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GROUND STATE PROPERTIES IN THE QUASICLASSICAL REGIME

MICHELE CORREGGI, MARCO FALCONI AND MARCO OLIVIERI

We study the ground state energy and ground states of systems coupling nonrelativistic quantum particles
and force-carrying Bose fields, such as radiation, in the quasiclassical approximation. The latter is very
useful whenever the force-carrying field has a very large number of excitations and thus behaves in a
semiclassical way, while the nonrelativistic particles, on the other hand, retain their microscopic features.
We prove that the ground state energy of the fully microscopic model converges to that of a nonlinear
quasiclassical functional depending on both the particles’ wave function and the classical configuration of
the field. Equivalently, this energy can be interpreted as the lowest energy of a Pekar-like functional with
an effective nonlinear interaction for the particles only. If the particles are confined, the ground state of
the microscopic system converges as well, to a probability measure concentrated on the set of minimizers
of the quasiclassical energy.

1. Introduction and main results

The description and rigorous derivation of effective models for complex quantum systems is a flourishing
line of research in modern mathematical physics. Typically, in suitable regimes, the fundamental quantum
description can be approximated in terms of some simpler model retaining the salient physical features,
but also allowing a more manageable computational or numerical treatment. The questions addressed in
this work naturally belong to such a wide class of problems.

We consider indeed a quantum system composed of N nonrelativistic particles interacting with a
quantized bosonic field in the quasiclassical regime. We refer to [Carlone et al. 2021; Correggi and
Falconi 2018; Correggi et al. 2019; 2023] for a detailed discussion of such a regime: in extreme synthesis,
we plan to study field configurations with a suitable semiclassical behavior. We require indeed that there
is a large number of field excitations, although each one of the latter is carrying a very small amount of
energy, in such a way that the field’s degrees of freedom are almost classical. More precisely, we assume
that the average number of force carriers ⟨N ⟩ is of order 1/ε, for some 0< ε≪ 1, and thus much larger
than the commutator between a† and a, which is of order 1 (we use units in which h̄ = 1). Concretely,
this can be realized by rescaling the canonical variables a† and a by

√
ε, i.e., setting a♯ε :=

√
εa♯, which

leads to

[aε(k), a†
ε (k

′)] = εδ(k − k′), ε≪ 1. (1-1)
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On the other hand, the degrees of freedom associated with the particles are not affected by the scaling
limit ε→ 0 and the particles remain quantum. Our goal is precisely to set up and rigorously derive an
effective quantum model for the lowest energy state of the system in the quasiclassical regime ε → 0,
when the field becomes classical.

Let us now describe in more detail the type of microscopic models we plan to address. The space of
states of the full system is1

Hε := L2(Rd N )⊗Gε(h), (1-2)

where d ∈{1, 2, 3}, the single one-excitation space of the field is h and Gε stands for the second quantization
map, so that Gε(h) is the bosonic Fock space constructed over h with canonical commutation relations

[aε(ξ), a†
ε (η)] = ε⟨ξ |η⟩h, (1-3)

for any ξ, η ∈ h.
The energy of the microscopic system and thus its Hamiltonian is given by the nonrelativistic energy

of the particles, the field energy and the interaction between the particles and the field, in such a way that

• the particle and field energies are a priori of the same order O(1);
• the interaction is weak, i.e., a priori subleading with respect to the unperturbed energies.

This is concretely realized by considering Hamiltonians of the form

Hε = K0 ⊗ 1 + 1 ⊗ dGε(ω)+ HI , (1-4)
where:

• K0 is the (ε-independent) free particle Hamiltonian

K0 =

N∑
j=1

(−1j )+W(x1, . . . , xN ) (1-5)

which is assumed to be self-adjoint and bounded from below;

• dGε(ω) is the free field energy and is the second quantization of the positive operator ω on h,
admitting a possibly unbounded inverse ω−1;

• the interaction HI is the only nonfactorized term of the Hamiltonian, it depends on ε only through
the creation and annihilation operators a♯ε and it is a polynomial of such operators of order between
one and two.

Such requests meet the scaling conditions mentioned above. Indeed, assuming that the average number ⟨N ⟩

of bare excitations of the field is O(ε−1), the field energy is of order ε⟨N ⟩ = O(1), due to the rescaling
of a†

ε and aε. For the same reason and since the interaction is at least of order 1 in the creation and
annihilation operators, we have that HI is of order O(

√
ε), i.e., a priori subleading with respect to the

rest of Hε.
1We do not take into account the spin degrees of freedom nor the symmetry constraints induced by the presence of identical

particles, but such features can be included in the discussion without any effort and the results trivially apply to the corresponding
models. In fact, we may even allow for a coupling term between the radiation field and the particle spins [Correggi et al. 2019],
as the one often included in the Pauli–Fierz model.
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The specific models we consider in the following are:

(a) the Nelson model [Nelson 1964]: the coupling in HI is simply linear, i.e.,

HI =

N∑
j=1

Aε(xj ), (1-6)

where
Aε(x) := a†

ε (λ(x))+ aε(λ(x)) (1-7)

is the field operator and
λ, ω−1/2λ ∈ L∞(R3

; h) (1-8)

(a typical choice is h = L2(Rd), ω a multiplication operator such that ω(k)≥ 0 and also λ(x; k)=

λ0(k)e−i k·x, with λ0, ω
−1/2λ0 ∈ h);

(b) the Fröhlich polaron [Fröhlich 1937]: a variant of the Nelson model where h = L2(Rd), ω = 1 and

