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Abstract

In this thesis, we aimed to explore specific challenges in the field of organic semi-
conductors (OSCs) related to charge and energy transfer phenomena, employing
efficient computational models. Consequently, the thesis is structured into five
chapters. Chapter 1 functions as an introduction to organic semiconductors (OSCs).
The second chapter provides a concise overview of the theoretical methods utilized
in this study.
In chapter 3, we systematically examine the performance of two approximations in
the fewest switched surface hopping (FSSH) simulations for charge transport (CT)
in several representative OSCs. These approximations include (i) the substitution
of the nuclear velocity scaling along the nonadiabatic coupling vector (NCV) by
rescaling the hopping probability with the Boltzmann factor (Boltzmann correction
(BC)) and (ii) a phenomenological approach to treat the quantum feedback from
the electronic system to the nuclear system (implicit charge relaxation (IR)) in
the OSCs. We find that charge mobilities computed by FSSH-BC-IR are in very
good agreement with the mobilities obtained by standard FSSH simulations with
explicit charge relaxation (FSSH-ER), however, at reduced computational cost. A
key parameter determining the charge carrier mobility is the reorganization energy,
which is sensitively dependent on DFT functionals applied. By employing the
IR approximation, the FSSH method allows systematic investigation of the effect
of the reorganization energies obtained by different DFT functionals like B3LYP
or 𝜔B97XD on CT in OSCs. In comparison to the experiments, FSSH-BC-IR us-
ing 𝜔B97XD reorganization energy underestimates mobilities in the low-coupling
regime, which may indicate the lack of nuclear quantum effects (e.g., zero point
energy (ZPE)) in the simulations. The mobilities obtained by FSSH-BC-IR using the
B3LYP reorganization energy agree well with experimental values in 3 orders of
magnitude.
In chapter 4, we investigate the effects of halogen groups on the charge transport
properties of n-type OSCs-halogenated tetraazapentacenes (TAPs). The charge
mobilities are obtained from nonadiabatic molecular dynamics simulations and
examined in comparison to the experimental values. The results show that for Cl
and Br substituted TAPs, the molecular packing, reorganization energy and electron
transfer integrals are very close to the TAP, which leads to the similar charge mobil-
ities as TAPS. However, the mobility is significantly reduced for fluoride-substituted
TAP. It is found that while the crystal packing of F-TAP is similar to Cl/Br-TAP,
the strong electron-withdrawing effect of fluoride results in much lower electron
transfer integrals and larger reorganization energy, which leads to a lower charge
mobility.
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Finally, in chapter 5, the investigation focused on electro-inductive effects on the
charge mobilities. To gain insight into this effect, we conducted calculations on
anthracene with varied electron donor and attractor substituents, evaluating their
influence on molecular geometry, reorganization energy, transfer integrals and
charge mobility to establish a correlation between structure and properties. We cal-
culated the coupling with and without an entitled group for anthracene to observe
the influence of geometrical and electronic properties. When considering dimethyl,
dimethoxy, and dicyano anteracene as the MM part, and only anteracene as the
QM part, the geometry plays a significant role as the coupling remains relatively
unchanged. However, in the case of dibromo-anteracene, neglecting Br led to a sig-
nificant alteration in the coupling, highlighting the importance of Electro-inductive
by using the halogen atoms.
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Zusammenfassung

In dieser Arbeit haben wir uns zum Ziel gesetzt, spezifische Herausforderungen im
Bereich der organischen Halbleiter (OSCs) im Zusammenhang mit Ladungs- und
Energietransferphänomenen mithilfe effizienter Rechenmodelle zu untersuchen.
Daher ist die Arbeit in fünf Kapitel unterteilt. Kapitel 1 dient als Einführung in
organische Halbleiter (OSCs). Das zweite Kapitel gibt einen kurzen Überblick über
die in dieser Studie verwendeten theoretischen Methoden.
In Kapitel 3 untersuchen wir systematisch die Leistung von zwei Näherungen

in den Simulationen des Ladungstransports (CT) in mehreren repräsentativen
OSCs mit dem geringsten Switched Surface Hopping (FSSH). Diese Approxima-
tionen umfassen (i) die Ersetzung der Kerngeschwindigkeitsskalierung entlang
des nichtadiabatischen Kopplungsvektors (NCV) durch Skalierung der Sprung-
wahrscheinlichkeit mit dem Boltzmann-Faktor (Boltzmann-Korrektur (BC)) und (ii)
einen phänomenologischen Ansatz zur Behandlung der Quantenrückkopplung vom
elektronischen System zum Kernsystem (implizite Ladungsrelaxation (IR)) in den
OSCs. Wir finden dass die mit FSSH-BC-IR berechneten Ladungsmobilitäten sehr
gut mit den Mobilitäten übereinstimmen, die mit Standard-FSSH Simulationen mit
expliziter Ladungsrelaxation (FSSH-ER) erhaltenen Mobilitäten sehr gut überein-
stimmen, allerdings bei geringeren Rechenkosten. Ein Schlüsselparameter, der die
Ladungsträgermobilität ist die Reorganisationsenergie, die empfindlich von den ver-
wendetenDFT-Funktionalen abhängt. Durch die Verwendung der IRApproximation
ermöglicht die FSSH-Methode eine systematische Untersuchung der Auswirkungen
der Reorganisationsenergien, die mit verschiedenen DFT-Funktionen wie B3LYP
oder 𝜔B97XD auf CT in OSCs. Im Vergleich zu den Experimenten unterschätzt
FSSH-BC-IR mit 𝜔B97XD Reorganisationsenergie unterschätzt die Mobilitäten
im Niedrigkopplungsbereich, was auf das Fehlen von Kernquanteneffekten (z. B.
Nullpunktenergie (ZPE)) in den Simulationen hinweist. Die Mobilitäten, die mit
FSSH-BC-IR unter Verwendung der B3LYP-Reorganisationsenergie erhaltenen Mo-
bilitäten stimmen gut mit experimentellen Werten in 3 Größenordnungen überein.
In Kapitel 4 untersuchen wir die Auswirkungen von Halogengruppen auf die
Ladungstransporteigenschaften Ladungstransporteigenschaften von OSCs des n-
Typs mit halogenierten Tetraazapentacenen (TAPs). Die Ladungs Ladungsmobil-
itäten werden aus nicht-adiabatischen Molekulardynamiksimulationen gewonnen
und im Vergleich mit den experimentellen Werten untersucht. Die Ergebnisse
zeigen, dass für Cl- und Br-substituierte TAPs die Molekülpackung, die Reorganisa-
tionsenergie und die Elektronentransferintegrale sehr nahe an den TAPs liegen, was
zu ähnlichen Ladungsmobilitäten wie bei TAPS führt. Bei fluorsubstituierten TAP
ist die Mobilität jedoch deutlich geringer. Es wurde festgestellt, dass die Kristall-
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packung von F-TAP zwar ähnlich ist wie die von Cl/Br-TAP, dass aber der starke
elektronenziehende Effekt von Fluorid zu viel niedrigeren Elektronentransferinte-
gralen und größerer Reorganisationsenergie führt, was wiederum eine geringere
Ladungsmobilität zur Folge hat.
In Kapitel 5 schließlich konzentrierte sich die Untersuchung auf die elektroin-
duktiven Effekte auf die Ladungsmobilitäten. Um einen Einblick in diesen Ef-
fekt zu erhalten, führten wir Berechnungen an Anthracen mit verschiedenen
Elektronendonor- und Attraktor-Substituenten durch und bewerteten deren Ein-
fluss auf die Molekülgeometrie, die Reorganisationsenergie, die Transferintegrale
und die Ladungsmobilität, um eine Korrelation zwischen Struktur und Eigen-
schaften herzustellen. Wir berechneten die Kopplung mit und ohne eine berechtigte
Gruppe für Anthracen, um den Einfluss der geometrischen und elektronischen
Eigenschaften zu beobachten. Wenn man Dimethyl-, Dimethoxy- und Dicyano-
Anteracen als MM-Teil und nur Anteracen als QM-Teil betrachtet, spielt die Ge-
ometrie eine wichtige Rolle, da die Kopplung relativ unverändert bleibt. Im Falle
des Dibrom-Anteracens führte die Vernachlässigung von Br jedoch zu einer sig-
nifikanten Änderung der Kopplung, was die Bedeutung der Elektroinduktion durch
die Verwendung der Halogenatome unterstreicht.
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1. Introduction

1.1. Organic Semi-conductors (OSCs)

Charge and energy transport phenomena in molecular materials are of great practi-
cal relevance, as electronic components made of amorphous or crystalline organic
materials have continuously gained popularity over the last decades. Many are
produced at the large industrial scale, and hold great promise in terms of material
properties and process-ability over their inorganic counterparts, performance for
many applications still lacks behind [1, 2, 3]. Organic semiconductor crystals are
an important class of materials that have garnered significant attention in recent
years due to their potential applications in various fields, including electronics,
optoelectronics, and energy conversion. These materials are characterized by their
unique electronic and optoelectronic properties, which arise from their molecular
structure consisting of conjugated organic molecules or polymers[4, 5].

The electronic properties of these materials are highly dependent on the molecu-
lar structure and packing arrangement within the crystal lattice. For example, the
degree of conjugation, the strength of intermolecular interactions, and the packing
density can all significantly affect the electronic properties, such as the bandgap,
charge carrier mobility, and exciton dynamics [7, 8]. In addition to these electronic
properties, organic semiconductor crystals also exhibit interesting optical prop-
erties, including strong absorption and emission in the visible and near-infrared
regions of the spectrum. These properties make them highly attractive for use in
organic photovoltaics, light-emitting diodes, and other optoelectronic devices [9,
10]. The growth of high-quality organic semiconductor crystals is a challenging
task due to their low solubility and tendency to form disordered or amorphous
structures. However, recent advances in crystal growth techniques, such as solution
and vapor-phase deposition methods, have enabled the growth of high-quality sin-
gle crystals, which have provided deeper insights into the fundamental electronic
and optoelectronic properties of these materials [11, 12]. Organic semiconductor
crystals exhibit significant potential for the advancement of next generation elec-
tronic and optoelectronic devices, driving ongoing research in materials science
and engineering [13, 14].
Mobility, a key property, plays a crucial role in determining the performance of
organic electronic devices. Mobility represents the speed at which charge carriers,
such as electrons or holes, can traverse a material [15, 16]. Higher mobility enables
faster movement of these charge carriers, enhancing the efficiency of transport
within a device. Consequently, mobility’s importance in organic semiconductor
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1. Introduction

Figure 1.1.: The application of organic semiconductors[6]
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1.1. Organic Semi-conductors (OSCs)

crystals directly influences the overall performance of organic electronic devices
[17, 18].

Organic semiconductor crystals are composed of organic molecules that possess
semi-conductive properties. These materials have gained significant attention in
recent years due to their advantages over traditional inorganic semiconductors,
such as low cost, flexibility, and processability. However, one of the major limita-
tions of organic semiconductor crystals is their relatively low mobility compared
to inorganic materials. This is due to their amorphous structure and weak inter-
molecular interactions, which impede charge carrier mobility[19, 20, 21]. The
mobility of organic semiconductor crystals is critical in a wide range of electronic
devices, including solar cells, field-effect transistors, and organic light-emitting
diodes. In organic solar cells, for example, the efficiency of the device is directly
proportional to the mobility of the charge carriers. Higher mobility results in a
faster and more efficient transport of charges from the active layer to the elec-
trodes, which generates more power. Similarly, in organic field-effect transistors,
the mobility of the charge carriers determines the device’s speed and its ability to
switch on and off quickly[22, 23, 24]. In organic light-emitting diodes, mobility de-
termines the brightness of the device, since higher mobility leads to a more efficient
transfer of energy from the electrons to the light-emitting molecules. Mobility is
also important in the development of new organic electronic materials, as it can
guide the design of new molecules that possess higher mobility. Over the past few
years, researchers have developed several strategies to improve the mobility of
organic semiconductor crystals. These include improving the molecular packing
and intermolecular interactions in the crystal, reducing defects and impurities, and
using additives to enhance charge transport. By incorporating these strategies,
researchers have been able to achieve a significant improvement in the mobility
of organic semiconductor crystals, making them more capable of competing with
traditional inorganic semiconductors[25, 26, 27].

In conclusion, the mobility of organic semiconductor crystals is a crucial prop-
erty for their use in electronic devices. Increasing the mobility of these materials
leads to improvements in device performance, making them more efficient and
reliable. Understanding the factors that affect mobility and developing strate-
gies to enhance it is essential for the development of new and improved organic
electronic materials. With these advances, organic semiconductors can provide
alternative solutions to traditional inorganic semiconductors and play a signifi-
cant role in the future of electronics. In this research we tried to investigate some
of the computational challenges of OSCs in terms of charge and energy transfer
by employing computational efficient method to model these complex problems.
We concentrated on studying the charge propagation in Organic Semiconductor
Crystals (OSCs) through non-adiabatic molecular dynamic simulation methods.
Furthermore, the study investigates the influence of halogen groups on the charge
transport properties of n-type Organic Semiconductor Crystals, with a specific
focus on halogenated tetraazapentacenes (TAPs). In addition, our study explores
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1. Introduction

Figure 1.2.: Charge transfer in organic semiconductors[28]

the influence of substituents on hole mobilities in diphenylanthracene. To gain a
comprehensive understanding of how various substituents affect charge transport,
we commenced our research by examining anthracene (Ant) with dimethyl and
dimethoxy as electron-donating groups, and dicyano and dibromo as electron-
withdrawing groups. We systematically analyzed the effects of these substituents
on reorganization energy, transfer integrals, and charge mobility.
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2. Theoretical Background

Electronic structure theory in computational chemistry provides a robust frame-
work, allowing us to comprehend and forecast the behavior of molecules and
materials based on their electronic properties. This foundation is invaluable for
studying chemical reactions, developing novel compounds, and exploring material
properties, all without the need for extensive and costly experiments. By integrat-
ing principles from quantum mechanics and computational techniques, electronic
structure theory offers deep insights into the distribution and behavior of electrons
within a system.

At its core, electronic structure theory seeks to solve the Schrödinger equation,
describing the quantum behavior of electrons in a molecular system. However, due
to its complexity, direct analytical solutions are usually unattainable, especially
for intricate systems. Consequently, computational methods are employed to
numerically approximate and solve the equation, enabling the study of progressively
complex molecular systems.
The fundamental concept of electronic structure theory centers around the

wave function, a mathematical representation of a system’s electronic state. This
function contains information about electron positions and energies, and its square
magnitude signifies the probability density of locating an electron within the system.
Nevertheless, due to the high dimensionality of the electronic wave function, exact
solutions for large systems remain challenging.

To tackle this complexity, various approximation methods have been developed.
Onewidely usedmethod is the Hartree-Fock approach, which simplifies the problem
by assuming electrons move independently within an average field generated by
other electrons. This simplification results in a set of coupled one-electron equations,
known as the self-consistent field equations, which can be iteratively solved to
obtain an approximate electronic structure solution.

Another prevalent technique is density functional theory (DFT), which focuses on
electron density rather than the wave function. DFT relates a system’s energy to its
electron density using the Hohenberg-Kohn theorems, providing an efficient com-
putational framework for studying larger systems. Due to the exchange-correlation
functional in DFT calculations, this method offers a superior description of electron
correlation interactions compared to HF theory.
Additionally, there are more advanced techniques, such as post-Hartree-Fock

methods (e.g., configuration interaction and coupled cluster methods) and sophis-
ticated variants of DFT (e.g., hybrid functionals and time-dependent DFT). These
methods aim to enhance accuracy by incorporating higher-order electron correla-
tion effects or addressing time-dependent phenomena.
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2. Theoretical Background

2.1. Computational quantum mechanical modelling

2.1.1. The electronic structure problem

The fundamental object at the heart of quantum chemistry and condensed-matter
physics is the molecular Hamiltonian that describes the interaction of electrons
and atomic nuclei. In atomic units, where Planck’s constant ℏ, and the electron
charge 𝑒 and mass𝑚 are set to unity, it reads:

𝐻 =
∑︁
𝑖

𝑝2𝑖
2 +

∑︁
𝑘

𝑃2
𝑘

2𝑀𝑘

+ 1
2
∑︁
𝑖≠ 𝑗

1��𝑟𝑖 − 𝑟 𝑗 �� + 1
2
∑︁
𝑘≠𝑙

𝑍𝑘𝑍𝑙

𝑅𝑘 − 𝑅𝑙
−

∑︁
𝑖,𝑘

𝑍𝑘

|𝑟𝑖 − 𝑅𝑘 |
(2.1)

The 𝑟𝑖 and 𝑝𝑖 are the electronic positions and momenta, 𝑅𝑘 and 𝑃𝑘 those of
the nuclei, and 𝑀𝑘 , 𝑍𝑘 are the nuclear masses and charges. The fundamental
commutator relations hold:[

𝑟𝑖𝛼 , 𝑟 𝑗𝛽
]
=

[
𝑝𝑖𝛼 , 𝑝 𝑗

]
= 0,

[
𝑟𝑖𝛼 , 𝑝 𝑗𝛽

]
= 𝑖𝛿𝑖 𝑗𝛿𝛼𝛽 (2.2)

For electrons, and likewise for nuclei. 𝛼, 𝛽 label Cartesian coordinates, and 𝛿𝑖, 𝑗
refers to the Kronecker delta. In the position representation, that is, using a basis of
position eigenstates, the momentum operator takes the form 𝑝 = −𝑖∇𝑟 . From the
molecular Hamiltonian one commonly splits off the electronic Hamiltonian 𝐻𝑒𝑙𝑒𝑐
describing an electron cloud in an external electrostatic potential created by nuclei
at fixed positions.

The eigenvalue spectrum of 𝐻𝑒𝑙𝑒𝑐 then yields the electronic energy levels 𝐸𝑖 ; 𝑖 =
0, 1, 2, . . .:

𝐻𝑒𝑙𝑒𝑐 |𝜓𝑖⟩ = 𝐸𝑖 |𝜓𝑖⟩ (2.3)
with the electronic states|𝜓𝑖⟩. This eigenvalue problem is the time-independent
electronic Schrödinger equation. The 𝐸𝑖 as a function of the nuclear coordinates
𝐸𝑖 (𝑅1;𝑅2, ...) are called potential energy surfaces, as they act as an effective potential
for the nuclei. Solids and molecules are stationary points on the lowest energy, or
ground-state, surfaces. That is at molecular equilibrium geometries∇𝑅𝐸0(𝑅1, ...) = 0
holds.
The complete wavefunction |Ψ⟩ of electrons and nuclei can be expanded using

the electronic eigenstates
|Ψ⟩ =

∑︁
𝑖=1

|𝜒𝑖⟩|𝜓 ⟩𝑖 (2.4)

with nuclear wave functions |𝜒𝑖⟩. Applying the Hamiltonian to this form of the
wavefunction and projecting out the electronic part results in

𝐻 |𝜒𝑖⟩ =
(∑︁

𝑘

𝑃2
𝑘

2𝑀𝑘

+ 𝐸𝑖 (𝑅1, ...) +
[∑︁
𝑗,𝑘

(2⟨𝜓𝑖 |𝑃𝑘 |𝜓 𝑗 ⟩𝑃𝑘 + ⟨𝜓𝑖 |𝑃2𝑘 |𝜓 𝑗 ⟩)
] )
|𝜒𝑖⟩ (2.5)

for the Hamiltonian applied to the nuclear wavefunction. If the terms in square
brackets, the socalled non-adiabatic couplings, are disregarded, the potential energy
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2.1. Computational quantum mechanical modelling

surfaces 𝐸𝑖 act indeed as independent potentials for the nuclei. Such an assumption
is known as the Born-Oppenheimer approximation and is valid whenever the en-
ergy levels are well separated, as is commonly the case near equilibrium molecular
geometries. It breaks down when energy levels cross. The resulting non-adiabatic
effects are of crucial importance especially for charge and energy transport pro-
cesses because they allow transitions between different electronic states. The time
evolution of a quantum mechanical system obeys the time-dependent Schrödinger
equation:

𝑖𝜕
��Ψ(𝑡)

〉
= 𝐻

��Ψ(𝑡)
〉

(2.6)

Much of this thesis is concerned with approximate solutions of eq.2.7.

2.1.2. Density functional theory

Density Functional Theory (DFT) is a prevalent computational technique applied
in condensed matter physics, materials science, and chemistry. It operates on
the principle that a system’s ground-state characteristics can be ascertained by
examining its electron density instead of the wavefunction. The electron density is
computed using the Kohn-Sham equations, which are derived from the Hohenberg-
Kohn theorem and the Kohn-Sham variational principle.

