3: Share and Reuse of Policies

objectives. However, only the plots of Figure 6.31 provide insights about whether the two

diverging objectives could be achieved effectively by the performed measures.

(a) RL agent. (b) OneR algorithm.

(c) Sequential Covering algorithm.

Figure 6.30.: COVID-19 measures: Performed actions of each algorithm and received

rewards per action.

The plots of Figure 6.31 illustrate the development of the SEIR categories and number of

hospital beds, see metric M3.3. Agents that applied the mined rules, performed com-

parable or even better than the RL agent. The proportion of infections could be kept

significantly low by each agent, while in turn the proportion of susceptible people kept

high. However, in all plots it can also be determined that for some time no (sufficient) hos-

pital beds were available until the infections were contained. This might be due to the fact

that the number of hospital beds (i.e. 250) was very low compared to the population size

(i.e. 100000) and initial infections and exposures (i.e. 1000). Moreover, the configuration of

rewards within the task simulation model can be adjusted so that even better results or

different objectives can be achieved.

In both rule mining algorithms, infections remain very low in the first 125 days, while

there are not enough hospital beds available for infected people. The number of susceptible

people decreases by approximately 10%. The proportion of recovered people increases

275

6. Evaluation

within the first 125 days and keeps consequently equally low as the proportion of suscep-

tible people, i.e. also approximately 10%.

The RL agent achieves for susceptible people a decrease of approximately 25% while the

proportion of recovered people increases up to approximately 25%. However, the RL agent

requires approximately 250 days until the number of available hospital beds increases.

At the beginning of the pandemic, for all 3 algorithms, the proportion of available hospital

beds is below the infection curve, suggesting that the derived sequence of measures is

still suboptimal, see metric M3.3. However, in terms of infections and containment time,

the results of both rule mining agents are significantly better than the result of the RL agent.

(a) RL agent (b) Sequential covering

(c) OneR

Figure 6.31.: Development of the SEIR categories based on the imposed measures. Since

the exposures overlap with the infections, they cannot be seen in the plots.

The plots of Figure 6.32 depict that the genetic algorithm (GA) agent performs worse than

the tested rule mining agents because its received punishments are significantly higher.

OneR and sequential covering result in a quite similar curve shape and both require approx-

imately 125 days until their cumulative reward (see metric M3.2) turns into a positive, i.e.

276

6.3. RQ3: Share and Reuse of Policies

increasing, direction. However, OneR reaches after 172 days again an inflection point (see

metric M3.3) that leads to a decreasing cumulative reward development, while sequential

covering positively keeps its performance. It has to be acknowledged, though, that in the

case of the COVID-19 measures task, the cumulative reward development is not particularly

meaningful because the development of the reward curve depends strongly on the task

configuration and reward assignment and this in turn depends on the determined goals of

the task. In the COVID-19 task, a trade-off between diverging goals are prevalent and this

trade-off is reflected to a certain extent in the cumulative reward development. However,

it is apparent that the rule mining agents perform better than the GA agent in terms of

rewards received.

The reward histograms of the Figures 6.32b - 6.32d show that the GA agent receives more

rewards with higher negative values than the rule mining agents. However, it also achieves

a high number of positive rewards compared to the rule mining agents and covers therefore

the entire spectrum of rewards that are receivable. This is due to the fact that the GA

agent executes all possible measures while the rule mining agents perform only certain

measures high frequently while they omit others. Figure 6.33 illustrates this situation. The

most frequently imposed measure of the rule mining agents is TotalConfinement while the
least one is NoRestriction. This indicates that the rule mining agents derived rules from

the GA agent’s dataset that are highly restrictive and thus contribute to the objective of

keeping the infections low and the availability of hospital beds high.

The development of each rule mining agent’s SEIR curve in Figure 6.34 confirms the

previously outlined observation. The goal to keep the infections low and the proportion of

susceptible persons high as well as the hospital beds sufficient, has been accomplished by

the rule mining agents, while the GA agent shows for more than 75 days a lack of hospital

beds and a significantly high curve of infected and exposed persons. Only after more than

100 days does the number of hospital beds increase again.

Some conclusions can be drawn from these results. The evaluated rule mining agents

show satisfactory performance compared to the other evaluated approaches, e.g. GA, if

the data they use for their rules replicate the goals and desired behaviour. Thus, rule

mining approaches can be a fast alternative to learning algorithms, provided that good

quality data about the intended processes are available. However, it still depends on the

simulation model and the assumptions and goals of the domain experts which measures

are reinforced by the model and the agent framework during the data generation process.

It can be stated that the made assumptions have to correctly reflect the objectives in the

simulation model so that RL agents can be reinforced by the framework to take the optimal

measures that contribute to the intended task objectives.

The obtained performance results of the agents suggest that hypothesis EH3.1 is true since

the derived rules enable agents to achieve an equal or even better performance during

task execution.

277

6. Evaluation

(a) Cumulative reward of sequential coverage,

OneR and RL algorithm.

(b) Reward histogram of RL agent.

(c) Reward histogram of OneR algorithm.

(d) Reward histogram of Sequential Covering al-

gorithm.

Figure 6.32.: COVID-19 measures: GA agent performance versus mined rules performance.

278

6.3. RQ3: Share and Reuse of Policies

(a) GA agent. (b) OneR algorithm.

(c) Sequential Covering algorithm.

Figure 6.33.: COVID-19 measures: Performed actions of each algorithm and received

rewards per action.

279

6. Evaluation

(a) RL agent (b) Sequential covering

(c) OneR

Figure 6.34.: Development of the SEIR categories based on the imposed measures. The

exposures (yellow) in Fig. 6.34b and Fig. 6.34c overlap with the infections and

therefore cannot be seen in the plots.

280

6.3. RQ3: Share and Reuse of Policies

6.3.4.2. Results of Task Embeddings Evaluation

Table 6.10 lists VH tasks that were randomly selected during the evaluation run. The table

also depicts for every selected task the corresponding most similar task, the sequence of

actions required to conduct the task, and the number of actions that are common and not

common to both tasks.

Moreover, the table provides the determined cosine distance as well as the Jaccard similar-

ity between the original task and the most similar task. The lower the cosine distance is

the closer two task vectors to each other are. It is evident that for almost every task the

cosine distance is quite low while the Jaccard similarity is rather high, what is a consistent

and desired outcome.

Only between the Read book tasks, a moderate Jaccard similarity and cosine distance is

measured. This is explainable by the lower number of actions (i.e. 6) that match for both

tasks, while each task consists of 9 actions that are required to conduct both tasks. This in

turn means, that both tasks vary regarding 3 actions. However, the plots in Figure 6.38

illustrate that nevertheless the policies of Read book 7 can be successfully reused by Read
book 25 and vice versa because the agent adjusts its policies based on the framework’s

feedback to the actual task that it conducts. It is important to not that the Read book 7 task

also shows that the agent does not require many steps until it adjusts its policies to the

task at hand.

Another remarkable result is illustrated by the bar charts reflecting the distribution of

actions, seemetric M3.4. It can be observed that actions that do not correspond to the

actual task are refrained from by the agent after the adjustment of the given policies.

The findings discussed thus suggest that task embeddings are an efficient means of retriev-

ing similar task entities and related policies because agents do not have to learn the policies

from scratch and can thus avoid lengthy ML procedures such as data pre-processing and

policy training.

Figure 6.35 depicts screen shots of the spatial distribution of the considered task embed-

dings and their neighbours, visualised by Tensorflow’s Embedding Projector18.

To visualise and compare the learned embedding vectors, two separate TSV
19
files, contain-

ing the weights of the embedding vectors and corresponding task labels, were generated

and uploaded to the Projector page. The Projector page also lists on the right side, the

nearest neighbours to a selected embedding vector and the computed Euclidean or cosine

distance between both vectors.

In order to assess the re-usability of policies for the most similar tasks, the cumulative

reward (seemetric M3.2), the distribution of reward values and the distribution of per-

18 https://projector.tensorflow.org/
19
Tabular-separated values.

281

6. Evaluation

Task Action
Sequence

Most
similar
task

Conjunct
Actions

Disjunct
Actions

Cosine
Distance

Jaccard
Similarity

Go to

toilet 28

Walk bathroom

Walk toilet

Open toilet

Sit toilet

Find toilet_paper

Wipe toilet_paper

StandUp

Flush toilet

Close toilet

Go to

toilet 60

8 2 0.006 0.8

Turn on

light 15

Walk living_room

Walk lightswitch

Find lightswitch

SwitchOn lightswitch

Turn on

light 16

4 0 0.061 1.0

Read

book 7

Walk living_room

Walk textbook

Find textbook

Grab textbook

Walk living_room

Walk chair

Find chair

Sit chair

Read textbook

Read

book 25

6 5 0.046 0.54

Table 6.10.: Comparison of most similar tasks by their embedding vectors.

282

6.3. RQ3: Share and Reuse of Policies

(a) Go to toilet task embeddings.

(b) Turn on light task embeddings.

(c) Read book task embeddings.

Figure 6.35.: Embedding Projector showing trained task embeddings.

283

6. Evaluation

formed actions (see metric M3.4) were considered. Therefore, policies that were trained
per task, were reused for the most similar corresponding task. The Figures 6.36 - 6.38

illustrate the corresponding results for each VH task.

The red coloured diagrams show the results for the reuse of policies for the actual task. The

blue coloured diagrams depict the application of trained policies applied to the originally

trained task and lastly the green coloured diagrams represent the performance and action

distribution during the training of policies. The purpose of this three-fold evaluation is

to compare and keep track of changes, concerning the performance and selection of actions.

The diagrams illustrate that in all three cases, the reused policies allow the agents to solve

the assigned task and lead to an increasing positive cumulative reward, see metric M3.2.
Moreover, hardly any negative rewards are achieved besides during the training phase.

However, this is expectable, because during the training of policies, the agent requires to

conduct exploration steps that consequently can lead also to wrong decisions and actions.

The agent learns as well by negative feedback to avoid actions that lead to a negative

outcome. The principle of trial and error applies here.

(a) Cumulative Reward (b) Reward Histogram (c) Actions Distribution

(d) Cumulative Reward (e) Reward Histogram (f) Actions Distribution

(g) Cumulative Reward (h) Reward Histogram (i) Actions Distribution

Figure 6.36.: Go toilet 28 policies trained and applied to Go toilet 60 task.

284

6.3. RQ3: Share and Reuse of Policies

(a) Cumulative Reward (b) Reward Histogram (c) Actions Distribution

(d) Cumulative Reward (e) Reward Histogram (f) Actions Distribution

(g) Cumulative Reward (h) Reward Distribution (i) Actions Distribution

Figure 6.37.: Turn on light 15 policies trained and applied to Turn on light 16 task.

The evaluation results suggest that the use of task embeddings, as outlined in hypothesis

H3.2, allows agents to find similar tasks and reusable policies so that they do not have

to learn the policies from scratch, but can simply use task embeddings to find the most

similar and consistent task that already provides pre-trained guidance.

285

6. Evaluation

(a) Cumulative Reward (b) Reward Histogram (c) Actions Distribution

(d) Cumulative Reward (e) Reward Histogram (f) Actions Distribution

(g) Cumulative Reward (h) Reward Histogram (i) Actions Distribution

Figure 6.38.: Read book 7 policies trained and applied to Read book 25 task.

286

6.4. Threats to Validity

6.4. Threats to Validity

This section introduces validity threats [48] based on Cook’s and Campbell’s definition

and discusses them in terms of the evaluation conducted [279]. The knowledge about the

validity threats presented in this section, is adopted from the book [279] of Wohlin et al.

and can be used as a tool to assess during the experimental design whether the validity of

the evaluation results is affected by different aspects. This is done by assessing the design

and implementation of the evaluation, the subjects selected and measurements made.

Validity threats are sometimes unavoidable, and knowledge of them helps to uncover

specific validity problems related to the assumptions and results of an experiment. The

aim is to avoid these threats as much as possible by reconsidering experimental design

decisions, treatments and the (statistical) tools used, such as e.g. questionnaires, metrics

and the selection or combination of the subjects evaluated.

Since in this work different experiments are performed to evaluate each approach with

respect to the posed RQs, in this section the validity threats that could challenge the

validity of the obtained results are considered and outlined. It is important to note that not

all validity threats are applicable to all conducted experiments and sometimes a trade-off
between different validity threats has to be taken into account and the removal of one

of these threats may lead to the strengthening of another validity threat [279]. This fact

implies that it is sometimes unavoidable to accept some validity threats and to interpret

the obtained results in the light of these threats.

Regardless of the threats to validity, it is worth mentioning that the related work, discussed

in Sec. 3, except for the baseline approaches in Sec. 3.2.2, do not serve as a baseline for the

experiments, i.e. case studies, conducted. This is because related work similar to the agent

framework presented here, or following its application goals and processes, does not yet

seem to exist and thus only individual approaches and contributions of the proposed agent

framework can be evaluated in the context of the use cases defined in Sec. 5 and the con-

sidered related work in Sec. 3.2.2. The majority of the related work considered was either

purely domain-specific approaches that were hardly applicable to the defined case studies

or they were not reproducible and implementable for the experiments. This circumstance

made it necessary to define a wide range of use cases from different domains in order to

evaluate the applicability, performance and generalisability of the agent framework in the

scope of the evaluation criteria, i.e. the metrics specified here. However, the approach

to combine policies could be evaluated to a limited extent compared to the approaches

discussed in Sec. 3.2.2 that served as baselines.

According to Cook and Campbell, there are four different types of validity threats that can
impact the validity of experimental outcomes [279]:

i. Conclusion validity – Assesses whether the outcomes of an experiment are repro-

ducible and whether the drawn conclusions are correct and reliable.

287

6. Evaluation

ii. Internal validity – Assesses the (unknown) causal effects to independent variables

of a test. The possible internal threats are categorised as single group, multi group and

social threats and concern the test subjects.

iii. Construct validity – Assesses whether the design, i.e. the construction, of the experi-
ments poses a threat to the validity of the results.

iv. External validity – Assesses whether the results of an experiment are generalisable

to "industrial practise" [279].

Each threat to validity can be evaluated through different criteria that will be outlined in

the appropriate sections with respect to the evaluation in this thesis.

6.4.1. Conclusion Validity

Low statistical power The statistical power of obtained data can be usually figured out by

a power analysis and hypothesis testing where a null hypothesis 𝐻0 is to be rejected, given

that a certain significance level (p-value) is exceeded or fallen below. In a power analysis

some parameters have to be known or assumed in advance, e.g. the significance level, the
desired probability of having true positives and the effect size between different tested data.

However, in the performed evaluation no power analysis as well as hypothesis testing,

with p-values, has been conducted since a) it is not a common and useful approach for

evaluating software agents
20
, b) it was difficult to apply it to the given evaluation data

since prior statistical assumptions about the data distribution (e.g. Gaussian) would have

been required that introduce further sources of error, and c) Hubbard et al. argued and

showed that p-values are no reliable and informative statistical measure for assessing the

significance and effect of the measured observations, because "p values exaggerate the
evidence against 𝐻0" [110]. According to their review, confidence intervals and effect sizes,
e.g. Cohen’s d, are more expressive than p-values, since p-values only indicate depending

on the sample size and overlap of data distributions whether a null hypothesis can be

rejected in favour of a posed alternative hypothesis [110]. However, a p-value does not

indicate how big the differences between compared evidences, i.e. probability distributions

are. As earlier mentioned, another commonly used statistical test are confidence intervals.

Confidence intervals are used in frequentist statistics and have the disadvantage that if

there is an overlap of confidence intervals between different probability distributions,

another statistical test is still required to assess whether there is a statistically significant

difference between the two distributions. Furthermore, the sample size influences the

spread of confidence intervals. For instance, Morey et al. argue that it should be avoided

to apply confidence intervals since they allow "only the shallowest of interpretations, and
are not well-suited to the needs of scientists" [176].

Since the commonly known statistical tests have the outlined drawbacks, and the evalu-

ated metrics, e.g. cumulative reward or required steps for solving a task, have no known

probability distribution in advance, statistical tests for comparing the performance of

20
The common approach for evaluating agents has been introduced in Sec. 2.3.7

288

6.4. Threats to Validity

agents, except for effect size and confidence intervals, were omitted in the evaluation. It can

be argued that the combination of effect size and confidence intervals already provides

sufficient information about the significance of the results when used together. For this

reason, effect size and confidence intervals were used as statistical measures in the evalua-

tion.

In terms of the conducted evaluation, one problem was that the population mean of the

observed performance indicators, such as e.g. the agent’s obtained cumulative reward and

its learning velocity were unknown in advance because there exist no common reference

values or ground-truth for both assessed performance indicators in scientific literature

that could have been used to evaluate against. For this reason informed rule-based agents

and agent performance testing benchmarks such as the MiniWob++ platform were utilised

in order to evaluate the framework agent against. However, the obtained results from

the different approaches were so significantly different with respect to their mean values,

standard deviations and effect sizes and thus, showed a clear, separable pattern that allowed

for the conclusions in the evaluation results sections. The significance of the results have

been ensured by performing several runs of the experiments, so that random chance data,

i.e. noise, could be eliminated. Furthermore, for the evaluation of the experiments in

Sec. 6.1, the effect size, i.e. Cohen’s d, and confidence intervals with 95% coverage were

calculated to assess the significance of the evaluation results. The presented plots illustrate

the clear differences in the results of the compared agents.

Violated assumptions of statistical tests As outlined earlier, no statistical tests were con-

ducted in the scope of the evaluation, thus, no assumptions in terms of statistical tests

could be violated.

Fishing and the error rate To prevent "fishing" for desired outcomes, experimental con-

straints and conditions, e.g. number of runs, hyper-parameters, metrics and definition of

the evaluation goals, design and procedure, were clearly defined in advance before the

experiments were conducted. In addition, all results of the experiments, including the poor

ones, were reported and aggregated by statistical measures such as mean value, standard
deviation, standard error, variance, etc. Since no hypothesis testing was performed, no

significance level and therefore no error rate was relevant in the evaluation of the results.

Reliability of measures To ensure reliability and reproducibility of the measured evalua-

tion results, the evaluation set-up was pre-defined with the applied algorithms, evaluation

benchmarks (e.g. MiniWob++), hyper-parameters, configuration settings and performance

indicators. In addition, some practical implementations, datasets and experiments were

documented and made available on Github
21
and Figshare

22
[154] so that the assessment

can be reproduced and evaluated under the same or different conditions.

21
see repositories: https://github.com/nmerkle/K-Cap-2019-Demo, https://github.com/nmerkle/K-

Cap2019, https://github.com/nmerkle/SW_Journal
22 https://doi.org/10.6084/m9.figshare.22215079.v1

289

6. Evaluation

Reliability of treatment implementation The implementation of the evaluation was under

the same conditions for each evaluated software agent. This was ensured through the

same computation and simulation environment, the same tested tasks, the same number

of runs, the same hyper-parameter and configuration settings.

