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Abstract: Maraging steel, characterized by its superior strength-to-weight ratio, wear resistance, and
pressure tolerance, is a material of choice in critical applications, including aerospace and automotive
components. However, the machining of this material presents significant challenges due to its
inherent properties. This study comprehensively examines the impacts of face milling variables on
maraging steel’s surface quality, cutting temperature, energy consumption, and material removal rate
(MRR). An experimental analysis was conducted, and the gathered data were utilized for training
and testing five machine learning (ML) models: support vector machine (SVM), K-nearest neighbor
(KNN), artificial neural network (ANN), random forest, and XGBoost. Each model aimed to predict
the outcomes of different machining parameters efficiently. XGBoost emerged as the most effective,
delivering an impressive 98% prediction accuracy across small datasets. The study extended into
applying a genetic algorithm (GA) for optimizing XGBoost’s hyperparameters, further enhancing the
model’s predictive accuracy. The GA was instrumental in multi-objective optimization, considering
various responses, including surface roughness and energy consumption. The optimization process
evaluated different weighting methods, including equal weights and weights derived from the
analytic hierarchy process (AHP) based on expert insights. The findings indicate that the refined
XGBoost model, augmented by GA-optimized hyperparameters, provides highly accurate predictions
for machining parameters. This outcome holds significant implications for industries engaged in the
machining of maraging steel, offering a pathway to optimized operational efficiency, reduced costs,
and enhanced product quality amid the material’s machining challenges.

Keywords: maraging steel; optimization; machine learning; machining parameters; temperature;
power consumption; productivity

1. Introduction

Maraging steel is a carbon-free iron–nickel steel blend boasting high strength and
toughness without losing its malleability. The term “maraging” combines “martensite” and
”aging”. The initial phase of martensitic is hard and brittle. Then, the martensitic structure
is subjected to an aging process to alleviate this brittleness and enhance other mechanical
properties. This aging process involves heating the steel to a relatively low temperature,
between 500 ◦C and 600 ◦C, for a specific period. Such a process precipitates intermetallic
compounds to strengthen the steel without significantly reducing its ductility [1]. Thus,
maraging steels are ultra-high strength, low carbon steels, deriving their strength from the
deposition of intermetallic compounds, rather than a high carbon basis [2].
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Given their high strength-to-weight ratio, maraging steels are extensively desired in
aerospace parts, including landing gear, helicopter undercarriages, rocket motors, and
missile cases. Their high strength, wear resistance, and ability to withstand high pressures
make them ideal for injection molds and dies. They are also employed in high-performance
drivetrain components in the automotive industry [3–5].

Generally, several maraging steel components are manufactured by machining pro-
cesses. However, the high hardness and strength of maraging steel result in its machining
being challenging. The cutting process for such superior material incurs high cutting
forces, leading to increased energy consumption, heat generation, tool wear, and surface
roughness [6]. The excessive heat generated at the cutting zone is a primary challenge
when cutting hard-to-cut materials, resulting in excessive tool wear. Various attempts have
been undertaken to enhance surface quality, fatigue strength, and corrosion resistance to
meet industrial standards.

Another researcher applied cutting fluid to diminish the friction coefficient at the
interface between the workpiece and the cutting insert, lowering the cutting force and
power consumption and improving the surface quality. Coolant has been revealed to
reduce the heat generated in the cutting zone and the thermal effects that cause tensile
residual stresses, which are pernicious to component fatigue [7]. However, the chemical
composition of petroleum-based mineral oils presents economic and environmental chal-
lenges [8,9]. Although vegetable-origin oils are emerging as replacements for mineral oils,
their applicability is substantial in flood coolant methods [10]. Additionally, the minimum
quantity liquid (MQL) method struggles to cool the cutting tool rapidly at high cutting
speeds for difficult-to-machine materials [11,12].

In contrast, the function of coatings on the cutting inserts mitigates excessive tool
wear during the machining of high-strength materials. Physical vapor deposition (PVD)
coatings have explicitly been adopted for milling operations to augment the machined
surface quality. Aluminum-based coatings are particularly promising for these operations.
For example, the performance of AlCrN- and AlTiN-coated tools is notable in severe
cutting environments owing to their exceptional oxidation resistance, high hardness, and
prolonged tool life at heightened cutting temperatures [13]. AlTiN and AlCrN coatings
exhibit much longer tool life than CrN coatings at high cutting temperatures [14]. It has
been also found that the formation of wear-resistant and thermally stable oxides from the
tribo-chemical reactions of chromium and aluminum is attributed to the abrasion resistance
of AlCrN coatings [15]. AlCrN coatings have enhanced the machinability of maraging steel
compared to AlTiN coatings by reducing cutting forces, chatter, and vibration, prolonging
tool life by 29% and improving the machined surface finish [16].

Metal additive manufacturing has recently been employed to construct maraging steel
parts using the powder bed fusion (PBF) process for tooling and aerospace applications [5].
However, this process introduces challenges such as microcracks, pores, low surface quality,
and residual stresses [17–20]. Tensile residual stresses, in particular, undermine corrosion
resistance and promote crack propagation, thus reducing component mechanical strength
and fatigue life [21]. In contrast, compressive residual stresses can improve cyclic loading
corrosion resistance and refine the dimension preciseness of 3D printed parts [22].