2.1.2.1. The Hohenberg-Kohn theorems

The initial Hohenberg-Kohn theorem asserts that the electron density of a system’s
ground state uniquely specifies the external potential in a quantum mechanical
setup, consequently determining the system’s total energy. This implies that the
electronic configuration of amolecule ormaterial can be entirely characterized by its
electron density, eliminating the need for the complete wave function encompassing
all electrons. This simplifies and enhances the efficiency of calculations significantly.
The second Hohenberg-Kohn theorem, on the other hand, states that the true

ground state density attains the minimum energy, with all other densities resulting
in higher energies.

2.1.2.2. The Kohn-Sham approach

In the Kohn-Sham equations, the many-body problem of interacting electrons is
simplified by transforming it into a set of non-interacting electron problems. The
central idea is to introduce a set of auxiliary non-interacting electrons, known as
the Kohn-Sham orbitals, which mimic the behavior of the real interacting electrons
within the system. These orbitals are determined in such a way that they produce
the same electron density 𝐸 [𝜌] as the actual interacting electrons. The functional
𝐸 [𝜌] represents the total energy of the system, which includes contributions from
electron-electron interactions, electron kinetic energy, and the interaction with an
external potential. The Kohn-Sham equations essentially find the non-interacting
electron orbitals that minimize this total energy functional. Solving these equations

7



2. Theoretical Background

involves finding the optimal electron density and the corresponding Kohn-Sham
orbitals, allowing researchers to explore various properties of molecules and materi-
als without the need for highly complex calculations involving the full many-body
wavefunction of all electrons. This approach significantly simplifies and enhances
the efficiency of electronic structure calculations in computational chemistry.

We split up the functional 𝐸 [𝜌] as

𝐸 [𝜌] = 𝑇 [𝜌] + 𝐸xc [𝜌] + 𝐸H [𝜌] +
∫

𝑑3𝑟𝜌 (r)𝑉ext(r), (2.7)

where 𝐸H =
∫
𝑑3𝑟𝑑3𝑟 ′ 𝜌 (r)𝜌 (r

′)
|r−r′ | is the classical Coulomb interaction of the electron

density with itself, the final integral is the interaction of the density with the nuclear
electrostatic potential, and the functionals 𝑇 [𝜌] and 𝐸xc entail all the complicated
non-classical physics. 𝑇 [𝜌] yields the electronic kinetic energy, and 𝐸xc [𝜌] accounts
for exchange and correlation. Now, Kohn and Sham 's approach offers a simple
expression for𝑇 [𝜌]. A system of𝑁 interacting electrons is mapped to a system of𝑁
non-interacting electrons, with orthogonal single electron orbitals |𝜙𝑖⟩, 𝑖 = 1, . . . , 𝑁 .
The many-body wavefunction |𝛹⟩ for the non-interacting system is a single Slater
determinant formed by the orbitals, and the kinetic energy is given by the expression
for non-interacting electrons:

𝑇 [𝜙1, . . . ] =
∑︁
𝑖

1
2 ⟨𝜙𝑖 |p

2
𝑖 |𝜙𝑖⟩. (2.8)

In order to maintain the connection to the real, interacting system the density of
both systems is set to be the same:

𝜌 (r) =
∑︁
𝑖

|⟨𝜙𝑖 |𝑟 ⟩|2. (2.9)

Thus, the whole unknown physics is bundled in the exchange-correlation term
𝐸xc [𝜌] that needs to account for the difference between the non-interacting and true
kinetic energy, as well. Within this formalism, the variational principle 𝛿𝐸 [𝜌0]

𝛿𝜌
= 0

leads to the set of single electron eigenvalue equations(
p2

2 +𝑉ext(r) +
𝛿𝐸xc [𝜌]
𝛿𝜌 (r)

)
|𝜙𝑖⟩ = 𝜀𝑖 |𝜙𝑖⟩, (2.10)

known as Kohn-Sham equation. From the equation, the orbitals can be found, and
hence the energy through reinsertion into the functional. The orbital eigenvalues
𝜀𝑖 enter as Lagrangian multipliers for the orthonormality condition, and 𝜀𝑁 can be
identified with the ionization potential by Janaka 's theorem [29]. Even though
the orbitals |𝜙𝑖⟩ possess no a priori physical meaning, the frontier orbitals are
often identified with real single electron wavefunctions, and this has been justified
empirically [30].
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2.1. Computational quantum mechanical modelling

2.1.2.3. Density functional approximation

The first attempts at a practical approximation of the exchange-correlation func-
tional predate the rigorous foundations of DFT by Hohenberg and Kohn. Thomas
and Fermi already put forward a model already in 1927 [31, 32], expressing the
kinetic energy of an electron gas in terms of its density. However, their model
predicts no stable molecules and is thus unfit for predictive quantum chemical
applications. Successive developments have gradually improved the quantitative
performance of DFT methods, while remaining computationally efficient, leading
to their wide spread adoption, especially also among experimentalists. Two DFT
papers are now among the ten most cited scientific works [33]. In the following,
we introduce briefly a hierarchy of different functional approximations. Special
attention will be payed to long-range corrected functionals that provide the founda-
tion for some of the work in this book and tend to be among the most accurate for
many materials occurring in the context of molecular charge and energy transport.

2.1.2.4. Local density approximation

The local density approximation (LDA) goes back to the work of Kohn and Sham
[34], and remains popular for solid-state systems, but is usually too inaccurate for
molecules. The exchange-correlation energy is expressed as a density weighted
integral over an energy density 𝜀xc(𝜌):

𝐸xc [𝜌] =
∫

𝑑3𝑟𝜌 (r)𝜀xc(𝜌 (r)) . (2.11)

𝜀xc is modeled by the expression for the homogeneous electron gas. Then, 𝜀xc =
𝜀x + 𝜀c, with the exchange contribution

𝜀x(𝜌) = −34

(
3
𝜋

) 1
3
𝜌 (r) 1

3 (2.12)

as derived by Dirac [35]. The correlation contribution ec cannot be derived in
closed form, but highly accurate quantum Monte Carlo results are available, to
which analytic expressions can be fit[36]. LDA can be generalized to spin polarized
systems, then known as local spin density approximation (LSDA), using the spin
scaling relation:

𝐸x [𝜌↑, 𝜌↓] =
1
2 (𝐸x [2𝜌↑] + 𝐸x [2𝜌↓]), (2.13)

which is a property of the exact functional. Here, 𝜌↑,↓ are densities for the two
different spin polarizations alone, and 𝐸x [𝜌] is the exchange functional for an
unpolarized system that has been approximated by the Dirac form. The correlation
contribution has to be interpolated from the know unpolarized 𝜌↑ = 𝜌

2 = 𝜌↓ and
fully polarized 𝜌 = 𝜌↑ cases.

9



2. Theoretical Background

2.1.2.5. Generalized gradient approximation

LDA can only be truly useful for solids, rather than molecules, because its direct
adoption from the uniform electron gas requires slowly varying densities. For this
reason, corrections have been developed that take into account density fluctuations
through inclusion of the density gradient ∇𝜌 (r):

𝐸xc [𝜌] =
∫

𝑑3𝜌 (r)𝜀xc(𝜌 (r),∇𝜌 (r)) . (2.14)

Such functionals are known as generalized gradient approximations (GGA). There
is no unique way to approximate 𝜀xc in this way, but many different approaches
exist. One popular GGA functional is the Perdew-Burke-Ernzerhof (PBE) functional
[37]. It is derived by requiring that certain conditions known to hold for the exact
functionals be reproduced by the approximative form. Therefore, it is free of fitted
parameters and tends to be accurate for a broad range of systems, while many GGA
functionals employ fits to reference data, limiting their applicability. PBE is usually
chosen as the underlying functional of the DFTB formalism, to be introduced in a
later section, and thus of particular relevance for the work in this thesis. However,
introducing the technical details would exceed the scope of a short introduction,
and details can be found in the literature.

𝐸 (𝑁 )

Hartree-Fock

GGA DFT

𝑁 − 1 𝑁 𝑁 + 1

Number of electrons

Figure 2.1.: The self-interaction error of DFT functional approximations without
Hartree-Fock exchange becomes apparent when the number of elec-
trons deviates from the integers. Such scenarious can be defined in
terms of density matrices with densities integrating to arbritary real
numbers, and the exact functional predicts that the energy 𝐸 (𝑁 ) fol-
lows a straight line between integer points[38]. However, due to self-
interaction, the approximate functionals predict a smooth, convex form.
Hartree-Fock theory is wrong in the opposite direction and predicts a
concave dependence on the electron number.
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2.1. Computational quantum mechanical modelling

2.1.2.6. Hybrid functionals

Both LDA and GGA functionals suffer from the self-interaction error. They fail
to fully remove the interaction of electrons with themselves, or others with the
same spin according to the exclusion principle, from the energy contribution.
Consequences of this are, for instance, severely underestimated band or HOMO-
LUMO gaps, and artificial electron delocalization. LDA and GGA functionals are
local in the sense that the energy is the integral over functions of the density
at certain points, independent of all other spatial locations. Some minor non-
locality is introduced in GGA through the gradient information, but this first order
expansion cannot account for interactions over larger distances. The exchange-
term in Hartree-Fock theory (HF) on the other hand cancels the self-interaction
exactly, but since it is calculated as an integral over two spatial coordinates, it is
non-local. Hybrid functionals take the approach to mix HF exchange 𝐸HFx with
GGA exchange-correlation functionals. The energy then reads:

𝐸
Hyb
xc [𝜙1, . . . ] = 𝛼𝐸HFx [𝜙1, . . . ] + (1 − 𝛼)𝐸x [𝜌] + 𝐸c [𝜌] . (2.15)

The amount of HF exchange can be controlled through the parameter 𝛼 , and
different functionals use different values. Performance can also be improved by
fine-tuning 𝛼 for the system under investigation. For example, the PBE0 [39, 40]
hybrid functional includes a fraction of 𝛼 = 0.25 HF exchange. The extremely
popular B3LYP [41, 42, 43] functionals included 𝛼 = 0.2 of HF exchange, but as two
additional mixing parameters.
The HF exchange term

𝐸HFx [𝜙1, . . . ] = −12
∑︁
𝑖, 𝑗

∫
𝑑3𝑟𝑑3𝑟 ′

𝜙∗
𝑖 (r)𝜙∗

𝑗 (r)𝜙𝑖 (r′)𝜙 𝑗 (r′)
|r − r′| (2.16)

depends explicitly on the individual Kohn-Sham orbitals 𝜙𝑖 , not merely on the
density 𝜌 . Consequently, the entire functional becomes orbital dependent. Because
the evaluation of the HF exchange integral scales quartic with system size, DFT
with hybrid functionals scales one order worse than with LDA or GGA functionals.
Although in practice distance cut-offs for integrals often allow cubic scaling, hybrid
functionals remain somewhat more computationally expensive.

2.1.3. The density functional tight-binding method

Albeit DFT is already computationally very efficient compared to most wavefunc-
tion based electronic structure methods, there remain many problems that require
quantum treatment, but at much lower computational cost. For instance, such prob-
lems include simulations of large nanostructures that can contain many thousands
of atoms. Given the large and growing importance of nanotechnology, this is of
considerable practical relevance, say in the development process of new integrated
circuits or molecular motors. Another field in need of fast computation are all sorts
of dynamical simulations, stretching from single molecular electronic dynamics for

11



2. Theoretical Background

spectroscopy to the simulation of chemical reactions at the active sites of proteins
in aqueous solution. There, the relevant time scales can be on the order of nanosec-
onds, requiring millions of quantum calculations, well beyond the scope of DFT. For
such purposes, semi-empirical and approximate methods exist that are far less com-
putationally expensive at the cost of some accuracy. Many of those methods rely
strongly on fitting of parameters to reference data, severely limiting their transfer-
ability. The density functional tight-binding method (DFTB), on the other hand, is
derived and largely parametrized from DFT, lending it a certain robustness. It tends
to perform particularly well for organic molecules, as the underlying assumptions
are usually satisfied, providing a kind of rigorous foundation that many empirical
methods lack. As such molecules are the target systems for the studies presented in
this work, we opted for DFTB as the underlying method for further development.
DFTB does, however, inherit the shortcomings of the applied density functional
approximations. This will be addressed in a later chapter. In this section, we derive
and explain the basics of DFTB, discuss its time-dependent extension TD-DFTB,
and introduce a recent extension to include long-range corrected functionals.

2.1.3.1. Derivation

DFTB [44, 45] can be derived from DFT through a series expansion of the DFT
energy functional 𝐸 [𝜌] at a reference density 𝜌0. Here we expand up to quadratic
order, leading to the so-called SCC-DFTB, or DFTB2, method [45] that is the version
most commonly used. Early versions only contained first order terms (DFTB1 [44]),
and extensions with third order terms (DFTB3 [46]) exist as well. Starting from the
energy expression

𝐸 [𝜌] =
∑︁
𝑖

𝑓𝑖 ⟨𝜙𝑖 |∇2 +
∫

𝑑3𝑟 ′
𝜌 (r′)
|r − r′| +𝑉ext(r) |𝜙𝑖⟩ + 𝐸xc [𝜌] + 𝐸nuc, (2.17)

which is a different way to write eq. 2.10, with Kohn-Sham orbitals ⟨𝜙𝑖 |, orbital
occupations 𝑓𝑖 , and the internuclear repulsion 𝐸nuc =

∑
𝐴,𝐵

𝑍𝐴𝑍𝐵

|R𝐴 − R𝐵 |
, we expand

𝐸 [𝜌] =
∑︁
𝑖

𝑓𝑖 ⟨𝜙𝑖 |∇2 +
∫

𝑑3𝑟 ′
𝜌0(r′)
|r − r′| +

𝛿𝐸xc [𝜌0]
𝛿𝜌 (r) +𝑉ext(r) |𝜙𝑖⟩

+ 1
2

∫
𝑑3𝑟𝑑3𝑟 ′

(
1

|r − r′| +
𝛿2𝐸xc [𝜌0]
𝛿𝜌 (r)𝛿𝜌 (r′)

)
𝛿𝜌 (r)𝛿𝜌 (r′)

+ 𝐸xc [𝜌0] + 𝐸nuc −
1
2

∫
𝑑3𝑟𝑑3𝑟 ′

𝜌0(r)𝜌0(r′)
|r − r′| −

∫
𝑑3𝑟

𝛿𝐸xc [𝜌0]
𝛿𝜌 (r)

+𝑂 (𝛿𝜌3),

(2.18)

with density fluctuations 𝛿𝜌 and the reference density 𝜌0 such that 𝜌 = 𝜌0 + 𝛿𝜌 .
Now, we group together different terms that will then be further approximated.

12



2.1. Computational quantum mechanical modelling

The first order terms are:

𝐸 (1) =
∑︁
𝑖

𝑓𝑖 ⟨𝜙𝑖 |∇2 +
∫

𝑑3𝑟 ′
𝜌0(r′)
|r − r′| +

𝛿𝐸xc [𝜌0]
𝛿𝜌 (r) +𝑉ext(r) |𝜙𝑖⟩

=
∑︁
𝑖

𝑓𝑖 ⟨𝜙𝑖 |𝐻 (0) [𝜌0] |𝜙𝑖⟩,
(2.19)

with the zeroth order Hamiltonian 𝐻 (0) that depends only on the reference density.
The second order terms are given by the Coulomb integral:

𝐸 (2) =
1
2

∫
𝑑3𝑟𝑑3𝑟 ′

(
1

|r − r′| +
𝛿2𝐸xc [𝜌0]
𝛿𝜌 (r)𝛿𝜌 (r′)

)
𝛿𝜌 (r)𝛿𝜌 (r′). (2.20)

Finally, there are zeroth order terms that depend only on the reference density 𝜌0
and the nuclear positions:

𝐸 (3) = 𝐸xc [𝜌0] + 𝐸nuc −
1
2

∫
𝑑3𝑟𝑑3𝑟 ′

𝜌 (r)𝜌 (r′)
|r − r′| −

∫
𝑑3𝑟

𝛿𝐸xc [𝜌0]
𝛿𝜌 (r)𝑝0(r)

. (2.21)

All three energy contributions will now be further approximated, after an atom
centered basis representation has been introduced:

|𝜙𝑖⟩ =
∑︁
𝐴,𝜇∈𝐴

𝑐𝜇𝑖 |𝜒𝜇⟩, (2.22)

where the upper case Latin index 𝐴 runs over atoms, Greek index 𝜇 over basis
functions, and 𝜇 ∈ 𝐴 indicates that orbital 𝜇 is centered on atom 𝐴 : ⟨r|𝜒𝜇⟩ =

𝜒 (r − R𝐴) for some orbital function 𝜒 . The detailed construction of the basis will
be discussed later on. Likewise, the reference density 𝜌0 is constructed as a sum of
atomic densities 𝜌𝐴, also centered on the atoms:

𝜌0(r) =
∑︁
𝐴

𝜌𝐴 (𝑟 ). (2.23)

It is the fundamental assumption underpinning DFTB that the molecular density
𝜌 is already well described by such a sum of atomic densities, with only modest
charge transfer 𝛿𝜌 . Hence comes the term tight-binding. Within the basis, 𝐸 (1) can
be expanded out as:

𝐸 (1) =
∑︁
𝑖

∑︁
𝐴,𝐵

∑︁
𝜇∈𝐴,𝜈∈𝐵

𝑓𝑖𝑐𝜇𝑖𝑐𝜈𝑖 ⟨𝜒𝑚𝑢 |𝐻 (0) [𝜌0] |𝜒𝜈⟩ =
∑︁
𝑖

∑︁
𝐴,𝐵

∑︁
𝜇∈𝐴,𝜈∈𝐵

𝑓𝑖𝑐𝜇𝑖𝑐𝜈𝑖𝐻
(0) [𝜌0]𝜇𝜈 .