Random irrelevancies in experimental setting The simulation of tasks as well as the eval-

uation of the corresponding agents were executed under controlled conditions, so that

no disturbance variables and external factors could influence the evaluation outcomes.

Furthermore, in the experiments no persons were involved who could have introduced

random irrelevancies.

Random heterogeneity of subjects This criterion was not relevant for the evaluation

since no heterogeneous study groups were involved in the experiments. However, it

was intended that heterogeneous agent types were evaluated since the objective was to

compare the feasibility of the evaluated approaches against different software agents. The

heterogeneity between agents was to some extent intentional and therefore not random,

in order to show the advantages of the proposed approaches and agents trained with the

proposed agent framework.

6.4.2. Internal Validity

The criteria for assessing internal validity threats can be sub-divided into single group
threats, multi group threats and social threats although the last criterion may not be relevant

to the experiments envisioned in this work. The mentioned criteria and their relation to

the experiments in this work are explained in more detail in the following sections.

6.4.2.1. Single group threats

In the experiments, there were no single-group threats because the agent that used the

framework was compared with other agents, e.g. a pure rule-based agent and an untrained

RL agent, which served as the control group and the selected experimental groups, so

that the different experimental results could be attributed to the effects of the different

approaches.

History A threat to validity from history did not play a role in the experiments because

the experiments were always conducted under the same circumstances, which could not

be influenced by historical changes, i.e. time and space.

Maturation The maturation of the evaluated agents was intended to some degree, as RL

agents were expected to learn policies and improve their strategies to solve the assigned

tasks. However, it could be controlled by parameters and learned ML models to either

drive this maturation or let the agents start their task performance at zero experience.

290

6.4. Threats to Validity

Testing This criterion is only relevant for test persons who could learn from feedback

loops and thus, was not relevant for the evaluation because the tested software agents

required feedback loops, i.e. repeated iterations, of the experiments and feedback from the

agent framework, in order to improve their strategies.

Instrumentation The instrumentation validity threat might concern experiments that

were performed with just one or a few evaluated hyper-parameter configurations. It might

be that maybe another hyper-parameter configuration would have yield in different results

than the obtained ones. However, this threat can be resolved by hyper-parameter tuning.

Also, the execution steps of the experiments were partly limited to 1000 runs and maybe a

longer execution would have shown different results, however one demand to agents was

to show a high utility, i.e. learning performance, in a short time span what explains the

limitation of training steps and episodes.

Statistical regression The performed experiments and the selected agents were indepen-

dent of previous experiments. For this reason, random variations could not occur in the

subsequent experiments and their results. This means that statistical regression in the

given context is not a criterion for evaluating the validity of the planned experiments.

Selection The selection of agents, i.e. algorithms and implementation of agents, was

based on algorithms commonly used for software agents. In particular, rule-based agents,

RL agents, statistical, i.e. Bayesian agents, and evolutionary agents were the subject of

the conducted experiments, thus giving a wide choice of agents. Certainly, many more

algorithms and agent types could have been tested, but in the end, for the intended agent

framework, it was not important which algorithm an agent implements, but whether the

agent can improve its strategies using the proposed approaches implemented in the agent

framework. Thus, it can be stated that the selected agents or algorithms are representative

of the agents that are the target users of the agent framework.

Mortality The mortality of subjects is not a criterion that can be applied to the designed

experiments because human subjects are not intended for the experiments and thus cannot

drop out of the experiments and thus affect the validity of the results.

Ambiguity about direction of causal influence In the experiments, the causation of en-

vironmental effects is defined by the formal representation of tasks and it is assumed

that agents can influence the state of the environment with their executed actions. Since

the simulation component simulates the environment, it is possible to control during the

experiments whether and how state changes are caused by the executed actions of the

agents. For instance, another assumption in one of the experiments in Sec. 6.2.3.2 is that

task complexity can be measured by the sequence of actions that an agent requires to

perform to solve and complete the assigned task. To clearly show the causal impact of

sequence length on task complexity, different types of agents, i.e. RL agent and another

agent implementing the proposed approach, are compared. The experiment in Sec. 6.2.3.2

291

6. Evaluation

shows that the longer the action sequence of a task, the more time both agents take and

the more erroneous actions they perform. By comparing the agents and their achieved

outcomes, the differences in the approaches become evident and comparing different

agents and approaches ensures that the direction of causal influences can be recognised.

6.4.2.2. Multi group threats

Multiple group threats are common when studying different groups of subjects. There

is a trade-off between single-group threats and multiple-group threats because multiple

groups can be influenced by single group threats differently, which can affect or even

threaten the validity of the results obtained in the experiment.

Interactions with selection In the planned experiments, interaction with selection is not a

threat because there are no human subjects involved in the experiments who might exhibit

different behaviours due to different levels of maturity and influences of prior history.

6.4.2.3. Social threats

Social threats can occur in both single- and multi-group experiments. Since these types

of threats involve human subjects in particular, they are not relevant to the experiments

conducted in this thesis.

6.4.3. Construct Validity

Threats to construct validity can be caused by two different types of threats, namely design

threats and social threats. Design threats involve the definition and design of experiments,

whereas social threats involve social factors that might affect the generalisability of ex-

perimental results. That means that the observed results of the experiments may not

generalise to the hypothesis that was established and evaluated [279].

6.4.3.1. Design Threats

Design threats can be avoided if the planned experiments successfully reproduce the

approach or theory being evaluated. The design of the experiments can be evaluated using

the following criteria.

Inadequate pre-operational explication of constructs In the context of the experiments,

the experimental set-up, evaluated use cases, tasks, goals, configuration parameters, al-

gorithms, metrics, and observable performance indicators, such as learning speed, agent

performance or utility, cumulative rewards, task complexity, were specified in detail and

unambiguously to avoid the risk of an inadequate pre-operational explication of constructs.
The defined and also adopted metrics ensure the reproducibility of the collected data and

also make it comprehensible what specifically is being measured. Furthermore, the specifi-

cation of what is to be measured and evaluated is given by the research questions that ask

about the performance and learning speed of the agents being evaluated. For instance, the

292

6.4. Threats to Validity

performance of agents is measured by a utility or fitness function and feedback from the

environment, while the successful completion of a task can also be measured by defining

target states in tasks that need to be achieved by the respective agent. It can therefore be

assumed that what is to be measured is measured in the evaluation of the framework and

agents.

Mono-operation bias The measured data were collected using various experimental proce-

dures. For example, learning speed was measured by the execution steps and the episodes

performed. The performance of the different agents was measured by the average reward

over several iterations of the experiments and the cumulative reward. Different agents

performing tasks with different complexity were also evaluated. In addition, balanced

datasets with a high number of samples were used or generated to make the observations

meaningful. However, for one of the experiments, only the Virtual Home dataset was used

to show the performance of the proposed approach.

Mono-method bias In the experiments, different measures were established to evaluate

different observations from different perspectives. Also, the obtained measures were

compared with each other to find inconsistencies in the observations. The goal was to

obtain reliable results that agree with each other and support the findings.

Confounding constructs and levels of constructs This validity threat concerns both the

different levels of evaluation constructs and the presence or absence of these constructs.

If experimental subjects are at different levels of maturity, this could bias the validity of

the results. With respect to the experimental constructs designed in this thesis, the agent

that is trained in advance by the agent framework is strategically more advanced than

the agents that have yet to learn the policies. For this reason, it could be argued that the

agent in question has some advantage and a higher level than the agents being compared

to it because of the pre-training. However, this warm-start is exactly what the proposed

agent framework is all about. Namely, the experiments aim to show that the agent is able

to overcome the cold-start by using the simulation component of the framework. The

assumption previous to the evaluation was that an agent can be trained off-line using the

framework in order to gain some prior knowledge.

Interaction of different treatments The evaluated agents are not simultaneously involved

in different experiments, but the experiments are conducted independently (one after the

other), so that the effects of the experiments cannot affect the agents in the subsequent

experiments and cannot distort the evaluation results.

Interaction of testing and treatment Compared to human subjects, software agents have

no awareness of the tests performed and therefore cannot be sensitised by using the

information and learned knowledge about the methods performed to falsify the obtained

test results.

293

6. Evaluation

Restricted generalisability across constructs Generalisability of the proposed approaches

was an important objective and target within this work. However, generalisability can

only be evaluated to a certain extent. For instance, during the evaluation of RL agents only

one implementation, i.e. deep-q-learning, has been evaluated, however, there are many

more reinforcement learning algorithms in model-free and model-based RL, e.g. policy

gradient, A2C/A3C, etc., that could have been implemented and evaluated. Testing all

possible algorithms would have been gone beyond the scope of this work. Thus, the

author had to decide due to pragmatical reasons, for one commonly used RL algorithm, i.e.

Deep-Q-Learning that supports huge state spaces.

Regarding the used datasets, there were also some limitations, since e.g. for one of the

experiments only one dataset, i.e. Virtual Home dataset, that specifies agent tasks in a

domestic environment, has been evaluated. This dataset provided task descriptions with

ordered action sequences and related objects. The dataset was considered sufficient and

representative for demonstrating that entity embeddings facilitate and accelerate agents

in obtaining policies. However, it has been not evaluated what happens, if continuous

states are given that cannot simply be embedded into the vector space of the actions.

Another possible validity risk due to the restricted generalisability across constructs is that
not all possible domains and tasks could be evaluated during the evaluation. Thus, a

selection of domains and tasks had to be made. Therefore, it can only be stated that the

results are valid for the evaluated tasks and it is assumed that the approaches can be

generalised and transferred to similar tasks as far as the tasks can be formally defined and

represented in the proposed agent framework.

6.4.3.2. Social Threats

Social threats such as hypothesis guessing, evaluation apprehension and experimenter ex-
pectancies are irrelevant in the context of the experiments of this thesis, since the test

subjects are software agents and not humans that could be influenced by social factors.

Therefore, these threats will not be discussed in this thesis.

6.4.4. External Validity

External validity threats can occur when external factors such as people involved, loca-

tion, and time of experiments play a role. The external validity of tested approaches is

given when the evaluated approaches are "generalisable" and applicable "in industrial

practice" [279]. The goal of this work is to create an agent framework with generalisable

approaches that cover heterogeneous use cases and domains. Therefore, considering this

threat to validity is relevant and important to evaluate and, if necessary, question the

validity of the planned experiments.

Interaction of selection and treatment The agent framework under evaluation also ad-

dresses specific target users, such as domain experts, agent developers, and end-users

who use the services provided by the agents. However, evaluating the usability of the

294

6.4. Threats to Validity

framework was beyond the scope of this work. Considering the evaluated agent types,

they might be representative for the intended use cases and domains, since they apply

commonly used rule-based and machine learning approaches as well as (semantic) web

technologies that are utilised in different domains and application fields, such as e.g. Inter-
net of Things. For this reason, the agents and algorithms are considered representative for

the intended use and thus, this observation indicates that the evaluated approaches seem

to be also applicable in industrial practice.

Interaction of setting and treatment The programming languages (e.g. JavaScript) used in

the experiments to implement the framework and the agents as well as the test platforms

(e.g. MiniWob++), use cases, and environments are representative and commonly used in

industrial and scientific practice. Moreover, the APIs of the proposed agent framework

allow open access by other platforms and tools used in practice, provided that these plat-

forms follow the specified APIs of the agent framework. Furthermore, the framework

ontology enables a formal representation of decision-making processes and is therefore

generally suitable for describing processes of different domains. It contains the common

properties of tasks and abstracts the interaction of agents with their environment. For

instance, states of the ontology represent and aggregate the measured states of the envi-

ronment. The concepts of the used ontology are generic enough that they can be applied

to different tasks. This also implies that they are scalable to industrial tasks. Domain

experts have the possibility to describe tasks and their properties in an abstract way based

on the ontology without having to go into low-level implementation details.

The evaluated use cases come from heterogeneous domains and can be transferred to indus-

trial tasks where software agents make decisions based on their observations. Furthermore,

different task types, i.e. sequential vs. non-sequential, single agent vs. multi-agent, etc.,

were elaborated in the doctoral thesis, which are also present in the evaluated tasks. This

also ensures the scalability and transferability of the evaluated use cases to industrial

practice.

Interaction of history and treatment The planned experiments are insensitive to historical

influences. This means that the experiments cannot be influenced by different times. Thus,

this criterion is not relevant for assessing the validity of the experiments.

295

6. Evaluation

6.5. Summary of this chapter

This chapter outlined the different evaluation aspects of the proposed agent framework.

First, the cold-start problem, subject of RQ1, has been examined. The conducted evalua-

tion demonstrates that the framework enables agents in heterogeneous tasks to have a

warm-start in terms of adaptation speed and performance. The objective was to evaluate

whether a RL agent that is trained by the proposed agent framework, can show a reward

maximising behaviour in a relatively short timespan. Therefore, different types of agents

(i.e. untrained RL agent, rule-based agent) were evaluated and compared with the RL

agent that was previously trained by the proposed agent framework. The results indicate

that the trained RL agent outperformed the other agents in most of the cases regarding

the evaluated aspects, especially if ambiguous state representations were given and an

adaptation of policies was required.

Second, the evaluation investigated in RQ2.1, that is concerned with the elimination of

ambiguity and adaptation of trained policies. It was discussed that context changes and

personalisation can require the ability of RL agents to personalise and adapt their be-

haviour to upcoming situations, users and requirements. The corresponding evaluation of

RQ2.1 suggests that RL agents that have trained certain ambiguous or unspecific policies

can adapt their policies through new and modified feedback that may be given by vary-

ing task entity specifications. Therefore, RL agents are highly flexible regarding context

changes and personalisation. Thus, the agent framework simulated and reinforced these

changing or newly upcoming task requirements, so that agents changed their behaviour in

an intended way. The evaluation demonstrated that agents refrained from less reinforced

actions and performed actions that promised a positive feedback and reward maximising

utility function.

Third, as an alternative to reinforcement learning, a policy combination approach was

compared in terms of a) success rate in completing a task and b) speed, i.e. the number

of steps and episodes required by the framework to deliver context-related policies for

answering RQ2.2. Domestic activities of different complexity, i.e. action sequence length,

were evaluated and compared with a DQNN agent. The evaluation indicates that the

presented policy combination approach significantly outperforms the DQNN agent in

terms of speed and activity completion rate, as the proposed approach required only one

episode for each activity to provide the correct sequence of actions for a corresponding

state, while the DQNN agent required at least 100 training episodes to correctly perform

a few activities. In contrast, the policy combination approach was able to provide the

correct sequence of actions for each evaluated activity, regardless of the complexity, i.e.

action sequence length, of the activity. The Virtual Home dataset served as a ground-truth

for assessing the correctness of the action sequences.

Fourth, two different aspects (i.e. the rule mining of data and task embeddings for the

retrieval of policies) that concern RQ3 and contribute to the share and reuse of policies
were considered. For the rule mining approach different algorithms (i.e. frequent item sets,

296

6.5. Summary of this chapter

sequential covering, OneR, Best Fit Sequence) were implemented and tested on simulated

data. Then, the performance of the agents that used the mined rules were compared to

the performance of the RL agents that trained previously the policies for the intended

task. The mined rules were derived from the data that was previously generated by the RL

agents. The results of the evaluation show that the agent that applies the mined rules is as

powerful as the RL agent that generates the data or even outperforms the RL agent.

For evaluating the task embedding approach, the VH dataset was adopted and transformed

into framework-specific task representations. Subsequently, the Embeddings Trainer of
the framework trained for every VH task the corresponding task embeddings vector, in

order to find the most similar task with its corresponding policies. The policies of the

most similar task were then adopted and applied to the intended task. It was shown that

similar guidelines (policies) that were found by computing the similarity of task embedding

vectors, could be successfully applied to similar tasks and that this is a reliable method to

find suitable guidelines for solving own tasks.

Fifth, the threats to the validity of the conducted evaluation were discussed in order to

identify the limitations and weaknesses of the evaluation. It became apparent that some

threats to validity are unavoidable, as an evaluation also has certain constraints or lacks

information and resources to avoid all threats that could affect the validity of the evaluation

results. However, if one is aware of the threats, the results obtained can be re-interpreted

with an awareness of these threats.

Considering all evaluated aspects, it can be stated that the framework fulfils the previ-

ously determined and intended objectives. To summarise its functionalities: It allows a)

the avoidance of the cold-start, b) the adaptation of agent policies to new context and

requirements, c) the mining of rules from data, generated by RL agents, d) the retrieval

of suitable task policies by task similarities, e) the integration of mathematical models

by means of the framework ontology in order to simulate phenomena, f) a simplified

and programming-free integration of tasks and agents and the reproduction of the agent

life-cycle by its process flow. As side-effect, the agent framework even allows by the

proposed approaches, the generation and enrichment of knowledge graphs, consisting of

task instances, what however could not be evaluated in the scope of this work.

297

7. Summary and Outlook

The first part of this chapter, i.e. Chapter 7.1, discusses and summarises the contributions

of this thesis with respect to the posed research questions and evaluation results. In the

second part, i.e. in Chapter 7.2, an outlook on potential future work is given, as every

scientific work might have its limitations and not all possible problems can be considered

and solved exhaustively within one doctoral thesis.

In the motivation chapter, the corresponding problems were addressed and research

questions (i.e. RQ1-RQ3) as well as hypotheses on these questions were discussed. The

background chapter dealt with the concepts and types of software agents, semantic tech-

nologies, data mining and machine learning approaches and paradigms used within the

proposed agent framework. In the related work chapter, related work was considered

and the differences to the approaches of the agent framework were elaborated, while the

subsequent approach chapter presented the methods, concepts and approaches developed

for the agent framework. The use cases chapter presented different use case scenarios

and example tasks with different requirements from different domains, e.g. the medical

domain, that were used to evaluate the framework. In the chapter on the evaluation, the

design of the evaluation, the metrics and the scenarios carried out were then presented,

and the results of the evaluation were analysed and interpreted.

7.1. Discussion about Contributions

As already outlined in the introduction, this thesis aims for answering three research

questions, which include a) the cold-start problem, b) the adaptation of standard policies

to real environments and finally, c) the mining and combination of rules and context-based

policies.

A main goal of the present work, especially for experts of heterogeneous domains, agent

developers and software agents, was to provide a framework that supports all mentioned

roles during the integration and runtime of software agents. The agent framework should

therefore map and support all process steps that an agent requires to go through until it is

executed. The simplified integration of new tasks, algorithms and agent instances should

be implemented by the agent framework.