λ(x; k)=
√
α

e−i k·x

|k|(d−1)/2 , (1-9)

for some α > 0;

(c) the Pauli–Fierz model [Pauli and Fierz 1938]: the most elaborate model and we consider only its
three-dimensional realization, namely d = 3; the interaction is provided by the minimal coupling

Hε =

N∑
j=1

1
2m j

(−i∇j + e Aε, j (xj ))
2
+W(x1, . . . , xN )+ 1 ⊗ dGε(ω), (1-10)

where ω ≥ 0, m j > 0, j = 1, . . . , N, and e are the particles’ masses and charge, respectively,
and the field operators Aε, j , j = 1, . . . , N , have here the same formal expression as in (1-7) but
λj = (λj,1, λj,2, λj,3), with

λj,ℓ, ω
±1/2λj,ℓ ∈ L∞(R3

; h), (1-11)

is a vector function to account for the electromagnetic polarizations and the charge distributions of
the particles (the standard choice is, indeed, h = L2(R3

; C2)) and we fix for convenience the gauge
to be Coulomb’s gauge, i.e., ∇j · λj = 0.

The physical meaning of the three models above is quite different and we refer, e.g., to the monograph
[Spohn 2004] for a detailed discussion. The Nelson model is the simplest and can be applied to model
nucleons interacting with a meson field or, in first approximation, to model the interaction of particles
with radiation fields, although the case of the electromagnetic field is typically described through the
Pauli–Fierz model. The polaron, on the other hand, provides an effective description of quantum particles
in a phonon field, e.g., generated by the vibrational models of a crystal. Note also that the quasiclassical
limit ε→ 0 itself can have different interpretations in each model. For instance, in the framework of the
polaron model, it can be reformulated as a strong coupling limit, which has recently attracted a lot of
attention; see, e.g., [Frank and Gang 2020; Griesemer 2017; Leopold et al. 2021; Lieb and Seiringer 2020;
Mitrouskas 2021].
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In the Nelson and Pauli–Fierz Hamiltonians, there is an ultraviolet regularization, made apparent in
the assumptions on λ; we do not consider here the renormalization procedure to remove such ultraviolet
cut-off, even if for the Nelson model it is possible to perform it rigorously. We plan to address such
a problem in a future work. We also skip at this stage the discussion of the well-posedness of such
models (see Sections 4A–4C for further details), but we point out that, with the assumptions made, the
operator (1-4) is self-adjoint and bounded from below in each model.

The main problem we study concerns the behavior of the ground state of the microscopic Hamiltonian Hε
in the quasiclassical limit ε→ 0 and, more precisely, we investigate the convergence in the same limit of
the bottom of the spectrum

Eε := inf σ(Hε)= inf
0ε∈L 1(Hε),∥0ε∥1=1

tr(Hε0ε) (1-12)

of Hε as well as the limiting behavior of any corresponding approximate ground state or minimizing
sequence 9ε,δ ∈ D(Hε) satisfying

⟨9ε,δ|Hε|9ε,δ⟩Hε
< Eε + δ, (1-13)

for some small δ > 0.
We state our main results with all details in Section 1C. After a brief outlook on the existing literature

in Section 1A, we first introduce and discuss the quasiclassical variational problems in Section 1B. In the
rest of the paper, we present the proofs.

1A. State of the art. Our paper fits within the framework of infinite-dimensional semiclassical analysis,
which was introduced in the series of works [Ammari and Nier 2008; 2009; 2011; 2015] and further
discussed in [Falconi 2018a; 2018b]. Apart from the aforementioned works on quasiclassical analysis,
semiclassical techniques have already been used in the study of variational problems, both for systems
with creation and annihilation of particles [Ammari and Falconi 2014] and for systems with many bosons,
using a slightly different approach called quantum de Finetti theorem; see [Lewin et al. 2014; 2015;
2016]. We also point out that partially classical regimes have already been explored in [Amour and
Nourrigat 2015; Amour et al. 2017; 2019; Ginibre et al. 2006], although in other contexts and with
different purposes.

The question of the ground state energy convergence in the quasiclassical regime has partially been
addressed in [Correggi and Falconi 2018] and [Correggi et al. 2019] for the Nelson and polaron models and
the Pauli–Fierz model, respectively. In fact, Theorem 1.3 below completes and extends the corresponding
results proven in [Correggi and Falconi 2018, Theorem 2.4] and [Correggi et al. 2019, Theorem 1.9]. More
precisely, we develop a more general and self-contained proof strategy, based on the new mathematical
structure of quasiclassical Wigner measures first introduced in [Correggi et al. 2023], allowing us to relax
the assumptions on the microscopic models and taking into account more general settings.

On the other hand, the convergence of microscopic ground states and minimizing sequences in the
quasiclassical regime is studied here for the first time; see Theorems 1.7 and 1.15 below. Let us point
out that our results do not require the existence of a microscopic ground state (and imply the existence
of quasiclassical minimizers), although in the presence of the latter they become more transparent. In
fact, the problem of the ground state existence in quantum field theory is tricky and has been extensively
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studied in the past. We refer to [Abdesselam and Hasler 2012; Arai 2001; Arai et al. 1999; Betz et al.
2002; Dereziński 2003; Georgescu et al. 2004; Gérard 2000; Gérard et al. 2011; Griesemer et al. 2001;
Hirokawa 2006; Hiroshima 2001; Hiroshima and Matte 2022; Møller 2005; Pizzo 2003] for a detailed
discussion of the problem.

