FUNCTIONAL

www.afm-journal.de

Giant Critical Thickness in Highly Conducting Epitaxial SrMoO₃ Electrodes Investigated by Lift-Off Membranes

Yating Ruan,* Philipp Schreyer, Tianshu Jiang, Fei Liang, Alexey Arzumanov, Michael Dürrschnabel, Leopoldo Molina-Luna, Philipp Komissinskiy, and Lambert Alff*

Within the huge perovskite materials family, thin films of highly conducting materials such as SrMoO₃, SrNbO₃, and SrVO₃ are candidates for low-loss bottom electrodes in epitaxial all-oxide devices, in particular for high-frequency applications. Recently, the fully coherent growth of more than 5 µm thick SrMoO₃ electrodes in a varactor device prototype epitaxial heterostructure has been reported. This result raises the question of the strain mechanism in such anomalously thick coherent epitaxial layers. Here, this question is addressed by comparing the lattice constants of coherently strained layers and their free-standing membranes. SrMoO₃ is mainly elastically strained within the heterostructure and fully relaxed after removal of the substrate. These results indicate a giant critical thickness, making highly conducting perovskites even more outstanding materials for high-frequency applications that require electrode thicknesses beyond the skin depth. The described technology of lifting off thick SrMoO₃ membranes joins the emerging field of freestanding oxide layer technology, opening unexplored avenues for single crystal investigations, novel perovskite nanostructures, and wafer transfer of functional oxides, walking in the footsteps of recent developments in van der Waals epitaxial heterostructures.

1. Introduction

The low resistivity of 5.1 $\mu\Omega$ cm of $SrMoO_3$ at room temperature, outperforming, for example, Pt, makes this material a

DOI: 10.1002/adfm.202312508

promising candidate as an electrode material in epitaxial functional oxide heterostructures for various device applications.^[1,2] The high electric conductivity of SrMoO₃ originates from both the large electron density beyond 10²² cm⁻³ due to two conduction electrons in the 4d band of Mo at the B-site, and the increased mobility due to reduced electron-electron scattering because of the energetic separation of the s- and d- bands.^[3] Besides their high electric conductivity, SrMoO₃ and the related SrBO3 perovskite compounds with (intermixed) Mo, V, and Nb at the B-site show intrinsically high optical transparency across and beyond the visible spectral region, making them in addition promising transparent conducting materials.^[4-6]

The reported resistivity values of epitaxial SrMoO₃ thin films grown by pulsed laser deposition (PLD) and molecular beam epitaxy are well below 50 $\mu\Omega$ cm at room temperature^[7-10] with the lowest value even below 20 $\mu\Omega$ cm.^[11] Recently, the layer-bylayer growth of 5 μ m-thick fully strained

epitaxial SrMoO₃ films on GdScO₃ substrates was reported using PLD, which is well above reported values of critical thicknesses of perovskite epitaxial thin films of similar lattice mismatch.^[2] From the viewpoint of electronic device applications, these results revived the concept of all-oxide tuneable capacitors (varactors) in metal-insulator-metal (MIM) geometry.^[2,12–16] For making use of all-oxide varactors in microwave circuits, such as phase shifters or tuneable filters for microwave broadband antennas in 5G microelectronic devices, the bottom electrode of the varactor should be thicker than the electromagnetic skin depth in the desired frequency range to minimize electromagnetic losses.^[17] For example, SrMoO₃ bottom electrodes with a resistivity below 20 $\mu\Omega$ cm and a thickness of more than 5 μ m are highly relevant for MIM-type varactors operating at 5 GHz and beyond.

In our previous work, Salg et al. observed cation offstoichiometry in the SrMoO₃ films, specifically an excess of Sr cations.^[2] It is well known that the cation off-stoichiometry of epitaxial perovskites is associated with increased lattice constants.^[18] Due to the seemingly unrealistic large critical thickness of more than 5 μ m, Salg et al. suggested cation self-composed offstoichiometry as a novel strain accommodation mechanism.^[2] The idea was that the material tries to minimize strain energy by incorporating more Sr than Mo during growth. The increase

Y. Ruan, P. Schreyer, T. Jiang, F. Liang, A. Arzumanov, L. Molina-Luna, P. Komissinskiy, L. Alff Institute of Materials Science Technische Universität Darmstadt Peter-Grünberg-Straße 2, 64287 Darmstadt, Germany E-mail: yating.ruan@tu-darmstadt.de; lambert.alff@tu-darmstadt.de M. Dürrschnabel Institute for Applied Materials - Applied Materials Physics Karlsruhe Institute of Technology

Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/adfm.202312508

^{© 2024} The Authors. Advanced Functional Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Table 1. Lattice parameters of the SrMoO₃ films and the perovskite scandate substrates used in this work. The lattice parameters of the substrates are given in a pseudocubic notation. The misfit and strain values were calculated relative to the lattice parameters of the relaxed (freestanding) SrMoO₃ films. The expected values of the out-of-plane (*c*-axis) lattice parameters of the SrMoO₃ films, calculated using a Poisson's ratio of 0.271,^[31] are given for comparison.