Another aim was to create the possibility for agents to autonomously provide semantically

enriched knowledge in the form of policies and meta-information in order to promote the

exchange of task knowledge and cooperation among software agents. The claim was that

knowledge should be openly accessible in a machine interpretable way to diverse types of

299

7. Summary and Outlook

software agents for heterogeneous types of domains and tasks. The following subsections

discuss in detail for each research questions the elaborated contributions of this work.

7.1.1. RQ1: The cold-start problem of agents

To solve the outlined cold-start problem that agents face when they are newly deployed in

a software system and infrastructure, the framework provides a simulation component

and a lightweight framework ontology that enables the semantic formalisation and shared

understanding of Markov decision processes (MDPs). To this end, the framework assumes

that tasks can be described as MDPs that an agent can go through by its actions to learn

the most useful solution strategy.

As the World Wide Web (WWW) and the Semantic Web increasingly connect knowledge

through various knowledge graphs, the agent framework also enables domain experts and

software agents to create and extend a task knowledge graph by providing and maintaining

their task entities, corresponding policies, rules and provenance data.

This thesis proposes concepts and an associated reference model that allow a generic

and semantic definition of tasks and agents. Domain experts and agent developers are

supported by these concepts in the creation and integration of their tasks and agents, so

that domain experts in particular do not need to have knowledge of formal description

languages and programming languages. They ultimately need to instantiate these concepts

with logical rules that determine states, while the agent framework takes care of the rest

by starting and running an elaborated, predefined standard process that prepares agents

for their intended tasks. The thesis specifies different types of agents, on the one hand the

worker agents, which work closely with the framework, and on the other hand, the con-

sumer agents, which reuse the services and provided knowledge of the agent framework

to solve their own tasks.

However, it was also shown that knowledge can also be provided implicitly through be-

havioural and process-specific datasets by integrating wrapper components, i.e. plug-ins,

in a modular way, which manage a dataset-specific transformation of the data’s implicit

knowledge into semantic task entities. To this end, this thesis has proposed probabilistic

approaches that enable MDPs to be described through statistical data analysis and mod-

elling.

The obtained semantic task entities are used by the simulation component to simulate,

maintain and update states and provide feedback for agents concerning their performed

actions. Through the simulation and training of RL agents, default policies can be learned

that can later be adapted to specific environments and individual users. In this way, agents

can learn a well-defined behaviour before they go live, in order not to put the user or

themselves at risk in the real environment.

Since the simulation component has to recognise states from the rule descriptions of the

task entities and also has to derive what feedback, i.e. reward or punishment, should be

300

7.1. Discussion about Contributions

returned for an executed action in a certain state, methods were presented that enable the

simulation component to derive the aforementioned things.

The evaluation conducted as part of the work showed that agents without prior knowledge

who trained policies via the simulation component of the framework were able to learn

reward-maximising policies for heterogeneous tasks relatively quickly, as measured by

training steps and episodes, compared to other agents. In addition, the trained default poli-

cies could be successfully adapted to new task requirements. The simulation component

showed its strength and relevance, especially when ambiguous states were given within

the tasks, since the evaluated framework agents were able to eliminate this ambiguity by

the feedback provided to them through an adapted task representation and simulation.

Transferred to industrial practice and real-world applications, the simulation component

would allow domain experts and developers to pre-train agents with well-defined standard

policies and later adapt their behaviour, i.e. their policies, at runtime based on individual

feedback, e.g. from users or the environment.

In summary, it can be stated that the outlined cold-start problem for software agents could

be successfully solved with the proposed approaches and concepts implemented in the

agent framework.

7.1.2. RQ2: Context-awareness and personalisation of agents

Policy adaptation and agent context awareness is a desired capability of the proposed

agent framework, as trained standard policies are not always sufficient to meet individual

requirements and user preferences, especially when environments change dynamically.

The agent framework solves this problem through an approach that combines reinforce-

ment learning with rule mining. Therefore, agents implement reinforcement learning

and adapt their policies by changing feedback from the current environment. The col-

lected data on the adapted policies is then evaluated using different rule mining approaches.

Due to the versatility of tasks and their characteristics, rule mining selection strategies

are required to independently select the right rule mining algorithm for the task at hand.

For example, tasks can be organised into stages that represent a path of sub-goals leading

to the completion of a task. For this reason, an approach is presented to classify tasks

based on their characteristics and to select suitable rule mining algorithms. In order to

process datasets as input for rule mining, this paper proposes a dataset structure that

agents have to adhere to when creating the corresponding datasets so that the rule mining

algorithms used can evaluate the datasets. In addition, a methodology for pre-processing

datasets is presented that allows raw data to be pre-processed depending on the rule

mining algorithm chosen.

Despite the rule mining algorithms adopted for the agent framework, another algorithm

called Best Sequence Fit was developed and proposed as part of the work presented, which

takes into account the sequential nature of some tasks if there are datasets that reflect

301

7. Summary and Outlook

sequential tasks, e.g. organised in stages.

Context awareness of agents is achieved within the agent framework by representing

context via entity embeddings, which reflect MDP entities and their semantic property

relationships by their spatial distance from each other. The proposed methodology uses

the numerically embedded context representation to search for similar entities and create

policies that belong to the agent’s current context. Thus, another contribution of this work

is an approach that combines entity embeddings and ensembles of agents to assemble

context-aware policies.

This approach enables web agents to request the most appropriate, i.e. reward-maximising,

actions based on their current context. As a result, agents working in heterogeneous

contexts can react immediately to context changes. The evaluation has shown that the

proposed approach for policy combination is much faster compared to reinforcement

learning, especially when the sequential tasks or activities become more complex due to a

large state and action space.

7.1.3. RQ3: Mining, sharing and reusing of produced expert knowledge

The paradigm of the framework is to be open and enable cooperation. This is achieved

through policy sharing and reuse, while task entity descriptions are openly accessible

and extensible to all types of agents. For example, obtaining rules from behavioural or

demonstration data is a means of deriving MDPs, i.e. task entity descriptions, and policies

that can be shared publicly on the web, e.g. via a knowledge graph, with other agents. The

advantage of using time series datasets as a knowledge source is that they can provide

hidden knowledge that may not have been considered or provided by experts.

Since agents are to be enabled to independently evaluate shared policies, the agents who

created the policies also have to provide provenance data. This provenance data is pro-

posed as a semantic representation that describes the policy learning process. For example,

information about the origin of the policies and statistical information about the perfor-

mance of the policies during training, as well as the associated task description, have

to be provided so that agents retrieving the policies can decide whether the policies are

trustworthy, suitable and useful for their own purposes.

This work presented a methodology that enables the pre-processing and mining of be-

havioural data and proposed a semantic format that enables the representation of prove-

nance data. It also presented an approach that enables the comparison of tasks in terms of

their similarity, so that agents searching for appropriate solution strategies for their own

tasks can find them through the framework. Importantly, agents who want to participate in

the agent framework and use its services need to adhere to the APIs and recommendations

of the agent framework. Therefore, concepts and program flows for the implementation of

framework agents have been defined and proposed in this thesis to enable developers to

implement agents that adhere to the framework’s process flows. A distinction was made

between worker and consumer agents.

302

7.1. Discussion about Contributions

7.1.4. The simulation of phenomena by mathematical models

Natural and social phenomena have always been of interest to science. For this reason, the

simulation of phenomena is an important part of scientific work in order to gain insights

into the dynamics, i.e. the long-term and short-term effects of phenomena. The dynamics

of phenomena are usually considered from the perspective of cause and effect. In order to

be able to describe the dynamics, mathematical models are needed with which phenomena

and their development over time can be simulated in order to gain insights and make

predictions.

The proposed agent framework addresses the aforementioned points by enabling the

integration of mathematical models through a formal representation, i.e. an ontology, that

considers equations, variables and parameters in addition to rules, so that effects of in-

tended actions can be described by domain experts. The simulation of these mathematical

equations allows agents to try out different behaviours and strategies to predict future

outcomes of their behaviour.

Domain experts do not need programming skills to define simulation tasks that represent

phenomena. They only need to instantiate the simulation tasks with model equations

to test their simulation scenarios with different action sequences that reproduce specific

behaviours or strategies. In addition, the framework can be used to create different task

entity descriptions that represent different or alternative MDP tasks. The agent framework

also facilitates the extension of existing tasks by linking new states, features and actions.

Task descriptions can also be extended with additional agents representing different actors

within an activity or task.

The creation and integration of new tasks is directly provided by a user interface, e.g.

a content management system or a chat bot. In the context of the work, it is proposed

that both the implementation of the user interface and the instantiation of task entities

should be oriented and guided by the concepts and properties of the underlying framework

ontology. Therefore, the agent framework allows introspection and shared understanding

of the underlying concepts through the framework ontology provided.

7.1.5. Summary of Contributions

In this thesis, a reference model and architecture for an agent framework was developed

and described that reflects the life cycle of software agents from integration to execution

and their collaboration. Different user roles involved in the life cycle of software agents

were identified. Different concepts and approaches were evaluated and presented that

implement or support the different process steps. The main goal was always to create

an openly accessible agent framework that enables agents to generate knowledge, e.g.

strategies, (semi-)autonomously and to share this knowledge with other agents on the

web. Furthermore, methods were presented that enable agents to retrieve strategies

tailored to their own problems. Process knowledge implicit in datasets was made explicit

by implementing various adopted and reused, but also newly developed rule mining

303

7. Summary and Outlook

approaches, so that MPDs and policy rules could be derived, which can be retrieved by

agents via the framework and adapted and reused for their own tasks. In this work, it is

proposed that agents using the framework also contribute data themselves to sustain the

creation of new knowledge that can be extended and reused by other agents.

304

7.2. Future Work

7.2. Future Work

Almost every scientific work reaches its limits due to lack of time and other resources. For

this reason, this section provides an outlook on possible future work to extend the agent

reference framework.

7.2.1. Evaluation of Framework Usability

In Sec. 4.2.1 and Sec. 7.1.4, it was claimed and argued that the agent framework aims

at providing, compared to other frameworks, simplification in integrating mathematical

models, new tasks, and new environments for users who have little or no programming

skills and no knowledge of formal rule languages. However, it was omitted in the scope of

this thesis to evaluate the agent framework with different users. Future work would consist

of a) evaluating the usability of the agent framework and b) comparing it to other related

agent frameworks by involving experts from different domains with different technical

knowledge and skills.

7.2.2. Security concerns and trust

In the scope of this work, neither security concerns nor trust were addressed although the

provision of provenance data were discussed. However, security and trust are important

topics that have to be taken into account in order to counteract the misuses of software

agents for unethical activities. It is essential to understand at all times that agents only

reproduce and assimilate what they learn from data produced by humans. This implies

that biases can also be adopted, which can lead to agents exhibiting misbehaviour such as

discrimination. To prevent this, approaches (e.g. from Explainable AI) need to be found

that recognise and prevent human-made biases and misuse by agents.

7.2.3. Incorporating fuzzy states by fuzzy logic

The proposed agent framework assumes state representations consisting of features with

clearly separable ranges of values. In reality, however, states with numerical features

may not always be clearly separable but fuzzy. To capture state probabilities and overlaps

in states and their transitions, it would be useful to provide fuzzy states for the agent

framework in future work by applying fuzzy logic and considering probability density

functions that represent data distributions of Markov decision processes. A possible task

here would be to extend the framework ontology with features that indicate probabilities of

states. Linguistic variables of domain experts as well as datasets could be used to enhance

entities of the ontology and specify fuzzy states reflecting different domain knowledge. As

fuzzy states are integrated, agents could be implemented to determine the degree to which

an observation belongs to different states. In this context, future work could consist of

investigating whether agents with fuzzy states can generalise to tasks better than agents

that recognise and evaluate sharply separable states.

305

7. Summary and Outlook

7.2.4. Open-source and platform-independent framework distribution

The approaches evaluated were implemented as loosely coupled software modules without

being integrated into a platform or overall distribution. A future task will be to combine

these modules into a coordinated and orchestrated system so that the framework can be

installed and run directly as a platform-independent open source software distribution.

7.2.5. Environmental design and Generative Models for varying Simulations

An interesting area of research (see [127, 292, 245, 255, 215, 89]) is environmental design for

simulation purposes, where different, diverse, realistic and possible simulation scenarios

are computer-designed to adapt more reliable, flexible and thus more powerful software

agents to environmental conditions. The goal of environmental design is to achieve greater

generalisability of agents. For example, [60] proposes a "unsupervised environmental design
(UED)" approach to simulate possible and reasonable variations of 2-dimensional game

environments. However, a challenge might be to transfer the considered approaches from

game environments to real environments. Future work might therefore consist of develop-

ing approaches that allow for the automated, generative creation of different simulation

environments and tasks that replicate and vary different and possible real-world scenarios

in order to increase the generalisability of agents. Existing approaches that could be

helpful here are knowledge graphs that describe different, varying real-world scenarios

and provide the environment entities, as well as attention-based transformers [262], varia-
tional auto encoders (VAE) and generative adversarial networks (GANs) that consider and
reproduce the probabilistic data distributions of Markov decision processes (MDPs) to

create alternative simulation scenarios. In this way, GANs could also generate and train

rarely occurring or unusual simulation scenarios by taking greater account of outliers in

the underlying probability distributions of process data and states.

In this context, one research question could be what task representation and task coding

can be used in a GAN or other generative approaches to generate alternative, realistic

simulation scenarios, since GANs usually use numerical representations, e.g. pixels of

images. Another research question could investigate whether the newly generated states

of the GAN are actually possible and realistic based on the previous states and actions per-

formed. Figure 7.1 illustrates two conceivable applications of GANs for creating different

task contexts (see Fig. 7.1a) and strategies (see Fig. 7.1b).

7.2.6. Large language models for transforming natural language into
semantic task entity descriptions and policy instructions

Large language models (LLMs) provide a highly interesting means of transforming natural

language into other representations. Recently, ChatGPT 1
and Transformer Network [262]

architectures and self-attention methods have been developed and used to achieve impres-

sive results. In terms of the agent framework, transformer architectures with attention

1 https://chat.openai.com/

306

7.2. Future Work

(a) Generating varying tasks and contexts by GANs.

(b) Generating varying policies for tasks by GANs.

Figure 7.1.: Generative adversarial models for task simulation and policy combination.

307

7. Summary and Outlook

mechanisms could be used to translate natural language task descriptions from domain ex-

perts into semantic task entity descriptions and learned policy instructions. This includes

to transform natural language texts from domain experts into knowledge graph represen-

tations of tasks. Methods such as Named Entity Recognition (NER) and Named Entity

Linking (NEL) could be applied to build the semantic knowledge graphs automatically. In

addition, methods would have to be developed that allow logical rules and mathematical

differential equations to be extracted from the natural language texts so that the simu-

lation of tasks and the programming of agents could be carried out in natural language.

A scientific challenge in this context might be that natural language task descriptions

can be incomplete and ambiguous. The scientific approach to be developed would then

have to identify or infer which relevant information has been omitted and belongs to the

modelling and execution of the task. This requires the collection of datasets that enable

the mapping of language into knowledge graphs. For example, potential states, actions

and trajectories of observation variables would then need to be extracted and transformed

into rules and mathematical equations as well as semantic entities that can be mapped to

associated semantic concepts.

7.2.7. A Wikidata knowledge graph for agent programs

In order to use the agent framework on a large scale, it would be conceivable, for example,

that Wikidata
2
projects are founded with the aim of providing knowledge graphs for

software agents that describe MDPs and common tasks for agents to solve. Agents could

autonomously contribute their expertise by creating, developing and reusing different

solution strategies in such a Wikidata knowledge graph.

In this way, a network of cross-domain process knowledge from e.g. health-care to in-

dustrial applications could be provided and maintained in a decentralised manner, which

web-capable agents use worldwide to perform their tasks satisfactorily. The advantage

would be that agents could choose from alternative solution strategies, i.e. policies, and

solve different tasks without being specifically programmed for only one task. Their

capabilities would thus be all-encompassing and flexible and the agents’ focus would no

longer be on training and solving a specific task, but on finding the right one strategy for

the task at hand.

In the long term, such an agent framework with a corresponding web infrastructure could

create standards or even norms for a digital ecosystem of software agents and thus also

facilitate the cross-domain and ubiquitous use of software agents in everyday life.

2 https://www.wikidata.org/wiki/Wikidata:Main_Page

308

Bibliography

[1] Wikipedia (english). Compartmental models in epidemiology. 2004. url: https:
//en.wikipedia.org/wiki/Compartmental_models_in_epidemiology (visited on

09/30/2021).

[2] International Telecommunication Union (ITU). Y.2060 : Overview of the Internet of
things - Recommendation Y.4000/Y.2060 (06/12). 2012. url: https://www.itu.int/
rec/T-REC-Y.2060-201206-I (visited on 05/31/2023).

[3] Daghan L. Acay, Gil Tidhar, and Liz Sonenberg. “Extending Agent Capabilities:

Tools vs. Agents”. In: 2008 IEEE/WIC/ACM International Conference on Web Intel-
ligence and Intelligent Agent Technology. Vol. 2. 2008, pp. 259–265. doi: 10.1109/
WIIAT.2008.247.

[4] Joseph Ahn et al. “Covariance effect analysis of similarity measurement methods

for early construction cost estimation using case-based reasoning”. In: Automation
in Construction 81 (2017), pp. 254–266. issn: 0926-5805.

[5] Rana Alaa, Mariam Gawich, and Manuel Fernández-Veiga. “Personalised Recom-

mendation for Online Retail Applications Based on Ontology Evolution”. In: Pro-
ceedings of the 2020 6th International Conference on Computer and Technology
Applications. ICCTA ’20. Antalya, Turkey: Association for Computing Machin-

ery, 2020, pp. 12–16. isbn: 9781450377492. doi: 10.1145/3397125.3397134. url:

https://doi.org/10.1145/3397125.3397134.

[6] Carl Allen and Timothy Hospedales. “Analogies Explained: Towards Understanding

Word Embeddings”. In: Proceedings of the 36th International Conference on Machine
Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceed-

ings of Machine Learning Research. Long Beach, California, USA: PMLR, Sept. 2019,

pp. 223–231. url: http://proceedings.mlr.press/v97/allen19a.html.

[7] Ioannis Antonoglou et al. “Planning in Stochastic Environments with a Learned

Model”. In: International Conference on Learning Representations. 2022. url: https:
//openreview.net/forum?id=X6D9bAHhBQ1.

[8] Lora Aroyo and Chris Welty. “Crowd truth: Harnessing disagreement in crowd-

sourcing a relation extraction gold standard”. In: WebSci2013. ACM 2013.2013

(2013).

[9] Octavian Arsene, Ioan Dumitrache, and Ioana Mihu. “Expert system for medicine

diagnosis using software agents”. In: Expert Systems with Applications 42.4 (2015),
pp. 1825–1834. issn: 0957-4174. doi: https : / / doi . org / 10 . 1016 / j . eswa .