(2.24)
In principle,𝐻 (0) [𝜌0]𝜇𝜈 depends on the positions of all nuclei. However, the integral
is dominated by the density contributions coming from the two atoms on which 𝜒𝜇
and 𝜒𝜈 are centered. Hence, we can approximate:

𝐻 (0) [𝜌0]𝜇𝜈 ≈ 𝐻 (0) [𝜌𝐴 + 𝜌𝐵]𝜇𝜈 = 𝐻 (0)
𝜇𝜈 for 𝜇 ∈ 𝐴 and𝜈 ∈ 𝐵, (2.25)
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where 𝐻 (0)
𝜇𝜈 depends only on the relative positions of atoms 𝐴 and 𝐵, allowing for

precalculation. Thus, because 𝐻 (0)
𝜇𝜈 is stored, no integral needs to be evaluated at

run-time. As shall be discussed later on, due to symmetry only one rather than three
coordinates have to be sampled, reducing memory requirements to a minimum. For
𝜇 = 𝜈 the Hamiltonian element coincides with an orbital eigenvalue of an isolated
atom 𝐻

(0)
𝜇𝜈 = 𝜀𝜇 . In order to approximate the second order terms 𝐸 (2) , we shall

partition the space into disjoint regions 𝑉𝐴 of space closest to atom 𝐴, such that
R3 = ∪𝐴𝑉𝐴, and write the density fluctuations 𝛿𝜌 (r) as a sum of atomic density
fluctuations 𝛿𝜌 (𝑟 ) =

∑
𝐴 𝛿𝜌𝐴 (r), where 𝛿𝜌𝐴 is non-vanishing only on 𝑉𝐴. Next,

we define atomic charge fluctuations as Δ𝑞𝐴 =
∫
𝑉𝐴
𝑑3𝑟𝛿𝜌 (r) =

∫
𝑑3𝑟𝛿𝜌𝐴 (r), and

express charge fluctuations as

𝛿𝜌𝐴 (r) = Δ𝑞𝐴𝑔𝐴 (r), (2.26)

where 𝑔𝐴 (r) is a shape function that must integrate to one. We assume a Gaussian
shape for 𝑔𝐴:

𝑔𝑎 (r)
1(

2𝜋𝜎2
𝐴

) 3
2
exp

(
− r2

2𝜎2
𝐴

)
. (2.27)

In doing so, we impose spherical symmetry on the charge fluctuations, effectively
leading to a monopole approximation. Indeed, multipole expansion results in the
same form. The width 𝜎𝐴 of the charge distribution is then the only free parameter
at second order. The energy expression reads:

𝐸 (2) =
1
2
∑︁
𝐴,𝐵

Δ𝑞𝐴Δ𝑞𝐵

∫
𝑑3𝑟𝑑3𝑟 ′

(
1

|r − r′| +
𝛿2𝐸xc [𝜌0]
𝛿𝜌 (r)𝛿𝜌 (r′)

)
𝑔𝐴 (r)𝐺𝐵 (r′). (2.28)

Discarding the exchange correlation term, only the Coulomb integral has to be
evaluated, which is possible in closed form [45]:∫

𝑑3𝑟𝑑3𝑟 ′
𝑔𝐴 (r)𝐺𝐵 (r′)

|r − r′| =
erf (𝐶𝐴𝑏 |R𝐴 − R𝐵 |)

|R𝐴 − R𝐵 |
= 𝛾𝐴𝐵 ( |R𝐴 − R𝐵 |), (2.29)

with

𝐶𝐴𝐵 =

√︄
1
2

1
𝜎2
𝐴
+ 𝜎2

𝐵

(2.30)

fixed by the charge distribution widths. To fix the width parameters, we consider
the expansion of the energy of a free atom 𝐴 in an excess charge Δ𝑞𝐴:

𝐸 (Δ𝑞𝐴) = 𝐸 (0) +
𝑑𝐸

𝑑𝑞
Δ𝑞𝐴 + 1

2
𝑑2𝐸

𝑑𝑞2
Δ𝑞2𝐴 +𝑂 (Δ𝑞3𝐴) (2.31)

In DFT the second order term is given by the so-called Hubbard parameter𝑈 and
related to the ionization potential IE and electron affinity EA as

𝑑2𝐸

𝑑𝑞2
= 𝑈 = IE − EA (2.32)
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2.1. Computational quantum mechanical modelling

The Hubbard parameters can be easily determined from DFT calculations on free
atoms. Then, demanding that for free atoms 𝐸 (2) coincide with 1

2𝑈Δ𝑞2 establishes a
connection between the Hubbard parameter𝑈𝐴 of an atom and the width parameter
𝜎𝐴, hence fixed. In analogy to Δ𝑞𝐴 =

∫
𝑉𝐴
𝑑3𝑟𝛿𝜌 , we define atomic charges 𝑞𝐴 as

𝑞𝐴 =

∫
𝑉𝐴

𝑑3𝑟𝜌 (r) =
∑︁
𝑖

𝑓𝑖

∫
𝑉𝐴

𝑑3𝑟𝜙𝑖 (r)2 =
∑︁
𝑖

𝑓𝑖

∑︁
𝜇,𝜈

𝑐𝜇𝑖𝑐𝜈𝑖

∫
𝑉𝐴

𝑑3𝑟 𝜒𝜇 (r)𝜒𝜈 (r),

(2.33)
assuming real orbitals. In the tight-binding spirit, we approximate∫

𝑉𝐴

𝑑3𝑟 𝜒𝜇 (r)𝜒𝜈 (r) ≈
1
2

∫
𝑑3𝑟 𝜒𝜇 (r)𝜒𝜈 (r) =

1
2𝑆𝜇𝜈 , (2.34)

or in other words, the overlap is only non-zero in the atomic regions and can be
equally partitioned between both involved atoms. Then 𝑞𝐴 simplifies to

𝑞𝐴 =
∑︁
𝑖

𝑓𝑖

∑︁
𝜈,𝜇∈𝐴

𝑐𝜇𝑖𝑐𝜈𝑖𝑆𝜇𝜈 , (2.35)

which is the same as the famous Mulliken charge expression [47]. Δ𝑞𝐴 can be
computed as Δ𝑞𝐴 = 𝑞𝐴 − 𝑞 (0)

𝐴
with the electronic charge 𝑞 (0)

𝐴
of a neutral atom 𝐴.

The overlap matrix 𝑆𝜇𝜈 can be precalculated, like 𝐻 (0)
𝜇𝜈 . Finally, the third order term

𝐸 (3) remains to be determined. Because 𝐸 (3) is a function of 𝜌0 alone, and in turn
𝜌0 is a function of the nuclear positions R𝐴, 𝐸 (3) can be written as a function of the
R𝐴. Since most of reference charge interactions happens between atom pairs, with
three center contributions smaller, we approximate

𝐸 (3) =
1
2
∑︁
𝐴≠𝐵

𝑉𝐴𝐵 ( |R𝐴 − R𝐵 |), (2.36)

The functions 𝑉𝐴𝐵 are called repulsive potentials. For the functional form of 𝑉𝐴𝐵
splines or polynomials are employed, where the exact choice does not matter.
One function for each pair of elements is used. While in principle 𝑉𝐴𝐵 could be
calculated directly from DFT, usually it is fit to reference data. Hence, empirical
corrections to the tight-binding approximation are fit together with the reference
as well. Reference data has to be hand-picked to generalize well, and this can be a
tedious process, normally the hardest part of the fitting procedure. One part of this
work is concerned with a generalization of the repulsive potentials to render the
manual selection obsolete by allowing very large data sets to be used. Repulsive
potentials will be discussed in more detail at this later point. Eventually, the full
DFTB energy reads:

𝐸 =
∑︁
𝑖

𝑓𝑖

∑︁
𝜇,𝜈

𝑐𝜇𝑖𝑐𝜈𝑖𝐻
(0)
𝜇𝜈 + 1

2
∑︁
𝐴𝐵

Δ𝑞𝐴Δ𝑞𝐵𝛾𝐴𝐵 ( |R𝐴 − R𝐵 |) +
1
2
∑︁
𝐴≠𝐵

𝑉𝐴𝐵 ( |R𝐴 − R𝐵 |) .

(2.37)
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2. Theoretical Background

Like in full DFT, Kohn-Sham equations follow from energy minimization, con-
strained to orthonormal orbitals. Thus, we have:∑︁

𝜈

(
𝐻

(0)
𝜇𝜈 + 1

2𝑆𝜇𝜈
∑︁
𝐶

(𝛾𝜇𝐶 + 𝛾𝜈𝐶)Δ𝑞𝐶

)
𝑐𝜈𝑖 = 𝜀𝑖

∑︁
𝜈

𝑆𝜇𝜈𝑐𝜈𝑖, (2.38)

where 𝛾𝜇𝐶 = 𝛾𝐴𝐶 for 𝜇 ∈ 𝐴. The equations have to be solved self-consistently in
Δ𝑞𝐴 to find the Kohn-Sham orbitals 𝜙𝑖 and the energy 𝐸. Analytic nuclear gradient
expressions ∇R𝐸 are available to calculate forces [45]. Note how the repulsive
potentials only appear in the total energy expression, but not in the Kohn-Sham
equations. They are important for the description of molecular geometries and
absolute energies, but do not affect the electronic structure calculation.

2.1.4. Basis set and reference density

DFTB employs aminimal basis set for the sake of computational efficiency. However,
naiveminimal basis sets are not usually sufficient for quantum chemical applications
because they lead to poor quantitative performance. Therefore, the basis sets used
in DFTB are specially optimized. As previously noted, DFTB relies on a tight-
binding assumption in which electrons are expected to be largely confined close
to the atoms, what is normally the case to a good extent within molecules. In free
atoms, on the other hand, electron densities tend to be more diffuse. Accordingly,
orbitals coming from free atoms, such as the natural hydrogen s, p, d, . . . orbitals,
are not a suitable basis set choice. Instead, the basis set is taken from confined
free atom orbitals, where a confinement potential 𝑉conf(r) simulates the effect of
the molecular environment. More explicitly, the basis functions 𝜒𝜇 (r) centered on
atom 𝐴 are solutions to the modified Kohn-Sham eigenvalue equation(

∇2 +
∫

𝑑3𝑟 ′
𝜌𝐴 (r′)
|r − r′| +

𝛿𝐸XC [𝜌𝐴]
𝛿𝜌 (r) − 𝑍𝐴

|r| +𝑉conf(r)
)
𝜒𝜇 (r) = 𝜀𝜇 𝜒𝜇 (r). (2.39)

The purpose of𝑉conf is to compress the density, and consequently𝑉conf should grow
with the distance from the nucleus. The by far most common choice is a quadratic
potential:

𝑉conf(r) =
(
r
𝑟wf

)2
, (2.40)

albeit some DFTB parametrization have used other potentials, too [47]. The param-
eter 𝑟wf controls the extend of the confinement. DFTB parametrizations usually fine
tune 𝑟wf for optimal accuracy. The atomic density 𝜌𝐴 that appears in the Kohn-Sham
potential is likewise determined from a self consistent constraint free atom calcula-
tion, but with a different constraint parameter 𝑟d. 𝜌𝐴 also serves as atom 𝐴's contri-
bution to the reference density 𝜌0. Thus, Hamiltonian elements 𝐻 (0)

𝜇𝜈 for atom pairs
𝐴 and 𝐵 are calculated and tabulated as 𝐻 (0)

𝜇𝜈 =
∫
𝑑3𝑟 𝜒𝜇 (r)𝐻 [𝜌𝐴 (r) + 𝜌𝐵 (r)]𝜒𝜈 (r).

Eq. (2.39) is solved in a Slater type orbital basis, that is with exponentially decaying
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2.1. Computational quantum mechanical modelling

basis functions. Therefore, the DFTB basis is also effectively of Slater type. Be-
cause all integrals are precalculated, there is no associated computational extra cost
over, say, Gaussian type functions. While the tabulated integrals 𝐻 (0)

𝜇𝜈 (R𝐴 − R𝐵)
and 𝑆𝜇𝜈 (R𝐴 − R𝐵) do, in principle, depend on three spatial coordinates, only one
dimensional tables for different combinations of orbital symmetry - e.g. 𝑠 − 𝑠 ,
𝑠 − 𝑝𝑥,𝑦,𝑧 , 𝑝𝑥 − 𝑝𝑦 , etc.- need to be stored, exploiting symmetry and the behavior of
the spherical harmonics under rotation. See Fig. 3.2 for a visual explanation.

Figure 2.2.: The integral involving two arbritarily oriented 𝑝 orbitals can be reduced
to the sum of integrals over orbitals of fixed relative orientation by
exploiting that 𝑝 orbitals behave like vectors in R3 under rotation.

2.1.4.1. Classical Molecular dynamics

Even the fastest empirical quantum mechanical methods are far too slow to sim-
ulate truly large systems of ten thousands to millions of atoms, let alone on the
nanosecond time scale and beyond. Yet, such large scale problems appear abun-
dantly. Take for example the folding of proteins in solution, which is one of the
preeminent subjects of biophysics and chemistry, or the description of large sec-
tions of amorphous or crystalline organic semiconducting materials that are studied
in this thesis. Therefore, a faster set of methods is required to study them. The
gap is filled by so-called force-field methods. The term (force-field) refers to a
fit of some mathematical function 𝑉 (R1, . . . ) of the nuclear coordinates R𝑖 to a
potential energy surface 𝐸 (R1, . . . ), most of the time the ground state, disregard-
ing the other surfaces. Because usually only a small subsection of the potential
energy surface is of interest, reasonably simple functions suffice for the fit. In
particular, most force-fields do not attempt to describe chemical reactions, only
certain molecules. Oftentimes one addresses large scale structural questions, like
the secondary structure of proteins that are not overly sensitive to the details of
the potential energy surface, so that force-fields are a very adequate manner of
description. Indeed, dispersion forces, crucial for the correct description of large
scale and intermolecular arrangement, are poorly accounted for by DFT and other
fast quantum mechanical methods, which require fitted correction terms akin to
force-fields, or else would perform worse.
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2. Theoretical Background

2.1.4.2. Force-fields

There are many different force-fields in existence that differ in what reference data
they employ for fitting, and the precise functional form used. However, most share
a number of basic, dominant, and physically inspired terms. Equilibrium molecular
geometries are described by way of equilibrium bond lengths 𝑅𝑏 , bond angles 𝜃𝑏 ,
and dihedral angles 𝜔𝑑 . A series expansion to second order for bonds, and a Fourier
expansion for the periodic dihedrals then yields the energetic costs of molecular
perturbations. The corresponding bonded terms now read:

𝑉bond =
∑︁
𝑏

1
2𝑘𝑏 ( |R

(𝑏) | − R𝑏)2, (2.41)

𝑉angle =
∑︁
𝑏

1
2𝑘𝜃𝑏 (𝜃

(𝑏) − 𝜃𝑏)2, (2.42)

and

𝑉dihedral =
∑︁
𝑑

𝑁𝑑∑︁
𝑛=0

𝑉𝑑𝑛 (1 + cos
(
𝑛𝜔𝑑𝑛 − 𝜔 (𝑑)

)
), (2.43)

where R(𝑏) , 𝜃 (𝑏) , and 𝜔 (𝑑) are the bond lengths and angles, and dihedral angles,
calculated at the current geometry, respectively. Non-bonded interactions consist
of two contributions: electrostatic Coulomb interaction of atom centered charges
qi and van-der-Waals interaction. The former accounts for charge transfer within
molecules or molecular fragments. The associated potential reads:

𝑉electrostatic =
1
2
∑︁
𝑖≠ 𝑗

𝑞𝑖𝑞 𝑗

|R𝑖 − R 𝑗 |
, (2.44)

where 𝑖, 𝑗 run over all atoms. The later entails short-range Pauli repulsion and
dispersion interaction. Usually, the potential is approximated as

𝑉van-der-Waals =
1
2
∑︁
𝑖≠ 𝑗

4𝜀𝑖 𝑗

((
𝜎𝑖 𝑗

𝑅𝑖 𝑗

)12
−

(
𝜎𝑖 𝑗

𝑅𝑖 𝑗

)6)
, (2.45)

with interatomic distances 𝑅𝑖 𝑗 and parameters 𝜀𝑖 𝑗 , 𝜎𝑖 𝑗 . The first summand belongs
to Pauli repulsion, and its form is purely empirical. An exponential decay would
be more accurate, but costly to evaluate numerically, which is why the 1/𝑅12 form
is chosen instead. The second summand belongs to dispersion interaction. The
1/𝑅6 form can be derived from perturbation theory as the first correction to mean-
field, Hartree-Fock like electronic interaction. Eventually, bonded and non-bonded
contributions together yield the complete force-field energy 𝑉 :

𝑉 (R1, . . . ) = 𝑉bond(R1, . . . ) +𝑉angle(R1, . . . ) +𝑉dihedral(R1, . . . ) +𝑉electrostatic(R1, . . . )
+𝑉van-der-Waals(R1, . . . )

(2.46)
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2.1. Computational quantum mechanical modelling

The free parameters can be fitted to experimental data or first-principle calculations.
The development of good force-fields is difficult. In this thesis, we use different
force-field parameters from the literature, except for the bonded parameters 𝑘𝐵
and 𝑅𝑏 that we fit to equilibrium geometries and normal mode frequencies from
first principle calculations. Because there is little interdependence of those and
other parameters, such a fit is straightforward and greatly improves the accuracy of
the molecular vibrational frequencies that affect intermolecular charge and energy
transport.

2.1.5. Molecular dynamics

Most of the time, force-field methods are not used to calculate static properties
of single structures, but to sample static and time-dependent properties depen-
dent on the nuclear coordinates and momenta, like thermal expectation values
⟨𝐴(R,P)⟩ and time-dependent correlation functions ⟨𝐴(R(𝑡),P(𝑡))𝐵(R(0),P(0))⟩.
Here, 𝐴 and 𝐵 are classical functions of the positions and momenta, not quan-
tum mechanical operators. Likewise, we consider the positions and momenta
as classical phase space variables. Molecular dynamics (MD) considers the time
evolution of a classical, many-atom system, described by a Hamiltonian function
𝐻 (R1,P1, . . . ) = 𝑇 (P1, . . . ) +𝑉 (R1, . . . ). 𝑇 =

∑
𝑖

P2
𝑖

2𝑀𝑖
, with the atomic masses𝑀𝑖 , is

the classical kinetic energy; 𝑉 the potential energy that can come directly from
an electronic structure calculation (ab initio MD), but for large systems is usually
calculated with a force-field. The system's time evolution follows the classical
canonical equations:

dR𝑖
d𝑡 =

𝜕𝐻

𝜕P𝑖
(2.47)

and
dP𝑖
d𝑡 = − 𝜕𝐻

𝜕R𝑖
(2.48)

In the Cartesian coordinates we use here, eq. (2.48) reduces to dR𝑖

d𝑡 = 1
𝑀𝑖
P𝑖 , yielding

after insertion into eq. (2.47):

𝑀𝑖

d2R𝑖
d𝑡2 = −𝜕𝑉 (R1, . . . )

𝜕R𝑖
= F𝑖, (2.49)

with the forces F𝑖 = − 𝜕𝑉 (R1,... )
𝜕R𝑖

. This is the classical Newtonian equation of motion.
Most MD codes for chemical applications use Cartesian coordinates and, hence,
solve Newton's equation. In this thesis, we use the Gromacs code [48] to integrate
eq. (2.49) numerically. Gromacs offers several integration algorithms, of which we
opt for the leap-frog algorithm [49]. Leap-frog evaluates positions and velocities
𝑉 = dR

d𝑡 at alternating moments in time. First one expands

V𝑖
(
𝑡 + 1

2Δ𝑡
)
≈ V𝑖

(
𝑡 + 1

2Δ𝑡
)
+ 1
𝑀𝑖

F𝑖 (𝑡)Δ𝑡, (2.50)
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then
R𝑖 (𝑡 + Δ𝑡) ≈ R𝑖 + V𝑖

(
𝑡 + 1

2Δ𝑡
)
Δ𝑡, (2.51)

with the time step Δ𝑡 , usually on the order of 1 fs. With initial conditionsR𝑖 (0) = R0
and V𝑖

(
−Δ𝑡

2
)
= V0 these iterative expressions define the time evolution of the

system. Locally the expansion error is of𝑂 (Δ𝑡3) because quadratic terms cancel, so
that globally the error is 𝑂 (Δ𝑡2). Crucially, leap-frog conserves energy on average
for small enough time steps, leading to stable and physically meaningful dynamics.
The peculiar offset of Δ𝑡/2 between position and momentum evaluations avoids
the addition of terms of different order in Δ𝑡 , which is important for the numerical
stability of the simulation.

2.1.6. Thermal and pressure equilibration

The canonical equations lead to energy conserving dynamics 𝐸 = 𝑇 (P) +𝑉 (R) =
const. Thus, naive molecular dynamics simulations sample a microcanonical en-
semble in the sense of statistical mechanics. If 𝑁 is the number of atoms, and 𝑉
a volume to which the system is confined, we also speak of an NVE ensemble.
However, normally the canonical, or 𝑁𝑉𝑇 , ensemble, where only the expectation
value ⟨𝐸⟩ of the energy is fixed, corresponds best to experimental conditions that
allow energy exchange with the environment. Then, the probability for the system
to attain energy 𝐸 should be 𝑝 (𝐸) = 𝑒−𝛽𝑇 /𝑍 , with 𝛽 = 1/(𝑘𝐵𝑇 ), temperature 𝑇 , and
the partition function 𝑍 =

∫
𝑑3𝑁𝑅𝑑3𝑁𝑃𝑒−𝛽𝐸 (R,P) . Canonical energy distribution has

to be introduced artificially by suitably altering the dynamics. To this end, there are
various ways. One way is to turn Newton's equation into a stochastic differential
equation by addition of a random force term, leading to a Langevin equation. In
this work, another approach is used. Nos and Hoover showed that there is a unique
deterministic way to enforce a canonical ensemble through the addition of a dummy
degree of freedom 𝑠 . This algorithm is known as the Nose-Hoover thermostat [50,
51]. 𝑠 is linked to the rest of the system in the form of a friction term −𝑠P/𝑀 ,
yielding altered equations of motion:

𝑀𝑖

d2R𝑖
d𝑡2 = F𝑖 − 𝑠

dR𝑖
d𝑡 . (2.52)

𝑠 obeys its own equation of motion:

d𝑠
d𝑡 =

1
𝑄
(𝑇 −𝑇0). (2.53)

𝑄 is a parameter controlling how strongly the thermostat alters the dynamics of the
system. 𝑇0 is the desired temperature, while 𝑇 is the estimated current temperature
of the system. The equipartition theorem is employed to estimate 𝑇 = 2

3𝑁𝑘𝐵
∑
𝑖

𝑃2𝑖
2𝑀𝑖

.
Under experimental conditions often the volume of the system may vary, while
the pressure 𝑃 is fixed, leading to an 𝑁𝑃𝑇 ensemble. In that case, with a second
dummy degree of freedom, dynamics can be altered to achieve the correct average
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pressure. This Parrinello-Rahman barostat works similarly as the Nose-Hoover
thermostat [52, 50]. Some of the dynamical simulations presented in this thesis are
in the 𝑁𝑉𝑇 , some in the 𝑁𝑃𝑇 ensemble. Usually, there is little difference for solids,
but for liquids effects of pressure coupling are more pronounced.