1B. Quasiclassical variational problems. As discussed in detail in [Correggi and Falconi 2018; Correggi
et al. 2019; 2023], each of the microscopic models introduced so far admits a quasiclassical counterpart
in the limit ε → 0. More precisely, both their stationary [Correggi and Falconi 2018; Correggi et al.
2019] and dynamical [Correggi et al. 2023] properties can be approximated in such a regime in terms
of effective models, where the quantum particle system is driven by a classical field, which in turn is
the classical counterpart of the quantized field. In extreme synthesis, the quantum field operator gets
replaced by a classical field, which is just a function on Rd, and the interaction term HI in Hε gives rise to
a potential Vz depending on the classical field configuration z ∈ h. Concretely, the quasiclassical effective
Hamiltonian reads

Hz = K0 +

N∑
j=1

Vz(xj )+ ⟨z|ω|z⟩h, (1-14)

and it is self-adjoint on some dense D ⊂ L2(Rd N ) for any z ∈ h; see [Correggi and Falconi 2018,
Theorems 2.1–2.3] and [Correggi et al. 2019, Theorem 1.1]. In each model the explicit expression of
such an effective potential can be identified explicitly:

(a) In the Nelson model, each particle feels a potential of the form

Vz(x)= 2Re⟨z|λ(x)⟩h ∈ B(L2(Rd)); (1-15)

(b) For the polaron, the formal expression of the potential Vz is the same as in (1-15) above, although,
since (1-9) does not belong to L∞(Rd

; h), the expression on the right-hand side must be interpreted
in the proper way (see Section 4B); in addition, the obtained potential is no longer bounded but it is
infinitesimally form-bounded with respect to −1;

(c) In the Pauli–Fierz model, the effective operator is obtained via the replacement of the field Aε by its
classical counterpart az(x)= 2Re⟨z|λ(x)⟩h, which is continuous and vanishing at ∞ (see [Correggi
et al. 2019, Remark 1.5]), and thus, in order to recover the expression (1-14), Vz must be the operator

Vz(x)= 2
N∑

j=1

1
m j

[−ieRe⟨z|λj (x)⟩h · ∇j + e2(Re⟨z|λj (x)⟩h)2]. (1-16)

Note that in case (c) the effective operator can in fact be simply rewritten as2

Hz =

N∑
j=1

1
2m j

(−i∇j + eaz(xj ))
2
+W(X)+ ⟨z|ω|z⟩h. (1-17)

2We use the compact notation X := (x1, . . . , xN ) ∈ Rd N.
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We can now define the effective quasiclassical ground state energy in terms of the energy functional

Eqc[ψ, z] := ⟨ψ |Hz|ψ⟩L2(Rd N ), (ψ, z) ∈ L2(Rd N )⊕ hω, (1-18)

as
Eqc := inf

(ψ,z)∈Dqc
E[ψ, z], (1-19)

where
Dqc := {(ψ, z) ∈ L2(Rd N )⊕ hω : ∥ψ∥2 = 1, |Eqc[ψ, z]|<+∞}. (1-20)

Here, hω is the Hilbert completion of
⋂

k∈N D(ωk) with respect to the scalar product ⟨ · | · ⟩hω := ⟨ · |ω| · ⟩h,
i.e.,

hω :=

⋂
k∈N

D(ωk)⟨ · | · ⟩hω . (1-21)

We denote by (ψqc, zqc) ∈ Dqc a corresponding minimizing configuration (if any), i.e., such that

Eqc = Eqc[ψqc, zqc]. (1-22)

Concretely, the functional Eqc plays the role of the quasiclassical energy of the system under consider-
ation. However, the reader should be careful and be aware that Hz is not the Hamiltonian energy of the
whole system: the complete environment-small system evolution is indeed not of Hamiltonian type. For
each fixed z ∈ hω, the Hamilton–Jacobi equations of Eqc[ψ, z], with respect to the (complex) ψ variable,
yield the dynamics of the small system; the environment on the other hand is stationary in the problems
under consideration in this paper; see [Correggi et al. 2023] for a detailed analysis of quasiclassical
dynamical systems.

The preliminary questions to address towards the derivation of the above quasiclassical effective models
are whether such models are stable and, if this is the case, whether a minimizing configuration does exist:
explicitly,

“Is Eqc greater than −∞?” (stability), (VP1)

“Does there exist (ψqc, zqc)∈ Dqc such that Eqc(ψqc, zqc)= Eqc?” (existence of a ground state). (VP2)

Note that any critical point (ψ, z) ∈ Dqc of the functional Eqc[ψ, z] must satisfy the condition

δ(ψ,z)
[
Eqc[ψ, z] − ϵ∥ψ∥

2
2
]
= 0,

which yields the Euler–Lagrange equations{
Hzψ = ϵψ,

ωz +
〈
ψ

∣∣∂z̄
∑

j Vz(xj )
∣∣ψ 〉

L2(Rd N )
= 0,

(1-23)