Therefore, face milling operations are considered post-processing operations for en-
hancing the poor surface finish of additive manufacturing parts [5]. Shoichi Tamura et al.
conducted peripheral milling for commercial and additively fabricated maraging steel,
using laser powder bed fusion [23]. The maximum cutting forces of AM and commercial
maraging steel were nearly identical. Simulation results indicated a larger chip flow angle
in the radial direction for the AM specimen than for the commercial one.

Milling variables significantly impact the residual stresses on the machined surface.
It has been found that feed per tooth and cutting speed greatly influence the residual
stress on maraging steel [10]. These parameters have been linked to improve surface
quality and the compressive residual stress during the milling of additively manufactured
maraging steel [24]. Given the substantial impact of residual stresses on component
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quality and service life, optimizing the machining parameters is essential for achieving
precise components.

In this regrade, machine learning (ML) algorithms offer significant potential for solving
optimization problems [25,26]. Extreme gradient boosting (XGBoost) is a redundant boosted
tree mode that is currently the fastest of its kind. It is 10 times faster than traditional models
and is generally utilized across various applications. XGBoost has proven to be superior
in handling tabular datasets compared to other algorithms, including ANN and SVR,
which typically require enormous datasets [27,28]. Recently, Miao Zou et al. successfully
optimized the XGBoost model to predict the relative density of Ti-6Al-4V components
manufactured by SLM using a small dataset [29].

From the aforementioned literature, only limited investigations were found for face
milling of maraging steel, which is crucial for post-processing to improve the machined
surface quality of commercial or additive manufactured maraging steel 350. Therefore, this
article is state of the art and covers the following:

• An experimental investigation of the effect of face milling parameters on responses,
including surface roughness, power consumption, cutting temperature, and material
removal rate, to provide an understanding of the inherent machining challenges;

• A comparative study of five different machine learning models to predict machining
responses. The ML approaches examined are SVM, K-KNN, ANN, random forest, and
XGBoost;

• Additionally, multi-objective optimization of process parameters using different
weighting methods and the genetic algorithm (GA) was conducted for precision
face milling of maraging steel 350.

2. Materials Preparation and Methodology

The workpiece utilized in this research was maraging steel 350 delivered in a hot-rolled
and air-cooled plate of 32 mm in thickness. The chemical composition listed in Table 1 was
analyzed using a Spectro graphical analysis-type SPECTROMAXx-LMM05, manufactured
by AMETEK, Inc. (Berwyn, PA, USA), while Table 2 lists the mechanical properties that
were ascertained through a tensile specimen test with Lo =34 mm and do = 6.2 mm, using an
INSTRON-5984 Universal Testing Machine manufactured by Instron Corporation (Norfolk
County, MA, USA).

Table 1. Chemical composition of maraging steel 350.

Element Ni Co Mo Ti Al Cu C Cr Mn Fe

weight (wt.%) 18.164 12.173 4.06 2.211 0.147 0.010 0.032 0.004 0.022 63.177

Table 2. Mechanical properties.

Description Unit Value

Ultimate tensile strength MPa 1132
Yield strength MPa 1080

Young’s modulus GPa 200
Elongation % 22.5
Hardness HRc 38

The specimen was grinded with various grades of sandpapers, including 120, 180, 500,
and 1000, and then was polished with SiC and alumina cloth polishers. Afterward, the sam-
ples were etched in V2A solution (HCl 119 mL, HNO3 12 mL, and distilled water 119 mL).
Microstructural analysis was conducted using an Olympus BX51RF optical microscope
(Tokyo-Japan), as shown in Figure 1. The microstructure consisted of fine morphology with
martensite packets within prior austenite grains. The martensite was soft because of its low
carbon content. These steels’ high strength and hardness are procured after aging in the
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temperature range of 500–600 ◦C due to the precipitation of fine particles of Ni3(Mo, Ti)
intermetallic compounds in the structure.
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Figure 1. Optical micrograph of maraging steel 350 with different magnifications.

The experimental runs were conducted using workpieces with dimensions of 100 mm,
50 mm, and 30 mm for the length, width, and height, respectively. An Emco vertical milling
machine type C40 was utilized for the face milling of maraging steel. The power delivered
to the spindle was 13 KW, rotating in the range of 10–5000 RPM, while the feed rate ranged
from 10 to 2000 mm/min. The cutter and inserts were manufactured by Sandvik (Sandvik,
Stockholm, Sweden). The holder was a milling cutter with code R245-063Q22-12M. In
contrast, the insert code was R245-12T3M-PM 1130 with a cutting-edge effective length
of 10 mm, depth of cut maximum of 6.5 mm, corner radius of 1.5 mm, insert rake angle
of 15◦; major cutting-edge angle of 45◦, and a coating PVD AlTiCrN. The experimental
runs were conducted using five inserts pinned in a 63-mm cutter diameter. The endmill is
designed for high-quality surface quality and potent chip removal and is generally used
for cutting several steel and titanium alloys. Figure 2 shows a schematic diagram of the
experimental setup.
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A factorial design was conducted using three factors at three various levels (L27).
The variables included cutting speed, depth of cut (D.o.C), and feed per tooth. The levels
of such variables were selected based on pilot tests in various conditions. Table 3 lists
the process parameters with their levels. All experimental runs were conducted in dry
conditions with two replications, and the average value was used for statistical analysis.
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Table 3. Process parameters and levels.