2.2. Charge transport theory

This thesis aims to provide new tools for the study of charge and energy transport
processes in molecular materials. There is a wide range of materials than can
be considered molecular for the purpose of the methods to be introduced, but,
specifically, we will think of bulk materials composed of organic molecules that
are semiconductors. Organic semiconductors come as amorphous and crystalline
materials. Since the latter tend to be particularly effective conductors, a special
focus will be on molecular crystals. Organic semiconductors are of significant and
growing industrial interest. They feature prominently in three kinds of devices:
as organic field effect transistors (OFETs), as organic photovoltaic devices (OPVs),
and as organic light emitting diodes (OLEDs). In the light of their usefulness,
much theoretical and modeling research has been undertaken. Theory mostly
contributes to development in two ways: through a more thorough understanding
of the fundamental driving forces, allowing for educated molecular design, and
as a tool for fast screening of potential materials in the huge space of chemically
feasible molecules. Most of the commonly used models apply in one of two possible
limiting cases in which charge or excitations are spatially either highly localized on
individual molecules, or fully delocalized throughout the system. In the following,
we will review the origin of both regimes and the fundamental ideas behind the
methods dealing with them. As far as energy transport is concerned, in this thesis
we confine ourselves to energy transport in the form of Frenkel excitons. A Frenkel
exciton is a molecular excitation localized on a single molecule, that is, there is
no charge transfer from one molecule to another. One can also think of it as an
electron-hole pair bound on a single molecule. While the extend of the excitation
itself is confined, excitations on different molecules are coupled, so that excitons can
move around via the combined excitation and deexcitation of a pair of molecules.
Exciton and charge movement then take on the same form and can often be studied
on the same footing, albeit arising parameters have different origins. Therefore,
many results about charge transport apply to exciton transport as well, and the
following discussion is meant to apply to both of them. To simplify language, we
may sometimes refer to only one, but mean both. In chapter 4 the Frenkel exciton
model is explained in more detail.
One very important property of interest is how easily charges and excitons can
move around. For charge transport the corresponding quantity of interest is the
charge carrier mobility 𝜇:

𝜇 =
⟨𝑣⟩
𝐸
. (2.54)
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Here, the expectation value of the velocity 𝑣 = d𝑥
d𝑡 is the drift velocity of the charge

under the influence of the external electrical field of strength 𝐸. In principle, 𝜇 is a
2-rank tensor because in anisotropic materials a field applied in a certain direction
can cause charges to move in another, but since 𝜇 is positive semidefinite, it can be
diagonalized and decomposed into three independent one dimensional mobilities.
The conductivity 𝜎 of a semiconductor is to 𝜇 alongside the charge carrier density 𝜌
as 𝜎 = 𝜌𝑐𝜇. Because the Fermi level lies above the valence band in semiconductors,
charge carriers are either electron excited to the conduction band, or the holes in
the valence band, which they leave behind, that behave as effective particles with
positive charge. 𝜇 can depend on the field 𝐸, but is constant in the low field limit
𝐸 → ∞. It is related to the diffusion constant 𝐷 through a fluctuation-dissipation
theorem, the Einstein-Smoluchowski relation:

𝜇 =
𝐷

𝐾𝐵𝑇
. (2.55)

The relation connects the field induced, directed movement with the random,
thermally induced movement, where the average distance traveled in time 𝑡 is√︁

⟨(𝑥 (𝑡) − 𝑥 (0))2⟩ ∼
√
𝐷𝑡 . (2.56)

Obviously, because excitons posses no charge, electrical fields cannot cause them
to move, and consequently no mobility 𝜇 can be defined. They do, however, diffuse
through thematerial and their proneness tomove is still quantifiable by the diffusion
constant. For example, exciton diffusion is very important in OPVs because phonons
are absorbed in the bulk, but charge separation takes place only at interfaces, which
the excitons have to reach.

2.2.1. The Holstein model

In this section we explore the Holstein model[53] , a simple toy model for an
organic crystal. While the model, introduced in 1959, simplifies much of the
complex physics of molecular materials, it still offers a useful picture that highlights
the essential forces shaping transport processes to large degree. The model is
visualized in Fig. 3.3. We consider a one dimensional molecular crystal into which
we place a single charge or exciton. The nuclear degrees of freedom of each
molecule i are described by a single coordinate xi, and the molecular potential
energy surface is expanded to second order, so that the nuclear potential energy
becomes a parabola 𝐸nuc =

∑
𝑖
1
2𝑀𝜔𝑥

2
𝑖 , with the molecular vibrational frequency

𝜔 , and nu-clear effective mass𝑀 . For the wavefunction of the charge we assume
only one state per site is necessary to describe it, with identical site energies, all
put to zero, and couplings 𝐽 to nearest neighbors. The corresponding Hamiltonian
then takes on a simple tight-binding form 𝐻𝑇𝐵 = 𝐽

∑
𝑖 (𝑎†𝑖 𝑎𝑖+1 + 𝑎

†
𝑖+1𝑎𝑖), where the

operator 𝑎†
𝑖
creates a charge at site 𝑖 , and its conjugate 𝑎𝑖 destroys it. The ionization

or excitation energy, as represented by the site energies, depends on the nuclear
conformation 𝑥𝑖 . To account for this, the change in energy is expanded to linear
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2.2. Charge transport theory

Figure 2.3.: The Holstein model for a one dimensional molecular crystal. Molecules
are modeled by one nuclear degree of freedom xi, and one electronic
state per site 𝑖 , coupled to neighboring sites with coupling 𝐽 .

order, yielding the electron-phonon interaction energy 𝐸𝑖𝑛𝑡 =
∑
𝑖 𝛼𝑥𝑖𝑎

†
𝑖
𝑎𝑖 , with

coupling constant 𝛼 and the site occupation 𝑎†
𝑖
𝑎𝑖 . 𝛼 is related to the strength of the

reaction of a molecule to the presence of a charge. Completing the square, we see
for a single molecule 𝐸nuc + 𝐸int = 1

2𝑀𝑥
2 + 𝛼𝑥 =

1
2𝑀

(
𝑥 + 𝛼

𝑀𝜔2

)2
+ 1

2
𝛼2

𝑀𝜔2 . Therefore,
the presence of the charge causes a molecular reorientation, accompanied by an
energy change

𝜆 =
1
2
𝛼2

𝑀𝜔2 . (2.57)

𝜆 is known as the internal reorganization energy of the molecule and has a very
strong influence on the transport regime. Eventually, the full electronic Holstein
Hamiltonian, as the sum of all terms, reads:

𝐻 =
∑︁
𝑖

(𝐽 (𝑎†
𝑖
𝑎𝑖+1 + 𝑎†𝑖+1𝑎𝑖) + 𝛼𝑥𝑖𝑎

†
𝑖
𝑎𝑖) +

∑︁
𝑖

1
2𝑀𝜔

2𝑥2𝑖 . (2.58)

Let |𝑖⟩ = 𝑎†
𝑖
|0⟩ be the state in which the charge is localized on a single site. The

localized states form a basis in which to expand electronic wavefunctions:

|Ψ⟩ =
∑︁
𝑖

𝑐𝑖 |𝑖⟩, (2.59)

with expansion coefficients ci. In case all nuclear coordinates agree 𝑥1 = 𝑥2 =

. . . the Holstein model is identical to a simple, one dimensional tight-binding
model. Then wavefunctions 𝑐 𝑗∞𝑒𝑖𝑘𝑑 𝑗 , with lattice spacing 𝑑 and wavenumber 𝑘 are
electronic eigenstates, as is easy to verify by insertion. The energy spectrum for
𝑥1 = 𝑥2 = · · · = 0 forms a band with dispersion relation

𝐸 (𝑘) = − 2𝐿 cos(𝑘𝑑)
≈ − 2𝐽 + 𝐽𝑑2𝑘2 for small𝑘.

(2.60)
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2. Theoretical Background

The band is, however, not the ground state, but there are bound states with lower
energy. Those states require 𝑥𝑖 ≠ 0, coupling the charge and the nuclei, and forming
a bound pair of charge and molecular deformation, known as a polaron. Clearly,
the presence of bound states with energies below the band can have a huge impact
on charge mobility. When 𝐸 (𝑥1, . . . ) is the minimal energy, then 𝜕

𝜕𝑥𝑖
𝐸 (𝑥1, . . . ) = 0

for all 𝑖 . Applying this condition to the electronic eigenvalue problem establishes a
connection between the wavefunction and the nuclear coordinates of the polaron:

𝑥𝑖 =
𝛼

𝑀𝜔2 |𝑐𝑖 |
2 =

2𝜆
𝛼
|𝑐𝑖 |2. (2.61)

Hereupon it is possible to find the minimum in two limiting cases of either very
large or small electronic coupling 𝐽 between sites, relative to the electron-phonon
coupling a. In the first case of large 𝐽 , the wavefunction should still look much like
a band solution, and hence be spread out over many sites. Therefore, this limit is
known as the large polaron solution. Due to the large extension of the wavefunction,
we can assume that 𝑖 is a continuous index and expand 𝑐𝑖+1 = 𝑐𝑖 + 𝜕𝑐𝑖

𝜕𝑖
+ 1

2
𝜕2𝑐𝑖
𝜕𝑖2 .

Substitution into the eigenvalue equation yields the minimum energy

𝐸𝑙𝑝 = −2𝐽 − 1
48

1
𝐽

(
𝛼2

𝑀𝜔2

)2
= −2𝐽 − 1

48
𝜆2

𝐽
. (2.62)

Compared with the minimum energy 𝐸𝑏 = −2𝐽 of the band, this corresponds to a
polaron binding energy of 𝐸𝑙𝑝 − 𝐸𝑏 = − 1

48
𝜆2

𝐽
. Assuming that in the large polaron

limit 𝜆 is at most on the order of 𝐽 , and a typical large value of 𝐽 ≈ 100meV, the
binding energy is on the order of 1meV. At ambient temperature T = 300K the
typical thermal energy is about 𝑘𝐵𝑇 = 26meV, which is much larger. Thus, as the
band is easily thermally accessible, the Holstein model suggests transport behavior
in the large polaron limit is largely determined by the band structure of the crystal.
Next, we tend to the other limit where 𝐽 is small. At 𝐽 = 0 a possible eigenstate is
given by 𝑐𝑖 = 𝛿𝑖𝑖0 for some 𝑖0. From this state perturbation theory in 𝐽 yields the
corrected solution:

𝑐𝑖 = 𝛿𝑖𝑖0 +
𝐽𝑀𝜔2

𝛼2
(𝛿𝑖 (𝑖0+1) + 𝛿𝑖 (𝑖0−1)) = 𝛿𝑖𝑖0 +

𝐽

2𝜆 (𝛿𝑖 (𝑖0+1) + 𝛿𝑖 (𝑖0−1)) (2.63)

Because 𝜆 is much bigger than 𝐽 , the wavefunction is almost completely localized
on one side. Therefore, this solution is known as the small polaron solution. The
energy of the small polaron is given by

𝐸𝑠𝑝 = − 𝛼2

2𝑀𝜔2 = −𝜆. (2.64)

The physical picture behind this is the charge localizing on one molecule and by
reorganization it creates a potential well of depth 𝜆. The magnitude of the binding
energy 𝐸𝑠𝑝 − 𝐸𝑏 = −𝜆 + 2𝐽 is much larger than the thermal energy at 𝑇 = 300K.
Hence, the small polaron is stable, and in order to move an energy barrier 𝜆 has to
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2.2. Charge transport theory

be overcome by thermal activation. That is a typical scenario for transition state
theory, which is, indeed, commonly used in this limit. In the following section,
we will elaborate more on how to deal with the two extreme cases predicted by
the Holstein model. Part of this thesis is concerned with the intermediate regime
in between the extremes. The Holstein model ignores some effects that become
important exactly there, such as the fluctuation of the couplings 𝐽 here assumed to
be constant. The extended Holstein- Peierls model [54], which includes coupling
fluctuations, is still used for practical, predictive applications [55].

2.2.2. The hopping regime

In this section, we explore the hopping limit of charge and energy transport. As
previously established, if the molecular reorganization energy is much larger than
the intermolecular electronic coupling 𝐽 , the charge or exciton becomes localized
on a single site, and in order to move to a neighbor it has to overcome an energy
barrier. The barrier is higher than the typical thermal energy in the molecule, so
to reach the top of the barrier is a random event, driven by molecular vibration,+
that happens only occasionally. When the barrier is overcome through thermal
activation, transport happens swiftly before the charge becomes trapped again on
the next site. Essentially, the charge moves around by random hopping events,
performing a random walk throughout the material bulk. Because the charge
usually stays long enough on each site for it to relax and thermally equilibrate to a
Boltzmann energy distribution, the charge's random walk is a Markov process. If
𝑝𝑖 (𝑡) is the probability to find the charge on site 𝑖 at time 𝑡 , the time evolution of the
probabilities, and hence the movement of the charge, obeys the master equation:

d𝑝𝑖 (𝑡)
d𝑡 =

∑︁
𝑗

(𝑝 𝑗 (𝑡)𝑘 𝑗𝑖 − 𝑝𝑖 (𝑡)𝑘𝑖 𝑗 ), (2.65)

where 𝑘𝑖 𝑗 is the rate of transition from site 𝑖 to 𝑗 , i.e. the expected number of
hops per time interval. Put into words, the change in probability to be on site i is
composed of the chance to be on another site and move to 𝑖 , reduced by the chance
to already be on 𝑖 but to move away to some other site. When an external field 𝐸
is applied, the charge is more likely to hop into the direction of field, resulting in
a drift. The transition rates 𝑘𝑖 𝑗 determine the drift velocity ⟨𝑣⟩ = ∑

𝑖, 𝑗 𝑑𝑖 𝑗𝑘𝑖 𝑗 , with
the distances 𝑑𝑖 𝑗 between sites. The drift may be anisotropic, but we suppress
directional indices here for simplicity. The field induced drift is associated with the
mobility

𝜇 =
1
𝐸

∑︁
𝑖, 𝑗

𝑑𝑖 𝑗𝑘𝑖 𝑗 . (2.66)

One of the fundamental problems of charge and energy transport in the hopping
regime has now become to determine the transition rates 𝑘𝑖 𝑗 . Under various assump-
tions about the nature and conditions of the intersite transfer, different expressions
can be derived [56, 57]. Classical transition state theory assumes that transfer only
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2. Theoretical Background

Figure 2.4.: Visualization of free energy surface of the transfer process and the
important quantities that appear in the rate equation.

happens in a transition state, which is a well founded approximation if 𝜆 is much
larger than 𝐽 . Thus, transition state theory can be applied with the charge localized
and relaxed on one site as initial state𝐴, and localized and relaxed on a neighboring
site as final state 𝐵. After expansion of the initial and final potential energy surfaces
to quadratic order the transition state rate equation can be derived as [58]:

𝑘𝐴𝐵 = 𝜈effK𝑒𝑙𝑒
−𝛽Δ𝐺†

. (2.67)

Here, 𝜈eff is the frequency of the effective mode that drives the transition, i.e. it is
related to the curvature of the potential energy surface expanded in the reaction
coordinate. A reaction coordinate commonly used for electron transfer processes
[59, 60] is the energy gap Δ𝐸 (R) = 𝐸𝐵 (R) −𝐸𝐴 (R) between the energy of the initial
and final state at the nuclear conformation R. K𝑒𝑙 is the electronic transmission
coefficient, the probability of a transfer to actually happen when the transition
state is reached. Assuming a single crossing of energies 𝐸𝐴 and EB, the transfer
probability may be derived from the Landau-Zener model[61, 62], which exactly
calculates the transition probability 𝑃LZ in a two state system where the energy
gap varies linearly in time Δ𝐸 ∼ 𝑡 from −∞ to +∞. Then[61, 62] ,

K𝑒𝑙 =
2𝑃LZ

1 + 𝑃LZ
, (2.68)

with
𝑃LZ = 1 − 𝑒−2𝜋Γ,

2𝜋Γ =
𝜋

3
2 ⟨|𝐻𝐴𝐵 |2⟩TS
𝑉eff

√
𝜆𝑘𝐵𝑇

,
(2.69)

where 𝐻𝐴𝐵 = ⟨𝐴|𝐻 |𝐵⟩ is the electronic coupling of initial and final state. 𝐻𝐴𝐵 is the
same as 𝐽 in the Holstein model, but since the coupling may actually fluctuate, the
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2.2. Charge transport theory

expectation value at the transition state must be taken. The final quantity in the
transition state rate expression is the activation free energy 𝛿𝐺†, the height of the
reaction barrier. For charge and exciton transfer between small molecules the free
energy is mostly identical to the energy because entropic contributions are small.
𝛿𝐺† can be decomposed into two contributions:

𝛿𝐺† = 𝛿𝐺‡ − 𝛿‡. (2.70)

𝛿‡ is the diabatic activation energy, the energy of the initial state at the transition
geometry. It is determined by the reorganization energy 𝜆 and the driving force
Δ𝐺0, the equilibrium energy difference between final and initial state [63]:

Δ𝐺‡ =
(𝜆 + Δ𝐺0)2

4𝜆 . (2.71)

In crystals all sites are equivalent, so that DG0 is entirely brought about by the
external field: Δ𝐺0 = ±𝐸𝑑𝐴𝐵 for charges or Δ𝐺0 = 0 for excitons. In amorphous
materials different environments, including polarizability, need to be taken into
account. Δ‡ is the lowering of the barrier due to the energy splitting caused by the
interaction of initial and final state [63]:

Δ‡ =
〈
|𝐻𝐴𝐵 |2

〉 1
2
TS −

1
𝜆

〈
|𝐻𝐴𝐵 |2

〉
𝐴
. (2.72)

The rate expression can be further simplified in the nonadiabatic limit Γ ≪ 1 that
assumes very fast transfer at the transition state. Under this assumption 𝑒−2𝜋Γ can
be expanded to first order, such that 1 − 𝑒−2𝜋Γ ≈ −2𝜋Γ, and the rate simplifies to

𝑘𝐴𝐵 =
2𝜋

√
4𝜋𝜆𝑘𝐵𝑇

〈
|𝐻𝐴𝐵 |2

〉
TS 𝑒

−𝛽Δ𝐺‡ . (2.73)

Eq. (2.73) is the famous Marcus rate expressions that has found ample use in charge
transport simulations[64, 65, 66, 67]. It has also been applied to exciton transport
[68], although the alternative Forster rate [69] expression is far more popular for
energy transport [70].