Substrate	Substrate		SrMoO ₃ (strained)	SrMoO ₃ (freestanding)		SrMoO ₃ (Poisson's ratio)	Misfit	Strain	Sr:Mo cation ratio
	a [Å ⁻¹]	c [Å ⁻¹]	c [Å ⁻¹]	a [Å ⁻¹]	c [Å ⁻¹]	c [Å ⁻¹]	[Å]	[%]	
SmScO ₃	3.989	3.988	3.980	3.984	3.984	3.980	0.005	0.12	1.271
$GdScO_3$	3.968	3.967	3.990	3.983	3.980	3.990	-0.015	-0.38	1.226
TbScO ₃	3.964	3.951	3.998	3.981	3.981	3.994	-0.017	-0.43	1.202
DyScO ₃	3.950	3.940	4.003	3.980	3.980	4.002	-0.030	-0.76	1.177

in lattice constant associated with this off-stoichiometry reduces the overall strain energy. To verify this hypothesis, scandates with different rare-earth elements at the *A* site provide an ideal set of substrates to investigate the effect of epitaxial strain on the growth of SrMoO₃ thick films.^[19] A comparison of the lattice constants in as-grown thin films and their freestanding membranes unambiguously allows to disentangle the origins of strain (relaxation) mechanisms such as elastic strain and effects from selfcomposed off-stoichiometry.

2. Experimental

In this work, 600 nm-thick SrMoO₃ thin films were grown on the (110)-oriented $XScO_3(X = Dy, Tb, Gd, and Sm)$ substrates with a size of 5 × 5 mm² using pulsed laser deposition (PLD) with a Compex 205 KrF excimer laser by Coherent at a wavelength of 248nm. Before deposition, the PLD chamber was evacuated to a base pressure below 1×10^{-8} Torr, and the substrate was heated to a growth temperature of 630 to 700 °C. Then, a 4 nm-thick SrTiO₃ buffer layer was grown in vacuum with a laser repetition rate of 2 Hz and a laser fluence of 0.6 J cm⁻² to ensure layer-by-layer SrMoO₃ growth. At the next step, a 600 nm-thick SrMoO₃ film was grown with a laser repetition rate of 20 Hz and a laser fluence of 1.0 J cm⁻² in Ar atmosphere at a pressure of 30 mbar. Film growth was monitored in situ, using a 50 kV reflection high-energy electron diffraction (RHEED) system by Staib Instruments.

With respect to the lift-off procedure, the method developed by Lu et al.,^[20] using the water-soluble Sr₃Al₂O₆ sacrificial layer, has become one of the most promising techniques for the fabrication of freestanding functional perovskite thin films,^[21] such as SrTiO₃,^[22–24] SrRuO₃,^[25] La_{0.7}Sr_{0.3}MnO₃,^[26] YBa₂Cu₃O_{7-x},^[27] $BaTiO_{2}^{[28]}$ and $BiFeO_{2}^{[24,29]}$ with a range of thicknesses from 50 nm down to a few monolayers.^[24] Sr₃Al₂O₆ forms a cubic unit cell (space group $Pa\bar{3}$) with a lattice parameter of 15.844 Å, closely matching four unit cells of the stoichiometric SrMoO₃ (a = 3.974 Å),^[30] as well as the used XScO₃ (X = Dy, Tb, Gd, and Sm) substrates (Table 1). A Sr₂Al₂O₆ sublayer with a thickness of 20 nm was grown in vacuum with a laser fluence of 1.0 J cm⁻² onto the substrate covered with a SrTiO₃ buffer layer. As a next step, additional layers were sequentially deposited, including another SrTiO₃ buffer layer, a 600 nm-thick SrMoO₃ film, and a top protective SrTiO₃ capping layer, forming a heterostructure of $SrTiO_3/SrMoO_3/SrTiO_3/Sr_3Al_2O_6/SrTiO_3/XScO_3$. The SrTiO₃ capping layer serves to prevent surface oxidation of the SrMoO₃ film during lift-off.^[14,15] The thickness of each of the grown SrTiO₃ layers was ten unit cells.