2014.10.026. url: https://www.sciencedirect.com/science/article/pii/

S0957417414006502.

309

Bibliography

[10] Radhakisan Baheti and Helen Gill. “Cyber-physical systems”. In: The impact of
control technology 12.1 (2011), pp. 161–166.

[11] Nikola Banovic and John Krumm. “Warming Up to Cold Start Personalisation”.

In: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1.4 (Jan. 2018). doi:

10.1145/3161175. url: https://doi.org/10.1145/3161175.

[12] K Suzanne Barber and Dung N Lam. “Architecting agents using core competencies”.

In: Proceedings of the first international joint conference on Autonomous agents and
multiagent systems: part 1. 2002, pp. 90–91.

[13] K Suzanne Barber et al. “Multi-agent system development: Design, runtime, and

analysis”. In: AAAI. 2004, pp. 1006–1007.

[14] Dennis Barrios-Aranibar and Luiz Marcos Garcia Goncalves. “Learning Coordi-

nation in Multi-Agent Systems Using Influence Value Reinforcement Learning”.

In: Seventh International Conference on Intelligent Systems Design and Applications
(ISDA 2007). 2007, pp. 471–478. doi: 10.1109/ISDA.2007.136.

[15] Behzad Behdani, Zofia Lukszo, and Rajagopalan Srinivasan. “Agent-oriented simula-

tion framework for handling disruptions in chemical supply chains”. In: Computers
& Chemical Engineering 122 (2019). 2017 Edition of the European Symposium on

Computer Aided Process Engineering (ESCAPE-27), pp. 306–325. issn: 0098-1354.

doi: https://doi.org/10.1016/j.compchemeng.2018.09.027. url: https:

//www.sciencedirect.com/science/article/pii/S0098135418310093.

[16] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. “Developing multi-agent

systems with a FIPA-compliant agent framework”. In: Software: Practice and Experi-
ence 31.2 (2001), pp. 103–128. doi: https://doi.org/10.1002/1097-024X(200102)
31:2<103::AID-SPE358>3.0.CO;2-O. eprint: https://onlinelibrary.wiley.com/

doi/pdf/10.1002/1097-024X%28200102%2931%3A2%3C103%3A%3AAID-SPE358%3E3.

0.CO%3B2-O. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-

024X%28200102%2931%3A2%3C103%3A%3AAID-SPE358%3E3.0.CO%3B2-O.

[17] Richard Bellman. Dynamic Programming. Dover Publications, 1957.

[18] Rob H. Bemthuis et al. “An Agent-Based Process Mining Architecture for Emergent

Behaviour Analysis”. In: 2019 IEEE 23rd International Enterprise Distributed Object
Computing Workshop (EDOCW). 2019, pp. 54–64. doi: 10.1109/EDOCW.2019.00022.

[19] Safa Ben Ayed, Zied Elouedi, and Eric Lefevre. “Exploiting Domain-Experts Knowl-

edge Within an Evidential Process for Case Base Maintenance”. In: Belief Functions:
Theory and Applications. Ed. by Sébastien Destercke et al. Cham: Springer Interna-

tional Publishing, 2018, pp. 22–30. isbn: 978-3-319-99383-6.

[20] Ralph Bergmann and Armin Stahl. “Similarity measures for object-oriented case

representations”. In: Advances in Case-Based Reasoning. Ed. by Barry Smyth and

Pádraig Cunningham. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 25–

36. isbn: 978-3-540-49797-4.

[21] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter optimiza-

tion.” In: Journal of machine learning research 13.2 (2012).

310

[22] Andrea L. Bertozzi et al. “The challenges of modeling and forecasting the spread

of COVID-19”. In: Proceedings of the National Academy of Sciences 117.29 (2020),
pp. 16732–16738. issn: 0027-8424. doi: 10.1073/pnas.2006520117. eprint: https:

//www.pnas.org/content/117/29/16732.full.pdf. url: https://www.pnas.org/

content/117/29/16732.

[23] Homanga Bharadhwaj. “Meta-Learning for User Cold-Start Recommendation”. In:

2019 International Joint Conference on Neural Networks (IJCNN). 2019, pp. 1–8. doi:
10.1109/IJCNN.2019.8852100.

[24] A. Billard and D. Grollman. “Robot learning by demonstration”. In: Scholarpedia
8.12 (2013). revision #138061, p. 3824. doi: 10.4249/scholarpedia.3824.

[25] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006. isbn: 0387310738.

[26] James Blinn et al. “The Simulation of Natural Phenomena (Panel Session)”. In:

SIGGRAPH Comput. Graph. 17.3 (July 1983), pp. 137–139. issn: 0097-8930. doi:

10.1145/964967.801142. url: https://doi.org/10.1145/964967.801142.

[27] JesúS Bobadilla et al. “A collaborative filtering approach to mitigate the new user

cold start problem”. In: Knowledge-based systems 26 (2012), pp. 225–238.

[28] Eleonora Borgia. “The Internet of Things vision: Key features, applications and

open issues”. In: Computer Communications 54 (2014), pp. 1–31.

[29] Jeffrey M Bradshaw. “An introduction to software agents”. In: Software agents 4
(1997), pp. 3–46.

[30] Tim Brys et al. “Reinforcement learning from demonstration through shaping”. In:

Twenty-fourth international joint conference on artificial intelligence. 2015.

[31] Tung Bui and Jintae Lee. “An agent-based framework for building decision support

systems”. In: Decision Support Systems 25.3 (1999), pp. 225–237. issn: 0167-9236.
doi: https://doi.org/10.1016/S0167-9236(99)00008-1. url: https://www.

sciencedirect.com/science/article/pii/S0167923699000081.

[32] C. Burghart et al. “A cognitive architecture for a humanoid robot: a first approach”.

In: 5th IEEE-RAS International Conference on Humanoid Robots, 2005. 2005, pp. 357–
362. doi: 10.1109/ICHR.2005.1573593.

[33] Christopher Burr, Nello Cristianini, and James Ladyman. “An Analysis of the

Interaction Between Intelligent Software Agents and Human Users”. In: Minds
Mach. 28.4 (Dec. 2018), pp. 735–774. issn: 0924-6495. doi: 10.1007/s11023-018-
9479-0. url: https://doi.org/10.1007/s11023-018-9479-0.

[34] Domenico Cantone et al. “Ontological Smart Contracts in OASIS: Ontology for

Agents, Systems, and Integration of Services”. In: ArXiv abs/2012.01410 (2020).

[35] José M. Carcione et al. “A Simulation of a COVID-19 Epidemic Based on a Deter-

ministic SEIR Model”. In: Frontiers in Public Health 8 (2020), p. 230. issn: 2296-2565.

doi: 10.3389/fpubh.2020.00230. url: https://www.frontiersin.org/article/

10.3389/fpubh.2020.00230.

311

Bibliography

[36] Rui M Castro et al. “Human active learning”. In: Advances in neural information
processing systems. Citeseer. 2008, pp. 241–248.

[37] W. Cedeno and V. R. Vemuri. “On the use of niching for dynamic landscapes”. In:

Proceedings of 1997 IEEE International Conference on Evolutionary Computation
(ICEC ’97). 1997, pp. 361–366. doi: 10.1109/ICEC.1997.592336.

[38] Maiga Chang et al. “Building Ontology-Driven Tutoring Models for Intelligent

Tutoring Systems Using Data Mining”. In: IEEE Access 8 (2020), pp. 48151–48162.
doi: 10.1109/ACCESS.2020.2979281.

[39] Sotirios P. Chatzis, Dimitrios Korkinof, and Yiannis Demiris. “A nonparametric

Bayesian approach toward robot learning by demonstration”. In: Robotics and
Autonomous Systems 60.6 (2012), pp. 789–802. issn: 0921-8890. doi: https://doi.
org/10.1016/j.robot.2012.02.005. url: https://www.sciencedirect.com/

science/article/pii/S0921889012000334.

[40] Sotirios P. Chatzis and Dimitrios Kosmopoulos. “A Partially-Observable Markov De-

cision Process for Dealing with Dynamically Changing Environments”. In: Artificial
Intelligence Applications and Innovations. Ed. by Lazaros Iliadis, Ilias Maglogiannis,

and Harris Papadopoulos. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014,

pp. 111–120. isbn: 978-3-662-44654-6.

[41] Richard J Chen et al. “Synthetic data in machine learning for medicine and health-

care”. In: Nature Biomedical Engineering 5.6 (2021), pp. 493–497.

[42] Sonia Chernova and Manuela Veloso. “Confidence-Based Policy Learning from

Demonstration Using Gaussian Mixture Models”. In: Proceedings of the 6th In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems. AA-
MAS ’07. Honolulu, Hawaii: Association for Computing Machinery, 2007. isbn:

9788190426275. doi: 10.1145/1329125.1329407. url: https://doi.org/10.1145/

1329125.1329407.

[43] Scott Christley, Xiaorong Xiang, and Greg Madey. “An ontology for agent-based

modeling and simulation”. In: Proceedings of the agent 2004 conference. Citeseer.
2004.

[44] Jacob Cohen. Statistical power analysis for the behavioural sciences. Academic press,

2013.

[45] J. J. Cole et al. “Personalisation for User Agents”. In: Proceedings of the Fourth Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems. AAMAS

’05. The Netherlands: Association for Computing Machinery, 2005, pp. 603–610.

isbn: 1595930930. doi: 10.1145/1082473.1082565. url: https://doi.org/10.

1145/1082473.1082565.

[46] Carlo Combi et al. “Temporal similarity measures for querying clinical workflows”.

In: Artificial Intelligence in Medicine 46.1 (2009). Artificial Intelligence in Medicine

AIME 07, pp. 37–54. issn: 0933-3657.

312

[47] Michael Compton et al. “The SSN ontology of the W3C semantic sensor network

incubator group”. In: Journal of Web Semantics 17 (2012), pp. 25–32. issn: 1570-
8268. doi: https://doi.org/10.1016/j.websem.2012.05.003. url: https:

//www.sciencedirect.com/science/article/pii/S1570826812000571.

[48] T.D. Cook, D.T. Campbell, and A. Day. Quasi-experimentation: Design & Analysis
Issues for Field Settings. Rand McNally College Publishing Company, 1979. isbn:

9780528620539. url: https://books.google.de/books?id=OKdEAAAAIAAJ.

[49] Stephen Cranefield, Nir Oren, and Wamberto W. Vasconcelos. “Accountability for

Practical Reasoning Agents”. In: Agreement Technologies. Ed. by Marin Lujak. Cham:

Springer International Publishing, 2019, pp. 33–48. isbn: 978-3-030-17294-7.

[50] Stephen Cranefield et al. “Ontologies for Interaction Protocols”. In: Ontologies for
Agents: Theory and Experiences. Ed. by Valentina Tamma et al. Basel: Birkhäuser

Basel, 2005, pp. 1–17. isbn: 978-3-7643-7361-0.

[51] Padraig Cunningham. “A Taxonomy of Similarity Mechanisms for Case-Based

Reasoning”. In: IEEE Transactions on Knowledge and Data Engineering 21.11 (2009),

pp. 1532–1543. doi: 10.1109/TKDE.2008.227.

[52] Josenildo C. da Silva et al. “Distributed data mining and agents”. In: Engineering
Applications of Artificial Intelligence 18.7 (2005), pp. 791–807. issn: 0952-1976. doi:
https://doi.org/10.1016/j.engappai.2005.06.004. url: https://www.

sciencedirect.com/science/article/pii/S095219760500076X.

[53] Jessamyn Dahmen and Diane Cook. “SynSys: A synthetic data generation system

for healthcare applications”. In: Sensors 19.5 (2019), p. 1181.

[54] Matthew Daigle and Kai Goebel. “Model-based prognostics under limited sensing”.

In: 2010 IEEE Aerospace Conference. 2010, pp. 1–12. doi: 10.1109/AERO.2010.
5446822.

[55] Charles Darwin. On the Origin of Species by Means of Natural Selection. or the
Preservation of Favored Races in the Struggle for Life. London: Murray, 1859.

[56] S. Das et al. “Incorporating Expert Feedback into Active Anomaly Discovery”. In:

2016 IEEE 16th International Conference on Data Mining (ICDM) (2016), pp. 853–858.

[57] LEENTJEDEBLESER et al. “Defining pathways”. In: Journal of NursingManagement
14.7 (2006), pp. 553–563. doi: 10.1111/j.1365-2934.2006.00702.x. eprint: https:

//onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2934.2006.00702.x.

url: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2934.2006.

00702.x.

[58] Paul De Boeck and Mark Wilson. “A framework for item response models”. In:

Explanatory Item Response Models: A Generalised Linear and Nonlinear Approach.
Ed. by Paul De Boeck and Mark Wilson. New York, NY: Springer New York, 2004,

pp. 3–41. isbn: 978-1-4757-3990-9. doi: 10.1007/978-1-4757-3990-9_1. url:

https://doi.org/10.1007/978-1-4757-3990-9_1.

313

Bibliography

[59] Ronald Denaux, Lora Aroyo, and Vania Dimitrova. “An Approach for Ontology-

Based Elicitation of User Models to Enable Personalisation on the Semantic Web”.

In: Special Interest Tracks and Posters of the 14th International Conference on World
Wide Web. WWW ’05. Chiba, Japan: Association for Computing Machinery, 2005,

pp. 1170–1171. isbn: 1595930515. doi: 10.1145/1062745.1062923. url: https:

//doi.org/10.1145/1062745.1062923.

[60] Michael Dennis et al. “Emergent Complexity and Zero-shot Transfer via Un-

supervised Environment Design”. In: Advances in Neural Information Process-
ing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020,

pp. 13049–13061. url: https://proceedings.neurips.cc/paper/2020/file/

985e9a46e10005356bbaf194249f6856-Paper.pdf.

[61] Michael Dennis et al. Emergent Complexity and Zero-shot Transfer via Unsupervised
Environment Design. 2021. arXiv: 2012.02096 [cs.LG].

[62] Giorgia Di Tommaso. “SeRenA: A Semantic Recommender for All”. In: Proceedings
of the 12th ACM Conference on Recommender Systems. RecSys ’18. Vancouver, British
Columbia, Canada: Association for Computing Machinery, 2018, pp. 558–562. isbn:

9781450359016. doi: 10.1145/3240323.3240327. url: https://doi.org/10.1145/

3240323.3240327.

[63] Elvis Dohmatob, Guillaume Dumas, and Danilo Bzdok. “Dark control: The default

mode network as a reinforcement learning agent”. In: Human Brain Mapping
41.12 (2020), pp. 3318–3341. doi: https://doi.org/10.1002/hbm.25019. eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.25019. url: https:

//onlinelibrary.wiley.com/doi/abs/10.1002/hbm.25019.

[64] Allen B. Downey. Think Bayes. Ed. by Mike Loukides and Ann Spencer. Sebastopol,

California: O’Reilly Media, 2013. url: http://it-ebooks.info/book/3055/.

[65] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification (2Nd
Edition). New York, NY, USA: Wiley-Interscience, 2000. isbn: 0471056693.

[66] A. Dumitrache et al. “Empirical Methodology for Crowdsourcing Ground Truth”.

In: ArXiv e-prints (Sept. 2018). arXiv: 1809.08888 [cs.HC].

[67] Anca Dumitrache, Lora Aroyo, and Chris Welty. “Crowdsourcing Ground Truth

for Medical Relation Extraction”. In: ACM Trans. Interact. Intell. Syst. 8.2 (July 2018),
11:1–11:20. issn: 2160-6455. doi: 10.1145/3152889. url: http://doi.acm.org/10.

1145/3152889.

[68] Anca Dumitrache et al. “Empirical methodology for crowdsourcing ground truth”.

In: Semantic Web Preprint (2021), pp. 1–19.

[69] Arpad E. Elo. The Rating of Chessplayers, Past and Present. New York: Arco Pub.,

1978. isbn: 0668047216 9780668047210. url: http://www.amazon.com/Rating-

Chess-Players-Past-Present/dp/0668047216.

[70] Enrique Estellés-Arolas and Fernando González-Ladrón-de-Guevara. “Towards an

integrated crowdsourcing definition”. In: Journal of Information science 38.2 (2012),
pp. 189–200.

314

[71] G. Faraco and L. Gabriele. “Using LabVIEW for applying mathematical models

in representing phenomena”. In: Computers & Education 49.3 (2007), pp. 856–872.

issn: 0360-1315. doi: https://doi.org/10.1016/j.compedu.2005.11.025. url:

https://www.sciencedirect.com/science/article/pii/S0360131505001909.

[72] Nazim Fatès and Vincent Chevrier. “How important are updating schemes in multi-

agent systems? an illustration on a multi-turmite model”. In: Proceedings of the 9th
International Conference on Autonomous Agents and Multiagent Systems: volume
1-Volume 1. 2010, pp. 533–540.

[73] Fernando Fernandez, Javier García, and Manuela Veloso. “Probabilistic Policy Reuse

for inter-task transfer learning”. In: Robotics and Autonomous Systems 58.7 (2010).
Advances in Autonomous Robots for Service and Entertainment, pp. 866–871. issn:

0921-8890.

[74] J. R. FIRTH. “A synopsis of linguistic theory, 1930-1955”. In: Studies in Linguistic
Analysis (1957). url: https://ci.nii.ac.jp/naid/10020680394/en/.

[75] G.D. Forney. “The viterbi algorithm”. In: Proceedings of the IEEE 61.3 (1973), pp. 268–

278. doi: 10.1109/PROC.1973.9030.

[76] Jonathan Fuller and Luis J. Flores. “The Risk GP Model: The standard model of pre-

diction in medicine”. In: Studies in History and Philosophy of Science Part C: Studies
in History and Philosophy of Biological and Biomedical Sciences 54 (2015), pp. 49–61.
issn: 1369-8486. doi: https://doi.org/10.1016/j.shpsc.2015.06.006. url:

https://www.sciencedirect.com/science/article/pii/S1369848615000862.

[77] Nathan Fulton and André Platzer. “Verifiably Safe Off-Model Reinforcement Learn-

ing”. In: Tools and Algorithms for the Construction and Analysis of Systems. Ed. by
Tomáš Vojnar and Lijun Zhang. Cham: Springer International Publishing, 2019,

pp. 413–430. isbn: 978-3-030-17462-0.

[78] Yang Gao et al. “Reinforcement learning from imperfect demonstrations”. In: arXiv
preprint arXiv:1802.05313 (2018).

[79] Javier Garcıa and Fernando Fernández. “A comprehensive survey on safe reinforce-

ment learning”. In: Journal of Machine Learning Research 16.1 (2015), pp. 1437–

1480.

[80] Marino Gatto et al. “Spread and dynamics of the COVID-19 epidemic in Italy: Effects

of emergency containment measures”. In: Proceedings of the National Academy
of Sciences 117.19 (2020), pp. 10484–10491. issn: 0027-8424. doi: 10.1073/pnas.