2.2.3. The band regime

Many high-performance organic semiconductors form crystals. As such they do
not differ fundamentally from inorganic semiconductors, except for the usually
weaker bond between lattice sites, and the larger electron-phonon coupling due to
intramolecular relaxation. As already indicated by the Holstein model, if relaxation
is not too strong, the crystalline band structure may prevail. Therefore, the band
regime is the second commonly discussed transport regime, on the opposite end
from hopping. Note that while band structure is most of the time associated
with charge transport, the translational symmetry that leads to electronic bands
can also cause excitonic bands to form. The methods for the study of the band
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2. Theoretical Background

transport regime are largely the tools solid-state physics has developed for inorganic
semiconductors. The crystal geometry is invariant under translations R → R +
a, where 𝑎 is a multiple of the crystal lattice vectors. Because for that reason
the Hamiltonian commutes with translation operators, there is a joint basis of
eigenvectors, or in other words, electronic wavefunctions take the form of Bloch
waves[71] :

Ψ(r) = 𝑒𝑖kr𝑢k(r), (2.74)
where 𝑢k(r+a) = 𝑢k(r) for a multiple a of the lattice vectors, and the wave number
k is the momentum of state Ψ. Bloch states are spatially delocalized across the
entire crystal, and hence the exact opposite of the localized states of hopping
transport. The electronic spectrum then consists of a discrete set 𝐸𝛼 , 𝛼 = 1, 2, . . .
of continuous energy bands 𝐸𝛼 (k). In semiconductors the Fermi levels falls in
between bands, so that all bands are either fully occupied or vacated. Some charges
are thermally excited from the filled valence band to the empty conduction band,
resulting in only partially filled bands for electrons and holes. Excitonic bands
are also normally only occupied by a few quasi-particles. Therefore, charge and
energy carries can usually be modeled as quasi free particles. For a free particle
the relation between its momentum 𝑘 and kinetic energy 𝑇 is 𝐸 (𝑘) = 𝑘2

2𝑚 , with the
particle mass𝑚. Then, one of the classical canonical equations reads d𝑟

d𝑡 =
𝜕𝐸 (𝑘)
𝜕𝑘

= 𝑘
𝑚
,

relating momentum and velocity. The semiclassical approach to particle dynamics
in semiconductors is to assume that the classical canonical equations are valid, but

𝑚∗ > 0

𝑚∗ < 0
hole
electron 𝐸𝐹

𝑘

Ba
nd

en
er
gy

Figure 2.5.: A charge is excited from the the valence to the conduction band, leaving
behind a hole. The Fermi level 𝐸𝐹 falls in between the two bands. The
curvature of the bands is related to their effective mass𝑚∗ that can be
negative.

the free particle dispersion relation is replaced with the band structure dispersion
𝐸𝛼 (𝑘) [72]. The velocity d𝑟

d𝑡 can in this context be interpreted as the group velocity
of the wavefunction. Near the band minima and maxima, where 𝜕𝐸𝛼 (𝑘)

𝜕𝑘
= 0, 𝐸𝛼 (𝑘)

can be expanded 𝐸𝛼 (𝑘) ≈ 𝐸0 + 1
2
𝜕2𝐸𝛼 (𝑘)
𝜕𝑘2 𝑘2 = 𝐸0 + 𝑘2

2𝑚∗ , resulting in same form as for
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2.2. Charge transport theory

the free particle, but with an effective mass𝑚∗ given by the band structure:

1
𝑚∗ =

𝜕2𝐸𝛼 (𝑘)
𝜕𝑘2

. (2.75)

The effective mass𝑚∗ can differ extremely from the real mass of the charge carriers.
In fact,𝑚∗ can even be negative and is typically anisotropic, although directional
indices have been suppressed here for simplicity. Besides the band structure en-
tering into𝑚∗, the interaction of carriers and phonons needs to be accounted for,
too. However, in the band limit, we may assume the interaction to take the form
of occasional, random scattering events. Let 𝑓 (𝑘, 𝑟, 𝑡) be the distribution function
of momenta and positions at time 𝑡 . In thermal equilibrium the time and posi-
tion independent distribution 𝑓0(𝑘) is given by the Fermi-Dirac or Bose-Einstein
distribution:

𝑓0(𝑘, 𝑟 ) =
1

1 ± 𝑒 (𝐸𝛼 (𝑘)−𝜇)/(𝑘𝐵𝑇 )
, (2.76)

where 𝜇 is not the mobility, but the chemical potential, and the sign is positive
for fermions like electrons and holes and negative for bosons like singlet and
triplet excitons. The time derivative of 𝑓 excluding interaction with phonons is
d𝑓 (𝑘,𝑟,𝑡)

d𝑡 = (𝜕𝑡 + d𝑟
d𝑡 𝜕𝑟 +

d𝑘
d𝑡 𝜕𝑘) 𝑓 (𝑘, 𝑟, 𝑡) by the chain rule. The derivatives of 𝑟 and 𝑘

can be calculated according to the semi-classical equations of motion from above:
d𝑟
d𝑡 =

𝑘
𝑚∗ , and d𝑘

d𝑡 = ±𝐸, in an external electrical field 𝐸. For excitons we set 𝐸 = 0
because they have no charge, and in the following we pick the minus sign of the
electron case for simplicity. Hence follows the Boltzmann equation for transport in
bands[72] : (

𝜕𝑡 +
𝑘

𝑚∗ 𝜕𝑟 − 𝐸𝜕𝑘
)
𝑓 (𝑘, 𝑟, 𝑡) =

(
𝜕𝑓

𝜕𝑡

)
coll

(2.77)

The term
(
𝜕𝑓

𝜕𝑡

)
coll

is called the collision integral and describes scattering on phonons.
At only small deviations from the equilibrium distribution the relaxation time
approximation is valid. It assumes that the extend of scattering is proportional to
the distance from equilibrium:(

𝜕𝑓

𝜕𝑡

)
coll

= − 𝑓 (𝑘, 𝑟, 𝑡) − 𝑓0(𝑘)
𝜏 (𝑘) . (2.78)

Here, 𝜏 (𝑘) is the relaxation time, which determines how fast the system relaxes
back to equilibrium after a perturbation. 𝜏 is available from ab initio electronic
structure calculations. One condition for the Boltzmann equation based approach
to be valid is that 𝜏 is significantly larger than the typical transfer time from one
site to the other, since otherwise the random scattering assumption breaks down.
In the relaxation time formalism the Boltzmann equation is solvable in closed form,
and one obtains for the conductivity 𝜎 [72]:

𝜎 = − 1
3𝜋2

∫
𝑑𝑘
𝜕𝑓0(𝑘)
𝜕𝑘

𝑘3

𝑚∗𝜏 (𝑘). (2.79)
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At small temperatures 𝜕𝑓0 (𝑘)
𝜕𝑘

is strongly peaked at the Fermi level: 𝜕𝑓0 (𝑘)
𝜕𝑘

∼ −𝛿 (𝑘 −
𝑘𝐹 ), allowing to approximate further 𝜎 ≈ 𝜌𝜏

𝑚∗ , with the carrier density 𝜌 and the
relaxation time 𝜏 at the Fermi level. Then, we directly find the mobility 𝜇 = 𝜎/𝜌 :

𝜇 =
𝜏

𝑚∗ . (2.80)

This approximate expression for the mobility is known as the Drude form. It tells
us that in the band limit the mobility is determined by the band structure and
electron-phonon scattering. The former enters through the effective mass 𝑚∗,
related to the curvature of the band, and the later in the from of the scattering time
𝜏 . The mobility increases with 𝜏 , that is, less scattering leads to higher mobilities.
It decreases with𝑚∗, which means that flat bands lead to lower mobilities.

2.3. Nonadiabatic molecular dynamics

2.3.1. Quantum Mechanics/Molecular Mechanics Scheme

The molecular complex is decomposed into a quantum chemical (QM) region, where
the excess charge carrier propagates and the remainder of the complex is treated
with molecular mechanics (MM). The energy of the QM region containing no excess
charge is approximated with MM, and is included in the total MM energy 𝐸totMM. The
total energy of a molecule in QM zone with a hole can be approximated as

𝐸+ ≈ 𝐸totMM − ⟨Ψ|𝐻 [𝜌0] |Ψ⟩ + Δ𝐸QM/MM , (2.81)

where |Ψ⟩ is the hole wave function, 𝐻 [𝜌0] is the Kohn–Sham Hamiltonian of the
neutral system, and Δ𝐸QM/MM is the interaction energy between the QM and MM
subsystems. Further details may be referred to in Ref. [28].
The molecules in OSCs interact with non-covalent forces, which allows for a

concenptually simple coarse-graining of the electronic structure of the QM zone:
[28]

The wave function of the hole is expressed as a linear combination of (orthogo-
nalized) molecular orbitals, |𝜙𝑚⟩, of fragment molecules 𝐴,

Ψ =
∑︁
𝐴

∑︁
𝑚∈𝐴

𝑎𝑚 |𝜙𝑚⟩ , (2.82)

where 𝜙𝑚 are the molecular orbitals of the individual fragments (molecules).

2.3.1.1. Quantum Chemical Calculations and the Fragment Orbital Scheme.

Since low-energy charge transfer typically occurs in a narrow energy window
around the Fermi level, any strongly bound electronic states are affected negligibly,
and it is sufficient to consider frontier orbitals of the fragments. In the following,
the set of 𝜙𝑚 will be restricted to the set of such frontier orbitals.
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2.3. Nonadiabatic molecular dynamics

Inserting Eq.2.82 into Eq.2.81, we obtain the total energy expressed in a fragment
orbital (FO) basis,

𝐸+ = 𝐸0 −
∑︁
𝐴,𝐵

∑︁
𝑚∈𝐴

∑︁
𝑛∈𝐵

𝑎∗𝑚𝑎𝑛⟨𝜙𝑚 |𝐻 [𝜌0] |𝜙𝑛⟩ + Δ𝐸QM/MM , (2.83)

where 𝐸0 is the energy of the charge-neutral system and 𝐻 0
𝑚𝑛 = ⟨𝜙𝑚 |𝐻 [𝜌0] |𝜙𝑛⟩ is

the Hamilton matrix elements. This approach performs a quantum propagation of
an excess charge carrier, thus it differs from traditional MFE/FSSH simulations that
typically propagate all the electronic degrees of freedom.

The QM/MM interaction term is given within the DFTB method as

Δ𝐸QM/MM =
∑︁
𝐴

∑︁
𝑚∈𝐴

|𝑎𝑚 |2
∑︁
𝐾

∑︁
𝛼∈𝐴

Δ𝑞𝑚𝛼 𝑞
0
𝐾

|𝑅𝛼 − 𝑅𝐾 |
, (2.84)

where 𝑞0
𝐾
is the partial charge on atom 𝐾 of the neutral environment and Δ𝑞𝑚𝛼 is

the change of Mulliken charge on atom 𝛼 due to a hole located at orbital𝑚.
The Hamilton matrix elements, 𝐻 0

𝑚𝑛 = ⟨𝜙𝑚 |𝐻 [𝜌0] |𝜙𝑛⟩, are computed using the
non-self-consistent variant of the density functional tight-binding method (DFTB)
as discussed in Ref. [28]. DFTB is derived from DFT by a Taylor expansion of the
total energy around a well-defined reference density, and is found to be two to
three orders of magnitude faster than DFT-GGA functionals with mid-sized basis
sets [73, 74]. DFTB was shown to provide electronic couplings in a good agreement
with other DFT approaches, and the application of an uniform scaling factor allows
the accuracy comparable to high-level ab initio methods [75, 76]. In the present
work, the electronic couplings obtained with the DFTB method were scaled by a
factor of 1.54 and 1.795 for hole and electron transport to reach the accuracy of the
second-order couple cluster (CC2) calculations [76].

2.3.2. Mean-Field Ehrenfest

By inserting Eq.2.82 into time-dependent electronic Schrödinger equation, we
obtained the propagation equation for the expansion coefficients

¤𝑎𝑚 = −𝑖
∑︁
𝑛

𝐻𝑚𝑛𝑎𝑛 −
∑︁
𝑛

𝑎𝑛⟨𝜙𝑚 | ¤𝜙𝑛⟩ , (2.85)

where 𝐻𝑚𝑛 are the DFTB Hamiltonian matrix elements including the QM/MM
interactions. The last term is negligible small and thus omitted in the integration
of the TDSE. Note 𝑎𝑚 can be approximated as the expansion coefficients of the
electronic wave function in the diabatic basis set {𝜙𝑚}.

The classical equation of motion for nuclei is given by

𝑚𝐾
¥𝑅𝑘 = −

𝜕𝐸totMM
𝜕𝑅𝑘

+
∑︁
𝑚𝑛

𝑎∗𝑚𝑎𝑛
𝜕𝐻 0

𝑚𝑛

𝜕𝑅𝑘
− 𝜕Δ𝐸QM/MM

𝜕𝑅𝑘
, (2.86)

where 𝑘 denotes 𝑥 , 𝑦 and 𝑧 of atom 𝐾 .
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2. Theoretical Background

2.3.3. Fewest Switches Surface Hopping

In the FSSH method [77], the electronic wave function is expressed as a linear
combination of adiabatic basis functions {|𝜓𝑖⟩}

Ψ =
∑︁

𝐶ad
𝑖 |𝜓𝑖⟩ , (2.87)

where 𝐶𝑎𝑑𝑖 are the expansion coefficients of the electronic wave function in the
adiabatic representation. Inserting Eq.2.87 into the time-dependent Schrödinger
equation and projecting onto the adiabatic electronic basis states, we obtain

𝑖ℏ
𝑑𝐶ad

𝑗

𝑑𝑡
= 𝐶ad

𝑗 𝐻
ad
𝑗 − 𝑖ℏ

∑︁
𝑘

𝐶ad
𝑘
D 𝑗𝑘 , (2.88)

where 𝐻 ad
𝑗 is the potential energy (PE) of adiabatic state 𝑗 . The diagonalization of

the matrix 𝑯 yields the adiabatic PEs

𝑯 𝒂𝒅 = 𝑼𝑯 0𝑼 † , (2.89)

where 𝑼 is the diabatic-to-adiabatic (AtD) transformation matrix.
According to the chain rule, the time derivative coupling between the adiabatic

electronic states 𝑗 and 𝑘 , D 𝑗𝑘 , can be written as

D 𝑗𝑘 =

〈
𝜓 𝑗

���� 𝑑𝑑𝑡 ����𝜓𝑘〉 = ¤𝑹𝒅 𝑗𝑘 , (2.90)

where 𝒅 𝑗𝑘 denotes the nonadiabatic coupling vector (NCV). In the present study,
the NCV is approximately given by [78]

𝒅 𝑗𝑘 ≈

[
𝑼 †∇𝑯 0𝑼

]
𝑗𝑘

𝐻𝑎𝑑
𝑘

− 𝐻𝑎𝑑
𝑗

. (2.91)

For the derivation of NCV, the reader is referred to Ref. [78].
Classical trajectories are propagated on a single electronic state according to

Newton’s equation of motion

𝑚𝐾
¥𝑅𝑘 = −

𝜕𝐸totMM
𝜕𝑅𝑘

+
𝜕𝐻 ad

𝑗

𝜕𝑅𝑘
− 𝜕Δ𝐸QM/MM

𝜕𝑅𝑘

= −
𝜕𝐸totMM
𝜕𝑅𝑘

+
∑︁
𝑚𝑛

𝑈𝑎𝑚𝑈𝑎𝑛
𝜕𝐻 0

𝑚𝑛

𝜕𝑅𝑘
− 𝜕Δ𝐸QM/MM

𝜕𝑅𝑘
, (2.92)

where 𝐻 ad
𝑎 denotes the adiabatic energy of the current state 𝑗 . Note that the

charge relaxation in FSSH and MFE simulations is governed by the quantum forces,∑
𝑚𝑛𝑈𝑎𝑚𝑈𝑎𝑛

𝜕𝐻 0
𝑚𝑛

𝜕𝑅𝑘
and

∑
𝑚𝑛 𝑎

∗
𝑚𝑎𝑛

𝜕𝐻 0
𝑚𝑛

𝜕𝑅𝑘
in Eq. 2.86, respectively. This treatment is

referred to ’explicit relaxation (ER)’ in the following sections.
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2.3. Nonadiabatic molecular dynamics

The hopping probability from the current state 𝑗 to another state 𝑘 is defined as

𝑃
𝑗→𝑘

FSSH = max
0, 2D 𝑗𝑘

Re
(
𝐶ad∗
𝑘
𝐶ad
𝑗

)
|𝐶ad
𝑗
|2

Δ𝑡

 . (2.93)

A uniform random number 𝜉 between 0 and 1 is generated and a switch from the
current state 𝑗 to another state 𝑘 takes place, if

𝑘−1∑︁
𝑖=1

𝑃
𝑗→𝑖

FSSH < 𝜉 ≤
𝑘∑︁
𝑖=1

𝑃
𝑗→𝑖

FSSH . (2.94)

To ensure the conservation of total energy for each trajectory, the nuclear mo-
menta are adjusted along the NCV, 𝑷 ′

= 𝑷 + 𝛼𝒅 𝑗𝑘 , where the factor 𝛼 is determined
by

1
2
��𝑷 + 𝛼𝒅 𝑗𝑘

��2 + 𝐻 ad
𝑘

= 1
2 |𝑷 |

2 + 𝐻 ad
𝑗 . (2.95)

If the adjustment of momentum is not sufficient to compensate the change of the
PE by the hopping (which is a so-called ’energy-forbidden hop’ or ’frustrated hop’),
the trajectory continues running in the original electronic state 𝑗 , and the momenta
along the NCV are reversed.

Due to conceptual simplicity and well-defined algorithm of the FSSHmethod, this
method nowadays has been widely used to gain insights into many nonadiabatic
physical and chemical processes. However, it cannot be derived rigorously from
quantum mechanics and suffers a few inherent problems. The problems and their
corrections used in the present study are discussed in Supporting Information.

2.3.3.1. Approximation I: Boltzmann correction (BC)

Instead of adjusting the velocity to obey detailed balance condition, one can rescale
the hopping probability with the Boltzmann factor 𝑔𝐵𝐶 ,

𝑃
𝑗→𝑘

FSSH ↔ 𝑃
𝑗→𝑘

FSSH𝑔𝐵𝐶 , (2.96)

where

𝑔𝐵𝐶 =


exp

(
−𝐻 ad

𝑘
−𝐻 ad

𝑗

𝑘B𝑇

)
, 𝐻 ad

𝑘
> 𝐻 ad

𝑗 (upward hops)

1, 𝐻 ad
𝑘

≤ 𝐻 ad
𝑗 (downward hops) .

(2.97)

The velocity remains unchanged during the hopping event. The BC approxi-
mation avoids the time-consuming computation of the muti-component NCV and
thus is much more efficient.
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2. Theoretical Background

2.3.3.2. Approximation II: Implicit charge relaxation (IR)

It is found that the charge relaxation in OSCs is dominated by the high-frequency
modes (2̃0 fs) [79, 80], which is, in most cases, faster than charge transfer. On the
basis of this speculation, one can assume the charge relaxation is instantaneous
and neglect the quantum force in Eq. 2.92, leading to

𝑚𝐾
¥𝑅𝑘 ≈ −

𝜕𝐸totMM
𝜕𝑅𝑘

. (2.98)

This is reminiscent of the classical path approximation (CPA) used in the nonadia-
batic dynamics simulations for nanosystems [81, 82]. However, the instantaneous
charge relaxation (IR) approximation differs from CPA in that the change of charge
population can affect the nuclear dynamics through the classical energy, 𝐸totMM in
Eq. 2.98, which depends on the nuclear charges.
To consider the effect of charge relaxation on electronic system, the on-site

energy,𝐻𝑛𝑛 is reduced by a precalculated parameter (usually taken as reorganization
energy𝜆𝑛) weighted by charge occupation Δ𝑄𝑛 on site 𝑛[83],

𝐻
′
𝑛𝑛 = 𝐻𝑛𝑛 − 𝜆𝑛Δ𝑄𝑛 . (2.99)

Inserting into time-dependent electronic Schrödinger equation Eq. 2.100, we obtain

¤𝑎𝑚 = −𝑖
∑︁
𝑛

(𝐻𝑚𝑛 −
∑︁
𝑛

𝜆𝑛Δ𝑄𝑛𝛿𝑚𝑛)𝑎𝑛 , (2.100)

The charge occupation Δ𝑄𝑛 can be evaluated either by |𝑎𝑛 |2 (henceforth, referred
to wave function population) or by |𝑼 𝑗𝑛 |2 (referred to surface population), where 𝑗
denotes the current adiabatic surface. We find that the surface population used in IR
approximation in the FSSH simulations strongly overestimates the charge mobilities
of p-MSB and rubrene (see Fig. SI1), in comparison with the FSSH-ER mobilities.
However, the FSSH-IR using wave function population reproduces mobilities well.
Therefore, the wave function population approach is employed in the following
FSSH simulations with IR approximation.

The IR approximation avoids the evaluation of the quantum force 𝜕𝐻 0
𝑚𝑛

𝜕𝑅𝑘
and thus

reduces computational cost.More importantly, it allows to remedy the deficiency
of DFTB forces by using an accurate reorganization energy as an input parameter
for charge relaxation. In the followings, we will first examine the performance
of BC and IR in the FSSH simulations (FSSH-BC and FSSH-IR), respectively, in
comparison with FSSH simulation with explicit charge relaxation (FSSH-ER), for
CT in one-dimensional anthracene chain. Second, the accuracy of the FSSH with
the combination of IR and BC approximations (FSSH-IR-BC) will be evaluated in
comparison with the FSSH-ER simulations as well as experimental references for
CT in ten representative OSCs.
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3. Efficient Surface Hopping approach
for modeling charge transport in
organic semiconductors

Reprinted in parts with permission from
Roosta, S., Ghalami, F., Elstner, M. and Xie, W.
Efficient surface hopping approach for modeling charge transport in or-
ganic semiconductors. Journal of Chemical Theory and Computation, 18(3),
1264-1274, (2022). DOI: 10.1149/1945-7111/ad0264
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3. Efficient Surface Hopping approach for modeling charge transport in organic
semiconductors

3.1. Introduction

Organic semiconductors (OSCs) have been gained large-area applications in the elec-
tronic and optoelectronic devices, such as organic field effect transistors (OFETs),
organic photovoltaics (OPV) devices and organic light emitting diodes (OLEDs).
Due to the extraordinary properties of low cost and flexibility‚ OSCs have be-
come promising materials complementing applications of traditional inorganic
semiconductors.
Charge carrier mobility is key quantity to measure the performance of OSC

devices. While the development of sample and device fabrication techniques has al-
lowed to synthesize organic crystals with mobilities of over 10 cm2 V−1 s−1 at room
temperature [84], these are still not comparable to that of inorganic semiconductors.
In organic solids, molecules are held together by van der Waals interactions, in
contrast to the covalent bonding in inorganic semiconductors. This particular char-
acteristics of OSCs is a ’double-edged sword’. It opens the door for the application
of OSCs in flexible displays and lighting devices. On the other hand, the weak
molecular interactions lead to large thermal fluctuations and comparably smaller
electronic couplings, which suppress the charge transfer in OSCs.