where the Lagrange multiplier ϵ=⟨ψ |Hz|ψ⟩ ∈ R takes into account the normalization constraint on ψ . We
anticipate that a consequence of the convergence of the microscopic ground state, stated in Corollary 1.10,
is that, under suitable assumptions on K0 (for instance if W is trapping), the answer to both questions in
(VP1) and (VP2) is positive and, in particular, the set of minimizers is not empty.
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The variational problem above is strictly related to the more general issue of rigorous derivation of
effective theories, since, at least for the polaron model, it is known that the minimization of the microscopic
energy can be approximated in the limit ε → 0 in terms of a nonlinear problem on ψ alone. Indeed,
focusing on the particle system, one can naturally approach (1-19) in a different and a priori inequivalent
way, i.e., first one gets rid of the classical field by minimizing over z ∈ hω and then investigates the
minimization of the remaining functional on ψ , which is obviously nonlinear, since the minimizing z
depends on ψ itself. As anticipated, this strategy has been already followed in the literature in the case
of the polaron in the strong coupling regime, leading to the Pekar functional and the corresponding
variational problem [Donsker and Varadhan 1983; Lieb and Thomas 1997; Pekar 1954]. Such a feature is
however not exclusive of the polaron and can be observed in all the models mentioned above: we present
below a formal derivation of a Pekar-like functional EPekar[ψ] for both the Nelson and polaron model. The
Pauli–Fierz case is also discussed below; let us remark however that in this case such a procedure does
not yield an explicit nonlinear functional of ψ (see (1-34) below), because it is in general not possible to
solve explicitly the variational equation expressing the minimizing z in terms of ψ .

The formal procedure goes as follows: solving the critical point condition δzEqc = 0 with respect to the
variable z for fixed ψ , we find some zψ , that we can plug into Eqc, thus obtaining the Pekar energy

EPekar[ψ] := Eqc[ψ, zψ ].

Such a scheme can be made to work rigorously for the polaron (case (b)) with some care, but the variable z
is not the right one to consider in cases (a) and (c). Under the assumptions we have made — recall in
particular (1-8) and (1-11) — it is indeed more natural to set, since z ∈ hω,

η := ω1/2z, (1-24)

(note however that in case (b) η = z) and consider the functional Fqc[ψ, η] := Eqc[ψ,ω
−1/2η], which in

case (a) reads

Fqc[ψ, η] =

〈
ψ

∣∣∣∣K0 + 2Re
∑

j

⟨η|ω−1/2λ(xj )⟩h

∣∣∣∣ψ〉
L2(Rd N )

+ ∥η∥2
h

= ⟨ψ |K0|ψ⟩L2(Rd N ) + 2Re
〈
η
∣∣⟨ψ |3|ψ⟩L2(Rd N )

〉
h
+ ∥η∥2

h, (1-25)

where 3 ∈ L∞(Rd N
;H) is given by

3(X) :=

N∑
j=1

(ω−1/2λ)(xj )

(recall the assumption (1-8) on λ) and we have exploited the linearity of the scalar product. Taking the
functional derivative with respect to η, we get the Euler–Lagrange equation for the minimization of the
above energy with respect to η ∈ h, i.e.,

η+ ⟨ψ |3( · )|ψ⟩L2(Rd N ) = 0, (1-26)
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yielding the minimizing ηPekar written as

ηPekar[ψ] = −

N∑
j=1

∫
Rd N

dx1 · · · xN (ω
−1/2λ)(xj )|ψ(x1, . . . , xN )|

2, (1-27)

which can be easily seen to belong to h under the assumptions made. Plugging ηPekar back into (1-25),
we get

EPekar[ψ] := inf
η∈h

Fqc[ψ, η] = Fqc[ψ, ηPekar[ψ]] =
〈
ψ

∣∣K0 +VPekar ⋆ |ψ |
2∣∣ψ 〉

. (1-28)

Here we have denoted by ⋆ the action of the integral kernel VPekar(X,Y) on |ψ |
2, i.e.,

(VPekar ⋆ |ψ |
2)(X) :=

∫
Rd N

dYVPekar(X,Y)|ψ(Y)|2, (1-29)

and

VPekar(X,Y)= −Re
N∑

i, j=1

⟨λ(xi )|ω
−1

|λ( yj )⟩h ∈ L∞(R2d N ). (1-30)

Note that in the case of identical particles — either fermionic or bosonic — the above expressions may
be conveniently rewritten using the one-particle density ρψ ∈ L1(Rd) associated with ψ , i.e.,

ρψ(x) := N
∫

Rd(N−1)
dx2 · · · dxN |9(x, x2, . . . , xN )|

2. (1-31)

Indeed, in this case, (1-27) reads

ηPekar[ψ] = −⟨ρψ |(ω−1/2λ)( · )⟩L2(Rd ),

and the Pekar energy becomes

EPekar[ψ] = ⟨ψ |K0|ψ⟩L2(Rd N ) + ⟨ρψ |U |ρψ ⟩L2(Rd ), (1-32)

where
U = U (x, y) := ⟨λ(x)|ω−1

|λ( y)⟩h, (1-33)

which is its typical form in the literature. For instance, in the polaron case, one recovers the self-interacting
potential generated by the kernel U(x − y)= −α|x − y|−1.

The above derivation is easily seen to be correct under the assumptions made in case (a). In case (b),
however, one cannot apply such a derivation straightforwardly because λ /∈ L∞(Rd N

; h), but a simple
well-known trick (see Section 4B) allows us to split it into two terms, which can be handled separately as
above. In case (c) on the other hand the Pekar functional takes the implicit form{

ηPekar +
∑

j
1

m j

〈
ψ

∣∣eω−1/2λj · (−i∇j )+ 2e2ω−1/2λj · Re⟨ηPekar|ω
−1/2λj ⟩h

∣∣ψ 〉
L2(R3N )

= 0,

EPekar[ψ] = ⟨ψ |Hzψ |ψ⟩L2(R3N ),
(1-34)

where Hz is given by (1-17), and we set zψ := ω−1/2ηPekar[ψ] for short. As before, all the terms in the
first equation belong to h, thanks to the assumptions on λj and the fact that any (ψ, z) ∈ Dqc is such that
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ψ ∈ H 1(R3N ). Furthermore, the last term can be thought of as the action on ηPekar of a linear operator T
on h whose norm is bounded by

2e2
N∑

j=1

1
m j

∥ω−1/2λj∥
2
h,

which is smaller than one if e is small enough. In this case, 1 + T is invertible and there exists a unique
solution ηPekar[ψ] ∈ h of the first equation. More generally, existence and uniqueness of ηPekar[ψ] for any
value of e follows from the strict convexity of the energy in η; see Remark 1.2 and Lemma 2.4. Note
however that unfortunately it is not possible to write explicitly EPekar as a functional of ψ alone, since,
due to the presence of an operator — the gradient — one cannot exchange the scalar product in L2(R3N )

with the one in h, as was done in (1-25). In particular, even for identical particles, the second term in the
first equation in (1-34) depends on the reduced density matrix, while the last term is a function of the
density alone.