A freestanding thin-film heterostructure was obtained as follows: First, a polydimethylsiloxane (PDMS) sheet was attached to the top surface of the as-grown sample. Then the sample was immersed in de-ionized water for ≈ 1 h to etch away the sacrificial Sr₃Al₂O₆ layer and lift the thin-film heterostructure off the scandate substrate. Here, the PDMS sheet served as a mechanical support to stabilize the lifted thin-film heterostructure during its transfer onto another substrate (e.g., Si). Finally, the PDMS sheet was neatly peeled off.

The crystal structure of the films was characterized by X-ray diffraction (XRD), using a SmartLab diffractometer by Rigaku with monochromatic Cu K α_1 radiation. The lattice parameters of the SrMoO₃ films were extracted from the recorded XRD reciprocal space maps (RSM). The values of the out-of-plane lattice parameters obtained from the RSMs correspond with an accuracy of ± 0.001 Å to those calculated from the measured XRD 2θ - θ patterns using the Nelson-Riley function. The analysis of the Sr:Mo cation ratio in the SrMoO₃ films was carried out by X-ray photoelectron spectroscopy (XPS) with monochromatic Al K α radiation at elevation angle of 75°, using a PHI Versaprobe 5000 spectrometer. The correlation between the lattice parameters of the SrMoO₃ films and their Sr:Mo ratio was additionally studied by density functional theory via the CASTEP package.^[32] The exchange-correlation functionals were described within the generalized gradient density approximation (GGA) by Perdew–Burke–Ernzerhof functionals^[33] and the ion-electron interactions for all elements were modeled by ultra-soft pseudopotentials.^[34] In all calculations, the kinetic energy cut-off of 660 eV and Monkhorst-Pack k-point meshes^[35] (5 \times 5 \times 5) were selected to ensure sufficient accuracy of the simulated results. The virtual crystal approximation (VCA)^[36] was utilized at the Mo site by a mixed Sr/Mo virtual atom.

3. Results and Discussion

For the first film series, $SrMoO_3/SrTiO_3/XScO_3$ epitaxial thinfilm heterostructures were grown to investigate the Sr:Mo cation ratio and lattice parameters of the strained $SrMoO_3$ films. The XRD $2\theta-\theta$ patterns of the $SrMoO_3$ films in this series exhibit pronounced 00*l* reflexes as expected for *c*-axis oriented $SrMoO_3$ (**Figure 1a**). Laue oscillations are observed for the films on GdScO₃ substrates, indicating their high crystal quality (inset

2312508 (2 of 7)

www.advancedsciencenews.com

CIENCE NEWS

Figure 1. X-ray diffraction of a) $2\theta - \theta$ and b) ω scan of the SrMoO₃ on the four scandate substrates near the 002 reflections. Stars denote the 220 reflection of scandate substrates. The magnification shows the Laue oscillations of the SrMoO₃ film grown on a GdScO₃ substrate. c–f) Reciprocal space maps (RSM) near the XScO₃ (X = Dy, Gd, Tb, and Sm) 332 reflection of the heterostructures, showing that SrMoO₃ films grow in-plane strained on the four substrates.

in Figure 1a). The small period of the Laue oscillations corresponds to the expected 600 nm film thickness. The rocking curves of the SrMoO₃ 002 reflex for the films on GdScO₃ and TbScO₃ substrates exhibit small values of full width at half maximum (FWHM) of 0.013° and 0.016°, respectively, indicating low mosaicity and high crystal quality of the films (Figure 1b). The films on SmScO₂ and DyScO₂ exhibited increased mosaicity, as evidenced by their rocking curves with FWHM values of 0.03° and 0.45°, respectively. For the SrMoO₃ film on DyScO₃, the rocking curve shows a wide asymmetric background, which indicates diffusive scattering of X-rays at defects and dislocations. The RSMs of the films of the series (Figure 1c-f) show that the SrMoO₃ 013 reflexes are fully aligned in-plane with the 332 substrate reflexes. Thus, the in-plane lattice parameters of the SrMoO₃ films fully match the lattice parameters of the substrates. The Sr:Mo ratios of the grown SrMoO₃ films (obtained from the XPS studies) are listed in Table 1, showing that the SrMoO₃ films are offstoichiometric with excess Sr. The XPS spectra are available in Supporting Information.