Theoretically, several models for the description of charge transport processes in
OSCs have been proposed. The band transport model, which is based on the semi-
classical Boltzmann theory, considers electrons as Bloch waves and the scattering
to the lattice vibrations as a perturbation. The band theory successfully reproduces
the charge mobility in inorganic semiconductors; however, it breaks down in OSCs
where the mean free path of the charge carrier is on the order of magnitude of
the lattice spacing[85, 86, 87]. Another widely used model to compute charge
mobility is charge hopping theory, in which a charge carrier is completely localized
on a single molecule and hops between nearest-neighbor by thermal activation.
While this model has been successfully used in the evaluation of charge mobility
in disordered and semi-disordered organic materials [88, 89, 90, 91]. this model is
unable to describe charge transport in high-mobility organic crystals, where the
electronic coupling is large such that the activation barrier vanishes effectively.
To go beyond the limitations of these models, novel methods based on explicit

propagation of the charge carrier have been proposed. Recently, mean-field Ehren-
fest (MFE) and surface hopping (SH)methods, which arewidely used in nonadiabatic
molecular dynamics simulations for photoinduced reactions, have been extended
to be applied to model charge and exciton transport in OSCs [92, 93, 94]. In these
approaches, nuclear degrees of freedom follows classical trajectories and the elec-
tronic wave function is propagated with the time-dependent Schrödinger equation.
In the MFE approach, classical trajectories are propagated on a mean PE surface
that is averaged over all electronic states and weighted by corresponding state
populations. In the SH approach, an stochastic algorithm, based on the comparison
of computed hopping probability and a random number, is employed to determine
the hopping between PE surfaces. Perhaps the most popularly used formulations
of the SH method is Tully’s fewest switches surface hopping (FSSH) method[77],
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3.2. System preparation and computational method

which is designed to minimize the number of the switching events occurring be-
tween different electronic states. The hopping probability in the FSSH algorithm is
proportional to the flux of state population. The deficiencies and their corrections
of the MFE and FSSH methods have been intensively discussed in the literature [93,
95, 96, 97, 98, 99, 100]. The aim of the present study is the systematical exploration
of the performance of two approximations – Boltzmann correction and implicit
charge relaxation – in the FSSH simulations for charge transport (CT) in OSCs.

In the standard FSSH method, the nuclear velocity is adjusted along the direction
of nonadiabatic coupling vector (NACV) to conserve the total energy during surface
hopping. NACV is a multicomponent vector with the dimensionality of number
of nuclear degrees of freedoms, The numerical evaluation of NACV needs a large
number of electronic structure calculations, which is not feasible for large systems.
In the Boltzmann correction (BC), the velocity rescaling is replaced by the scaling
of the hopping probability with the Boltzmann factor[81]. Therefore, the evaluation
of NACV is not required, which provide an addition computational advantage.
In the implicit charge relaxation (IR), the quantum feedback from the change

of quantum states to the dynamics of nuclear motion is neglected and the on-site
energy is reduced by a precalculated parameter (usually taken to be reorganization
energy) weighted by charge population. The computation of quantum force from
charge relaxation is not needed, which makes FSSH simulations more efficient for
large systems. More importantly, this approximation allows to examine the perfor-
mance of the different reorganization energies on charge transport in OSCs, which
may help to answer the controversy over the computation of the reorganization
energy. In 2004, Bredas and co-workers [79, 80] computed the reorganization ener-
gies of aromatic hydrocarbons using the parameters obtained by the fitting to the
experimental photoelectron spectra. They found the reorganization energies are in
good agreements with the reorganization energies computed by B3LYP functional.
However, a recent computational study [101] shows the 𝜔B97XD functional gives
the least error among various tested functionals, in comparison with the high-level
ab initio methods. This seemingly conflicting findings will be discussed in the
present work.

3.2. System preparation and computational method

The supercells for each OS were constructed based on the experimental crystal
structures, containing the following number of molecules along the crystal axes as
well as the number of molecules in QM zone: 42 × 84 × 2 (76) for PEN, 4 × 85 × 4
(80) for RUB, 105 × 5 × 3 (105) for TIPS-TAP, 90 × 6 × 2 (80) for DATT, 3 × 50 ×
3 (32) for ANT, × × () for NAP, 30 × 15 × 3 (26) for TIPS-PEN, 6 × 25 × 4 (20) for
p-MSB, 4 × 6 × 15 (12) for PER. The GROMACS 5.0.4 package[102, 103] was used
to build the supercells and to perform classical MD simulations. The force field
parameters were derived from the general AMBER force field (GAFF)[104, 105],
where the atomic charges were generated from restrained fitting on the electrostatic
potential (RESP) [106, 107] calculated at HF/6-311G*,[108, 109] using Gaussian09
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software.[110] After an initial minimisation, a further NVT simulation of 1 ns at
300K was performed to equilibrate supercell. The Nose-Hoover thermostat [111]
was used to obtain a correct cannonical ensemble.

The final structure from the equilibrium MD simulation was taken to start a
1 ns simulation to generate the initial conditions for CT simulations using IR
approximation. To create the initial conditions for CT simulations using explicit
charge relaxation, we take the final structure from NVT simulation to start 1 ns
simulation with a hole placed on the first molecule of the chain, keeping all other
molecules charge-neutral. The first 0.5 ns of this simulation were considered as
equilibration in the charged state, and the last 0.5 ns MD simulation were used
to generate the initial structures and velocities for the individual FSSH/MFE-ER
simulation. The hole wave function was initially localized on the first molecule,
Ψ(0) = 𝜙1(0). For FSSH-ER, the probability, |𝑈 (0) 𝑗1 |2 (i.e., |⟨𝜓 𝑗 (0) |𝜙1(0)⟩|2), was
used to randomly distribute the trajectories among the manifold of the adiabatic
states 𝜓 𝑗 (0). A swarm of 500 trajectories was used to obtain converged charge
mobilities.

The charge carrier mobility is computed with the Einstein-Smoluchowski equa-
tion

𝜇 =
𝑒𝐷

𝑘B𝑇
, (3.1)

where 𝑘B is the Boltzmann constant, 𝑒 is the elementary charge and 𝑇 denotes
temperature. The diffusion coefficient 𝐷 is calculated by

𝐷 =
1
2𝑛 lim

𝑡→∞
𝑑MSD(𝑡)

𝑑𝑡
, (3.2)

where 𝑛 is dimensionality (𝑛 = 1 for a one-dimensional chain). The mean square
displacement (MSD)MSD(𝑡) of the charge is defined as

MSD(𝑡) = 1
𝑁traj

𝑁traj∑︁
𝑙

∑︁
𝐴

(𝑥𝐴 (𝑡) (𝑙) − 𝑥 (𝑙)0 )2𝑃 (𝑡) (𝑙) (𝑡) , (3.3)

where 𝑥𝐴 (𝑡) (𝑙) and 𝑃 (𝑡) (𝑙) are the center of mass of molecule 𝐴 and corresponding
charge population along the trajectory 𝑙 , respectively. 𝑥 (𝑙)0 is the center of charge at
𝑡 = 0. The inverse participation ratio (IPR), which is a measure of the number of
molecules over which electronic wave function is delocalized on average, is defined
as

𝐼𝑃𝑅 =

𝑁traj∑︁
𝑙=1

1∑
𝑘 |𝑈

(𝑙)
𝑗𝑘
|4

(3.4)

Master equation (ME) has been widely used, together with kinetic Monte Carlo
algorithm, to compute the charge hopping mobility in OSCs. It describes the time
evolution of the charge population at each molecule,

¤𝑃𝑑𝑖 =
∑︁
𝑗

(
𝑘 𝑗𝑖𝑃

𝑑
𝑗 − 𝑘𝑖 𝑗𝑃𝑑𝑖

)
, (3.5)
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where 𝑃𝑑𝑖 is the charge population at molecule 𝑖 and 𝑘𝑖 𝑗 is the charge transfer rate
from the molecule 𝑖 to molecule 𝑗 . In the present study, the ME was integrated
by the fourth-order Runge-Kutta algorithm and the charge transfer rate constants
were evaluated according to the semiclassical transition state theory (TST) [94],

𝑘𝑇𝑆𝑇𝑖 𝑗 = 𝜈𝑒 𝑓 𝑓𝜅 exp
(
−Δ𝐺

𝑎𝑑

𝑘𝐵𝑇

)
, (3.6)

where 𝜈𝑒 𝑓 𝑓 is the effective frequency (in OSCs, the frequency of the carbon double
bond, 1700 cm−1 was used). 𝜅 is the transmission coefficient which is mainly
dependent on the electronic coupling and reorganization energy

𝜅 =
2𝑃𝐿𝑍

1 + 𝑃𝐿𝑍
, (3.7)

where Laudau-Zener transition probability for a single crossing through the transi-
tion region is given by

𝑃𝐿𝑍 = 1.0 − exp
(
−

𝜋3/2⟨𝐻 2
𝑖 𝑗 ⟩

ℎ𝜈𝑒 𝑓 𝑓
√
𝜆𝑘𝐵𝑇

)
. (3.8)

Δ𝐺𝑎𝑑 in eq. 3.6 is the adiabatic activation energy and can be divided into two
contributions

Δ𝐺𝑎𝑑 = Δ𝐺𝑑 + Δ∗ (3.9)

=
𝜆

4 +
(
⟨𝐻 2

𝑖 𝑗 ⟩1/2 −
⟨𝐻 2

𝑖 𝑗 ⟩
𝜆

)
, (3.10)

where the first term is diabatic activation energy Δ𝐺𝑑 , the latter ones are adiabatic
correction factor Δ∗, 𝜆 is the reorganization energy. The reorganization energy
computed by B3LYP was used to compute the charge transfer rate if not stated
otherwise.
In the low-coupling regime, TST can be approximately reduced to Marcus rate

equation,

𝑘𝑀𝑎𝑟𝑐𝑢𝑠𝑖 𝑗 =
⟨𝐻 2

𝑖 𝑗

ℏ
1

√
4𝜋𝜆𝑘𝐵𝑇

exp
(
−Δ𝐺

𝑑

𝑘𝐵𝑇

)
. (3.11)

Recently, transient localization theory (TLT), proposed by Fratini and Ciuchi,
has been successfully used to compute the charge mobility for OSCs [112, 113,
114]. This theoretical model is based on the observation that the dynamics disorder
caused by thermal molecular motion induces a "transient localization" of charge
carrier wave function, suppressing charge diffusion. In the present work, the TLT
mobilities are computed using the code adopted from Ref. [114].
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3.2.1. Problems and corrections for the fewest switches surface
hopping (FSSH) method

Since the TDSE for the electronic wave function is solved using a single trajectory,
the original FSSH method tends to overestimate electronic coherence. Here, we
employed the an simple empirical correction proposed by Granucci and Persico
[99]. with a correction parameter 𝛼 = 0.1 Eh. While such an ad hoc correction
may preserve the internal consistency between the fractions of trajectories and
averaged adiabatic populations, it tends to quickly collapse the wave function to a
wrong electronic state after a surface hop with a very low (but still non-vanishing)
probability has taken place. Such an improper surface hop can lead to artificial
long-range charge transfer and divergent charge mobilities with respect to system
size in OSCs [94]. In this work, we employed a similar correction scheme used by
Blumberger and coworkers in a recent study in the surface hopping simulations for
charge transport in OSCs [94]. Briefly, we define an active region including 0.999
diabatic populations, set the wave function amplitudes outside this region to zero
and then renormalized the wave function amplitudes inside the active region. For
more details, readers can be referred to Ref. [94].

Another major problem of the FSSH method is its failure to propagate the correct
state in the vicinity of trivial unavoided crossings. In large molecules and molecular
complexes, unavoided crossings often occur whenever two spatially separated and
thus noninteracting states cross. In such cases, the ordering of these states changes
(the states swap), and their nonadiabatic coupling exhibits a sharp peak localized in
the proximity of crossing point strongly. To solve this problem, we used an simple
state-tracking algorithm based on the wave function overlaps between successive
time step. In this algorithm, a threshold (0.9 in their work) of wave function overlap
was defined to distinguish between (i) unavoided crossings between interacting
states and (ii) trivial unavoided crossings between noninteracting states. If a maxi-
mum wave function overlap between the new state 𝑖 and old state 𝑗 is greater than
the threshold, a trivial unavoided crossing is detected and the new state 𝑖 is mapped
on state 𝑗 ; if otherwise, the hopping probability to a unavoided crossing state is
corrected according to [100]

𝑃
𝑗→𝑘

SC−FSSH =
|𝐶𝑎𝑑𝑗 (𝑡) |2 − |𝐶𝑎𝑑𝑗 (𝑡 + 𝑑𝑡) |2

|𝐶𝑎𝑑
𝑗
(𝑡) |2

−
∑︁
𝑖≠𝑘

𝑃
𝑗→𝑖

FSSH . (3.12)

3.3. Results and discussion

Fig.3.1 presents ten representative OSCs studied in this work. The experimental
charge mobilities for theses materials range in three orders of magnitude (see
Table 2) and thus allow for a systematic examination of the performance of the
Boltzmann correction (BC) and implicit charge relaxation (IR) approximation in the
FSSH simulations for charge transport (CT) in OSCs. The reorganization energies
and electronic couplings for the studied OSCs are summarized in Table.3.1.
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pMSB TIPS-PEN(TAP) DATT

ANT PEN NAPH

PYR RUB PER

Figure 3.1.: Molecular structures of organic materials studied in the present work.
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semiconductors

As a first step, we examine the accuracy of the FSSH and MFE methods using
explicit forces for charge relaxation (FSSH-ER and MFE-ER) in comparison with
the experiments. Fig.3.2 (a)-(d) shows the hole carrier wave function propagated
with the FSSH-ER and MFE-ER methods for two representative OSCs, low-mobility
OSC pMSB and high-mobility OSC rubrene. In the MFE-ER simulation (Fig.3.2 (a)),
the wave function is initially localized on a single pMSB molecule and starts to hop
after 400 fs.
Meanwhile, the hole is gradually delocalized over a few molecules, which is not
expected for the low-mobility material. This artificial charge delocalization may be
the consequence of the notorious shortcomings of theMFEmethod, such as the over-
heating of electronic system and electronic overcoherence. The problem becomes
more seriously for the high-mobility materials, such as RUB (Fig.3.2 (b)), where the
wave function quickly spreads over the entire system. The situation is strikingly
different in the FSSH-ER simulations. For pMSB (Fig.3.2 (c)), the wave function
is localized on a single pMSB molecule and hops between neighboring molecules.
The charge carrier in RUB (Fig.3.2 (d)) is delocalized over several molecules and
propagates across the crystal by diffusive hops over several lattice spacings.
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Fig.3.3 (a)-(b) shows the charge mobilities computed by the MFE-ER and FSSH-
ER methods for all OSCs studied in this work. As expected, the MFE-ER method
(Fig.3.3 (a))overestimates the charge mobilities in comparison with experiments,
particularly for high-conductivity materials (𝜇𝐸𝑥𝑝 > 10 𝑐𝑚2𝑉 −1𝑠−1), where the MFE
mobilities are about one order of magnitude higher than the experimental values.
A better agreement with experiments is achieved by the FSSH-ER method (Fig.3.3
(b)), with deviations for most OSCs less than a factor of 2. The errors can be
attributed to the underestimation of reorganization energy by DFTB, which leads
to the overestimation of charge mobilities.
We take pMSB and RUB as two representative OSCs to examine the perfor-

mance of the IR and BC approximations in the FSSH simulations for low- and
high-conductivity materials. In IR approximation, the on-site energy is reduced
by a precalculated parameter (usually reorganization energy is used) weighted
by diabatic populations. The implicit relaxation approximation neglects two fac-
tors: (i) the effects of intermolecular charge relaxation (i.e., the electronic coupling
derivatives with respect to nuclear coordinates, see Eq. 2.92); (ii) the feedback from
electronic relaxation to the nuclei. To understand the effects of these factors on
modeling CT in OSCs, we set the off-diagonal forces, 𝜕𝐻

0
𝑚𝑛

𝜕𝑅𝑘
, to 0 in the FSSH simu-

lations (henceforth, referred to FSSH-ER(onsite)) for pMSB and RUB. The charge
mobility difference between obtained by FSSH-ER(onsite) and FSSH-ER methods for
rubrene is much larger than the difference for p-MSB. This is due to the one order
of magnitude higher electronic coupling in rubrene (107 meV) than in p-MSB (11
meV). For both materials, the FSSH-IR(W) mobilities are in good agreements with
FSSH-ER(onsite) mobilities, which indicates that the back-reaction from electronic
relaxation to the nuclei has a minor influence on the CT in OSCs.

In comparison to the velocity rescaling along the NCV in the FSSH simulation for
pMSB, the rescaling of transition probability with a Boltzmann factor results in the
overestimation of charge mobility. This is consistent with our previous benchmark
study that the BC approximation overestimates the charge mobility in low coupling
regime[93]. For rubrene, the FSSH-BC mobility agrees well with FSSH-ER mobility.
The FSSH simulations with the combination of IR and BC approximations for both
OSCs give a reasonably good mobility values in comparison to FSSH-ER.
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Fig 3.4. shows the comparison of charge mobilities computed by FSSH-ER and
FSSH-BC-IR for the OSCs studied in the present work (the values are shown in
Table 3.2). Overall, the FSSH-BC-IR mobilities agree very well with the FSSH-ER
mobilities, yet the computational time is reduced to about 50 % of that of FSSH-ER.
This indicates that the FSSH-BC-IR is a reliable and efficient method for modeling
CT in OSCs.
Two key quantities dominating CT in OSCs are electronic coupling and reorga-
nization energy. We have shown in a previous study [76] that scaling the DFTB
electronic coupling with an unform factor can lead to the electronic coupling as
accurate as obtained by the high-level ab initio method. The computation of the
reorganization energy is under debate. Bredas and coworkers [79, 80] found good
agreements between the reorganization energies computed by B3LYP functional
and the reorganization energies obtained by fitting to experimental photoelectron
spectra. On the other hand, a computational benchmark study [101] shows the
𝜔B97XD functional gives accurate reorganization energy in comparison with the
high-level ab initio methods. Herein, the IR approximation enables the system-
atic examination of the performance of the reorganization energies computed by
different DFT functionals in CT in OSCs.

Fig. 3.5(a)-(c) shows the comparison of the experimental mobilities with the
charge mobilities obtained by FSSH-BC-IR with input reorganization energies com-
puted by B3LYP and 𝜔B97XD methods, respectively. The FSSH-BC-IR simulations
using 𝜔B97XD reorganization energy (Fig. 3.5(a)) underestimate the measured
mobilities for most OSCs. The error is large for the low-mobility materials while
become small for high-mobility materials. This is understandable as the effect of
reorganization energy tends to vanish due to charge delocalization over several
molecules. The relaxation energy can be written as 𝐸𝑚

𝑟𝑒𝑙𝑎𝑥
= 1

2𝜆𝑄
2
𝑚 , where 𝑄𝑚 is the

charge of site𝑚. The charge is delocalized over a few molecules in high-mobility
materials (see Fig. 3.5 (d)), leading to a negligible effect of charge relaxation. We
note that 𝜔B97XD functional has been shown to provide reorganization energy in
a good agreement with high-level ab initio methods [101].
Thereby, the underestimation of the charge mobilities may be due to the lack
of nuclear quantum effects in the FSSH simulations. For a variety of OSCs, the
charge mobilities computed by FSSH-BC-IR using B3LYP reorganization energy
(Fig. 3.5(b)) are in good agreements with experimental values. This is reminiscent
of the well-known statement in quantum chemistry community: B3LYP under-
estimates the barrier height of chemical reaction, while the predicted chemical
rate is in a good agreement with the experiment. The reasonable underestimation
of the reorganization energy leads to a lower barrier height for charge transfer,
resembling an effective correction to cure the shortcoming of the neglect of the
nuclear quantum effects in FSSH simulations and, thus resulting in a good agree-
ment with experiment. Fig. 3.5 (c) shows the average size of polaron (defined by
inverse participation ratio (IPR) as described in Methods) computed by the FSSH
simulations.
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Table 3.1.: Computed reorganization energies and electronic couplings (in meV) for
OSCs studied in this work.