We now define

EPekar := inf
ψ∈DPekar

EPekar[ψ] (1-35)

with

DPekar := {ψ ∈ L2(Rd N ) : ∥ψ∥2 = 1, |EPekar[ψ]|<+∞}

as the ground state energy of the Pekar functionals (1-28) and (1-34), and denote by ψPekar ∈ DPekar

any corresponding minimizer. It is then natural to wonder whether there is any connection between the
questions (VP1) and (VP2) and the analogous stability and ground state existence questions for EPekar, i.e.,

“Is EPekar greater than −∞?” (VP′1)

“Does there exist ψPekar ∈ L2(Rd N ) such that EPekar(ψPekar)= EPekar?” (VP′2)

This is of particular interest for physical applications, since the minimization of the nonlinear func-
tional EPekar may be easier to address also in numerical experiments. A priori however it is not at all
obvious that such a relation exists, but in Proposition 1.1 (see Section 2A for the proof) we are going to
state that the two variational problems are actually equivalent, which is particularly interesting in case (c)
since the explicit form of EPekar is not available.

Proposition 1.1 (equivalence of variational problems). Under the assumptions made above,

EPekar = Eqc >−∞. (1-36)

Furthermore, if (ψqc, zqc) ∈ Dqc is a minimizer of Eqc[ψ, z], then

EPekar[ψqc] = EPekar. (1-37)

Conversely, if ψPekar is a minimizer of EPekar[ψ], then ηPekar[ψPekar] ∈ h (given by (1-26) and (1-34) with
ψ = ψPekar, respectively) and

E[ψPekar, ηPekar] = Eqc. (1-38)
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Remark 1.2 (uniqueness of ηPekar). We prove in Lemma 2.4 that the quasiclassical functional Fqc[ψ, η]

(or, equivalently, Eqc[ψ, z]) is strictly convex in η ∈ h for given ψ ∈ L2(Rd N ). Hence, ηPekar[ψ] is unique
(for fixed ψ). Note however that the functional Fqc is not jointly convex in (|ψ |

2, η).

1C. Ground state in the quasiclassical regime. We can now state in detail our main results. We work
with a minimal set of assumptions on the microscopic models, which are the weakest ones guaranteeing
the self-adjointness and boundedness from below of the microscopic Hamiltonians.

Assumptions. The following conditions are satisfied:

(A1) The external potential W is such that3

W ∈ L1
loc(R

d N
; R+); (1-39)

(A2) the operator ω is positive and admits a possibly unbounded inverse ω−1;

(A3) the form factor λ of the microscopic model must satisfy condition (1-8), (1-9) or (1-11) for the
Nelson, polaron or Pauli–Fierz models, respectively.

Observe in particular that the quantum potential W may not be trapping, so that there might not be a
ground state for both the microscopic and the macroscopic problems. In some of the results stated below
however we are going to assume this explicitly by requiring an additional property of the unperturbed
particle operator:

(A4) The operator K0 has compact resolvent.

We now consider the microscopic ground state energy Eε defined in (1-12) and its quasiclassical limit.
Recall the definition of the quasiclassical energy Eqc in (1-19).

Theorem 1.3 (ground state energy). Under assumptions (A1), (A2) and (A3), there exists C <+∞ such
that Eε >−C and

Eε ε→0−−−→ Eqc, (1-40)

which in particular implies that (VP1) holds true.

The proof of the result above is given in Section 3A. Once the energy convergence has been stated,
it is natural to ask whether, in the presence of a microscopic approximate ground state 9ε,δ or ground
state 9ε,gs, one can prove a suitable convergence to quasiclassical minimizing sequences or configurations
(ψqc, zqc) ∈ Dqc, respectively. Let us stress that the question of existence of a ground state of the
microscopic energy has been widely studied in the literature and there are more restrictive conditions on
the models guaranteeing that Eε ∈ σpp(Hε) (see Sections 4A–4C); our results about approximate ground
states apply even if the microscopic ground state does not exist, and whenever it exists we are able to
provide its quasiclassical characterization.