Parameters Unit Levels

Cutting Speed m/min 20 50 75
D.o.C mm 0.5 0.75 1.0

Feed per Tooth mm/tooth 0.05 0.10 0.15

The surface roughness parameters Ra, Rt, and Rz were measured using Tesa-Rougossurf-
90G (Tesa company, Bugnon, Switzerland), with a cut-off length of 0.8 mm, a measurement
speed of 1 mm/s, and a cut-off number of 19. The power consumption during face milling
was assessed by two power meters (Tactix, Beijing, China) connected to the power supply
of the milling machine to measure the voltage and current during machining. Consumed
power was assessed by measurement of the current (I) in one line and the voltage difference
(V) through a balanced three-phase load-cutting machine. Three readings were recorded for
each experimental trial, and the average was evaluated. Therefore, the power (P) was calcu-
lated using Equation (1), where (ø) represents the power factor for a three-phase machine:

Total power = Voltage * Current *
√

3 COS ø = Watt (1)

A ThermoPro-TP8 thermal camera from the Guide company (Wuhan, China) was used
to capture the cutting temperature during experimental runs, and its specifications are listed
in Table 4. The camera was calibrated before experimental work by adjusting the focus
of the camera. In turn, suitable sensitivity was adopted, and the camera focused on the
interface between the workpiece and the milling cutter to accurately capture the maximum
cutting temperature. Figure 3 shows the thermal image of experiment 16, while the material
emissivity coefficient was selected based on the camera manufacturer’s recommendations.

Table 4. Thermal camera specifications.

Feature Specification

Measurement Range −20 to 1000 ◦C

Thermal Sensitivity ≤0.08 ◦C at 30 ◦C

Set Emissivity for Steel 0.18

Accuracy ±2 ◦C

Spectral Range 8–14 µm

Detector type Micro-bolometer—UFPA384 × 288 pixels
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3. Result and Discussion

This study’s outcomes are surface roughness, power consumption, cutting tempera-
ture, and material removal rate. Surface roughness was evaluated in terms of arithmetic
mean roughness (Ra), total roughness (Rt), and mean depth of profile (Rz). Table 5 displays
the experimental runs along with their corresponding responses.

Table 5. Experimental runs and responses.

Test No. Speed
m/min

D.o.C
(mm)

Feed Rate
(mm/tooth)

Surface Roughness
Power

Consumption (KW)
Temp.
(◦C)

MRR
(mm3/min)Ra

(µm)
Rt

(µm)
Rz

(µm)

1 25 0.5 0.05 0.753 8.606 4.92 1.147 234.2 800
2 25 0.5 0.1 0.765 8.729 5.489 1.2 241.9 1575
3 25 0.5 0.15 0.884 9.059 5.632 1.254 253.9 2375
4 25 0.75 0.05 0.601 7.236 3.79 1.207 265.5 1200
5 25 0.75 0.1 0.628 7.972 4.437 1.267 274.1 2363
6 25 0.75 0.15 0.691 8.286 4.688 1.307 287.8 3563
7 25 1 0.05 0.517 5.922 3.55 1.24 312.3 1600
8 25 1 0.1 0.543 6.972 4.029 1.3 322.5 3150
9 25 1 0.15 0.585 7.324 4.335 1.32 338.6 4750

10 50 0.5 0.05 0.261 3.905 1.768 1.347 328.7 1575
11 50 0.5 0.1 0.52 7.081 3.334 1.414 339.5 3150
12 50 0.5 0.15 0.674 9.124 4.427 1.467 356.4 4750
13 50 0.75 0.05 0.256 3.259 1.724 1.414 372.6 2363
14 50 0.75 0.1 0.634 4.489 3.248 1.487 384.7 4725
15 50 0.75 0.15 0.813 12.477 4.071 1.52 403.9 7125
16 50 1 0.05 0.371 3.494 2.296 1.48 438.3 3150
17 50 1 0.1 0.592 5.201 3.231 1.534 452.6 6300
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Table 5. Cont.

Test No. Speed
m/min

D.o.C
(mm)

Feed Rate
(mm/tooth)

Surface Roughness
Power

Consumption (KW)
Temp.
(◦C)

MRR
(mm3/min)Ra

(µm)
Rt

(µm)
Rz

(µm)

18 50 1 0.15 0.698 6.73 3.993 1.567 475.2 9500
19 75 0.5 0.05 0.365 5.164 2.057 1.42 427.3 2375
20 75 0.5 0.1 0.606 4.965 3.686 1.54 441.4 4750
21 75 0.5 0.15 0.652 3.682 3.299 1.614 463.3 7100
22 75 0.75 0.05 0.842 5.361 4.747 1.567 484.4 3563
23 75 0.75 0.1 0.858 6.363 5.479 1.654 500.1 7125
24 75 0.75 0.15 0.875 7.042 5.983 1.68 525.1 10,650
25 75 1 0.05 0.886 7.763 3.592 1.607 569.8 4750
26 75 1 0.1 0.902 8.307 4.307 1.76 588.4 9500
27 75 1 0.15 0.989 8.695 4.835 1.88 617.8 14,200