Crystal 𝜆𝐷𝐹𝑇𝐵 𝜆𝐵3𝐿𝑌𝑃 𝜆𝜔𝐵97𝑋𝐷 <J> 𝜎𝐽
PEN-h+(a) 37 98 170 100.5 28.1
RUB-h+(b) 51 152 210 106.5 26.0

TIPS-TAP-e−(a) 110 205 325 158.0 31.2
DATT-h+(a) 51 88 198 93.3 18.6
ANT-h+(b) 84 142 202 38.1 20.3
NAP-h+(b) 130 187 244 38.9 22.0

TIPS-PEN-h+(a) 34 136 215 20.3 27.2
p-MSB-h+(b) 140 255 540 10.5 6.0
PYR-e−(c) 175 222 302 3.2 20.5
PER-e−(a) 120 177 265 26.6 15.0
PER-e−(c∗) 120 177 265 8.0 9.5

It can be seen the charge mobility correlates well with polaron size. Fig. 3.5
(d) shows a comparison of charge mobilities computed in this work with a recent
work by Blumberger et al [94]. For most OSCs, FSSH-BC-IR mobilities are in good
agreements with the their mobilities.

Fig. 3.6(a) shows the charge mobilities obtained by solving the master equation
with transition state theory (TST) and Marcus rate equation, respectively. Some-
what unexpectedly, both hopping theories reproduce the experimental mobilities
spanning three orders of magnitude well. Marcus theory is derived from the per-
turbation theory and thus expected to be valid only in the low-coupling regime;
however, the results show that the computed mobilities are also in good agreements
with experiments for the high-coupling regime, where the charge transfer barrier
no longer exists. The accidental agreements can be attributed to the overestimated
transition probability for the crossing of charge transfer transition state, which
cancels out the effect of the overestimation of the charge transfer barrier height
by using diabatic activation energy (Δ𝐺𝑑 ), instead of adiabatic activation energy
(Δ𝐺𝑎𝑑 ) in Marcus theory (Eq. 3.11).
This is verified by the underestimated charge mobilities (TST-diab in 3.6(a)) using
the corrected transition probability . Fig. 3.6(b) shows the mobilities computed
by transient localization theory (TLT) using electronic Hamiltonian with on-site
energy fluctuations (pink circles, denoted as ’TLT0’) and the removal of the on-site
energy fluctuation by setting the on-site energies to be zeros (blue circles). Overall,
both TLT mobilities coincide with the experimental values for high-mobility regime.
The TLT0 fails in the low mobility regime, 𝜇 < 1 𝑐𝑚2𝑉 −1𝑠−1, while the TLT using
Hamiltonian including the on-site energy fluctuation qualitatively reproduces the
mobilities for low-coupling regime.
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Figure 3.2.: Time-dependent hole carrier populations obtained by (a-b) MFE-ER
and (c-d) FSSH-ER for pMSB and RUB.
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Figure 3.3.: Experimental mobilities versus the mobilities obtained by (a) MFE-ER
and (b) FSSH-ER methods.

Table 3.2.: Computed and experimental charge mobilities (in 𝑐𝑚2𝑉 −1𝑠−1 ).
Crystal 𝜇𝐸𝑅 𝜇𝐼𝑅(𝐷𝐹𝑇𝐵) 𝜇𝐼𝑅(𝐵3𝐿𝑌𝑃) 𝜇𝐼𝑅(𝜔𝐵97𝑋𝐷) 𝜇𝑀𝐹𝐸 𝜇𝐸𝑥𝑝

PEN-h+(a) 5.8 10.1 6.5 5 42.9 10.5
RUB-h+(b) 33.5 52.3 26.2 17.5 114.3 9.7

TIPS-TAP-e−(a) 49.0 71.3 44.8 30.6 257.6 13.3
DATT-h+(a) 22.5 36.5 35.5 15.2 134.9 16.0
ANT-h+(b) 3.7 6.7 3.1 0.71 7.4 2.9
NAP-h+(b) 3.1 4.2 2.2 0.73 5.5 1.3

TIPS-PEN-h+(a) 2.3 5.3 0.72 0.061 4.2 0.6
p-MSB-h+(b) 0.33 0.39 0.016 – 0.7 0.17
PYR-e−(c) 0.69 0.65 0.3 0.089 1.1 0.51
PER-e−(a) 2.3 3.4 1.1 0.15 3.6 2.3
PER-e−(c*) 0.65 0.96 0.24 0.017 1.5 0.27
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Figure 3.4.: Charge mobilities computed by FSSH-ER versus FSSH-BC-IR. The
reorganization energies computed by DFTB is used as an input

parameter for IR approximation.
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Figure 3.5.: Experimental measured mobilities versus mobilities computed by
FSSH-BC-IR using input reorganization energies computed by (a)

𝜔B97XD and (b) B3LYP, respectively. (c) Correlation between IPR and
computed mobilities.(d) Comparison of charge mobilities in this work

and a recent work by Blumberger et al.
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Figure 3.6.: Experimental charge mobilities versus mobilities computed by (a) TLT
and (b) Marcus hopping theory.
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Figure 3.7.: Correlation between IPR and computed mobilities.
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semiconductors

3.4. Conclusion

In summary, our study meticulously investigated the efficacy of two approximation
methods, namely the Boltzmann correction (BC) and implicit charge relaxation
(IR), in FSSH simulations of charge transport processes across various organic
materials. Our findings revealed a commendable concordance between FSSH-BC-IR
and FSSH with explicit charge relaxation (FSSH-ER) across a broad spectrum of
charge mobilities, encompassing three orders of magnitude. However, it became
apparent that both techniques tended to overestimate experimental mobilities due
to the inherent underestimation of reorganization energy as calculated by DFTB.
Notably, the IR approximation emerged as a promising approach, enabling the
incorporation of an accurately estimated reorganization energy to address this
limitation.

In our simulations, FSSH-BC-IR, utilizing reorganization energies computed by
𝜔B97XD, displayed results consistent with high-level electronic structure methods,
indicating a noticeable disparity between experimental data and FSSH-BC-IR mo-
bilities in the low-coupling regime, albeit remaining relatively small (less than a
factor of 2) in the high-coupling regime. This observation underscored the potential
significance of nuclear zero point energy (ZPE) in the hopping transport regime.
Intriguingly, FSSH-BC-IR employing B3LYP reorganization energy demonstrated a
remarkable agreement with experimental outcomes across all organic semiconduc-
tors (OSCs). We attribute this favorable alignment to the compensatory effect of
the underestimated reorganization energy, effectively offsetting the loss incurred
by ZPE in our simulations.
In essence, our comprehensive analysis sheds light on the subtle intricacies of

charge transport simulations, providing valuable insights for refining computational
methodologies and advancing our understanding of organic electronic materials.

52



4. Effects on charge transport of
halogen derivatives of TIPS-TAP

4.1. Introduction

The pursuit of low-power complementary circuits has led to a significant focus on
developing efficient p- and n-channel organic field-effect transistors (OFETs)[115].
While p-type organic semiconductors have shown impressive electron mobility,
surpassing 40 𝑐𝑚2𝑉 −1𝑠−1[116, 117], the progress in enhancing n-type organic semi-
conductors, a crucial component for complementary circuits, has been limited.
This study focuses on recent developments in a number of classes of 𝑛-type ma-
terials. So far, only four 𝑛-type organic semiconductors have been reported to
exhibit field effect mobility higher than 10 𝑐𝑚2𝑉 −1𝑠−1 [118]. One of them is 6,13
bis ((triisopropylsilyl) ethynyl)-5,7,12,14-tetraazapentacene (TIPS-TAP) is the most
successful member of the N-heteroacene family for applications in OFETs [119,
120, 121, 122]. Recently, several theoretical and experimental studies have shown
that the introduction of electron-withdrawing groups through, for example, halo-
genation (Br and Cl), is a promising way to transform p-type semiconductors into
n-type ones[118]. Hydrogen atoms of TIPS-TAP can be substituted by halogen
atoms as shown in fig. 4.1.
The substitution changes the electronic properties of N-heteroacenes and influence
their semiconducting capability. With 4Cl-TAP, Miao et al. even set a new record for
the electron mobility of n-channel organic field-effect transistors, reaching electron
mobilities as high as 27.8 𝑐𝑚2𝑉 −1𝑠−1. The subject of this work is the theoretical in-
vestigation of possible electron mobilities for the halogenated TIPS-TAP molecules,
including fluorine, chlorine and bromine [123, 118, 124]. Understanding the natural
mechanism of the charge transport process in these materials is important for the
design of better organic materials in term of charge mobility.
In this study, we utilized computational methods such as FSSH-IR(𝜔B97XD) and
(B3LYP) to estimate the electron mobilities of the crystals under investigation. Addi-
tionally, we calculated transfer integrals and reorganization energies. Our research
delved into a comprehensive analysis of the impact of electron-withdrawing sub-
stituents on the geometric structures and electronic properties of these crystals.
These theoretical findings offer valuable insights into understanding the influence
of substituent groups and structural changes on the charge transport properties of
organic semiconductors. This knowledge is essential for enhancing the efficiency
of charge transport in organic materials and provides essential information for
further advancements in the field.
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4. Effects on charge transport of halogen derivatives of TIPS-TAP

Figure 4.1.: Symmetric halogen derivatives of TIPS-TAP.

4.2. System Preparation

The crystal structures of TIPS-TAP , 4F-TIPS-TAP , 4Cl-TIPS-TAP and 4Br-TIPS-TAP
were obtained from the Cambridge Structural Database. The supercells for the
studied halogenTAP were constructed based on the experimental crystal structures,
containing the following number of molecules along the crystal axis as well as the
number of molecules in the QM zone: 100 × 5 × 3 for TIPSTAP, 40 × 40 × 3 for
FTAP, 70 × 70 × 2 for ClTAP, 70 × 70 × 2 for BrTAP. The force field parameters
were derived from the general AMBER force field (GAFF) [104, 105], where the
atomic charges were generated from restrained fitting on the electrostatic potential
(RESP) [106, 107] calculated at HF/6-311G* [108, 109] using Gaussian09 software
[110]. After an initial minimization, a further NVT simulation of 1 ns at 300𝐾 was
performed to equilibrate the supercell. The Nose-Hoover thermostat was used to
obtain a correct canonical ensemble. The GROMACS 2018 package was used to
perform classical MD simulations. The final structure from the equilibrium MD
simulation was taken to start a 1 ns simulation to generate the initial conditions
for CT simulations using IR approximation. To create the initial conditions for
CT simulations, we take the final structure from NVT simulation to start 1 ns
simulation with a electron placed on the first molecule of the chain, keeping all
other molecules charge-neutral. The first 0.5 ns of this simulation were considered
as equilibration in the charged state, and the last 0.5 ns MD simulation were used
to generate the initial structures and velocities for the FSSH simulation. The wave
function was initially localized on the first molecule, Ψ(0) = 𝜙1(0). For FSSH-ER,
the probability, |𝑈 (0) 𝑗1 |2 (i.e., |⟨𝜓 𝑗 (0) |𝜙1(0)⟩|2), was used to randomly distribute
the trajectories among the manifold of the adiabatic states𝜓 𝑗 (0). A swarm of 500
trajectories was used to obtain converged charge mobilities.
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4.3. Results and Discussion

Two key quantities dominating charge transfer in OSCs are electronic coupling and
reorganization energy. So we have calculated coupling as well as reorganization
energy and summarized in Table 4.1 for TipsTap and halogen Tap to investigate
the effects of substitution on charge transfer and electronic structure.

Figure 4.2.: Crystal structure of FTAP, ClTAP and BrTAP.

4.3.1. Electron Coupling

It is found that the electron transfer integral is very sensitive to subtle changes in
the 2D 𝜋 stacking with brickwork arrangement.

This sensitivity is due to the fact that the electronic coupling is not related to the
spatial overlap between adjacent molecules but rather to the degree of wavefunction
overlap. The electronic coupling can often be estimated by only taking the LUMO
(or HOMO) of a dimer into account. In that scenario, the extreme dependence on
the 𝜋-stacking can be rationalized by imagining the bonding-antibonding pattern.
For example, when displacing two dimers along the long axis, minima and maxima
of the transfer integral could be reached, while the mean amplitude continuously
decreases and reaches zero when there is no more spatial overlap. 4F-TIPS-TAP
is an example of the sensitivity of the transfer integral. It has the smallest 𝜋-
𝜋 distance while showing by far the smallest transfer integrals. Since smaller
𝜋-𝜋 distances should result in larger transfer integrals, the importance of the 𝜋-
displacements is shown again. These are quite different from all other derivatives
and this kind of displacement is likely particularly unfavorable for wavefunction
overlap. 4Br-TIPS-TAP and 4Cl-TIPS-TAP both show a slightly larger 𝜋-𝜋 distances
as TIPS-TAP; therefore, the smaller transfer integrals could be expected. However,
the 𝜋 -displacements are different and lead to a greater spatial overlap and in
this case, it might be beneficial to enhance the wavefunction overlap for dimers,

55



4. Effects on charge transport of halogen derivatives of TIPS-TAP

especially due to the increased size of transfer integrals. The subtle differences in
the 2D 𝜋-stacking of halogenated TAPs and TIPS-TAP can be measured in several
ways, namely by the distances between Si, 𝜋-planes and along the long and short
axes of the stacked 𝜋-backbones. The results suggest that the modification of
TIPS-TAP with different F, Cl, or Br can fine-tune the 𝜋-stacking, in particular, the
displacements of the 𝜋-stacking can strongly affect the intermolecular electronic
couplings in a way that is closely related to the phase and nodal properties of the
frontier molecular orbitals.

It is well-established that in the organic semiconductors, charge carrier transport
occurs along 𝜋 orbitals. So, the 𝜋 orbital overlap between neighboring molecules
seriously determines the mobility and the molecular packings directly influence the
transport properties. The crystal structures of the halogenated TAPs show similar
2D-𝜋 stacking of the flat tetraazapentacene backbones in brickwork arrangements,
similar to those of TIPS-TAP. It is found that 4Cl-TAP has larger electron transfer
integrals than TIPS-TAP, and Br- TAP is approximately the same as TIPs-TAP, while
FTAPs have lower electron transfer integrals than TIPS-TAP (Table1).
It is found that halogenated TAPs generally have lower LUMO energy levels

than TIPS-TAP and halogen substituents lead to a lower LUMO energy level as
expected. Br is found to be more effective than F and Cl in lowering the LUMO
energy level although F is more electronegative than Cl and Br. This finding is in
agreement with the earlier observations on chlorinated and fluorinated organic
semiconductors, and can be attributed to the fact that the empty 3d orbitals in Cl
can accept 𝜋-electrons from the conjugated core, while no empty orbitals in F are
available for such delocalization [118].

Another finding from the crystal structures is that the halogenated TAPs all have
intermolecular short contacts with halogen atoms in each layer of the brickwork
arrangement. In order to see the role of geometrical and electronic properties in
the coupling, we calculated the coupling with and without an Halogen group. For
this calculation, we treat the halogen in the MM part, so the coupling is just related
to geometrical effect. For BrTAP, ClTAP, when the substitution is considered as the
MM part and only core is treated in the QM part, the geometry plays an important
role as the coupling does not change dramatically. But in the case of FTAP, when F is
in the MM part, the coupling changes significantly and the role of electronic effects
can be seen. So It can be concluded that for FTAP electronic properties exhibit
an important role in coupling however in the case of Br and Cl TAP structural
properties play a significant role in coupling.

4.3.2. Reorganization Energy

In order to calculate the reorganization energy the geometries of the neutral and
anionic TIPS-TAP, 4F-, 4Cl-, 4Br- were optimized, and the respective energies were
obtained subsequently. Then the energies of the neutral states at the optimized
anionic geometries as well as the anionic states at the optimized neutral geometries
were computed by computed by 𝜔B97XD and B3LYP, respectively, with the 6-
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311g* basis set implemented in the GAUSSIAN 09 package [110]. The results of the
calculation is shown in Table 4.1. Reorganization energies follow the trend: 4F-TIPS-
TAP > TIPS-TAP ∼ 4Cl-TIPS-TAP > 4Br-TIPS-TAP. In Table 4.1, the reorganization
energy was initially computed for the entire molecule. However, in Table 4.2, the
reorganizationwas specifically determined for the core, while the silicon component
was disregarded due to its minimal impact on mobility. This selected data was then
employed as an input for the mobility calculation. For halogenated TAPs it is found
that (-Br and -Cl), are more effective than F in lowering the LUMO energy level
although F is more electronegative than Cl and Br. In the case of Cl, It and can be
attributed to the fact that the empty 3d orbitals in Cl can accept 𝜋-electrons from the
conjugated core, while no empty orbitals in F are available for such delocalization
[118].
The increased reorganization energy of FTAP can be attributed to the enhance-

ment of breathing as well as stretching vibrations of its pentacene bonds framework,
and the additional stretching of C-F. On the other hand, Br substituents seem to
suppress the breathing and stretching vibration of the pentacene framework. The
weaker C-Br and C-Cl bonds further reduce the additional contribution of the
halogen C bond to the reorganization energy, leading to a quite similar- TAP
reorganization energy as TIPS.

Table 4.1.: Reorganization energies, electronic couplings (in meV) and Distance
between Si for Tips and halogenated TAPS.
Crystal distance(Si-Si) 𝜆𝐷𝐹𝑇𝐵 𝜆𝐵3𝐿𝑌𝑃 <J> 𝜎𝐽

𝑇 𝐼𝑃𝑆 −𝑇𝐴𝑃 (a) 9.96 120 205 62.15 29.84
𝑇 𝐼𝑃𝑆 −𝑇𝐴𝑃 (b) 7.94 120 205 158.19 28.81

𝐹𝑇𝐴𝑃 (a) 10.28 122 240 2.49 32.15
𝐹𝑇𝐴𝑃 (b) 8.13 122 240 58.79 38.63
𝐶𝑙𝑇𝐴𝑃 (a) 12.36 113 200 43.35 14.61
𝐶𝑙𝑇𝐴𝑃 (b) 6.97 113 200 160.97 27.01
𝐵𝑟𝑇𝐴𝑃 (a) 12.58 111 189 45.81 12.46
𝐵𝑟𝑇𝐴𝑃 (b) 7.22 111 189 149.22 30.11
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4.3.3. Charge Transfer

Next, we calculate electron mobilities for TipsTAP and halogenTap and compare
them to experimental values (except BrTAP). The maximum electron mobility of
4Cl-TAP (27.8 cm2 V-1 s-1) [118] is more than twice the reported value of TIPSTAP
and is the highest value for all the n-type organic semiconductors as measured
from field-effect transistors to the best of our knowledge. As can be seen from
Table 4.2, an excellent agreement with experiments is achieved for FTAP. As we
discussed before, charge carrier depends on coupling and reorganization energy.
In the case of FTAP, we have largest reorganization energy and smallest coupling
in comparison with BrTAP and FTAP. The electron mobility of BrTAP is closer to
TipTAP and ClTAP has the largest mobility. As the average size of polaron defined
by the inverse participation ratio IPR is a common measure for the number of
molecules over which the carrier wavefunction is delocalized, it is also calculated.