2004978117. eprint: https://www.pnas.org/content/117/19/10484.full.pdf.

url: https://www.pnas.org/content/117/19/10484.

[81] Y. A. Gerhana et al. “The implementation of K-nearest neighbor algorithm in

case-based reasoning model for forming automatic answer identity and searching

answer similarity of algorithm case”. In: 2017 5th International Conference on Cyber
and IT Service Management (CITSM). 2017, pp. 1–5.

315

Bibliography

[82] Raji Ghawi and Jürgen Pfeffer. “Efficient Hyperparameter Tuning with Grid Search

for Text Categorization using kNN Approach with BM25 Similarity”. In: Open
Computer Science 9.1 (2019), pp. 160–180. doi: doi:10.1515/comp-2019-0011. url:
https://doi.org/10.1515/comp-2019-0011.

[83] Behzad Ghazanfari, Fatemeh Afghah, and Matthew E. Taylor. “Sequential Associ-

ation Rule Mining for Autonomously Extracting Hierarchical Task Structures in

Reinforcement Learning”. In: IEEE Access 8 (2020), pp. 11782–11799. doi: 10.1109/
ACCESS.2020.2965930.

[84] Giulia Giordano et al. “Modelling the COVID-19 epidemic and implementation of

population-wide interventions in Italy”. In: Nature Medicine 26 (2020), pp. 855–860.
doi: 10.1038/s41591-020-0883-7. url: https://doi.org/10.1038/s41591-020-

0883-7.

[85] Norbert Glaser and Philippe Morignot. “The reorganization of societies of au-

tonomous agents”. In: Multi-Agent Rationality. Ed. by Magnus Boman and Walter

Van de Velde. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 98–111.

isbn: 978-3-540-69125-9.

[86] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. New York: Addison-Wesley, 1989.

[87] Yang Gong-ping and Zeng Guang-zhou. “Mobile Agent Life State Management”.

In: The Proceedings of the Multiconference on "Computational Engineering in Systems
Applications". Vol. 1. 2006, pp. 448–451. doi: 10.1109/CESA.2006.4281694.

[88] Thomas R. Gruber. “A Translation Approach to Portable Ontology Specifications”.

In: Knowl. Acquis. 5.2 (June 1993), pp. 199–220. issn: 1042-8143. doi: 10.1006/knac.
1993.1008. url: http://dx.doi.org/10.1006/knac.1993.1008.

[89] Izzeddin Gur et al. Adversarial Environment Generation for Learning to Navigate the
Web. 2021. doi: 10.48550/ARXIV.2103.01991. url: https://arxiv.org/abs/2103.
01991.

[90] Danijar Hafner. Benchmarking the Spectrum of Agent Capabilities. 2021. doi: 10.
48550/ARXIV.2109.06780. url: https://arxiv.org/abs/2109.06780.

[91] Jiawei Han, Jian Pei, and Yiwen Yin. “Mining Frequent Patterns without Candidate

Generation”. In: Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’00. Dallas, Texas, USA: Association for Computing

Machinery, 2000, pp. 1–12. isbn: 1581132174.

[92] Manjesh Kumar Hanawal et al. “Learning Policies for Markov Decision Processes

From Data”. In: IEEE Transactions on Automatic Control 64.6 (2019), pp. 2298–2309.
doi: 10.1109/TAC.2018.2866455.

[93] Steve Hanneke et al. “Theory of disagreement-based active learning”. In: Founda-
tions and Trends® in Machine Learning 7.2-3 (2014), pp. 131–309.

316

[94] Hado van Hasselt, Arthur Guez, and David Silver. “Deep Reinforcement Learning

with Double Q-Learning”. In: Proceedings of the AAAI Conference on Artificial
Intelligence 30.1 (Mar. 2016). url: https://ojs.aaai.org/index.php/AAAI/

article/view/10295.

[95] Randy L Haupt and Sue Ellen Haupt. Practical genetic algorithms. John Wiley &

Sons, 2004.

[96] Bilal Hawashin et al. “An Efficient Cold Start Solution for Recommender Systems

Based on Machine Learning and User Interests”. In: 2020 Seventh International
Conference on Software Defined Systems (SDS). 2020, pp. 220–225. doi: 10.1109/
SDS49854.2020.9143953.

[97] Floris den Hengst et al. “Reinforcement learning for personalisation: A systematic

literature review”. In: Data Science 3.2 (2020), pp. 107–147.

[98] Matteo Hessel et al. “Rainbow: Combining improvements in deep reinforcement

learning”. In: Thirty-second AAAI conference on artificial intelligence. 2018.

[99] Thomas Hinrichs and Kenneth Forbus. “Learning Qualitative Models by Demon-

stration”. In: (2012). url: https://www.aaai.org/ocs/index.php/AAAI/AAAI12/

paper/view/4959/5140.

[100] Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foundations of Semantic
Web Technologies. 2009.

[101] Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foundations of Semantic
Web Technologies. CRC Press, 2010.

[102] Pascal Hitzler et al. Semantic Web: Grundlagen. eXamen.press. Berlin: Springer,

2008. isbn: 978-3-540-33993-9. doi: 10.1007/978-3-540-33994-6.

[103] Jonathan Ho and Stefano Ermon. “Generative adversarial imitation learning”. In:

Advances in neural information processing systems 29 (2016), pp. 4565–4573.

[104] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural
Computation 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667. doi: 10.1162/neco.

1997.9.8.1735. eprint: https://direct.mit.edu/neco/article-pdf/9/8/1735/

813796/neco.1997.9.8.1735.pdf. url: https://doi.org/10.1162/neco.1997.9.

8.1735.

[105] Aidan Hogan et al. “Knowledge Graphs”. In: ACM Comput. Surv. 54.4 (July 2021).

issn: 0360-0300. doi: 10.1145/3447772. url: https://doi.org/10.1145/3447772.

[106] Robert C. Holte. “Very Simple Classification Rules PerformWell onMost Commonly

Used Datasets”. In: Mach. Learn. 11.1 (Apr. 1993), pp. 63–90. issn: 0885-6125. doi:
10.1023/A:1022631118932. url: https://doi.org/10.1023/A:1022631118932.

[107] Mokter Hossain and Ilkka Kauranen. “Crowdsourcing: a comprehensive literature

review”. In: Strategic Outsourcing: An International Journal 8.1 (2015), pp. 2–22.

[108] Wei-Ning Hsu and Hsuan-Tien Lin. “Active learning by learning”. In: Twenty-Ninth
AAAI conference on artificial intelligence. 2015.

317

Bibliography

[109] JunyanHu et al. “Voronoi-BasedMulti-Robot Autonomous Exploration in Unknown

Environments via Deep Reinforcement Learning”. In: IEEE Transactions on Vehicular
Technology 69.12 (2020), pp. 14413–14423. doi: 10.1109/TVT.2020.3034800.

[110] Raymond Hubbard and R. Murray Lindsay. “Why P Values Are Not a Useful

Measure of Evidence in Statistical Significance Testing”. In: Theory & Psychology
18.1 (2008), pp. 69–88. doi: 10.1177/0959354307086923. eprint: https://doi.org/

10.1177/0959354307086923. url: https://doi.org/10.1177/0959354307086923.

[111] Patrik Hummel et al. “Data sovereignty: A review”. In: Big Data & Society 8.1 (2021),

p. 2053951720982012. doi: 10.1177/2053951720982012. eprint: https://doi.org/

10.1177/2053951720982012. url: https://doi.org/10.1177/2053951720982012.

[112] Shao-Ming Hung and Sidney N. Givigi. “A Q-Learning Approach to Flocking With

UAVs in a Stochastic Environment”. In: IEEE Transactions on Cybernetics 47.1 (2017),
pp. 186–197. doi: 10.1109/TCYB.2015.2509646.

[113] David Isern, David Sánchez, and Antonio Moreno. “Agents applied in health care:

A review”. In: International Journal of Medical Informatics 79.3 (2010), pp. 145–166.
issn: 1386-5056. doi: https://doi.org/10.1016/j.ijmedinf.2010.01.003. url:

https://www.sciencedirect.com/science/article/pii/S138650561000016X.

[114] Jeevamol Joy, Nisha S. Raj, and Renumol V. G. “Ontology-Based E-Learning Content

Recommender System for Addressing the Pure Cold-Start Problem”. In: J. Data
and Information Quality 13.3 (Apr. 2021). issn: 1936-1955. doi: 10.1145/3429251.

url: https://doi.org/10.1145/3429251.

[115] Peter Kaiser and Tamim Asfour. “Autonomous Detection and Experimental Valida-

tion of Affordances”. In: IEEE Robotics and Automation Letters 3.3 (2018), pp. 1949–
1956. doi: 10.1109/LRA.2018.2808367.

[116] Anssi Kanervisto, Christian Scheller, and Ville Hautamäki. “Action Space Shaping

in Deep Reinforcement Learning”. In: 2020 IEEE Conference on Games (CoG). 2020,
pp. 479–486. doi: 10.1109/CoG47356.2020.9231687.

[117] Ken Kansky et al. “Schema Networks: Zero-shot Transfer with a Generative Causal

Model of Intuitive Physics”. In: Proceedings of the 34th International Conference on
Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings

of Machine Learning Research. PMLR, June 2017, pp. 1809–1818. url: https :

//proceedings.mlr.press/v70/kansky17a.html.

[118] Hamdi Kavak et al. “Big data, agents, and machine learning: towards a data-driven

agent-based modeling approach”. In: Proceedings of the Annual Simulation Sympo-
sium. 2018, pp. 1–12.

[119] Khoshnaw, Sarbaz H. A., Salih, Rizgar H., and Sulaimany, Sadegh. “Mathematical

modelling for coronavirus disease (COVID-19) in predicting future behaviours and

sensitivity analysis”. In: Math. Model. Nat. Phenom. 15 (2020), p. 33. doi: 10.1051/
mmnp/2020020. url: https://doi.org/10.1051/mmnp/2020020.

[120] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2017. arXiv: 1412.6980 [cs.LG].

318

[121] W. Bradley Knox, Peter Stone, and Cynthia Breazeal. “Teaching Agents with Hu-

man Feedback: A Demonstration of the TAMER Framework”. In: Proceedings of
the Companion Publication of the 2013 International Conference on Intelligent User
Interfaces Companion. IUI ’13 Companion. Santa Monica, California, USA: As-

sociation for Computing Machinery, 2013, pp. 65–66. isbn: 9781450319669. doi:

10.1145/2451176.2451201. url: https://doi.org/10.1145/2451176.2451201.

[122] Jens Kober and Jan Peters. “Imitation and reinforcement learning”. In: IEEE Robotics
& Automation Magazine 17.2 (2010), pp. 55–62.

[123] George Konidaris et al. “Constructing Skill Trees for Reinforcement Learning

Agents from Demonstration Trajectories”. In: Advances in Neural Information
Processing Systems. Ed. by J. Lafferty et al. Vol. 23. Curran Associates, Inc., 2010.

[124] Konstantinos I. Kotis and Artem Katasonov. “An ontology for the automated

deployment of applications in heterogeneous IoT environments 1”. In: 2012.

[125] SB Kotsiantis and PE Pintelas. “Mixture of expert agents for handling imbalanced

data sets”. In:Annals of Mathematics, Computing & Teleinformatics 1.1 (2003), pp. 46–
55.

[126] Sergey V. Kovalchuk et al. “Simulation of patient flow in multiple healthcare units

using process and data mining techniques for model identification”. In: Journal
of Biomedical Informatics 82 (2018), pp. 128–142. issn: 1532-0464. doi: https :

//doi.org/10.1016/j.jbi.2018.05.004. url: https://www.sciencedirect.com/

science/article/pii/S153204641830087X.

[127] Heinrich Küttler et al. “The nethack learning environment”. In: Advances in Neural
Information Processing Systems 33 (2020), pp. 7671–7684.

[128] Yannis Labrou and Tim Finin. “A Semantics Approach for KQML—a General

Purpose Communication Language for Software Agents”. In: Proceedings of the
Third International Conference on Information and Knowledge Management. CIKM
’94. Gaithersburg, Maryland, USA: Association for Computing Machinery, 1994,

pp. 447–455. isbn: 0897916743. doi: 10.1145/191246.191320. url: https://doi.

org/10.1145/191246.191320.

[129] Xuan Nhat Lam et al. “Addressing cold-start problem in recommendation sys-

tems”. In: Proceedings of the 2nd international conference on Ubiquitous information
management and communication. 2008, pp. 208–211.

[130] Hoang Le et al. “Hierarchical imitation and reinforcement learning”. In: Interna-
tional conference on machine learning. PMLR. 2018, pp. 2917–2926.

[131] David B. Leake, Andrew Kinley, and David C. Wilson. “Case-Based Similarity

Assessment: Estimating Adaptability from Experience”. In: AAAI/IAAI. 1997.

[132] Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. “Discovering

Block-Structured Process Models from Event Logs - A Constructive Approach”. In:

Petri Nets. 2013.

319

Bibliography

[133] Francesco Leotta et al. “Pipelining user trajectory analysis and visual process

maps for habit mining”. In: 2017 IEEE SmartWorld, Ubiquitous Intelligence Com-
puting, Advanced Trusted Computed, Scalable Computing Communications, Cloud
Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/S-
CALCOM/UIC/ATC/CBDCom/IOP/SCI). 2017, pp. 1–8. doi: 10.1109/UIC-ATC.2017.
8397509.

[134] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of Massive
Datasets. 2nd. USA: Cambridge University Press, 2014. isbn: 1107077230.

[135] Benjamin Letham et al. “Interpretable classifiers using rules and Bayesian analysis:

Building a better stroke prediction model”. In: The Annals of Applied Statistics 9.3
(2015), pp. 1350–1371.

[136] Shuang Li et al. “Pre-trained language models for interactive decision-making”. In:

arXiv preprint arXiv:2202.01771 (2022).

[137] T. Warren Liao, Zhiming Zhang, and Claude R. Mount. “Similarity measures for

retrieval in case-based reasoning systems”. In: Applied Artificial Intelligence 12.4
(1998), pp. 267–288. doi: 10.1080/088395198117730. eprint: https://doi.org/10.

1080/088395198117730. url: https://doi.org/10.1080/088395198117730.

[138] Yuan-Hong Liao et al. “Synthesizing Environment-Aware Activities via Activity

Sketches”. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). June 2019.

[139] Petro Liashchynskyi and Pavlo Liashchynskyi. “Grid search, random search, genetic

algorithm: a big comparison for NAS”. In: arXiv preprint arXiv:1912.06059 (2019).

[140] Blerina Lika, Kostas Kolomvatsos, and Stathes Hadjiefthymiades. “Facing the cold

start problem in recommender systems”. In: Expert Systems with Applications 41.4
(2014), pp. 2065–2073.

[141] Kuo-Sui Lin. “A case-based reasoning system for interior design using a new cosine

similarity retrieval algorithm”. In: Journal of Information and Telecommunication
4.1 (2020), pp. 91–104.

[142] Ying Liu et al. “Deep Reinforcement Learning for Dynamic Treatment Regimes

on Medical Registry Data”. In: 2017 IEEE International Conference on Healthcare
Informatics (ICHI). 2017, pp. 380–385. doi: 10.1109/ICHI.2017.45.

[143] Kun Lu et al. “Reinforcement Learning-powered Semantic Communication via

Semantic Similarity”. In: ArXiv abs/2108.12121 (2021).

[144] Jonathan M Mortensen, Mark Musen, and Natasha Noy. “Crowdsourcing the Veri-

fication of Relationships in Biomedical Ontologies”. In: 2013 (Nov. 2013), pp. 1020–

9.

[145] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using t-SNE”. In:

Journal of Machine Learning Research 9 (2008), pp. 2579–2605. url: http://www.

jmlr.org/papers/v9/vandermaaten08a.html.

320

[146] F. Mannhardt et al. “Guided process discovery: a pattern-based approach”. English.

In: Information Systems 76 (July 2018), pp. 1–18. issn: 0306-4379. doi: 10.1016/j.

is.2018.01.009.

[147] Gunjan Mansingh, Kweku-Muata Osei-Bryson, and Han Reichgelt. “Using on-

tologies to facilitate post-processing of association rules by domain experts”. In:

Information Sciences 181.3 (2011), pp. 419–434. issn: 0020-0255. doi: https://doi.
org/10.1016/j.ins.2010.09.027. url: https://www.sciencedirect.com/

science/article/pii/S0020025510004810.

[148] Michael Margaliot. “Mathematical Modeling of Natural Phenomena: A Fuzzy Logic

Approach”. In: Fuzzy Logic: A Spectrum of Theoretical & Practical Issues. Ed. by
Paul P. Wang, Da Ruan, and Etienne E. Kerre. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2007, pp. 113–134. isbn: 978-3-540-71258-9. doi: 10.1007/978-3-540-

71258-9_7. url: https://doi.org/10.1007/978-3-540-71258-9_7.

[149] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold Approxi-
mation and Projection for Dimension Reduction. 2018. arXiv: 1802.03426 [stat.ML].

[150] Scott W. McQuiggan and James C. Lester. “Learning Empathy: A Data-Driven

Framework for Modeling Empathetic Companion Agents”. In: Proceedings of the
Fifth International Joint Conference on Autonomous Agents and Multiagent Systems.
AAMAS ’06. Hakodate, Japan: Association for ComputingMachinery, 2006, pp. 961–

968. isbn: 1595933034. doi: 10.1145/1160633.1160806. url: https://doi.org/10.

1145/1160633.1160806.

[151] Marjorie McShane, Sergei Nirenburg, and Bruce Jarrell. “Modeling decision-making

biases”. In: Biologically Inspired Cognitive Architectures 3 (2013), pp. 39–50. issn:
2212-683X. doi: https://doi.org/10.1016/j.bica.2012.09.001. url: https:

//www.sciencedirect.com/science/article/pii/S2212683X12000515.

[152] Nicole Merkle and Ralf Mikut. “Context-Aware Composition of Agent Policies by

Markov Decision Process Entity Embeddings and Agent Ensembles”. In: Semantic
Web Journal (SWJ) (2023). url: https://semantic-web-journal.net/content/
context - aware - composition - agent - policies - markov - decision - process -

entity-embeddings-and-0.

[153] Nicole Merkle and Ralf Mikut. Context-Aware Composition of Agent Policies by
Markov Decision Process Entity Embeddings and Agent Ensembles. 2023. arXiv: 2308.
14521 [cs.AI].