3.1. Effect of Process Parameters on Surface Quality

The ANOVA presented in Table 6 reveals that cutting speed was the most influential
parameter affecting Ra, followed by feed rate. An increase in cutting speed resulted in
smaller chip thickness, which improved surface quality by reducing roughness. Conse-
quently, the interaction between cutting speed and D.o.C and the interaction between speed
and feed rate significantly affected the Ra. However, elevating the cutting speed beyond
50 m/min adversely impacted surface quality, as depicted in Figure 4. This phenomenon
occurred because a 75 m/min cutting speed amplifies the heat generated by excessive
friction between the cutting tool and the workpiece. The resultant rise in cutting tempera-
ture compromises surface quality. Consequently, a 50 m/min cutting speed emerged as a
threshold beyond which the surface finish deteriorated.

Table 6. Analysis of variance of Ra.

Source DF Adj SS Adj MS F-Value p-Value

Speed 2 0.259 0.129 34.940 0.000 Significant

D.o.C 2 0.033 0.017 4.470 0.050 Not Significant

Feed rate 2 0.227 0.113 30.660 0.000 Significant

Speed * D.o.C 4 0.330 0.082 22.280 0.000 Significant

Speed * Feed rate 4 0.109 0.027 7.370 0.009 Significant

D.o.C * Feed rate 4 0.010 0.003 0.680 0.623 Not Significant

Error 8 0.030 0.004

Total 26 0.997

Additionally, augmenting the feed rate increased chip thickness, detracting from the
smoothness of the machined surface and yielding higher surface roughness. Conversely,
the depth of cut exerted a less pronounced impact on Ra. This outcome can be attributed
to the efficient trimming of the chip thickness facilitated by overlapping the five inserts.
Therefore, the interaction of D.o.C and feed rate did not significantly affect the Ra. Generally,
a reduced depth of cut yielded a finer chip thickness, improving the machined surface
quality, as illustrated in Figure 4.
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Figure 4. Main effects plot for Ra.

A similar pattern was observed for Rt and Rz, indicating that increased D.o.C and
feed rate led to elevated surface roughness. Figure 5 compares the Ra, Rt, and Rz values at
a 75 m/min cutting speed across various feed rates and D.o.C levels. Regarding Rt and
Rz, the interaction between minimal D.o.C and increased feed rate reduced the maximum
lengths of the peaks and valleys in the surface roughness profile, leading to lower Rt
and Rz values. However, this interaction was not observed for Ra, as Ra represents the
arithmetic mean roughness along the entire cutting length of the workpiece. Additionally,
regression equations were developed to predict Ra, Rt, and Rz values, as represented in
Equations (2), (3), and (4), respectively:

Ra = 1.056 − 0.01776 Speed − 0.918 D.o.C + 3.45 Feed rate + 0.02548 Speed *
D.o.C + 0.0089 Speed * Feed rate − 2.22 D.o.C * Feed rate

(2)

Rt = 14.44 − 0.1878 Speed − 12.32 D.o.C + 23.1 Feed rate + 0.2284 Speed *
D.o.C − 0.118 Speed * Feed rate + 9.2 D.o.C * Feed rate

(3)

Rz = 6.84 − 0.0934 Speed − 4.72 D.o.C + 14.3 Feed rate + 0.1043 Speed *
D.o.C + 0.088 Speed * Feed rate − 5.9 D.o.C * Feed rate

(4)
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3.2. Effect of Process Parameters on Cutting Temperature

Monitoring the cutting temperature is crucial in machining operations because it not
only affects the strength of the workpiece but also impacts chip removal efficiency. Elevated
cutting temperatures can lead to rapid tool wear, subsequently deteriorating surface quality.
As illustrated in Figure 6, the cutting temperature increased dramatically with increased
cutting speed, leading to compromised surface quality.
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Furthermore, the analysis of variance displayed in Table 7 underscored that all process
parameters and their interactions significantly impacted the cutting temperature. Among
these parameters, cutting speed stands out as the most influential due to the excessive
friction generated between the workpiece and the five inserts. A direct correlation among
cutting temperature, the number of inserts, and flank wear was articulated by Richetti
et al. [30]. In light of these findings, the primary objective of this study was to optimize
the process parameters to attain lower cutting temperatures and surface roughness values.
These aspects are elaborated upon in the subsequent sections. A regression equation,
represented by Equation (5), was also formulated to predict cutting temperature:

Temp. = 93.9 + 2.255 Speed + 76.4 D.o.C − 6 Feed rate + 2.675 Speed * D.o.C
+ 3.76 Speed * Feed rate + 185 D.o.C * Feed rate

(5)

Table 7. Analysis of variance of cutting temperature.