For the second film series, the aim was to fabricate freestanding SrMoO₃ films and to investigate the strain relaxation mechanism. The films were grown on XScO₃ substrates to form epitaxial thin-film heterostructures of SrTiO₃/SrMoO₃/SrTiO₃/Sr₃Al₂O₆/SrTiO₃/XScO₃. The period of the Laue oscillations observed in the 2θ – θ XRD patterns of the as-grown heterostructures on SmScO₃ substrate (before lift-off) corresponds to the Sr₃Al₂O₆ thickness of 20 nm (Figure 2a-d). In general, the crystal quality of the SrMoO₃ films in the second series is slightly degraded due to the presence of the Sr₃Al₂O₆ sublayer. No dense Laue oscillations from the 600 nm-thick $SrMoO_3$ could be observed. Moreover, the FWHM = 0.11° of the rocking curve of the 002 reflex of the SrMoO₃ film on $SmScO_3$ in the second series is larger than that of 0.03° for a similar film in the first series (Figure 2e). However, despite their slightly inferior crystal quality, the SrMoO₃ films in the second series grow fully strained on the scandate substrates, as indicated by the vertical alignment in the RSM plot of the 013 film reflexes with the 332 and 0 4 12 reflexes of the substrate and

Figure 2. a–d) $2\theta-\theta$ X-ray diffraction patterns of the SrMoO₃ film strained on the SmScO₃ substrate (green) and the freestanding SrMoO₃ film (blue) transferred to a Si substrate. The positions of the 00/ SrMoO₃ reflections for the strained and freestanding films are denoted by asterisks and rhombuses, respectively. The 004 Si substrate reflection is shown in (c). e) XRD ω -scan of the (00/) reflection of the strained (green) and freestanding (blue) SrMoO₃ films, respectively. The reciprocal space maps (RSMs) for the f) strained and g) freestanding SrMoO₃ films.

 $\rm Sr_3Al_2O_6$ sublayer, respectively (see Figure 2f for the RSM of the SrMoO_3 film on SmScO_3).

After the lift-off of the heterostructure, the Sr₃Al₂O₆ is dissolved in water, and no Laue oscillations could be observed in the $2\theta - \theta$ XRD patterns of the freestanding SrMoO₃ films (shown in blue in Figure 2a-d). The positions of the 00l reflexes of the freestanding SrMoO₃ films are slightly shifted relative to those of the epitaxially strained films in the first and second series. The shift is associated with the modified SrMoO₃ out-of-plane lattice parameter and increases with the order of the reflex (i.e., with *l*). The largest shift is observed for the 004 SrMoO₃ reflex, as denoted by the vertical dashed lines in Figure 2d. A minor degradation in the crystal structure of the freestanding film, as compared with the strained one, is indicated by a practically unchanged shape of the rocking curve of the freestanding SrMoO₃ film, with a slight increase of the FWHM to 0.17° (Figure 2e). However, the lattice parameters of the SrMoO₃ films change after lift-off, as indicated by the RSM of the freestanding SrMoO₃ film on the SmScO₃ substrate in Figure 2g.

Figure 3 shows an optical image of a freestanding $1.35 \times 2.60 \text{ mm}^2 \text{ SrMoO}_3$ flake that was lifted off the SmScO₃ substrate

and transferred to a silicon substrate. Parallel cracks in [100] and a few perpendicular cracks in [010] directions are observed. The results of the XRD measurements conducted on two SrMoO₃ flakes (transferred to different substrates) indicate that the lattice parameters of freestanding SrMoO₃ are stable and independent of the substrate used for the transfer (see Supporting Information).

The lattice parameters of the strained (as-grown) SrMoO₃ films of the second series and relaxed (freestanding) SrMoO₃ flakes, determined from the XRD measurements, are listed in Table 1. For the strained SrMoO₃ films, the in-plane pseudocubic lattice parameter *a* is equal to the lattice parameter of the corresponding substrate. The out-of-plane lattice parameter *c* differs from the in-plane one, thus implying a tetragonal crystal structure of the strained SrMoO₃ films. The obtained nearly equal values of the *a* and *c* lattice parameters in the range between 3.980 and 3.984 Å indicate a relaxation of the tetragonal crystal structure to a cubic one for all freestanding SrMoO₃ films, lifted off from different scandate substrates. The lattice parameters of the relaxed freestanding SrMoO₃ lattice parameters (3.974 Å), and thus are considered as the actual bulk lattice parameters of the relaxed cubic

www.afm-journal.de

ADVANCED SCIENCE NEWS _____

(a) 500 µm (b) [100] [010] 50 µm

Figure 3. Optical images of a flake of a freestanding $SrMoO_3$ film lifted off a $SmScO_3$ substrate and transferred to a Si substrate. The black arrows show cracks formed along the [100] and [010] crystallographic axes of $SrMoO_3$ during lift-off.