[154] Nicole Merkle and Ralf Mikut. Sources and Data of Submitted Semantic Web Journal
Paper:"Context-Aware Composition of Agent Policies by Markov Decision Process En-
tity Embeddings and Agent Ensembles". Nov. 2023. doi: 10.6084/m9.figshare.
22215079. url: https : / / figshare . com / articles / journal _ contribution /

Sources _ and _ Data _ of _ Submitted _ Semantic _ Web _ Journal _ Paper _ Context -

Aware_Composition_of_Agent_Policies_by_Markov_Decision_Process_Entity_

Embeddings_and_Agent_Ensembles_/22215079/1.

321

Bibliography

[155] Nicole Merkle and Patrick Philipp. “Cooperative Web Agents by Combining Se-

mantic Technologies with Reinforcement Learning”. In: Proceedings of the 10th
International Conference on Knowledge Capture, K-CAP 2019, Marina Del Rey, CA,
USA, November 19-21, 2019. Ed. by Mayank Kejriwal, Pedro A. Szekely, and Raphaël

Troncy. ACM, 2019, pp. 205–212.

[156] Nicole Merkle and Stefan Zander. “Agent-Based Assistance in Ambient Assisted

Living Through Reinforcement Learning and Semantic Technologies - (Short Pa-

per)”. In: On the Move to Meaningful Internet Systems. OTM 2017 Conferences -
Confederated International Conferences: CoopIS, C&TC, and ODBASE 2017, Rhodes,
Greece, October 23-27, 2017, Proceedings, Part II. 2017, pp. 180–188. doi: 10.1007/978-
3-319-69459-7_12. url: https://doi.org/10.1007/978-3-319-69459-7_12.

[157] Nicole Merkle and Stefan Zander. “Improving the Utilization of AAL Devices

through Semantic Web Technologies and Web of Things Concepts”. In: Procedia
Computer Science 98.Supplement C (2016). The 7th International Conference on

Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2016)/The 6th

International Conference on Current and Future Trends of Information and Com-

munication Technologies in Healthcare (ICTH-2016)/AffiliatedWorkshops, pp. 290–

297. issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.2016.09.045. url:

http://www.sciencedirect.com/science/article/pii/S1877050916321779.

[158] Nicole Merkle and Stefan Zander. “Using a Semantic Simulation Framework for

Teaching Machine Learning Agents”. In: Procedia Computer Science 137 (2018).

Proceedings of the 14th International Conference on Semantic Systems 10th, 13th

of September 2018 Vienna, Austria, pp. 78–89. issn: 1877-0509.

[159] Nicole Merkle, Stefan Zander, and Viliam Simko. “A Semantic Use Case Simulation

Framework for Training Machine Learning Algorithms”. In: Knowledge Engineering
and Knowledge Management. Ed. by Catherine Faron Zucker et al. Cham: Springer

International Publishing, 2018, pp. 243–257.

[160] Mohammed Mesabbah, Waleed Abo-Hamad, and Susan McKeever. “A Hybrid

Process Mining Framework for Automated Simulation Modelling for Healthcare”.

In: 2019 Winter Simulation Conference (WSC). 2019, pp. 1094–1102. doi: 10.1109/
WSC40007.2019.9004800.

[161] Mohammed Mesabbah and Susan McKeever. “Presenting a Hybrid Processing Min-

ing Framework for Automated Simulation Model Generation”. In: 2018 Winter Sim-
ulation Conference (WSC). 2018, pp. 1370–1381. doi: 10.1109/WSC.2018.8632467.

[162] Zbigniew Michalewicz. “GAs: Why Do They Work?” In: Genetic Algorithms+ Data
Structures= Evolution Programs. Springer, 1996, pp. 45–55.

[163] Tomas Mikolov et al. Distributed Representations of Words and Phrases and their
Compositionality. 2013. arXiv: 1310.4546 [cs.CL].

[164] Tomas Mikolov et al. Efficient Estimation of Word Representations in Vector Space.
2013. arXiv: 1301.3781 [cs.CL].

322

[165] ALLEN E. MILEWSKI and STEVEN H. LEWIS. “Delegating to software agents”. In:

International Journal of Human-Computer Studies 46.4 (1997), pp. 485–500. issn:
1071-5819. doi: https://doi.org/10.1006/ijhc.1996.0100. url: https://www.

sciencedirect.com/science/article/pii/S1071581996901007.

[166] Marvin Minsky. “Steps toward artificial intelligence”. In: Computers and Thought.
McGraw-Hill, 1961, pp. 406–450.

[167] Luis Miralles-Pechuán et al. “A Methodology Based on Deep Q-Learning/Genetic

Algorithms for Optimizing COVID-19 Pandemic Government Actions”. In: Pro-
ceedings of the 29th ACM International Conference on Information and Knowledge
Management. CIKM 20. Virtual Event, Ireland: Association for Computing Machin-

ery, 2020, pp. 1135–1144. isbn: 9781450368599.

[168] Luis Miralles-Pechuán et al. “A Methodology Based on Deep Q-Learning/Genetic

Algorithms for Optimizing COVID-19 Pandemic Government Actions”. In: Pro-
ceedings of the 29th ACM International Conference on Information and Knowledge
Management. CIKM ’20. Virtual Event, Ireland: Association for Computing Machin-

ery, 2020, pp. 1135–1144. isbn: 9781450368599. doi: 10.1145/3340531.3412179.

url: https://doi.org/10.1145/3340531.3412179.

[169] T Mitchell et al. “Machine Learning”. In: Annual Review of Computer Science 4.1
(1990), pp. 417–433. doi: 10.1146/annurev.cs.04.060190.002221. eprint: https:

//doi.org/10.1146/annurev.cs.04.060190.002221. url: https://doi.org/10.

1146/annurev.cs.04.060190.002221.

[170] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”.

In: 518.7540 (Feb. 2015), pp. 529–533.

[171] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In:

CoRR arXiv:cs/0204012 (2013). eprint: 1312.5602.

[172] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In: CoRR
abs/1312.5602 (2013). arXiv: 1312.5602. url: http://arxiv.org/abs/1312.5602.

[173] Christoph Molnar. Interpretable Machine Learning. 2018. url: https://christophm.
github.io/interpretable-ml-book.

[174] László Monostori. “Cyber-Physical Systems”. In: CIRP Encyclopedia of Production
Engineering. Ed. by Sami Chatti and Tullio Tolio. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2018, pp. 1–8. isbn: 978-3-642-35950-7. doi: 10.1007/978-3- 642-

35950-7_16790-1. url: https://doi.org/10.1007/978-3-642-35950-7_16790-1.

[175] Stefania Montani. “How to use contextual knowledge in medical case-based reason-

ing systems: A survey on very recent trends”. In: Artificial Intelligence in Medicine
51.2 (2011). Advances in Case-Based Reasoning in the Health Sciences, pp. 125–131.

issn: 0933-3657.

[176] Richard D. Morey et al. “The fallacy of placing confidence in confidence intervals”.

en. In: Psychonomic Bulletin & Review 23.1 (Feb. 2016), pp. 103–123. issn: 1069-9384,

1531-5320. doi: 10.3758/s13423-015-0947-8. url: http://link.springer.com/

10.3758/s13423-015-0947-8 (visited on 04/14/2016).

323

Bibliography

[177] Eduardo Mosqueira-Rey et al. “Human-in-the-Loop Machine Learning: A State

of the Art”. In: Artif. Intell. Rev. 56.4 (Aug. 2022), pp. 3005–3054. issn: 0269-2821.
doi: 10.1007/s10462-022-10246-w. url: https://doi.org/10.1007/s10462-022-

10246-w.

[178] Senthilselvan Natarajan et al. “Resolving data sparsity and cold start problem in

collaborative filtering recommender system using linked open data”. In: Expert
Systems with Applications 149 (2020), p. 113248.

[179] Jerzy Neyman. “Outline of a theory of statistical estimation based on the classical

theory of probability”. In: Philosophical Transactions of the Royal Society of London.
Series A, Mathematical and Physical Sciences 236.767 (1937), pp. 333–380.

[180] Muaz A. Niazi and Amir Hussain. “A Novel Agent-Based Simulation Framework

for Sensing in Complex Adaptive Environments”. In: IEEE Sensors Journal 11.2
(2011), pp. 404–412. doi: 10.1109/JSEN.2010.2068044.

[181] Nils J. Nilsson. Introduction to Machine Learning: An Early Draft of a Proposed
Textbook. Pages 175-188. http://robotics.stanford.edu/people/nilsson/mlbook.ht ml.
1996.

[182] Farzad Niroui et al. “Deep Reinforcement Learning Robot for Search and Rescue

Applications: Exploration in Unknown Cluttered Environments”. In: IEEE Robotics
and Automation Letters 4.2 (2019), pp. 610–617. doi: 10.1109/LRA.2019.2891991.

[183] Brian Keith Norambuena. “Integration of Process Mining and Simulation: A Survey

of Applications and Current Research”. In:WorldCIST. 2018.

[184] Héctor Núñez et al. “A comparative study on the use of similarity measures in case-

based reasoning to improve the classification of environmental system situations”.

In: Environmental Modelling & Software 19.9 (2004). Environmental Sciences and

Artificial Intelligence, pp. 809–819. issn: 1364-8152. doi: https://doi.org/10.

1016/j.envsoft.2003.03.003. url: https://www.sciencedirect.com/science/

article/pii/S1364815203002020.

[185] Laurent Orseau, Tor Lattimore, and Marcus Hutter. “Universal Knowledge-Seeking

Agents for Stochastic Environments”. In: Algorithmic Learning Theory. Ed. by
Sanjay Jain et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 158–172.

isbn: 978-3-642-40935-6.

[186] M. A. Osborne et al. “Towards Real-Time Information Processing of Sensor Network

Data Using Computationally Efficient Multi-output Gaussian Processes”. In: 2008
International Conference on Information Processing in Sensor Networks (ipsn 2008).
2008, pp. 109–120. doi: 10.1109/IPSN.2008.25.

[187] D. Osinga. Deep Learning Cookbook: Practical Recipes to Get Started Quickly. O’Reilly
Media, 2018. isbn: 9781491995792. url: https://books.google.de/books?id=

TMFeDwAAQBAJ.

[188] Lin Padgham and Patrick Lambrix. “Agent capabilities: Extending BDI theory”. In:

AAAI/IAAI. 2000, pp. 68–73.

324

[189] Constantin-Valentin Pal and Florin Leon. “A Modified I2A Agent for Learning in

a Stochastic Environment”. In: Computational Collective Intelligence. Ed. by Ngoc

Thanh Nguyen et al. Cham: Springer International Publishing, 2020, pp. 388–399.

isbn: 978-3-030-63007-2.

[190] Ashutosh Pandey et al. “Hybrid Planning for Decision Making in Self-Adaptive

Systems”. In: 2016 IEEE 10th International Conference on Self-Adaptive and Self-
Organizing Systems (SASO). 2016, pp. 130–139. doi: 10.1109/SASO.2016.19.

[191] Jung Yeon Park et al. “An explanatory item response theory method for alleviating

the cold-start problem in adaptive learning environments”. In: vol. 51. 2. 2019,

pp. 895–909. doi: 10.3758/s13428-018-1166-9. url: https://doi.org/10.3758/

s13428-018-1166-9.

[192] Emanuel Parzen. “On Estimation of a Probability Density Function and Mode”. In:

The Annals of Mathematical Statistics 33.3 (1962), pp. 1065–1076. doi: 10.1214/

aoms/1177704472. url: https://doi.org/10.1214/aoms/1177704472.

[193] Pedro Patron, David M. Lane, and Yvan R. Petillot. “Interoperability of agent capa-

bilities for autonomous knowledge acquisition and decision making in unmanned

platforms”. In: OCEANS 2009-EUROPE. 2009, pp. 1–8. doi: 10.1109/OCEANSE.2009.
5278269.

[194] L. Penserini et al. “Socially-based design meets agent capabilities”. In: Proceedings.
IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT
2004). 2004, pp. 72–78. doi: 10.1109/IAT.2004.1342926.

[195] Loris Penserini et al. “From stakeholder intentions to agent capabilities”. In: Sixth
International Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS’07), Haway, USA. 2007.

[196] Damien Poirier, Francoise Fessant, and Isabelle Tellier. “Reducing the Cold-Start

Problem in Content Recommendation through Opinion Classification”. In: 2010
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent
Technology. Vol. 1. 2010, pp. 204–207. doi: 10.1109/WI-IAT.2010.87.

[197] Artem Polyvyanyy et al. “Goal Recognition Using Off-The-Shelf Process Mining

Techniques”. In: Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems. AAMAS ’20. Auckland, New Zealand: International

Foundation for Autonomous Agents and Multiagent Systems, 2020, pp. 1072–1080.

isbn: 9781450375184.

[198] David L. Poole and Alan K. Mackworth. Artificial Intelligence: Foundations of
Computational Agents. 2nd ed. Cambridge University Press, 2017. doi: 10.1017/

9781108164085.

[199] Chris Porhet et al. “Mining a Multimodal Corpus of Doctor’s Training for Virtual

Patient’s Feedbacks”. In: Proceedings of the 19th ACM International Conference on
Multimodal Interaction. ICMI ’17. Glasgow, UK: Association for Computing Ma-

chinery, 2017, pp. 473–478. isbn: 9781450355438. doi: 10.1145/3136755.3136816.

url: https://doi.org/10.1145/3136755.3136816.

325

Bibliography

[200] Stefan Poslad. “Specifying Protocols for Multi-Agent Systems Interaction”. In: ACM
Trans. Auton. Adapt. Syst. 2.4 (Nov. 2007), 15–es. issn: 1556-4665. doi: 10.1145/
1293731.1293735. url: https://doi.org/10.1145/1293731.1293735.

[201] Bob Price and Craig Boutilier. “Accelerating reinforcement learning through im-

plicit imitation”. In: Journal of Artificial Intelligence Research 19 (2003), pp. 569–

629.

[202] Xavier Puig et al. “Virtualhome: Simulating household activities via programs”.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2018, pp. 8494–8502.

[203] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics. Wiley, 1994. isbn: 978-0-

47161977-2. doi: 10.1002/9780470316887. url: https://doi.org/10.1002/

9780470316887.

[204] Runtao Qiao, Shuhan Yan, and Beijun Shen. “A Reinforcement Learning Solution

to Cold-Start Problem in Software Crowdsourcing Recommendations”. In: 2018
IEEE International Conference on Progress in Informatics and Computing (PIC). 2018,
pp. 8–14. doi: 10.1109/PIC.2018.8706279.

[205] L. Rabiner and B. Juang. “An introduction to hidden Markov models”. In: IEEE ASSP
Magazine 3.1 (1986), pp. 4–16. doi: 10.1109/MASSP.1986.1165342.

[206] L.R. Rabiner. “A tutorial on hidden Markov models and selected applications in

speech recognition”. In: Proceedings of the IEEE 77.2 (1989), pp. 257–286. doi: 10.

1109/5.18626.

[207] Steven J. Rennie et al. Self-critical Sequence Training for Image Captioning. 2017.
arXiv: 1612.00563 [cs.LG].

[208] Jeff Rickel and W Lewis Johnson. “Integrating pedagogical capabilities in a vir-

tual environment agent”. In: Proceedings of the first international conference on
Autonomous agents. 1997, pp. 30–38.

[209] Juan Jesús Roldán et al. “Analyzing and improving multi-robot missions by using

process mining”. In: Autonomous Robots 42 (2018), pp. 1187–1205.

[210] Oscar J. Romero. Architectural Middleware that Supports Building High-performance,
Scalable, Ubiquitous, Intelligent Personal Assistants. 2019. doi: 10.48550/ARXIV.
1906.02068. url: https://arxiv.org/abs/1906.02068.

[211] Murray Rosenblatt. “Remarks on Some Nonparametric Estimates of a Density

Function”. In: The Annals of Mathematical Statistics 27.3 (1956), pp. 832–837. doi:
10.1214/aoms/1177728190. url: https://doi.org/10.1214/aoms/1177728190.

[212] Neil Rubens et al. “Active Learning in Recommender Systems”. In: Recommender
Systems Handbook. Boston, MA: Springer US, 2015, pp. 809–846. isbn: 978-1-4899-

7637-6.

[213] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Third. Series
in Artificial Intelligence. Upper Saddle River, NJ: Prentice Hall, 2010. url: http:

//aima.cs.berkeley.edu/.

326

[214] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 3rd ed.

Prentice Hall, 2010.

[215] Fereshteh Sadeghi and Sergey Levine. CAD2RL: Real Single-Image Flight without a
Single Real Image. 2017. arXiv: 1611.04201 [cs.LG].

[216] Shaker H El-Sappagh and Mohammed Elmogy. “Case based reasoning: Case repre-

sentation methodologies”. In: International Journal of Advanced Computer Science
and Applications 6.11 (2015), pp. 192–208.

[217] Iqbal H Sarker. “Context-aware rule learning from smartphone data: survey, chal-

lenges and future directions”. In: Journal of Big Data 6.1 (2019), pp. 1–25.

[218] Iqbal H. Sarker and Flora D. Salim. Mining User Behavioural Rules from Smartphone
Data through Association Analysis. 2018. arXiv: 1804.01379 [cs.DB].

[219] Stefan Schaal et al. “Learning from demonstration”. In: Advances in neural informa-
tion processing systems (1997), pp. 1040–1046.

[220] Mike Schaekermann et al. “Resolvable vs. Irresolvable Disagreement: A Study on

Worker Deliberation in Crowd Work”. In: Proceedings of the 2018 ACM Conference
on Computer Supported Cooperative Work and Social Computing (CSCW 18). Best
Paper Award. New York City, NY, 2018. doi: 10.1145/3274423.

[221] Daniela Schmidt et al. “An Ontology for Collaborative Tasks in Multi-agent Sys-

tems.” In: Ontobras. 2015.

[222] Burr Settles. Active Learning Literature Survey. Computer Sciences Technical Report

1648. University of Wisconsin–Madison, 2010. url: http://axon.cs.byu.edu/

~martinez/classes/778/Papers/settles.activelearning.pdf.

[223] Burr Settles. “Active learning literature survey”. In: (2009).

[224] Nava A. Shaked. “Avatars and virtual agents – relationship interfaces for the

elderly”. In: Healthcare Technology Letters 4.3 (2017), pp. 83–87. doi: https://

doi.org/10.1049/htl.2017.0009. eprint: https://ietresearch.onlinelibrary.

wiley.com/doi/pdf/10.1049/htl.2017.0009. url: https://ietresearch.

onlinelibrary.wiley.com/doi/abs/10.1049/htl.2017.0009.

[225] Bracha Shapira. “Recommender Systems Handbook”. In: Springer US. 2010.

[226] B. H Shekar and Guesh Dagnew. “Grid Search-Based Hyperparameter Tuning and

Classification of Microarray Cancer Data”. In: 2019 Second International Conference
on Advanced Computational and Communication Paradigms (ICACCP). 2019, pp. 1–8.
doi: 10.1109/ICACCP.2019.8882943.