Source DF Adj SS Adj MS F-Value p-Value

Speed 2 241,967 120,983 255,398.59 0.000 Significant

D.o.C 2 59,597 29,798 62,904.97 0.000 Significant

Feed rate 2 4714 2357 4976.07 0.000 Significant

Speed * D.o.C 4 3399 850 1793.74 0.000 Significant

Speed * Feed rate 4 270 67 142.25 0.000 Significant

D.o.C * Feed rate 4 67 17 35.20 0.000 Significant

Error 8 4 0

Total 26 310,016
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3.3. Effect of Process Parameters on MRR and Power Consumption

While a high material removal rate benefits mass production and economic growth,
excessive power consumption poses a significant environmental concern. Consequently,
comprehensively understanding and optimizing process parameters is essential to strike a
balanced compromise between these conflicting responses. As depicted in Table 8, ANOVA
highlighted that all process parameters markedly influence power consumption. Cutting
speed emerges as the paramount factor, primarily because a rise in speed amplifies the
friction between the tool and workpiece. This intensification in friction precipitates a
dramatic escalation in insert wear and cutting forces. In a similar vein, elevating the
D.o.C and feed rate augments power consumption, a trend clearly illustrated in Figure 7a.
This increase can be imputed to the amplified cutting forces resulting from enhanced
chip thickness.

Table 8. Analysis of Variance of power consumption.

Source DF Adj SS Adj MS F-Value p-Value

Speed 2 0.677 0.339 482.270 0.000 Significant

D.o.C 2 0.092 0.046 65.490 0.000 Significant

Feed rate 2 0.079 0.039 56.070 0.000 Significant

Speed * D.o.C 4 0.016 0.004 5.730 0.018 Significant

Speed * Feed rate 4 0.009 0.002 3.190 0.076 Not Significant

D.o.C * Feed rate 4 0.002 0.000 0.540 0.711 Not Significant

Error 8 0.006 0.001

Total 26 0.880
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Figure 7. (a) Main effect of power consumption (KW); (b) main effect for MRR (mm3/min).

Moreover, the material removal rate (MRR) surges significantly with the escalation in
both the depth of cut and the feed rate, a phenomenon attributable to the increased chip
thickness, as delineated in Figure 7b. Figure 8 presents a correlation plot mapping the
relationships between machining parameters and responses. In this visual representation,
dark blue signifies the most negative correlation (−1), whereas dark red indicates the peak
positive correlation (+1). In this context, a positive correlation denotes that the specified
response amplifies with an increase in machining parameters. In contrast, a negative
correlation signifies that the chosen response diminishes as the machining parameters rise.
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To facilitate predictive analysis, regression equations for power consumption (PC) and
MRR were formulated, as expressed in Equations (6) and (7), respectively:

PC = 1.0339 + 0.00164 Speed − 0.0031 D.o.C + 0.239 Feed rate + 0.00552 Speed
* D.o.C + 0.01953 Speed * Feed rate + 0.127 D.o.C * Feed rate

(6)

MRR = 4725 − 94.5 Speed − 6311 D.o.C − 47,247 Feed rate + 126.3 Speed
* D.o.C + 944.9 Speed * Feed rate + 63,167 D.o.C * Feed rate

(7)
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4. ML Algorithms Adopted

The experimental data were utilized to train and test five distinct ML models aiming
to predict machining parameters, encompassing SVM, KNN, ANN, random forest, and
XGBoost. The SVM, a versatile method applied for classification and regression, operates
by identifying a hyperplane that optimally separates different categories in n-dimensional
space, ensuring that each is on the other side of the hyperplane. The SVM aims to maximize
the margin, which is the distance to the nearest point from either category [31]. KNN is
another straightforward, supervised ML algorithm primarily used for classification. It
classifies new data points based on the classification of their neighbors, with the number
of neighbors considered during classification denoted by the parameter KN [31]. The
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human brain’s neural networks inspire ANNs and are adept at recognizing patterns within
data. These data comprise input, hidden, and output layers of neurons, with the hidden
layers performing the bulk of computations. Data are propagated through the network via
forward propagation, involving weights, biases, and activation functions [32]. Random
forest amalgamates the strengths of bagging and decision trees, reducing sensitivity to
training data. It builds multiple decision trees using bootstrapped datasets, and their
results are aggregated to enhance the model’s robustness and accuracy. Each tree in the
forest is trained on a variant dataset, ensuring diversity and reducing correlation among
the trees [33]. XGBoost, or extreme gradient boosting, combines the advantages of both
bagging and boosting. It consists of a series of models in which each subsequent model
corrects the errors of its predecessor, amplifying the overall predictive accuracy and model
strength [34].

5. Comparative Results of ML Algorithms

The five ML approaches were employed to discern the correlation between input
parameters and various performance characteristics, including surface roughness, power
consumption, cutting temperature, and MRR. Twenty-six experimental results, as outlined
in Table 3, were utilized for training, with one remaining dataset reserved for testing
the predictive efficacy of the five models. The comparative analysis of each ML model’s
accuracy is presented in Table 9.

Table 9. Testing five ML models.