thin film. These actual bulk lattice parameters were used to calculate the misfit and strain values for the strained films presented in Table 1. The smallest absolute value of 0.12% of the biaxial (tensile) strain is realized for the SrMoO₃ film on SmScO₃ substrate (Table 1). For the other SrMoO₃ films on GdScO₃, TbScO₃, and DyScO₃ substrates, the compressive strain is calculated as -0.38%, -0.43%, and -0.76%, respectively. The values of the *c* lattice parameters of the strained films calculated using the actual bulk lattice parameters of the freestanding films and a SrMoO₃ Poisson's ratio *v* of 0.271^[31] are in very good agreement with the experimental values (Table 1).

Using the actual bulk lattice parameters of the freestanding SrMoO₃ films and their strain values, the equilibrium critical thickness (h_c) of SrMoO₃ grown on GdScO₃ was calculated by the mechanical balance equation described by Matthews and Blakeslee:^[37]

$$h_c = \frac{b}{2\pi f} \frac{1 - v \cos^2 \alpha}{(1 + v) \cos \lambda} \left(\ln \frac{h_c}{b} + 1 \right)$$
(1)

where *b* is the Burgers vector of the misfit dislocation, *f* is the misfit strain, α is the angle between the Burgers vector and

www.afm-journal.de

Figure 4. a) HAADF-STEM image of a SrMoO₃/SrTiO₃/GdScO₃ heterostructure, showing a long-range homogeneous SrMoO₃ film at low magnification. The SrMoO₃ in the top region is marked in a blue square. b) Atomic-resolution HAADF-STEM image of SrMoO₃ at the region at a thickness of around 600 nm, marked by a blue square and shown in (a).

the dislocation line, and λ is the angle between the slip direction and that direction in the film plane, which is perpendicular to the line of intersection of the slip plane and the interface.^[37] The slip system $\{101\}\langle 10\overline{1}\rangle$ is typically realized for a cubic perovskite structure.^[38,39] For this slip system, a critical thickness of 74 nm is calculated with Equation (1) for $SrMoO_3$ on $GdScO_3$ using $\cos \alpha = \frac{1}{\sqrt{2}}$, $\cos \lambda = \frac{1}{\sqrt{2}}$, $\nu = 0.271$,^[31] f = 0.0038, $b = \frac{a_f}{\sqrt{2}}$. Building on Matthews and Blakeslee's framework (Equation (1)), extensive developments and refinements have been made in critical thickness calculations. The kinetics of strain relaxation were taken into account,^[40,41] including the rates of dislocation nucleation, propagation, and interaction,^[42,43] as well as the stability of dislocation motions^[44,45] and the effect of annealing processes.^[46] However, using these different modifications to calculate the theoretical critical thickness cannot explain the difference of at least one order of magnitude. While we have considered 600 nm-thick SrMoO₃ films in this study, we have previously grown 5 µm-thick SrMoO₃ films on GdScO₃ substrates without reaching the critical thickness.^[2] It is reported for other perovskite oxide thin film systems that the experimentally determined critical thickness can be larger than the theoretically predicted critical thickness, such as MBE-grown 50 nm thick SrTiO₃ on DyScO₃(110),^[39] 50 nm thick LaCrO₃ on SrTiO₃(001),^[47] and 180 nm thick SrTiO₃ on LSAT(001).^[48] These films relax to a cubic structure with the lattice parameters close to the corresponding bulk values when grown beyond the critical thickness. However, the here studied SrMoO₃ films remain strained for their entire thickness and relax only after lift-off in the freestanding state. This observation fundamentally challenges the applicability of the classical mechanical balance approach of critical thickness to SrMoO₂.

Supporting these findings, **Figure 4a** shows a low-resolution HAADF-STEM image of the as-grown SrMoO₃/SrTiO₃/GdScO₃ heterostructure, and Figure 4b shows a high-resolution image of SrMoO₃ close to the surface region (marked by a blue square in Figure 4a). A homogeneous SrMoO₃ film is observed in both images without large-scale defects, Sr-excess layers, or strain-induced Ruddlesden–Popper phases, which are typically observed due to strain relaxation of perovskite thin films.^[49] No other phases were detected in the XRD measurements of the films in our present and previous work.^[2] All these results suggest that the classical mechanical balance approach is unable to explain the giant critical thickness in SrMoO₃-thick films.