[227] Haobin Shi, Mingjun Xin, and Wenjie Dong. “A Kind of Case Similarity Evaluation

Model Based on Case-Based Reasoning”. In: 2011 International Conference on Internet
of Things and 4th International Conference on Cyber, Physical and Social Computing.
2011, pp. 453–457. doi: 10.1109/iThings/CPSCom.2011.57.

327

Bibliography

[228] Tianlin Shi et al. “World of Bits: An Open-Domain Platform for Web-Based Agents”.

In: Proceedings of the 34th International Conference on Machine Learning. Ed. by
Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Re-

search. International Convention Centre, Sydney, Australia: PMLR, June 2017,

pp. 3135–3144. url: http://proceedings.mlr.press/v70/shi17a.html.

[229] Felipe Leno Da Silva et al. “Agents Teaching Agents: A Survey on Inter-Agent Trans-

fer Learning”. In: Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems. AAMAS ’20. Auckland, New Zealand: International

Foundation for Autonomous Agents and Multiagent Systems, 2020, pp. 2165–2167.

isbn: 9781450375184.

[230] David Silver et al. “Mastering the game of Go with deep neural networks and tree

search”. In: Nature 529.7587 (2016), pp. 484–489. doi: 10.1038/nature16961. url:
https://doi.org/10.1038/nature16961.

[231] B. W. Silverman. Density Estimation for Statistics and Data Analysis. London: Chap-
man & Hall, 1986.

[232] SMAPPI-Smart-Apple-Picker-Agent. https://github.com/nmerkle/SMAPPI-Smart-
Apple-Picker-Agent/https://nmerkle.github.io. Accessed: 2023-04-23.

[233] Internet Society. The Internet of Things: An Overview - Understanding the Issues and
Challenges of amore connectedWorld. Oct. 2015.url: https://www.internetsociety.
org/resources/doc/2015/iot-overview/ (visited on 05/31/2023).

[234] Mohammad Soleymannejad and Alireza Basiri. “Using OWA Approach to Solve

Cold-Start Problem of Recommender Systems”. In: 2020 10th International Con-
ference on Computer and Knowledge Engineering (ICCKE). 2020, pp. 500–507. doi:
10.1109/ICCKE50421.2020.9303692.

[235] Stuart Soltysiak et al. “Knowing me, knowing you: practical issues in the personal-

isation of agent technology”. In: Proceedings of the third international conference on
the practical applications of intelligent agents and multi-agent technology. Citeseer.
1998, pp. 467–484.

[236] Mark Stamp. “A revealing introduction to hidden markov models”. In: Science (Jan.
2004), pp. 1–20.

[237] P. Stingl. Mathematik für Fachhochschulen: Technik und Informatik ; mit über 1000
Aufgaben und Lösungen. Hanser, 2009. isbn: 9783446420656. url: https://books.
google.de/books?id=O%5C_GhQQAACAAJ.

[238] S. Strogatz. Infinite Powers: The Story of Calculus - the Language of the Universe.
Atlantic Books, 2019. isbn: 9781786492944. url: https://books.google.de/books?

id=fi7tvQEACAAJ.

[239] Halit Bener Suay et al. “Learning from demonstration for shaping through inverse

reinforcement learning”. In: Proceedings of the 2016 International Conference on
Autonomous Agents & Multiagent Systems. 2016, pp. 429–437.

328

[240] Jennifer J. Sun et al. “Task Programming: Learning Data Efficient Behaviour Rep-

resentations”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). June 2021, pp. 2876–2885.

[241] Yunsick Sung and Kyungeun Cho. “Collaborative programming by demonstration

in a virtual environment”. In: IEEE Intelligent Systems 27.2 (2012), pp. 14–17.

[242] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. 1st.
Cambridge, MA, USA: MIT Press, 1998. isbn: 0262193981.

[243] Valentina Tamma et al. Ontologies for Agents: Theory and Experiences. Jan. 2005.
isbn: 978-3-7643-7237-8. doi: 10.1007/3-7643-7361-X.

[244] Matthew E Taylor, Halit Bener Suay, and Sonia Chernova. “Integrating reinforce-

ment learning with human demonstrations of varying ability”. In: The 10th Interna-
tional Conference on Autonomous Agents and Multiagent Systems-Volume 2. Citeseer.
2011, pp. 617–624.

[245] Open Ended Learning Team et al. “Open-ended learning leads to generally capable

agents”. In: arXiv preprint arXiv:2107.12808 (2021).

[246] Luis Orlindo Tedeschi. “Assessment of the adequacy of mathematical models”.

In: Agricultural Systems 89.2 (2006), pp. 225–247. issn: 0308-521X. doi: https:

//doi.org/10.1016/j.agsy.2005.11.004. url: https://www.sciencedirect.

com/science/article/pii/S0308521X05002568.

[247] F. Tempola, A. Arief, and M. Muhammad. “Combination of case-based reasoning

and nearest neighbour for recommendation of volcano status”. In: 2017 2nd Inter-
national conferences on Information Technology, Information Systems and Electrical
Engineering (ICITISEE). 2017, pp. 348–352.

[248] STEPHEN TENCH, HANNAH FRY, and PAUL GILL. “Spatio-temporal patterns

of IED usage by the Provisional Irish Republican Army”. In: European Journal of
Applied Mathematics 27.3 (2016), pp. 377–402. doi: 10.1017/S0956792515000686.

[249] Georgios Theocharous et al. “Reinforcement Learning for Strategic Recommenda-

tions”. In: ArXiv abs/2009.07346 (2020).

[250] Andrea L. Thomaz, Guy Hoffman, and Cynthia Breazeal. “Reinforcement Learning

with Human Teachers: Understanding How People Want to Teach Robots”. In: RO-
MAN 2006 - The 15th IEEE International Symposium on Robot and Human Interactive
Communication. 2006, pp. 352–357. doi: 10.1109/ROMAN.2006.314459.

[251] S.P. Thompson and M. Gardner. Calculus Made Easy. St. Martin’s Publishing Group,

1998. isbn: 9780312185480. url: https://books.google.de/books?id=BBIFtid-

WdUC.

[252] Sebastian Thrun. “Exploration in active learning”. In: Handbook of Brain Science
and Neural Networks (1995), pp. 381–384.

[253] Sebastian Thrun and Lorien Pratt, eds. Learning to Learn. USA: Kluwer Academic

Publishers, 1998. isbn: 0792380479.

329

Bibliography

[254] Ling Tian et al. “Knowledge graph and knowledge reasoning: A systematic review”.

In: Journal of Electronic Science and Technology 20.2 (2022), p. 100159. issn: 1674-

862X. doi: https://doi.org/10.1016/j.jnlest.2022.100159. url: https:

//www.sciencedirect.com/science/article/pii/S1674862X2200012X.

[255] Josh Tobin et al. Domain Randomization for Transferring Deep Neural Networks
from Simulation to the Real World. 2017. arXiv: 1703.06907 [cs.RO].

[256] Andrei Tour, Artem Polyvyanyy, and Anna Kalenkova. “Agent System Mining:

Vision, Benefits, and Challenges”. In: IEEE Access 9 (2021), pp. 99480–99494. doi:
10.1109/ACCESS.2021.3095464.

[257] Allan Tucker et al. “Generating high-fidelity synthetic patient data for assessing

machine learning healthcare software”. In: NPJ digital medicine 3.1 (2020), pp. 1–13.

[258] Amos Tversky and Daniel Kahneman. “Judgment under Uncertainty: Heuristics and

Biases”. In: Science 185.4157 (1974), pp. 1124–1131. doi: 10.1126/science.185.4157.
1124. eprint: https://www.science.org/doi/pdf/10.1126/science.185.4157.

1124. url: https://www.science.org/doi/abs/10.1126/science.185.4157.1124.

[259] Amos Tversky and Daniel Kahneman. “The Framing of Decisions and the Psychol-

ogy of Choice”. In: Behavioural Decision Making. Ed. by George Wright. Boston,

MA: Springer US, 1985, pp. 25–41. isbn: 978-1-4613-2391-4. doi: 10.1007/978-1-

4613-2391-4_2. url: https://doi.org/10.1007/978-1-4613-2391-4_2.

[260] Rainer Unland. “Chapter 1 - Software Agent Systems”. In: Industrial Agents. Ed. by
Paulo Leitão and Stamatis Karnouskos. Boston: Morgan Kaufmann, 2015, pp. 3–22.

isbn: 978-0-12-800341-1. doi: https://doi.org/10.1016/B978-0-12-800341-

1.00001- 2. url: https://www.sciencedirect.com/science/article/pii/

B9780128003411000012.

[261] Frank Van Harmelen, Vladimir Lifschitz, and Bruce Porter. Handbook of knowledge
representation. Elsevier, 2008.

[262] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural Infor-
mation Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc.,

2017.

[263] John Venn. The Logic of Chance, 3rd edition An Essay on the Foundations and Provice
of the Theory of Probability. 3rd. The Guttenberg Project, 2018. url: https://www.
gutenberg.org/files/57359/57359-h/57359-h.htm.

[264] Ayushi Verma and Sushil Kumar. “Cognitive Robotics in Artificial Intelligence”. In:

2018 8th International Conference on Cloud Computing, Data Science & Engineering
(Confluence). 2018, pp. 65–70. doi: 10.1109/CONFLUENCE.2018.8442725.

[265] Vijay Verma and Rajesh Kumar Aggarwal. “A comparative analysis of similarity

measures akin to the Jaccard index in collaborative recommendations: empirical

and theoretical perspective”. In: Soc. Netw. Anal. Min. 10.1 (2020), p. 43.

330

[266] Nicolas Verstaevel et al. “Principles and Experimentations of Self-organizing Em-

bedded Agents Allowing Learning from Demonstration in Ambient Robotic”. In:

Procedia Computer Science 52 (2015). The 6th International Conference on Ambient

Systems, Networks and Technologies (ANT-2015), the 5th International Confer-

ence on Sustainable Energy Information Technology (SEIT-2015), pp. 194–201.

issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.2015.05.056. url:

https://www.sciencedirect.com/science/article/pii/S187705091500856X.

[267] Iosif Viktoratos, Athanasios Tsadiras, andNick Bassiliades. “Combining Community-

Based Knowledge with Association Rule Mining to Alleviate the Cold Start Problem

in Context-Aware Recommender Systems”. In: Expert Syst. Appl. 101.C (July 2018),

pp. 78–90. issn: 0957-4174. doi: 10.1016/j.eswa.2018.01.044. url: https:

//doi.org/10.1016/j.eswa.2018.01.044.

[268] Damian G. Walker et al. “Generalisability, Transferability, Complexity and Rel-

evance”. In: Evidence-Based Decisions and Economics. John Wiley & Sons, Ltd,

2010. Chap. 5, pp. 56–66. isbn: 9781444320398. doi: https://doi.org/10.1002/

9781444320398.ch5. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.

1002/9781444320398.ch5. url: https://onlinelibrary.wiley.com/doi/abs/10.

1002/9781444320398.ch5.

[269] Hongbing Wang et al. “A multi-agent reinforcement learning approach to dynamic

service composition”. In: Information Sciences 363 (2016), pp. 96–119. issn: 0020-
0255. doi: https://doi.org/10.1016/j.ins.2016.05.002. url: https://www.

sciencedirect.com/science/article/pii/S0020025516303085.

[270] Wei Wang et al. “A Comprehensive Ontology for Knowledge Representation in the

Internet of Things”. In: 2012 IEEE 11th International Conference on Trust, Security
and Privacy in Computing and Communications. 2012, pp. 1793–1798. doi: 10.1109/
TrustCom.2012.20.

[271] Zhenchen Wang, Puja Myles, and Allan Tucker. “Generating and evaluating cross-

sectional synthetic electronic healthcare data: Preserving data utility and patient

privacy”. In: Computational Intelligence 37.2 (2021), pp. 819–851.

[272] Jia Wangping et al. “Extended SIR Prediction of the Epidemics Trend of COVID-19

in Italy and ComparedWith Hunan, China”. In: Frontiers in Medicine 7 (2020), p. 169.
issn: 2296-858X. doi: 10.3389/fmed.2020.00169. url: https://www.frontiersin.

org/article/10.3389/fmed.2020.00169.

[273] Geoffrey I Webb and Mark Kuzmycz. “Feature Based Modelling: A methodology

for producing coherent, consistent, dynamically changing models of agents’ com-

petencies”. In: User modeling and user-adapted interaction 5.2 (1995), pp. 117–150.

[274] Ben Weber, Michael Mateas, and Arnav Jhala. “Learning from Demonstration

for Goal-Driven Autonomy”. In: Proceedings of the AAAI Conference on Artificial
Intelligence 26.1 (Sept. 2021), pp. 1176–1182. doi: 10.1609/aaai.v26i1.8311. url:
https://ojs.aaai.org/index.php/AAAI/article/view/8311.

[275] Eric W. Weisstein. Gaussian Function. From MathWorld–A Wolfram Web Resource.

url: https://mathworld.wolfram.com/GaussianFunction.html.

331

Bibliography

[276] Julius Weyl, Daniel Glake, and Thomas Clemen. “Agent-Based Traffic Simulation at

City Scale with MARS”. In: Proceedings of the Agent-Directed Simulation Symposium.

ADS ’18. Baltimore, Maryland: Society for Computer Simulation International, 2018.

isbn: 9781510860131.

[277] Danny Weyns and Tom Holvoet. “Model for Simultaneous Actions in Situated

Multi-agent Systems”. In: Multiagent System Technologies. Ed. by Michael Schillo

et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 105–118. isbn: 978-

3-540-39869-1.

[278] Maggie Wigness, John G. Rogers, and Luis E. Navarro-Serment. “Robot Navigation

from Human Demonstration: Learning Control Behaviours”. In: 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA). 2018, pp. 1150–1157. doi:
10.1109/ICRA.2018.8462900.

[279] C.Wohlin et al. Experimentation in Software Engineering. Computer Science. Springer

Berlin Heidelberg, 2012. isbn: 9783642290442. url: https://books.google.de/

books?id=QPVsM1%5C_U8nkC.

[280] Yikun Xian et al. “Reinforcement Knowledge Graph Reasoning for Explainable

Recommendation”. In: Proceedings of the 42nd International ACM SIGIR Conference
on Research and Development in Information Retrieval. SIGIR’19. Paris, France:
Association for ComputingMachinery, 2019, pp. 285–294. isbn: 9781450361729. doi:

10.1145/3331184.3331203. url: https://doi.org/10.1145/3331184.3331203.

[281] Yanwei Xing et al. “Combination Data Mining Methods with New Medical Data to

Predicting Outcome of Coronary Heart Disease”. In: 2007 International Conference
on Convergence Information Technology (ICCIT 2007). 2007, pp. 868–872. doi: 10.
1109/ICCIT.2007.204.

[282] Ning Xiong. “Learning fuzzy rules for similarity assessment in case-based reason-

ing”. In: Expert systems with applications 38.9 (2011), pp. 10780–10786.

[283] R.R. Yager. “On ordered weighted averaging aggregation operators in multicriteria

decisionmaking”. In: IEEE Transactions on Systems, Man, and Cybernetics 18.1 (1988),
pp. 183–190. doi: 10.1109/21.87068.

[284] Yuguang Yang, Michael A. Bevan, and Bo Li. “Efficient Navigation of Colloidal

Robots in an Unknown Environment via Deep Reinforcement Learning”. In: Ad-
vanced Intelligent Systems 2.1 (2020), p. 1900106. doi: https://doi.org/10.1002/
aisy.201900106. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/

aisy.201900106. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/

aisy.201900106.

[285] Juan Ye, Simon Dobson, and Susan McKeever. “Situation identification techniques

in pervasive computing: A review”. In: Pervasive and Mobile Computing 8.1 (2012),

pp. 36–66. issn: 1574-1192. doi: https://doi.org/10.1016/j.pmcj.2011.01.004.

url: https://www.sciencedirect.com/science/article/pii/S1574119211000253.

332

[286] Han Yu, Zhiqi Shen, and Cyril Leung. “From internet of things to internet of agents”.

In: 2013 IEEE international conference on green computing and communications and
IEEE Internet of Things and IEEE cyber, physical and social computing. IEEE. 2013,
pp. 1054–1057.

[287] Tong Yu and Hong Zhu. “Hyper-Parameter Optimization: A Review of Algorithms

and Applications”. In: ArXiv abs/2003.05689 (2020).

[288] Qilong Yuan et al. “Flexible telemanipulation based handy robot teaching on tape

masking with complex geometry”. In: Robotics and Computer-Integrated Manu-
facturing 66 (2020), p. 101990. issn: 0736-5845. doi: https://doi.org/10.1016/

j.rcim.2020.101990. url: https://www.sciencedirect.com/science/article/

pii/S0736584520302015.

[289] Chao Zhang et al. “Using Cognitive Models to Train Warm Start Reinforcement

Learning Agents for Human-Computer Interactions”. In: ArXiv abs/2103.06160

(2021).

[290] Li Zhang et al. “An agent-based framework for distributed intelligent control

systems”. In: SICE 2004 Annual Conference. Vol. 3. 2004, 2685–2688 vol. 3.

[291] Yong Zhang and Meng Joo Er. “Sequential active learning using meta-cognitive

extreme learning machine”. In: Neurocomputing 173 (2016), pp. 835–844.

[292] Yunzhi Zhang, Pieter Abbeel, and Lerrel Pinto. “Automatic curriculum learning

through value disagreement”. In: Advances in Neural Information Processing Systems
33 (2020), pp. 7648–7659.

[293] Kangzhi Zhao et al. “Leveraging Demonstrations for Reinforcement Recommen-

dation Reasoning over Knowledge Graphs”. In: Proceedings of the 43rd Interna-
tional ACM SIGIR Conference on Research and Development in Information Re-
trieval. SIGIR ’20. Virtual Event, China: Association for Computing Machinery,

2020, pp. 239–248. isbn: 9781450380164. doi: 10.1145/3397271.3401171. url:

https://doi.org/10.1145/3397271.3401171.

[294] QinPing Zhao. “Data acquisition and simulation of natural phenomena”. In: Science
China Information Sciences 54.4 (2011), pp. 683–716.

[295] Fangming Zhu and Sheng-Uei Guan. “Towards evolution of software agents in

electronic commerce”. In: Proceedings of the 2001 Congress on Evolutionary Compu-
tation (IEEE Cat. No.01TH8546). Vol. 2. 2001, 1303–1308 vol. 2. doi: 10.1109/CEC.
2001.934341.

[296] Roland Zimmermann et al. “AnOntology for Agent-BasedMonitoring of Fulfillment

Processes”. In: Ontologies for Agents: Theory and Experiences. Ed. by Valentina

Tamma et al. Basel: Birkhäuser Basel, 2005, pp. 323–345. isbn: 978-3-7643-7361-0.