Table 4.2.: Computed and experimental charge mobilities (in 𝑐𝑚2𝑉 −1𝑠−1 )
Crystal 𝜆𝜔𝐵97𝑋𝐷 𝜆 𝐵3𝐿𝑌𝑃 𝜆 𝐷𝐹𝑇𝐵 𝜇𝐼𝑅( 𝐵3𝐿𝑌𝑃) 𝜇𝐼𝑅(𝜔𝐵97𝑋𝐷) 𝜇𝐸𝑥𝑝 𝐼𝑃𝑅𝐼𝑅( 𝐵3𝐿𝑌𝑃) 𝐼𝑃𝑅𝐼𝑅(𝜔𝐵97𝑋𝐷)

𝑇 𝐼𝑃𝑆𝑇𝐴𝑃 (b) 251 145 105 28.01 22.14 13.3 4.32 4.15
𝐹𝑇𝐴𝑃 (b) 302 193 110 6.6 11.56 3.18 2.59 1.91
𝐶𝑙𝑇𝐴𝑃 (b) 259 157 106 29.28 25.33 27.8 4.51 4.21
𝐵𝑟𝑇𝐴𝑃 (b) 246 142 104 28.59 35.34 . . . 5.56 4.48
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4.3. Results and Discussion

Figure 4.3.: Frontier local molecular orbitals of HalogenTAP calculated at
DFT/B3LYP/6-31G* level
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4.4. Conclusions

The aim of this work is to examine important electron transfer properties of TIPS-
TAP and 4F-, 4Cl-, 4Br- on a theoretical basis. Particular attention was paid to
the bromine derivatives since no experimental data is available yet. First of all,
transfer integrals and reorganization energies of TIPS-TAP and 4F-, 4Cl-, 4Br-
TIPS-TAP, were calculated. The substitution with bromine seems to fine-tune the
crystal structure in a similar way as chlorine, since they are, as well as the transfer
integrals, very similar. Reorganization energies follow the trend: 4F-TIPSTAP >
TIPS-TAP > 4Cl-TIPS-TAP > 4Br-TIPS-TAP , which further indicates that lowering
the carbon-halogen bond strength can be used to reduce the reorganization energy.
The fact that halogen atoms can fine-tune the crystal structure to increase the
electronic coupling and that lowering the C-halogen bond strength decreases the
reorganization energy should be considered when designing new semiconductors.
The estimated electron mobility of 4Br- and surpasses 4Cl-TIPS-TAP, which shows
their potential as semiconductors. However, many approximations were used to
calculate the electron mobility. For a better estimation of the electron mobility,
a class of new n-type organic semiconductors based on halogenated tetraazap-

entacenes, which have their molecular and supramolecular structures fine-tuned by
different halogen type of F and Cl and Br substituents. The computational studies
on the basis of crystal structures have revealed insights into structure’s property
relationships. First, Br and Cl substituents slightly decrease the reorganization
energy of tetraazapentacene while fluorine substituents increase the reorganization
energy. Second, the electron transfer integral is very sensitive to subtle changes in
the 2D 𝜋-stacking with brickwork arrangement. The unprecedentedly high electron
mobility of BrTAP and Cl-TAP is attributed to the reduced reorganization energy
and enhanced electron transfer integral as a result of modification of TIPS-TAP
with Br and Cl substituents. In oreder to ClTAP we have a good agreement with
the experimental values.

since not all effects can be considered in theoretical simulations, the experimental
data is also very important. There might be new effects that need to be consid-
ered when estimating the electron mobility of 4Br-TIPS-TAP. Although not all the
effects were considered in this work, the trend of the electron mobility, as demon-
strated above, matches existing experimental values. Therefore, 4Br-TIPS-TAP
should definitely be tested since they might show even larger electron mobilities
than 4Cl-TIPS-TAP, which sets the current record for charge mobility in n-type
semiconductors.
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charge mobilities

5.1. Introduction

With the rapid advancement of compact intelligent organic devices, the demand
for novel organic semiconductor materials is on the rise. Aromatic hydrocarbon
compounds and their derivatives, such as pentacene, tetracene, and anthracene,
have gained significant attention in recent years. This interest stems from their effi-
cient utilization as high-performance organic semiconductors, owing to their rigid
structure and extensive planar p-conjugated delocalization [125, 6, 126]. However,
using such aromatic compounds as conductive materials presents some issues, such
as chemical instability, poor solubility, difficult separation, and vulnerability to
oxidation by air. To enhance the efficacy and overcome limitations, it is common to
modify chemicals with functional groups. For instance, incorporating alkyl groups
into pentacene improves its solubility and stability, while introducing halogen
atoms to tetracene reduces its molecular orbital energy levels and alters its stacking
patterns [127, 128].

Compared to pentacene and tetracene, anthracene presents several benefits like
high optical quantum yield, tunable luminescence, easy preparation, environmental
stability, and thermally reversible dimerization properties [129, 130]. Nonetheless,
anthracene has a low melting point and limited conductivity. The anthracene
single crystals exhibit a mobility of 0.02 𝑐𝑚2𝑉 −1𝑠−1 at 170𝐾 as OFET material, and
the hole mobility can reach up to 3.0 𝑐𝑚2𝑉 −1𝑠−1 at 300𝐾 using the time-of-flight
photocurrent technique. Consequently, research on anthracene and its derivatives
has garnered increased attention, and recent experiments have enabled significant
improvements in their mobilities [131, 5, 132]. Studies show that the relationship
between the substituent diversity and the molecular stacking motifs is an issue
that requires special attention among the factors affecting charge mobility. Meng’s
team used DFT to study DPA and 2,6-dithienylanthracene (DTAnt) molecules in
2019. DTAnt is a derivative of anthracene that has been substituted at the 2,6
position with bisthiophene. They explained that DPA has a higher mobility by
having a reduced reorganization energy during charge transfer due to its more
rigid geometric structure and a bigger electronic coupling because of an increase
in HOMO overlap [133, 134, 135].

Our interest in learning more about other intrinsic elements that have an impact
on charge transport related to anthracene-based materials is sparked by the differ-
ences in charge transfer characteristics among organic semiconductor materials
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with comparable structures. The main effect of the subtle relationship between the
lengths of the acene core and its substituent on the molecular stacking is still under
debate. Inspired by these delightful results, our work intends to further investigate
the changes caused by substituent as well as different substituted positions [136,
137, 138].

In this part, in order to gain a better understanding of the electro-inductive effects
on the charge transport property, we began with calculations for anthracene (Ant)
with dimethyl and dimethoxy as electron donor groups and dicyano and dibromo as
electron attractor groups (Fig. 5.1). The substituent effect on molecular geometry,
reorganization energy, crystal property, transfer integrals and charge mobility
was investigated to establish the relationship between crystal arrangements and
inductive charging with the charge mobility.

dimethoxy-antdicyano-ant

dibromo-ant

electron donating 

group

electron withdrawing 

groups   

dimethyl-ant

Figure 5.1.: Anthracene with dimethyl and dimethoxy as electron donor groups
and dicyano and dibromo.

5.2. Simulation Details

The anthracene single crystal and its derivatives were simulated using a supercell
comprising 20 × 20 × 20 unit cells. The starting coordinates were sourced from
the crystal structure, and simulation conditions, including charge propagation,
calculation of reorganization energy, and coupling methods, remained consistent
with those employed in similar systems discussed in previous chapters.
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5.3. Result and Discussion

Table 1 shows the results of the hole and electron coupling for the anthracene
single crystal and its derivatives. To investigate the influence of both geometric
and electronic properties on coupling, we conducted calculations with and without
the substituent. In this process, we initially treated the substituent within the
quantummechanical (QM) domain and subsequently integrated it into themolecular
mechanical (MM) component for analysis. This step allowed us to assess the
coupling effect while considering the interplay between the substituent’s electronic
structure and its geometry in the system.
It can be seen from Fig. 5.2, and Fig. 5.3 that the coupling does not change

dramatically in both electron and hole coupling for dimethyl, dimethoxy, and di-
cyano anthracene when the substitution is considered as the MM part and only
anthracene is treated in the QM part, this means that the electronic effect is dis-
regarded and the geometry plays an important role in the coupling. However, in
the case of dibromo-anthracene , when bromine is neglected, the coupling changes
significantly, and the role of the electronic effect can be observed.
The results show that the coupling in the b-direction is larger than in the a-

direction, so we consider only the b-direction for the calculation of the electron
and hole mobility. Table 5.4 and Table 5.5 show the values of mobility obtained
with different values of reorganization energy calculated by different methods
(DFT: B3LYP and 𝜔B97XD functionals, Table 5.2 and 5.3). Both methods exhibit a
consistent trend. It is well-established that minimizing the reorganization energy
is imperative to achieve high carrier mobility. This optimization is crucial in en-
hancing the efficiency of the system’s charge transport properties. In the instance
of dimethoxy-ant, B3LYP and 𝜔B97XD calculations reveal a substantial reorgani-
zation energy and a small coupling. As a result, we anticipate that the extent of
charge transfer will be less than in other configurations. The high hole mobility
for dicyano-ant can be explained considering the smallest reorganization energy
as well as the largest coupling, compared to other structures. The reorganization
energy was significantly reduced upon substitution of the CN group in anthracene,
especially in the case of positive doping (hole hopping). The lowest reorganization
energy of dicyano-anthracene can be attributed to the fact that the electrons were
more localized at the CN group, especially at the nitrogen atom. Thus, the delocal-
ized 𝜋-electrons in the aromatic backbone of dicyano-anthracene were relatively
smaller than those in others. In the case of electron transfer, bromine increases
the coupling in comparison with other structures and therefore, charge transfer is
increased. It is shown that attaching the electron-withdrawing substituent at the
proper position could improve the stability of the materials, enhance the electronic
coupling and facilitate the hopping motions, efficiently. Adding bromine to this
structure considerably alters the coupling, as observed when incorporating it within
both the electron and hole MM components. This suggests that the halogen effect
is crucial in comparing various structures and their impact on mobility.
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Table 5.1.: Coupling for hole and electron transfer
(Hole) (Electron)
Material Direction Coupling (meV) Site energy (eV) Material Direction Coupling (meV) Site energy (eV)

Anthracene b
a

-66.00 ± 28.46
34.17 ± 23.64 -3.22 ± 0.066 Anthracene b

a
-19.64 ± 28.88
38.15 ± 20.33 5.36.±0.047

Dimethyl-ant b
a

-62.34 ± 34.07
-4.82 ± 4.27 -3.64 ± 0.065 Dimethyl-ant b

a
-17.26 ± 40.38
4.54 ± 2.83 5.68 ±0.051

Dimethyl-mm b
a

-89.00 ± 41.71
-4.99 ± 4.30 -3.74 ± 0.070 Dimethyl-mm b

a
-19.59 ± 38.20
5.25 ±3.28 5.86 ±0.048

Dimethoxy-ant b
a

22.57 ± 15.31
-6.15 ± 3.42 -3.45 ± 0.065 Dimethoxy-ant b

a
-20.93 ± 7.09
3.73 ± 2.83 5.44 ±0.068

Dimethoxy-mm b
a

-30.63±16.96
-6.03 ±3.52 -3.73 ± 0.065 Dimethoxy-mm b

a
-23.87 ± 12.91
-5.73 ± 2.80 5.86 ±0.047

Dicyano-ant b
a

-106.61 ± 109.83
8.92 ± 8.61 -4.04 ± 0.110 Dicyano-ant b

a
-39.17 ± 70.36
-9.95 ± 4.22 5.93 ±0.042

Dicyano-mm b
a

-113.08 ± 127.94
1.51 ± 92.56 -3.75 ± 0.095 Dicyano-mm b

a
-32.71 ±74.72
-9.86 ±3.84 5.85 ±0.080

Dibromo-ant b
a

-165.59 ± 56.30
7.14 ± 3.60 -3.58 ± 0.067 Dibromo-ant b

a
-39.24± 34.07
10.64 ± 6.54 5.57 ±0.055

Dibromo-mm b
a

-214.98 ± 62.82
2.81 ±2.56 -3.73 ± 0.069 Dibromo-ant b

a
6.04 ± 49.98
-2.63 ± 5.50 5.86±0.054

Table 5.2.: Reorganization energies (in meV) for the electron transfer
Material Direction 𝜆𝜔𝐵97𝑋𝐷 𝜆𝐵3𝐿𝑌𝑃

anthracene b 215 198
dimethyl-ant b 272 215
dimethoxy-ant b 300 239
dicyano-ant b 268 201
dibromo-ant b 257 209

Table 5.3.: Reorganization energies (in meV) for the hole transfer
Material Direction 𝜆𝜔𝐵97𝑋𝐷 𝜆𝐵3𝐿𝑌𝑃

anthracene b 183 137
dimethyl-ant b 211 149
dimethoxy-ant b 371 366
dicyano-ant b 163 106
dibromo-ant b 239 176

Table 5.4.: Hole transfer calculation (in 𝑐𝑚2𝑉 −1𝑠−1 )

Material Direction FSSH

BCFSSH
implicit DFT
lambda
(B3LYP)

BCFSSH
implicit DFT
lambda
(𝜔B97XD)

IPR-
BCFSSH
implicit
lambda
(𝜔B97XD)

IPR-
BCFSSH
implicit
lambda
(B3LYP)

anthracene b 4.48 2.27 1.35 1.28 1.63
dimethyl-ant b 2.92 1.15 1.02 1.31 1.66
dimethoxy-ant b 0.994 0.121 0.113 1.01 1.02
dicyano-ant b 6.53 4.50 4.16 1.80 1.91
dibromo-ant b 3.40 1.6 0.64 1.35 1.60
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Figure 5.2.: Comparison between hole coupling in anthracene with dimethyl and
dimethoxy as electron donor groups and dicyano and dibromo.

0

50

100

150

200

250

Electronic coupling

MM-part

QM-part

C
o

u
p

li
n

g
(m

e
v
) 

Coupling-qm

Coupling-mm

Figure 5.3.: Comparison between electron coupling in anthracene with dimethyl
and dimethoxy as electron donor groups and dicyano and dibromo.
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Table 5.5.: Electron transfer calculation (in 𝑐𝑚2𝑉 −1𝑠−1 )

Material Direction FSSH

BCFSSH
implicit DFT
lambda
(B3LYP)

BCFSSH
implicit DFT
lambda
(𝜔B97XD)

IPR-
BCFSSH
implicit
lambda
(𝜔B97XD)

IPR-
BCFSSH
implicit
lambda
(B3LYP)

anthracene b 1.6 1.38 1.11 1.43 1.65
dimethyl-ant b 4.03 3.38 2.45 1.50 1.8
dimethoxy-ant b 3.64 1.10 0.977 1.04 1.13
dicyano-ant b 6.30 4.55 3.82 2.18 2.60
dibromo-ant b 8.87 6.41 4.86 3.23 3.71
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5.4. Conclusion

In summary, we investigated the anthracene derivatives with and without electron-
withdrawing and electron donating substituent theoretically.
In the results section of this part, the study delved into the significance of molecular
conformation and electro-inductive effects using the QM-MM theory. The findings
revealed that the presence of dibromo substituents led to electro-inductive effects,
while other substituents influenced themolecular packing arrangement. Specifically,
the research illustrated how electron-withdrawing or donating substituents could
alter both reorganization energy and electronic coupling, thereby impacting charge
transfer dynamics.

Notably, the analysis spotlighted Br-anthracene, distinguished by its two bromine
substituents, as a standout example. This compound demonstrates proficient elec-
tron transport capabilities, boasting an impressive mobility value of 6.41𝑐𝑚2𝑉 −1𝑠−1.
This observation highlighted the profound influence that specific substituents
wielded over electronic properties. It emphasized the potential for tailored designs,
indicating a promising avenue for significantly enhancing charge carrier mobility
in organic electronic devices.
Upon replacing the CN group in anthracene, a significant reduction in reor-

ganization energy was observed. This effect was particularly prominent in the
case of positive doping (hole hopping). Dicyano-anthracene exhibited the low-
est reorganization energy due to enhanced electron localization at the CN group,
specifically at the nitrogen atom. Consequently, the delocalization of 𝜋-electrons
in the aromatic backbone of dicyano-anthracene was comparatively diminished
when compared to other molecules. This suggests a distinctive electronic behavior
in dicyano-anthracene, indicating potential applications in electronic devices.
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6. Summary and Outlook

In this thesis, innovative tools have been introduced to delve into the intricate
world of transport processes within molecular materials. These newly developed
methods not only provide a fresh perspective on the study of transport but also
offer practical applications. Some of these methodologies are specifically tailored
to address challenges within the realm of transport processes.
The core focus of our research centers around the rigorous testing and validation
of these methods on organic semiconducting materials, with a particular emphasis
on organic crystals. Through systematic analysis, this study has paved the way for
a deeper understanding of transport phenomena in these materials, opening doors
to potential advancements in the field.
The thesis initiates by offering a comprehensive examination of the theoretical
underpinnings, delving into the fundamental concepts of charge and energy trans-
port. Within this framework, we explore the complexities of high and low mobility
regimes, elucidating the methodologies employed to confront these distinct states.
As the research unfolds, we meticulously assess the effectiveness of two different
approximations utilized in simulating the charge transport process within represen-
tative organic materials. Remarkably, the mobilities predicted by our novel method
align closely with experimental values, showcasing its potential for future research
endeavors. This alignment not only validates the accuracy of our approach but also
signals a promising avenue for advancing the field, underscoring the significance
of our findings in the context of organic material science.
Additionally, our research delved deeply into the intricate relationship between
substituents and their impact on electronic and charge transport properties. To
unravel this complex interplay, we initiated our inquiry by examining the influence
of halogen groups on the charge transport characteristics of n-type halogenated
tetraazapentacenes (TAPs). Utilizing sophisticated molecular dynamics simulations,
we meticulously calculated charge mobilities and rigorously compared them with
experimental data.

Our meticulous analysis yielded significant revelations: while TAPs substituted
with chlorine and bromine exhibited properties closely resembling those of their
unaltered counterparts, the introduction of fluorine led to a marked reduction in
charge mobility. This noteworthy disparity was attributed to the potent electron-
withdrawing effect of fluoride, causing a decrease in electron transfer integrals
and an increase in reorganization energy. These findings illuminate the intricate
dynamics between specific substituents and charge mobility, enhancing our compre-
hension of the underlying mechanisms governing electronic transport in organic
materials. The insights garnered from this investigation not only advance our
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fundamental understanding of these processes but also offer crucial guidelines
for the strategic design and optimization of organic semiconductors for diverse
applications in the realm of materials science.
Moreover, we turned our attention to understanding the impact of substituents
on charge mobilities in diphenylanthracene. To gain deeper insights into this
phenomenon, we conducted meticulous calculations on anthracene, varying the
electron donor and attractor groups. This detailed investigation extended to assess-
ing their influence on reorganization energy, transfer integrals, and charge mobility.
The objective was to establish a definitive relationship between the structural
configurations and their resulting properties.
In our pursuit to discern the role of both geometrical and electronic properties

in the coupling process, we conducted comprehensive analyses, considering the
coupling with and without specific substituents. For anthracene derivatives like
dimethyl, dimethoxy, and dicyano anthracene, where the substitution was treated
as the molecular mechanics (MM) component and only anthracene was handled in
the quantum mechanics (QM) portion, the geometric factors emerged as crucial
determinants. In these instances, changes in geometry played a significant role, yet
the coupling remained relatively stable.
However, a striking contrast emerged in the case of dibromo-anthracene. Here,
when the influence of bromine was overlooked, the coupling exhibited significant
alterations. This observation underscored the pivotal role of electronic effects,
particularly the halogen effect, in comparing various structural configurations and
their impact on mobility. These findings highlight the nuanced complexities of
molecular interactions and emphasize the indispensable role of halogen substituents
in shaping the mobility of organic materials. This revelation not only enriches our
understanding of structure-property relationships but also offers valuable insights
for the design and optimization of organic semiconductors tailored for specific
applications. The discoveries presented in this study represent a significant step
towards a more profound comprehension of charge transfer phenomena in organic
semiconductor crystals (OSCs), with promising implications for future research en-
deavors. In essence, this comprehensive exploration of charge transfer mechanisms
within OSCs has significantly deepened our understanding of their fundamental
properties and behaviors. Our innovative blend of theoretical analyses and com-
putational simulations, coupled with the development of novel methodologies,
establishes a trajectory for future advancements in the realm of organic electronics.
This progress not only opens doors for the creation of efficient and optimized
materials but also offers a promising avenue for diverse applications within the
field. As we conclude this study, we are poised at the forefront of groundbreaking
discoveries, ready to usher in a new era of advancements in organic electronic
technology.
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A. Appendix

A.1. Test

Figure A.1.: Comparison of the charge mobilities computed by fewest switches
surface hopping (FSSH) method with different approximations for (a)
p-MSB and (b) rubrene. The hole mobilities computed by the FSSH
with explicit charge relaxation (FSSH-ER, dashed lines) are used as
reference. Green circle and red diamond: FSSH with implicit charge
relaxation using surface populations and wave function coefficients
to evaluate the weights (FSSH-IR(S) and FSSH-IR(W)); blue square:
FSSH with explicit on-site charge relaxation (FSSH-ER(onsite)); orange
triangle: FSSH with Boltzmann correction (BC) for hopping probability
(FSSH-BC); blue triangle: FSSH-BC-IR. The reorganization energies
computed by DFTB are used as the input parameters for IR.
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