Figure 5. a) Lattice parameters and b) Sr:Mo cation ratio in the SrMoO₃ films as a function of epitaxial strain. The dashed straight lines are a guide for an eye.

Although the freestanding SrMoO₃ flakes have nearly equal lattice parameters, by closer examination, a subtle yet discernible trend in strain-varied stoichiometry emerges, wherein a slight increasing Sr excess is observed, resulting in a small expansion of lattice parameters in the SrMoO₃ films (Figure 5). It is noteworthy that this slight change in off-stoichiometry is attributed to strain variations, as the other parameters that are known to cause systematic stoichiometry variations, such as laser fluence, pressure, and substrate temperature, remained constant. The same PLD condition was applied to all samples on different substrates. A homogeneous distribution of cation (Sr and Mo) stoichiometry along the 600 nm thickness of SrMoO₃ thin film grown on SmScO3 was observed by TEM-EDX elemental mapping (Supporting Information). Lattice parameters of the SrMoO₃ films and the Sr:Mo cation ratio, extracted from the XPS results, are shown in Figure 5 as functions of the actual in-plane strain. The lattice parameter of the freestanding relaxed cubic SrMoO₃ films increases slightly linearly with the in-plane strain (Figure 5a). A similar trend is observed for the Sr:Mo cation ratio, namely the increase of Sr excess with the level of in-plane strain from -0.8% to 0.12% (Figure 5a). The results of the DFT calculations show a similar trend (gray triangles in Figure 6). Note that the values of the SrMoO₃ bulk lattice parameter extracted from the DFT calculations are larger than the obtained corresponding experimental values due to an intrinsic error of GGA-PBE functionals. The (bulk) lattice parameters of 3.980 to 3.984 Å of the films are different from 3.974 Å of the stoichiometric SrMoO₃. An extrapolation of this linear dependence to a stoichiometric

Figure 6. Lattice parameter in $SrMoO_3$ as a function of the Sr/Mo cation ratio. The data are shown for the freestanding $SrMoO_3$ films produced in this work (blue squares and orange circles), stoichiometric $SrMoO_3$ single crystal (yellow star), and for the bulk $SrMoO_3$ with various cation ratios simulated using DFT.

SrMoO₃ (Sr:Mo ratio of 1) yields a lattice parameter of 3.973 Å, which nearly perfectly matches the experimental value of 3.974 Å for stoichiometric SrMoO₃ single crystals.^[1] Thus, the observed trend in off-stoichiometry is considered to be reliable and to reflect the differences between the samples.

4. Conclusion

In summary, 600 nm-thick epitaxial SrMoO₃ films were deposited using pulsed laser deposition (PLD) on various perovskite scandate substrates to achieve fully strained films with different levels of epitaxial strains. Remarkably, the thickness of the fully strained epitaxial SrMoO₃ films exceeds by far the critical thickness calculated from the classical mechanical balance approach for the given strain value. Through a lift-off process, the films were transferred from the scandate substrates to Si wafers. After the strain relaxation, all the freestanding films exhibited a nearly identical cubic structure. A minor trend of strain-various off-stoichiometry is observed, leading to an expansion of the actual bulk lattice parameters of freestanding SrMoO₃ films.

The produced freestanding SrMoO₃ films with an area of several square millimeters and a thickness large enough to be regarded as single crystals. Moreover, further increases in their lateral dimensions and thickness are feasible. Combining the unique features of large dimensions, transferability, intrinsic transparency, and high conductivity, SrMoO₃ holds great promise for applications in (opto)electronics and energy devices.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) under Grant No. 206658696, the European Research Council (ERC)

www.advancedsciencenews.com

ADVANCED FUNCTIONAL MATERIALS www.afm-journal.de

"Horizon 2020" Program under Grant No. 805359-FOXON and Grant No. 957521-STARE.