333

A. Reward Function Example

Platform developers who want to integrate new reward functions into the simulation

component do not necessarily have to define SPARQL CONSTRUCT queries, but can

implement a function as described in this example code.

To calculate the reward, several logical conditions need to be evaluated. In line 20 it is

checked whether additional goals have been achieved compared to the number of goals

already achieved, and if so, the reward value is calculated by subtracting the number of

goals last observed from the number of goals currently achieved. For example, if 2 goals

have been achieved up to the penultimate action and now an additional goal has been

achieved after the current action has been performed, this results in a reward value of 1,

as only the current action and its goal achievement counts and the last actions and their

goal achievement are no longer taken into account.

The example function is implemented as a closure 1
. First, the required variables (e.g.

number of goal states in the task) are declared in the outer function (line 2 - 4), then
an inner function is returned, which is then invoked by the simulator after each action

received from the agent (line 5).

The outer function has as input a task instance representation, containing all required

information, and a goalSize that indicates the number of goal states that can be reached

within the task execution (line 1). This number is required because the algorithm can

then detect how many and whether all goal states were achieved during task execution.

Based on this, the function decides which reward value to compute.

The inner function takes over as input parameters the last state, the last executed action

of the agent, and the currently executed action of the agent (line 5). Then, in line 6 - 10,
a reward variable, a flag variable are declared and initialised. The reward variable is the

value that is returned by the function while the flag variable indicates whether an action

has been performed twice in sequence that led to an already existing state in the declared

stateList.

The updateState() function updates the last state based on the passed action and returns

the updated State (line 8). Subsequently, the reasonState() function infers the new state

based on the updated state representation and the meta information provided by the task

1
Closures are applied in functional programming and are supported in all functional programming lan-

guages such as Python, JavaScript. For more details see https://developer.mozilla.org/en-US/docs/

Web/JavaScript/Closures

335

A. Reward Function Example

Algorithm 10: ComputeSequentialReward

Input: task, goalSize, lastState, action, lastAction
Output: reward

1 Function ComputeSequentialReward(task, goalSize):
2 stateList = []

3 numGoals = goalSize

4 numLastGoals = 0

5 return Function (lastState, action, lastAction):
6 reward = -1

7 flag = false

8 updatedState = updateState(task, lastState, action)

9 reasonedStates = reasonState(task, updatedState)

10 goalStates = reasonedStates.filter(state => state.isGoal)

11 if reasonedStates.length > 0 AND statesList.length < reasonedStates.length
then

12 forall state IN reasonedStates do
13 if state NOT IN stateList then
14 stateList.push(state)

15 flag = false

16 else
17 flag = true

18 if flag OR action == lastAction then
19 reward = -1

20 else if goalStates.length > numLastGoals then
21 reward = goalStates.length - numLastGoals

22 numLastGoals = goalStates.length

23 else if numLastGoals > goalStates.length then
24 reward = (numLastGoals - goalStates.length) * (-1)

25 numLastGoals = goalStates.length

26 else
27 reward = stateList.length * 0.25

28 lastAction = action

29 if numLastGoals == numGoals then
30 numLastGoals = 0

31 reward = (stateList.length-1) * 0.25

32 stateList.length = 0

33 return reward

336

instance representation (line 9). This is necessary because the updated state determines

whether an action was useful or not.

The inner function also checks in line 10 whether goal states prevail among the derived

states, since a task can have several goal states, which describe sub-goals of a task and, if

achieved, indicate the partial success of the agent behaviour. This is done by traversing a

list of derived states using an arrow or lambda function and an iterator variable called state.

In line 11 it is checked whether the reasoner function could derive states and whether

the length of the stateList, which stores already occurred states of the implicitly given

state sequence, has fewer state elements than the reasonedStates list. In this way, the

function can detect whether the performed action had an impact that lead to additional,

i.e. new states. In case the conditions in the if-clause are fulfilled, a for-loop starts that

goes through all reasoned states and checks whether the inferred state already happened

and is prevalent in the stateList that stores the sequence of passed states (line 12 - 17). If
the current state element is not yet in the stateList, then it is added to it and the boolean

flag variable is set to false, otherwise it is set to true. The flag variable is required because

it indicates whether a state is reached more than once, since some tasks may require a

state to be traversed only once to speed up task execution and avoid redundant steps.

In case the flag variable is true or the last executed action is equal to the currently executed

action, the reward value is set to -1, because in sequential tasks an action is only allowed

once and repetitions of actions are not accepted to prevent the agent from getting stuck in

a state (line 18 - 19). However, if multiple repetitions of actions are to be supported, the

corresponding action and its subsequent states have to be numbered according to their

execution order so that they are unique and distinguishable from each other. In addition,

a prerequisite is that the corresponding reward values differ from each other and also

specify a sequence that indicates the agent’s progress, because the experiments conducted

have shown that the agent is better able to learn the different effects of actions within a

sequence if the actions and subsequent states are easily distinguishable.

If one of the defined conditions in line 22 or 25 is met, the variable named numLastGoals
is set to the number of current goals.

However, it may also happen that an action leads to the reversal of goal states and thus

have to be penalised as it happens in line 23. The corresponding reward value is then

computed by penalising the difference between the previous number of goals and the

current number of goals. The difference is multiplied by -1 (line 24).

If none of the conditions are met, the current action can be assumed to have resulted in an

intermediate state, since the previous conditions check whether all target states of a task

have been reached incrementally or whether actions have been performed redundantly.

The corresponding reward value for the intermediate step is then calculated by multi-

plying the state sequence length by any positive constant greater than 0, e.g. 0.25 (line
27), because the more correct actions performed within the sequence, the more rewards

337

A. Reward Function Example

accumulated by the agent.

The variable with the name action is assigned to the variable with the name lastAction so

that the next time the inner function is called, both variables can again be compared to

detect action repetitions (line 28).

When all target states are reached, the variable named numLastGoals is set to 0 (line
30), while the array named stateList is cleared (line 32) and the final reward value is

determined by multiplying the number of states in the stateList array by an arbitrary

constant, e.g. 0.25 (line 31).

The function terminates with the return of the reward value (line 33).

338

B. State Update

As introduced, the simulator has the task to update a state, i.e. its features, depending on the

action the agent performed. For this reason, the simulator implements an update function

that changes the feature values based on the performed action’s effects. Algorithm 11

depicts the corresponding function.

The input parameters of the function are the task instance, the last captured state,

the currently executed action sent by the agent and a dictionary of features referencing

different states covering all possible value ranges of the corresponding feature (line 1).

In line 2 an empty object called updatedState is declared. The object is filled with updated

feature values in the function call and returned when the function terminates (line 55).

In line 3 the partial or sub-states for the last state are derived. This is necessary because

an update is to be carried out for all prevailing partial states. For this reason, each partial

state needs to be considered and changed depending on the effects of the action.

A for-loop begins, which runs through all the effects of the current action. For each effect,

the corresponding observable features that are affected are determined (line 5).

Then a second for-loop starts, which runs through all partial states. In the case that the

observable feature is present in the last state and in the partial state, the if-branch (line 7)
is entered and an undefined value variable (line 8) is declared.

In line 9, the variable named states is assigned to an array of states that are affected by

the currently considered feature. Then the array is sorted in increasing order, depending

on the maximum range value of the feature (line 10). Both the maximum and minimum

range values of the feature determine the conditions of the state and are specified in the

corresponding state’s referenced rule expression.

Subsequently, the currently considered effect’s type of impact is assessed (line 11 - 26).
As in Sec. 4.2 discussed, seven different types of impact are possible, i.e. INCREASE,

DECREASE, CONSTANT, CONVERT, ON, OFF and COMPUTE.

If the impact type is INCREASE, the index of the current partial state is retrieved from the

sorted states array (line 12). Based on the index value, the next state is then selected from

the sorted state array which is located in the array at the index value (i.e. index +1), since

the associated state has a higher maximum feature value (line 13). From the determined

subsequent state, a feature value is randomly selected that lies in the range between the

339

B. State Update

Algorithm 11: UpdateStateToNextState
Input: task, lastState, action, stateRanges
Output: updatedState

1 Function updateStateToNextState(task, lastState, action, stateRanges):
2 updatedState = {}

3 partialStates = reasonState(task, lastState)

4 forall effect IN action.effects do
5 oFeat = effect.observationFeature

6 forall state IN partialStates do
7 if oFeat IN lastState AND oFeat in state.features then
8 value = undefined

9 states = stateRanges[oFeat].states

10 states.sortIncreasing((a,b) => a.max - b.max)

11 if effect.HasImpactType == ’INCREASE’ then
12 index = states.indexOf(state)

13 nextState = states[index+1]

14 value = getRandomDouble(nextState.min, nextState.max)

15 else if effect.HasImpactType == ’DECREASE’ then
16 index = states.indexOf(state)

17 previousState = states[index-1]

18 value = getRandomInt(previousState.min, previousState.max)

19 else if effect.HasImpactType == ’CONVERT’ then
20 value = (lastState[oFeat].value == 0) ? 1 : 0

21 else if effect.HasImpactType == ’ON’ then
22 value = 1

23 else if effect.HasImpactType == ’OFF’ then
24 value = 0

25 else if effect.HasImpactType == ’COMPUTE’ then
26 term = ”

27 forall (key,value) IN effect.equation.params do
28 term += ’let ${key} = ${value};’

29 forall (key,value) IN effect.equation.constants do
30 term += ’let ${key} = ${value};’

31 term += effect.equation.expression

32 value = eval(term)

33 updatedState[oFeat] = value

34 return updatedState

340

minimum and maximum value of the feature under consideration (line 14).

However, if the impact type is DECREASE, the adjacent state that has a lower maximum

feature value is selected and a value is randomly determined that falls between the mini-

mum and maximum values of the feature to be updated (line 16 - 19).

The impact type named CONVERT lets the function convert the current feature value into

its opposite. Thus, the feature is a binary or Boolean feature that can have either the value

0 for false or 1 for true (line 20 - 21).

The impact type ON sets a Boolean feature value always to 1 while the type OFF sets the

corresponding feature value always to 0 (line 22 - 25).

In cases where the effect type is COMPUTE, a string term is created consisting of parameter

and variable declarations and an equation that calculates the new feature value based on

the feature value of the last state. The term formed is then passed to an eval function that

executes the term representing the equation and returns the calculated feature value (line
26 - 33).

The impact type with the name CONSTANT is not checked in the function because a

constant feature value, as the name suggests, never changes during programme execution.

All updated feature values are stored in updatedState (line 34), an object already declared

in line 2.

Finally, the object updatedState is returned as soon as the function has finished its execution
(line 35).

341

C. Data Preprocessing

The FPGrowth algorithm is applied in order to extract frequent item sets. Algo. 12 shows

how FPGrowth is implemented. First, the preprocessData() function takes as input pa-

rameters the agent’s dataset, a support threshold value, that indicates the filter criterion

for the samples and a boolean parameter that indicates whether the corresponding task

is a sequential one because the function distinguishes between data that is emitted by

sequential tasks and data that is emitted by non-sequential tasks (line 1).

Subsequently, various local variables are declared, which serve as data structures for

storing the intermediate and final results of the execution steps (line 2 - 5).

The filter-function compares the reward value in each data sample with the defined thresh-

old value and selects only those samples that have a reward value greater than the threshold.

The selected samples are assigned to the variable named filteredData (line 6).

The algorithm then checks whether the task being reproduced by the dataset is a sequential

or a non-sequential task (line 7). If it is a sequential task, the algorithm goes in a for-loop.
(line 9 - 19) through all the filtered data samples and, using a lambda or arrow function

1
,

selects the samples that contain an action specified by the key name ’action’ and stores

them in the array named wActions (line 12).

A second for-loop begins, which passes through the array called wActions (line 13 - 16).
Each action obtained is assigned a consecutive number and the action is stored together

with the consecutive number in an object called data (line 16). On exiting the second

for-loop, this data object is stored in an array called dataSamples (line 17). In order to

avoid redundant data samples, the array named actionsequences stores action sequences

that are non-identical to each other (line 18 - 19).

After the end of the second for-loop, an object called frequentItems is created that imple-

ments the FPGrowth algorithm (line 20). The constructor of the FPGrowth object takes

the filtered data samples and a factor value that determines the support threshold for

retrieving frequent item sets (see Eq. 2.42). For example, if the data sample size is 1000

and the support factor is set to 1, this means that the support threshold is 1% of the given

sample size, which in this example gives a support value of 10 (see also Sec. 2.4.1). The

FPGrowth algorithm is only executed for sequential tasks, containing stages, to determine

1
see https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_

functions

343

C. Data Preprocessing

the most frequent actions per stage and their sequence number.

Algorithm 12: PreprocessData - Part 1
Input: dataset, threshold, isSequential
Output: preprocessedSamples, actionsequences

1 Function PreprocessData(dataset, threshold, isSequential):
2 preprocessedSamples = undefined

3 cleanedData = []

4 frequentSamples = []

5 actionsequences = []

6 filteredData = dataset.filter(a => a.reward > threshold)

7 if isSequential then
8 dataSamples = []

9 forall sample IN filteredData do
10 data = {}

11 order = 0

12 wActions = sample.rules.filter(rule => ’action’ in rule)

13 forall rule IN wActions do
14 action = rule.action

15 order += 1

16 data[action] = order

17 dataSamples.push(data)

18 if !(containsKey(data, actionsequences)) then
19 actionsequences.push(data)

20 frequentItems = FPGrowth(dataSamples, 1)

After the frequent item sets have been determined, the programme continues with a for-
loop that runs through all filtered data samples to remove special characters (line 28, 37) in
the feature names of the dataset (line 21 - 40). The algorithm again distinguishes between

sequential and non-sequential task datasets (line 23 - 32, 33 - 40). In the sequential

if-branch, it starts a second for-loop that runs through all frequent item sets previously

determined by the FPGrowth algorithm (line 24 - 32). Only data samples whose associated

actions exist in the frequent item set are considered and stored in the array that collects

the cleaned data samples (line 25 - 32).

In the else-branch, which examines non-sequential task data, all filtered data samples

are processed and stored in the array of cleaned data samples (line 34 - 40), since in

non-sequential tasks frequent co-occurring features do not play a role, and adherence to

ordered action sequences is not required.

After the for-loop, an if-condition again checks whether the task from which the dataset

originates is a sequential task (line 41). If the condition is true, frequent item sets are

344

again determined from the cleaned dataset by the FPGrowth algorithm (line 42). This
is necessary because the FPGrowth algorithm finds the most frequent combinations of

features and actions in the dataset that promise high reward values. Subsequently, only

samples that also contain an action are selected, as it is possible that frequent item sets

are also found that only consist of feature-value pairs and do not contain an action (line
44 - 45). In a final step, depending on which if-else branch was entered, the preprocessed

data is returned for further processing either for sequential task data or non-sequential

task data (line 46, 48, 49).

Algorithm 14: PreprocessData - Part 2
21 forall sample IN filteredData do
22 forall rule IN sample.rules do
23 if isSequential then
24 forall items IN frequentItems do
25 if rule.action IN items.items then
26 data = {}

27 forall feat IN rule.state do
28 cleanFeat = feat.replace("/|-|+|*|.|,|;|:", "")

29 data[cleanFeat] = rule.state[feat]

30 data[’Action’] = rule.action

31 cleanedData.push(data)

32 break

33 else
34 if rule.action !== undefined then
35 data = {}

36 forall feat IN rule.state do
37 cleanFeat = feat.replace("/|-|+|*|.|,|;|:", "")

38 data[cleanFeat] = rule.state[feat]

39 data[’Action’] = rule.action

40 cleanedData.push(data)

41 if isSequential then
42 frequentItems = FPGrowth(cleanedData, 10)

43 forall rule IN frequentItems do
44 if ’action’ IN rule.items then
45 frequentSamples.push({rule: rule})

46 preprocessedSamples = frequentSamples

47 else
48 preprocessedSamples = cleanedData

49 return {preprocessedSamples, actionsequences}

345

D. List of all Scientific Publications

Referenced Publications

(1) Improving the utilization of AAL devices through semantic web technologies and web

of things concepts, N Merkle, S Zander - Procedia computer science, 2016.

(2) Agent-Based Assistance in Ambient Assisted Living Through Reinforcement Learning

and Semantic Technologies: (Short Paper), N Merkle, S Zander - On the Move to

Meaningful Internet Systems. OTM, 2017.

(3) Using a semantic simulation framework for teaching machine learning agents, N

Merkle, S Zander - Procedia Computer Science, 2018.

(4) A Semantic Use Case Simulation Framework for Training Machine Learning Algo-

rithms, N Merkle, S Zander, V Simko: 21st International Conference, EKAW 2018,

Nancy, 2018.

(5) Cooperative web agents by combining semantic technologies with reinforcement

learning, N Merkle, P Philipp - Proceedings of the 10th International Conference on

Knowledge Capture (K-CAP), 2019.

(6) Context-Aware Composition of Agent Policies by Markov Decision Process Entity

Embeddings and Agent Ensembles, N Merkle, R Mikut - Semantic Web Journal (SWJ),

IOS Press, 2024.

Other First Author Publications

(1) Distributed Context-Aware Applications by Means of Web of Things and Semantic

Web Technologies. N Merkle - The Semantic Web. Latest Advances and New Domains,

2016.

(2) Representing and Reasoning over User Intentions and Actions in Adaptive Ambient

Assisted Living*, N Merkle, S Zander - Germany,(i).

(3) Self-Service Ambient Intelligence Using Web of Things Technologies. N Merkle, B

Kämpgen, S Zander, 2016.

(4) Utilizing IoT Devices for Monitoring and Adjusting Clinical Pathway Exercises. N

Merkle, S Zander - SWIT@ ISWC, 2017.

347

D. List of all Scientific Publications

(5) Towards Self-Adaptive Medical Coaching Agents, Nicole Merkle, Stefan Zander, 2017,

Zeitschrift, KSS Research Workshop - A Selection of Talks and Presentations on De-

signing the Digital Transformation, KIT Scientific Working Paper.

Co-Author Publications

(1) Augmented Living: Einsatz von Augmented Reality im Alltag, M Ksoll, M Prilla, A

Rashid, T Herrmann, N Merkle - Mensch & Computer 2014-Workshopband, 2014.

(2) Augmented Hearing for Elderly People-From Requirements to Implementation, P

Barralon, IRM Martins, N Merkle, S Schwarz - ICT4AgeingWell 2015, 2015.

(3) Enhancing the utilization of IoT devices using ontological semantics and reasoning, S

Zander, N Merkle, M Frank - Procedia Computer Science, 2016.

(4) Continuous support for rehabilitation using machine learning, P Philipp, N Merkle, K

Gand, C Gißke - it-Information Technology, 2019.

348