Ra
(µm)

Rt
(µm)

Rz
(µm)

PC
(KW)

Temp.
(◦C)

MRR
(mm3/min)

Actual 0.902 8.307 4.307 1.76 588.4 9500

KNN

Predicted 0.79 6.50 4.08 1.63 505.00 7420.00

Percentage
Correctness 0.877827 0.782737 0.946599 0.9275 0.85826 0.781053

XGBOOST

Predicted 0.87 8.28 4.18 1.81 596.44 9688.08

Percentage
Correctness 0.960451 0.996439 0.970013 0.968806 0.986336 0.980203

ANN

Predicted 0.94 5.14 4.16 1.58 13.28 13.23

Percentage
Correctness 0.952647 0.618528 0.966594 0.895583 0.022562 0.001393

SVR

Predicted 0.85 6.76 4.30 1.66 382.43 3565.77

Percentage
Correctness 0.940451 0.814061 0.997267 0.941342 0.649956 0.375344

Random Forest

Predicted 0.83 6.88 4.36 1.70 572.75 7207.50

Percentage
Correctness 0.922517 0.828719 0.98671 0.963687 0.973408 0.758684

The hyperparameters for the machine learning models used in the analysis were five
neighbors, and the Euclidean distance metric was employed for the KNN model. In the
case of XGBoost, a popular gradient boosting algorithm, a configuration with 100 trees, a
maximum tree depth of 3, and a learning rate of 0.3 was used. The ANN model utilized
a single hidden layer with 100 neurons and the Rectified linear unit (ReLU) activation
function. The support vector regressor (SVR) had a radial Basis function (RBF) kernel, with
the regularization parameter (C) as 1.0 and an epsilon value of 0.1. Last, we maintained
settings with 100 trees and unlimited tree depth for the random forest regressor.

It was observed that the XGBoost model delivered predictions closely aligned with the
actual values for all performance characteristics, outperforming the other ML models. This
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superior performance can be attributed to XGBoost’s ensemble learning nature, according
to which it combines predictions from multiple machine learning algorithms to generate a
final prediction that is more accurate and stable. It also incorporates regularization tech-
niques, such as L1 and L2 regularization, effectively reducing the model’s complexity and
preventing overfitting. As a result, the XGBoost model demonstrates enhanced adaptability,
making precise predictions even when introduced to new, unseen data.

6. Optimal XGBoost Prediction of Responses

Typically, hyperparameters are determined through a trial-and-error process. How-
ever, this method does not always ensure optimal performance. This study employs a
genetic algorithm (GA) to optimize the XGBoost hyperparameters. The GA is an evolu-
tionary algorithm inspired by natural selection and genetic theories. It involves selecting
chromosomes from a population based on their fitness values. This process is followed
by a crossover process, combining two chromosomes to create a new one. Subsequently,
a mutation occurs, involving a random alteration of some bits in the chromosome. This
outcome introduces diversity into the population and helps to avoid local optima, ensuring
a more comprehensive search for global optimal solutions, as illustrated in Figure 9. The
objective is to select the best chromosomes to form the next generation [35].
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Table 10 presents the optimal values of the hyperparameters for XGBoost obtained
through GA. These optimal hyperparameters were employed to predict the performance
characteristics for all experimental runs, the results of which are detailed in Table 11.
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Table 10. Optimal hyperparameters.

Hyperparameter Parameter Optimal Value

Maximum Depth 4

Number of Estimators 365

Subsample 0.247020091

Colsample by Tree 0.829416734

Regularization Alpha 0.188535466

Regularization Lambda 0.980953654

Table 11. Optimal XGBoost Model results.

Predicted Actual

Order Ra
(µm)

Rt
(µm)

Rz
(µm)

PC
(KW)

Temp.
(◦C)

MRR
(mm3/min)

Ra
(µm)

Rt
(µm)

Rz
(µm)

PC
(KW)

Temp.
(◦C)

MRR
(mm3/min)

3 0.6948 8.9826 5.5978 1.2552 254.1231 2374.803 0.884 9.059 5.632 1.254 253.9 2375

1 0.5875 8.4114 4.7987 1.1394 234.2131 799.9993 0.753 8.606 4.92 1.147 234.2 800

4 0.5875 7.2322 3.7959 1.2288 265.4778 1199.994 0.601 7.236 3.79 1.207 265.5 1200

8 0.6001 6.8984 4.0436 1.2949 322.7358 3149.850 0.543 6.972 4.029 1.3 322.5 3150

23 0.8302 6.2875 5.5252 1.6128 499.8404 7125.210 0.858 6.363 5.479 1.654 500.1 7125

6 0.6948 8.3705 4.8029 1.2949 287.6072 3563.305 0.691 8.286 4.688 1.307 287.8 3563

18 0.657 6.8045 4.0277 1.5357 475.1958 9500.082 0.698 6.73 3.993 1.567 475.2 9500

19 0.4843 4.9828 2.0431 1.4883 427.1518 2375.214 0.365 5.164 2.057 1.42 427.3 2375

26 0.8302 8.2402 4.3994 1.6128 588.4298 9500.226 0.902 8.307 4.307 1.76 588.4 9500

2 0.6684 8.8814 5.5383 1.2552 241.824 1575.122 0.765 8.729 5.489 1.2 241.9 1575

27 0.8566 8.6883 4.7501 1.6128 617.7504 14,199.80 0.989 8.695 4.835 1.88 617.8 14,200

10 0.4643 4.2384 2.0001 1.4217 328.8993 1574.773 0.261 3.905 1.768 1.347 328.7 1575

22 0.7671 5.3605 4.7104 1.5624 484.7287 3562.817 0.842 5.361 4.747 1.567 484.4 3563

11 0.6001 6.9588 3.3356 1.464 339.1916 3150.316 0.52 7.081 3.334 1.414 339.5 3150

15 0.657 12.0827 3.9767 1.5223 404.0421 7124.864 0.813 12.477 4.071 1.52 403.9 7125