Open access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords

conducting oxides, epitaxial thin films, giant critical thickness, microelectronics, perovskite

Received: October 11, 2023 Revised: January 10, 2024 Published online:

- I. Nagai, N. Shirakawa, S.-i. Ikeda, R. Iwasaki, H. Nishimura, M. Kosaka, *Appl. Phys. Lett.* 2005, *87*, 024105.
- [2] P. Salg, D. Walk, L. Zeinar, A. Radetinac, L. Molina-Luna, A. Zintler, R. Jakoby, H. Maune, P. Komissinskiy, L. Alff, APL Mater. 2019, 7, 051107.
- [3] H. Adachi, Nat. Phys. 2015, 11, 707.
- [4] A. Radetinac, J. Zimmermann, K. Hoyer, H. Zhang, P. Komissinskiy, L. Alff, J. Appl. Phys. 2016, 119, 055302.
- [5] L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H.-T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. W. Chan, V. Gopalan, K. M. Rabe, R. Engel-Herbert, *Nat. Mater.* **2016**, *15*, 204.
- [6] M. Mohammadi, R. Xie, N. Hadaeghi, A. Radetinac, A. Arzumanov, P. Komissinskiy, H. Zhang, L. Alff, Adv. Mater. 2023, 35, 2206605.
- [7] A. Radetinac, K. S. Takahashi, L. Alff, M. Kawasaki, Y. Tokura, Appl. Phys. Express 2010, 3, 073003.
- [8] A. Radetinac, A. Mani, S. Melnyk, M. Nikfalazar, J. Ziegler, Y. Zheng, R. Jakoby, L. Alff, P. Komissinskiy, *Appl. Phys. Lett.* 2014, 105, 114108.
- [9] J. L. Stoner, P. A. Murgatroyd, M. O'Sullivan, M. S. Dyer, T. D. Manning, J. B. Claridge, M. J. Rosseinsky, J. Alaria, *Adv. Funct. Mater.* 2019, 29, 1808609.
- [10] H. Takatsu, N. Yamashina, D. Shiga, R. Yukawa, K. Horiba, H. Kumigashira, T. Terashima, H. Kageyama, J. Cryst. Growth 2020, 543, 125685.
- [11] L. Alff, P. Komissinskiy, A. Radetinac, T. Sirman, M. Vafaee, J. Phys. D. Appl. Phys 2013, 47, 034012.
- [12] D. Walk, D. Kienemund, P. Salg, L. Zeinar, A. Radetinac, P. Komissinskiy, L. Alff, R. Jakoby, H. Maune, in 2019 49th European Microwave Conf. (EuMC), IEEE, Piscataway, NJ 2019, pp. 184–187.
- [13] D. Walk, P. Salg, D. Kienemund, A. Radetinac, L. Zeinar, C. Schuster, P. Komissinskiy, L. Alff, R. Jakoby, H. Maune, in 2018 48th European Microwave Conf. (EuMC), IEEE, Piscataway, NJ 2018, pp. 563–566.
- [14] P. Salg, L. Zeinar, A. Radetinac, D. Walk, H. Maune, R. Jakoby, L. Alff, P. Komissinskiy, *J. Appl. Phys.* **2020**, *127*, 065302.
- [15] A. Radetinac, J. Ziegler, M. Vafaee, L. Alff, P. Komissinskiy, J. Cryst. Growth 2017, 463, 134.