3As anticipated above, it is sufficient to have an unperturbed particle operator which is self-adjoint and bounded from below.
For instance, one could extend the results to potentials with a negative part which is Kato-small with respect to the Laplacian. We
stick however to (A1) for the sake of concreteness.
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In order to properly formulate the convergence, we first need to introduce a key structure in quasiclassical
analysis: the quasiclassical Wigner measures and their relative topologies. We preliminarily recall the
definition of the space P(hω; L2(Rd N )) of state-valued probability measures (see [Correggi et al. 2023,
Definition 2.1]), given by measures m on hω taking values in L 1

+
(L2(Rd N ))— the space of positive trace

class operators on L2(Rd N )— such that m(∅) = 0, the measure is unconditionally σ -additive in the
trace class norm and ∥m(hω)∥L2 = 1. Starting from such a notion, it is possible to construct a theory
of integration of functions with values in the space of bounded operators on L2(Rd N ) with respect to
state-valued measures, so that, for any measurable B(z) ∈ B(L2(Rd N )),∫

hω

dm(z)B(z) ∈ L 1(L2(Rd N )). (1-41)

We refer to the Appendix, or to the existing literature (e.g., [Balazard-Konlein 1985; Fermanian-Kammerer
and Gérard 2002; Gérard 1991; Gérard et al. 1991; Teufel 2003]) for further details. In particular, we
point out that any such state-valued measure m admits a Radon–Nikodým decomposition, i.e., there exists
a scalar Borel measure µm and a µm-integrable function γm(z) ∈ L 1

+,1(L
2(Rd N )) defined a.e. and with

values in normalized density matrices, such that

dm(z)= γm(z)dµm(z). (1-42)

Hence, (1-41) can be rewritten as∫
hω

dm(z)B(z)=

∫
hω

dµm(z)γm(z)B(z). (1-43)

Finally, let us denote by Wε(z), z ∈ h, the Weyl operator constructed over the creation and annihilation
operators a♯ε , i.e.,

Wε(z) := ei(a†
ε (z)+aε(z)). (1-44)

Definition 1.4 (quasiclassical Wigner measures). For any family of normalized microscopic states
{9ε}ε∈(0,1) ⊂ Hε, the associated set of quasiclassical Wigner measures

W (9ε, ε ∈ (0, 1))⊂ P(hω; L 1
+
(L2(Rd N )))

is the subset of all probability measures m such that there exists {εn}n∈N, εn n→∞
−−−→ 0, so that

9εn

qc
n→∞

−−−→ m, (1-45)

where the above convergence yields, for all η ∈ D(ω−1/2) and all compact operators K ∈ L ∞(L2(Rd N )),

lim
n→∞

⟨9εn |K⊗ Wεn (η)9εn ⟩Hεn
=

∫
hω

dµm(z)e2iRe⟨η|z⟩h trL2(Rd N )[γm(z)K]

=

∫
hω

dµm(z)e2iRe⟨ω−1/2η|ω1/2z⟩h trL2(Rd N )[γm(z)K]. (1-46)

Remark 1.5 (measures on hω and test functions). A reader familiar with infinite dimensional semiclassical
analysis or quasiclassical analysis will find the definition of Wigner measures given here differs slightly
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from the usual definition [Ammari and Nier 2008; Correggi et al. 2023]. Typically, one considers
microscopic states that satisfy a number operator estimate, namely for which the expectation of dGε(1)c

is ε-uniformly bounded for some c > 0. The corresponding Wigner measures are concentrated on h

[Ammari and Nier 2008], and it is natural to test the convergence with Weyl operators having argu-
ments η ∈ h. However, in studying variational problems the number operator estimate may not always be
available, in particular whenever the field is massless, such as in electromagnetism (Pauli–Fierz model).
In that case, only energy estimates, i.e., involving dGε(ω), are available. The Wigner measures of states
satisfying such an energy estimate are concentrated in hω, and it is natural to test convergence with Weyl
operators having arguments η ∈ D(ω−1/2) belonging to a dense subset of the continuous dual space
[Falconi 2018a]. If both the number estimate and the free energy estimate are available, then the measure
is concentrated in h∩ hω; this happens for massive fields, where in addition h∩ hω = hω. Finally, let
us remark as well that in all concrete applications hω is in fact the natural domain of definition of the
quasiclassical energy Eqc.

The above notion of quasiclassical convergence, defined in (1-46), is however not the only meaningful
topology one can consider for sequences of microscopic states. More precisely, the test in (1-46) may be
extended to bounded operators, which means that one is considering the weak* topology on B(L2(Rd N ))′

instead of L 1(L2(Rd N ))= L ∞(L2(Rd N ))′. In this case, the cluster points belong to a larger space than
P(hω; L 1

+
(L2(Rd N ))), namely the space of generalized state-valued measures; see [Falconi 2018b] for a

detailed and more general discussion. We thus introduce the set of positive states L 1
+(L2(Rd N )) in the

closure with respect to the weak* topology of the space of trace class operators on L2(Rd N ): we denote
the action of a functional F ∈ L 1

+(L2(Rd N )) on a bounded operator B ∈ B(L2(Rd N )) by F[B] ∈ C and
its norm by

∥F∥B′ := sup
B∈B(L2(Rd N )),∥B∥=1

|F[B]|. (1-47)

Definition 1.6 (generalized quasiclassical Wigner measures). For any family of normalized microscopic
states {9ε}ε∈(0,1) ⊂ L2(Rd N )ε, the associated set of generalized quasiclassical Wigner measures

G W (9ε, ε ∈ (0, 1))⊂ P(hω; L 1
+(L2(Rd N )))

is the subset of all probability measures n such that there exists {εn}n∈N, εn n→∞
−−−→ 0, so that

9εn

gqc
n→∞

−−−→ n, (1-48)

where the above convergence means that, for all η∈D(ω−1/2) and all bounded operators B∈B(L2(Rd N )),

lim
n→∞

⟨9εn |B⊗ Wεn (η)9εn ⟩Hεn
=

∫
hω

dn(z)[B]e2iRe⟨ω−1/2η|ω1/2z⟩h. (1-49)

We can now formulate the results about the convergence of microscopic minimizing sequences 9ε,δ
and microscopic minimizers 9ε,gs (for the proofs see Section 3B). We start by stating a stronger result
with some additional assumptions on the microscopic models. Without such assumptions we are still able
to prove a weaker convergence, but it requires the introduction of a generalized variational problem.
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Theorem 1.7 (convergence of approximate ground states (I)). Under assumptions (A1), (A2), (A3)
and (A4), for any δ > 0 and for any family of approximate ground states 9ε,δ satisfying (1-13), we have

W (9ε,δ, ε ∈ (0, 1)) ̸= ∅.