21 0.6945 4.0596 3.7828 1.5731 462.9821 7100.231 0.652 3.682 3.299 1.614 463.3 7100

9 0.6507 7.325 4.3751 1.2949 338.3776 4750.052 0.585 7.324 4.335 1.32 338.6 4750

14 0.6065 4.687 3.2458 1.5037 384.6817 4724.958 0.634 4.489 3.248 1.487 384.7 4725

13 0.4643 3.3416 1.9411 1.4614 372.3993 2363.066 0.256 3.259 1.724 1.414 372.6 2363

24 0.8566 7.1392 5.8478 1.6128 525.2257 10,649.85 0.875 7.042 5.983 1.68 525.1 10,650

17 0.6065 5.2128 3.3118 1.5347 452.7394 6299.734 0.592 5.201 3.231 1.534 452.6 6300

20 0.618 4.9388 3.4556 1.5448 441.6176 4749.693 0.606 4.965 3.686 1.54 441.4 4750

12 0.6507 8.9212 4.1137 1.464 356.6009 4749.916 0.674 9.124 4.427 1.467 356.4 4750

16 0.4707 3.5253 2.1291 1.4802 438.2168 3150.195 0.371 3.494 2.296 1.48 438.3 3150

25 0.7671 7.7504 3.6168 1.5624 569.7158 4749.959 0.886 7.763 3.592 1.607 569.8 4750

7 0.5207 5.9012 3.4344 1.2526 312.2711 1599.980 0.517 5.922 3.55 1.24 312.3 1600

Figure 10 displays a scatter plot comparing the actual dataset with the results predicted
by the optimized XGBoost model. It is observable that the predicted responses for Rt, Rz,
cutting temperature, and MRR align closely with the actual values. While there is a slight
deviation in the predicted Ra and recorded power consumption, the error margin remains
minimal, at 1.4% for Ra and 0.9% for power consumption. These small error margins
underscore the reliability of the optimized XGBoost model in accurately modeling and
predicting the machining parameters.
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11 0.6001 6.9588 3.3356 1.464 339.1916 3150.316 0.52 7.081 3.334 1.414 339.5 3150 
15 0.657 12.0827 3.9767 1.5223 404.0421 7124.864 0.813 12.477 4.071 1.52 403.9 7125 
21 0.6945 4.0596 3.7828 1.5731 462.9821 7100.231 0.652 3.682 3.299 1.614 463.3 7100 
9 0.6507 7.325 4.3751 1.2949 338.3776 4750.052 0.585 7.324 4.335 1.32 338.6 4750 

14 0.6065 4.687 3.2458 1.5037 384.6817 4724.958 0.634 4.489 3.248 1.487 384.7 4725 
13 0.4643 3.3416 1.9411 1.4614 372.3993 2363.066 0.256 3.259 1.724 1.414 372.6 2363 
24 0.8566 7.1392 5.8478 1.6128 525.2257 10,649.85 0.875 7.042 5.983 1.68 525.1 10,650 
17 0.6065 5.2128 3.3118 1.5347 452.7394 6299.734 0.592 5.201 3.231 1.534 452.6 6300 
20 0.618 4.9388 3.4556 1.5448 441.6176 4749.693 0.606 4.965 3.686 1.54 441.4 4750 
12 0.6507 8.9212 4.1137 1.464 356.6009 4749.916 0.674 9.124 4.427 1.467 356.4 4750 
16 0.4707 3.5253 2.1291 1.4802 438.2168 3150.195 0.371 3.494 2.296 1.48 438.3 3150 
25 0.7671 7.7504 3.6168 1.5624 569.7158 4749.959 0.886 7.763 3.592 1.607 569.8 4750 
7 0.5207 5.9012 3.4344 1.2526 312.2711 1599.980 0.517 5.922 3.55 1.24 312.3 1600 

Figure 10 displays a scatter plot comparing the actual dataset with the results pre-
dicted by the optimized XGBoost model. It is observable that the predicted responses for 
Rt, Rz, cutting temperature, and MRR align closely with the actual values. While there is 
a slight deviation in the predicted Ra and recorded power consumption, the error margin 
remains minimal, at 1.4% for Ra and 0.9% for power consumption. These small error mar-
gins underscore the reliability of the optimized XGBoost model in accurately modeling 
and predicting the machining parameters. 
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7. Multi-Objective Optimization of Process Parameters

GA was employed for the multi-objective optimization of process parameters, aiming
to minimize responses, including arithmetic mean roughness (Ra), cutting temperature,
and power consumption. The assignment of importance weights to these responses is
a crucial step in the optimization process. While many researchers have defaulted to
assigning equal weights to each response, an alternative approach involves customizing
these weights based on industrial requirements or insights gathered from expert surveys. In
this study, we explored both methods: equal weight assignment and the analytic hierarchy
process (AHP).

The AHP facilitates the calculation of weights for each response, grounded in data
sourced from expert surveys. This methodology is instrumental in discerning the relative
significance of diverse attributes in relation to overarching objectives. Table 12 presents
Saaty’s nine-point preference scale, which serves as the foundation for constructing a
pairwise comparison matrix [36].

Table 12. Saaty’s nine-point scale of relative importance.