- [16] L. Zeinar, P. Salg, D. Walk, S. Petzold, A. Arzumanov, R. Jakoby, H. Maune, L. Alff, P. Komissinskiy, J. Appl. Phys. 2020, 128, 214104.
- [17] S. Gevorgian, Ferroelectrics in Microwave Devices, Circuits and Systems: Physics, Modeling, Fabrication and Measurements, 1st ed., Springer, London 2009.
- [18] T. Ohnishi, K. Shibuya, T. Yamamoto, M. Lippmaa, J. Appl. Phys. 2008, 103, 10.
- [19] R. Uecker, B. Velickov, D. Klimm, R. Bertram, M. Bernhagen, M. Rabe, M. Albrecht, R. Fornari, D. Schlom, J. Cryst. Growth 2008, 310, 2649.
- [20] D. Lu, D. J. Baek, S. S. Hong, L. F. Kourkoutis, Y. Hikita, H. Y. Hwang, *Nat. Mater.* 2016, 15, 1255.
- [21] F. M. Chiabrera, S. Yun, Y. Li, R. T. Dahm, H. Zhang, C. K. Kirchert, D. V. Christensen, F. Trier, T. S. Jespersen, N. Pryds, *Ann. Phys.* 2022, 534, 2200084.
- [22] Y. Li, C. Xiang, F. M. Chiabrera, S. Yun, H. Zhang, D. J. Kelly, R. T. Dahm, C. K. Kirchert, T. E. L. Cozannet, F. Trier, D. V. Christensen, T. J. Booth, S. B. Simonsen, S. Kadkhodazadeh, T. S. Jespersen, N. Pryds, *Adv. Mater.* **2022**, *34*, 2203187.
- [23] R. Xu, J. Huang, E. S. Barnard, S. S. Hong, P. Singh, E. K. Wong, T. Jansen, V. Harbola, J. Xiao, B. Y. Wang, S. Crossley, D. Lu, S. Liu, H. Y. Hwang, *Nat. Commun.* 2020, *11*, 3141.
- [24] D. Ji, S. Cai, T. R. Paudel, H. Sun, C. Zhang, L. Han, Y. Wei, Y. Zang, M. Gu, Y. Zhang, W. Gao, H. Huyan, W. Guo, D. Wu, Z. Gu, E. Y. Tsymbal, P. Wang, Y. Nie, X. Pan, *Nature* **2019**, *570*, 87.
- [25] P. T. Le, J. E. Ten Elshof, G. Koster, *Sci. Rep.* **2021**, *11*, 12435.
- [26] Z. Lu, J. Liu, J. Feng, X. Zheng, L.-h. Yang, C. Ge, K.-j. Jin, Z. Wang, R.-W. Li, APL Mater. 2020, 8, 051105.
- [27] Z. Chen, B. Y. Wang, B. H. Goodge, D. Lu, S. S. Hong, D. Li, L. F. Kourkoutis, Y. Hikita, H. Y. Hwang, *Phys. Rev. Mater.* **2019**, *3*, 060801.
- [28] Q. Wang, H. Fang, D. Wang, J. Wang, N. Zhang, B. He, W. Lü, Crystals 2020, 10, 733.
- [29] Z. Zhao, A. Abdelsamie, R. Guo, S. Shi, J. Zhao, W. Lin, K. Sun, J. Wang, J. Wang, X. Yan, J. Chen, *Nano Res.* **2022**, *15*, 2682.
- [30] R. B. Macquart, B. J. Kennedy, M. Avdeev, J. Solid State Chem. 2010, 183, 250.
- [31] N. Kaur, R. Mohan, N. Gaur, R. Singh, J. Alloys Compd. 2011, 509, 6077.
- [32] W. Kohn, Rev. Mod. Phys. 1999, 71, 1253.
- [33] R. Peverati, Y. Zhao, D. G. Truhlar, J. Phys. Chem. 2011, 2, 1991.
- [34] D. Vanderbilt, Phys. Rev. B 1990, 41, 7892.
- [35] J. D. Pack, H. J. Monkhorst, Phys. Rev. B 1977, 16, 1748.
- [36] L. Bellaiche, D. Vanderbilt, Phys. Rev. B 2000, 61, 7877.
- [37] J. Matthews, A. Blakeslee, J. Cryst. Growth 1974, 27, 118.
- [38] J. Speck, W. Pompe, J. Appl. Phys. 1994, 76, 466.
- [39] M. Biegalski, D. Fong, J. Eastman, P. Fuoss, S. Streiffer, T. Heeg, J. Schubert, W. Tian, C. Nelson, X. Pan, M. E. Hawley, M. Bernhagen, P. Reiche, R. Uecker, S. Trolier-McKinstry, D. G. Schlom, *J. Appl. Phys.* 2008, 104, 114109.
- [40] R. Hull, J. C. Bean, Crit. Rev. Solid State Mater. Sci. 1992, 17, 507.
- [41] S. Jain, A. Harker, R. Cowley, *Philos. Mag.* A **1997**, 75, 1461.
- [42] R. People, J. C. Bean, Appl. Phys. Lett. 1985, 47, 322.
- [43] B. W. Dodson, J. Y. Tsao, Appl. Phys. Lett. 1987, 51, 1325.
- [44] L. Freund, J. Appl. Mech. 1987, 54, 553.
- [45] L. Freund, MRS Bull. 1992, 17, 52.
- [46] R. Hull, J. Bean, C. Buescher, *J. Appl. Phys.* **1989**, *66*, 5837.
 [47] L. Qiao, T. C. Droubay, M. E. Bowden, V. Shutthanandan, T. C. Kaspar,
- [47] E. Qiao, T.C. Droubay, M. E. Bowden, V. Shuthanandan, T.C. Kaspar,
 S. A. Chambers, *Appl. Phys. Lett.* 2011, *99*, 6.
- [48] T. Wang, K. Ganguly, P. Marshall, P. Xu, B. Jalan, Appl. Phys. Lett. 2013, 103, 21.
- [49] B. Beznosikov, K. Aleksandrov, Crystallogr. Rep. 2000, 45, 792.

SCIENCE NEWS