Moreover, any family of quasiclassical Wigner measures {mδ}δ>0, with mδ ∈ W (9ε,δ, ε ∈ (0, 1)) for
any δ, is such that, for all δ > 0, we have that trL2(Rd N )mδ(hω) = 1 and mδ is an approximate ground
state of Eqc[ψ, z], i.e.,

Esvm[mδ] :=

∫
hω

dµmδ (z) trL2(Rd N )(γmδ (z)Hz) < Eqc + δ. (1-50)

Remark 1.8 (concentration in probability). The result stated in Theorem 1.7 does not imply that the
energy E(z) := trL2(Rd N )(γmδ (z)Hz) is smaller than Eqc +δ for any z ∈ hω. Roughly speaking, there might
be a nonzero probability that mδ is concentrated on pairs (ψ(z), z) with large Eqc energy. However, E(z)
can be much larger than Eqc + δ only with small µmδ -probability. More precisely, for any k ≥ 1,

Pµmδ
{E(z)≥ Eqc + kδ}< 1

k
. (1-51)

Corollary 1.9 (convergence to ground states (I)). If (A4) holds, then any quasiclassical Wigner measure
m ∈ W (9ε,oε(1), ε ∈ (0, 1)), corresponding to approximate ground states 9ε,oε(1) satisfying (1-13) with
δ=oε(1), is such that trL2(Rd N )m(hω)=1 and m is concentrated on the set of ground states (ψqc, zqc)∈Dqc

of Eqc[ψ, z]. Consequently, Eqc[ψ, z] has at least one ground state and both (VP2) and (VP′2) hold true.

Corollary 1.10 (convergence of ground states (I)). If (A4) holds and Hε has a ground state9ε,gs, then any
corresponding quasiclassical Wigner measure m ∈ W (9ε,gs, ε ∈ (0, 1)) is such that trL2(Rd N )m(hω)= 1
and m is concentrated on the set of ground states (ψqc, zqc) ∈ Dqc of Eqc[ψ, z].

Remark 1.11 (uniqueness and gauge invariance). Concerning uniqueness, we point out that both the
microscopic and the quasiclassical variational problems are gauge invariant, namely the multiplication by
a constant phase factor of 9 or ψ does not change the energy. Hence, even if one could prove uniqueness
of the quasiclassical minimizer (ψqc, zqc) up to gauge transformations, one could not conclude that the
set of limit points W (9ε,oε(1), ε ∈ (0, 1)) or W (9ε,gs, ε ∈ (0, 1)) are just given by a Dirac delta measure
centered at (ψqc, zqc). Indeed, because of gauge invariance, the quasiclassical Wigner measures would be
supported over the unit one-dimensional sphere generated by the configurations (eiϑψqc, zqc) with ϑ ∈ R.

Remark 1.12 (condition on K0). The assumption that K0 has compact resolvent is reasonable, since that
is typically the case in which one can also prove the existence of a microscopic minimizer at least for
massive systems (see Remark 1.13 below), e.g., in the presence of a trapping potential. However, it is also
needed in a technical step in the proof to ensure that there is no loss of mass along the convergence (1-46),
i.e., trL2(Rd N )m(hω)= 1. Similar assumptions are present also in [Correggi et al. 2023]; see in particular
the discussion in [Correggi et al. 2023, Remarks 1.9–1.10 and Section 1.6].

Remark 1.13 (existence of 9ε,gs). In all three cases (a)–(c), if the Bose field is massive, i.e., there exists
m > 0 such that ω ≥ m > 0 (which is always the case for the polaron), then it is known [Dereziński and
Gérard 1999, Theorem 4.1] that the microscopic Hamiltonian Hε admits a ground state 9ε,gs ∈ Hε, if K0
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has compact resolvent. Hence, in the massive case, one can remove the assumption on the existence
of 9ε,gs. When the field is massless, on the other hand, it is also known that microscopic ground states
might not exist or belong to a non-Fock representation of the algebra of observables [Pizzo 2003]. This
second case is not covered by Corollary 1.10, but it may be treated with our techniques. We plan to come
back to such a question in a future work.

Remark 1.14 (existence of quasiclassical minimizers). Our analysis shows that the quasiclassical energy
functionals Eqc[ψ, z] always have at least one minimizer, provided that K0 has compact resolvent, i.e.,
provided that the quantum subsystem is trapped. This gives additional evidence that the behavior
of the ground state in quantum field theories can differ quite dramatically (nonexistence or non-Fock-
representability, see Remark 1.13) from that of their classical and quantum finite-dimensional counterparts.

As anticipated, if we drop the assumption on the operator K0 there is still convergence, but the
variational problem (1-19) has to be generalized: we thus set, for any pure state ρ ∈ L 1

+(L2(Rd N )) and
any z ∈ hω,

Egqc[ρ, z] := ρ[Hz]. (1-52)

We consider the corresponding variational problem: setting (recall the definition (1-47))

Dgqc := {(ρ, z) ∈ L 1
+(L2(Rd N ))⊕ hω : ∥ρ∥B′ = 1, |ρ[Hz]|<+∞}, (1-53)

we define
Egqc := inf

(ρ,z)∈Dgqc
Egqc[ρ, z], (1-54)

and we denote by (ρδ, zδ) ∈ Dgqc a minimizing sequence satisfying

Egqc[ρδ, zδ]< Egqc + δ

and by (ρgqc, zgqc) ∈ Dgqc any corresponding minimizing configuration.