Scale Definition Explanation

1 Equally Important Indifferent

3 Weakly Important Slightly better

5 Strongly Important Better

7 Very Strongly Important Much better

9 Extremely Important Definitely much better

2, 4, 6, 8 Intermediate value When compromise needed

Equation (8) is used to construct a pairwise comparison matrix (Bmxm), where (Bm)
represents the criteria, and m denotes the number of criteria. Each criterion (Bi) is com-
pared pairwise with every other criterion (Bj). Based on surveys conducted, the relative
importance is assigned to each row criterion (B1, B2, . . . , Bm) by comparing it with each
column criterion (B1, B2, . . . , Bm), as detailed in Table 13.

Bmxm =


1 b12

b21 1
−− b1j −− b1m
−− b2j −− b2m

bi1 bi2
bm1 bm2

−− bij −− bim
−− bmj −− 1

 (8)

Table 13. Pairwise comparison matrix.

Criteria Ra PC Temp. MRR

Ra 1 9 5 5

PC 1/9 1 1/7 1/5

Temp. 1/5 7 1 3

MRR 1/5 5 1/3 1

The relative normalized weight (Wj) of each criterion is calculated using the ratio of
the geometric mean (GMi) of the corresponding row in the pairwise comparison matrix
(Bmxm) to the sum of the geometric means of all rows. This calculation is represented in
Equations (9) and (10):

GMi =

[
m

∏
j=1

bij

] 1
m

(9)
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wj = GMi/
m

∑
i=1

GMi (10)

Equation (11) is employed to compute the consistency index (CI), with λmax repre-
senting the maximum eigenvalue of the matrix. λmax is derived by averaging the sum
of the matrix product of the pairwise comparison matrix and weight vectors and then
dividing by the relative normalized weight of the corresponding attribute. A lower CI
value indicates minimal deviation from consistency. The consistency ratio (CR) is calculated
using Equation (12), with RI representing the random index value detailed in Table 14.
Generally, a CR value of 0.10 or less indicates acceptable consistency:

CI =
λmax −m

m− 1
(11)

CR =
CI
RI

(12)

Table 14. Random index (RI)/random judgment values [37].

No. of Criteria 1 2 3 4 5 6 7 8 9 19

RI 0.0 0.0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

Table 15 enumerates the weights assigned to each response using both methods. These
weights were applied in the multi-objective optimization utilizing a genetic algorithm (GA),
with the optimized parameters detailed in Table 16. A close examination reveals that the
output responses for each weighting method are nearly identical, suggesting that the model
is closely approaching the global optima.

Table 15. Equal weights compared to AHP weights.

Criteria AHP Weights Equal Weights

Ra 0.510369 0.25

Power Consumption 0.037103 0.25

Temp 0.285807 0.25

MRR 0.166721 0.25

Table 16. Optimal input parameters with their predicted responses.

Optimal Input Output

Weighting
Methods

Speed
m/min

D.o.C
(mm)

Feed Rate
(mm/tooth)

Ra
(µm)

PC
(KW)

Temp.
(◦C)

MRR
(mm3/min)

Equal Weights 50 0.5 0.05 2.54 1.42 328.97 1608.83

AHP Weights 50 0.5 0.15 2.58 1.35 319.92 1613.64

8. Conclusions

This study of the machining of maraging steel—a material distinguished for its out-
standing strength-to-weight ratio—produced results that connect experimental observa-
tions with predictive modeling. The experiments revealed intricate relationships between
face milling parameters and critical performance indicators, including surface roughness,
cutting temperature, power consumption, and MRR. From this study, the following specific
insights emerged:

• The intricate interplay between cutting speed and feed rate has been identified as a
pivotal factor influencing surface finish. A 50 m/min cutting speed threshold was
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recognized, beyond which surface roughness escalated due to heightened friction and
temperature;

• Increasing the cutting speed led to a proportional rise in cutting temperature. These
insights underline the need for strategic control of speed to mitigate thermal effects,
optimizing tool longevity and surface integrity;

• The relationship between power consumption and MRR in terms of cutting speed,
D.o.C, and feed rate was established. This relationship provides a foundational
understanding for balancing operational efficiency with energy consumption;

• Among the evaluated machine learning models, XGBoost demonstrated superior
performance, validating its aptitude for modeling complex, non-linear relationships
inherent in machining processes. Its predictive accuracy stood at a commendable 98%;

• The employment of the genetic algorithm (GA) in optimizing XGBoost’s hyperparame-
ters further refined the model’s predictive power. The optimization balanced multiple
objectives, ensuring holistic performance improvement;

• A comparative analysis of equal weights and AHP-based weights emphasized the
consistency in optimization outcomes, underscoring the model’s robustness and adapt-
ability to diverse weighting scenarios.

One can finally conclude that the confluence of experimental analyses and different
machine learning models has opened avenues for enhanced machining precision, effi-
ciency, and sustainability in dealing with maraging steel. The insights gained are not
only instrumental in understanding the inherent machining challenges but are also piv-
otal in navigating them, promising enhanced operational efficiency and product quality.
As industries strive for heightened efficiency, reduced operational costs, and sustainable
practices, the results of this study serve as a step forward, illuminating pathways for
informed decision-making and strategic interventions in the face milling of maraging
steel. Future research could explore the scalability of these findings across diverse steel
grades and machining contexts, amplifying the impacts of these insights on industrial
applications globally.
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