Theorem 1.15 (convergence of approximate ground states (II)). Under assumptions (A1), (A2) and (A3),
for any δ > 0 and for any family of approximate ground states 9ε,δ satisfying (1-13), we have that
G W (9ε,δ, ε ∈ (0, 1)) ̸= ∅. Moreover, any family of generalized quasiclassical Wigner measures {nδ}δ>0,
with nδ ∈

⋃
δ>0 G W (9ε,δ, ε ∈ (0, 1)) for any δ, is such that, for all δ > 0, we have that ∥nδ(hω)∥B′ = 1

and nδ is an approximate ground state of Egqc[ρ, z], i.e.,∫
hω

dnδ(z)[Hz]< Egqc + δ. (1-55)

Corollary 1.16 (convergence to ground states (II)). Any generalized quasiclassical Wigner measure
n ∈ G W (9ε,oε(1), ε ∈ (0, 1)), corresponding to approximate ground states 9ε,oε(1) satisfying (1-13) with
δ = oε(1), is such that ∥n(hω)∥B′ = 1 and n is concentrated on the set of ground states (ϱgqc, zgqc) ∈ Dgqc

of Egqc[ϱ, z]. Consequently, the functional Egqc[ρ, z] admits at least one ground state in Dgqc.

Corollary 1.17 (convergence of ground states (II)). If Hε has a ground state 9ε,gs, then any generalized
Wigner measure n ∈ G W (9ε,gs, ε ∈ (0, 1)) is such that ∥n(hω)∥B′ = 1 and n is concentrated on the set of
ground states (ρgqc, zgqc) ∈ Dgqc of Egqc[ρ, z].
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Remark 1.18 (quasiclassical energy and generalized quasiclassical energy). As proved in Section 2 (see
Proposition 2.8),

Eqc = Egqc,

which is in fact crucial to prove convergence of the ground state energy for systems without trapping on
the quantum particles.

2. Quasiclassical minimization problems

Here we consider minimization problems in the quasiclassical setting: we study the functionals introduced
in Section 1B and the relative minimizations, but also define and investigate more general problems.

2A. Quasiclassical functionals, states and related minimization problems. A quasiclassical system
behaves like an open system in which a classical environment (of infinite dimension) drives a quantum
small system, described by a Hilbert space L2(Rd N ). The classical environment is described by a space
of configurations hω, usually a complex Hilbert space identifiable with the complex phase space of
the environment’s degrees of freedom. A probability distribution µ on hω tells how probable each
environment’s configuration is, while a state-valued function hω ∋ z 7→ γ (z) ∈ L 1

+
(L2(Rd N )) tells how

each environment’s configuration drives the small system’s quantum state. Analogously, both the value of
observables F(z) and the small system’s dynamics Ut(z) are driven by the environment.

A quasiclassical minimization problem consists of finding the lowest energy and possibly the ground
states of a suitable functional E[ψ, z] : L2(Rd N )⊕ hω → R depending on the configuration of both the
small system and the environment. The first energy functional to consider is Eqc[ψ, z], defined in (1-18):

Eqc[ψ, z] := ⟨ψ |Hz|ψ⟩L2(Rd N ), (ψ, z) ∈ Dqc,

where Hz and Dqc are given in (1-14) and (1-20), respectively. We also recall that the ground state energy
and minimizer of Eqc are denoted by Eqc and (ψqc, zqc), respectively.

Although the above is the foremost functional coming to mind in this context, another minimization
problem emerges naturally in studying the quasiclassical limit. To this purpose, we recall the notion of a
state-valued measure [Correggi et al. 2023; Falconi 2018b], already mentioned in Section 1C: a state-
valued probability measure m ∈ P(hω; L 1

+
(L2(Rd N ))) is a vector Borel Radon measure on hω, taking

values in the density matrices L 1
+
(L2(Rd N )) of the small system, such that

∥m(hω)∥L 1 = 1. (2-1)

Thanks to the Radon–Nikodým property enjoyed by the separable dual space L 1(L2(Rd N )), it is possible
to decompose m in a scalar Borel Radon probability measure µm ∈ P(hω) such that µm(h)= 1, and in
an a.e.-defined function (the Radon–Nikodým derivative)

hω ∋ z 7→ γm(z) ∈ L 1
+,1(L

2(Rd N ))

taking values in the normalized density matrices of the small system:

dm(z)= γm(z)dµm(z).
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The quasiclassical energy Eqc, constrained to ∥ψ∥L2(Rd N ) = 1, is the expectation of the quasiclassical
Hamiltonian Hz . Therefore, its generalization to state-valued measures obviously reads

Esvm[m] :=

∫
hω

dµm(z) trL2(Rd N )[γm(z)Hz]. (2-2)

This leads to the following minimization problem: setting

Dsvm := {m ∈ P(hω; L 1
+
(L2(Rd N ))) : trL2(Rd N )m(hω)= 1, |Esvm[m]|<+∞}, (2-3)

we ask (stability)
“Is Esvm := inf

m∈Dsvm
Esvm[m] greater than −∞?” (vp1)

and (existence of a ground state)

“Does there exist msvm ∈ Dsvm such that Esvm[msvm] = Esvm?” (vp2)

A variant of the above problem is obtained by assuming that γm(z)= |ψ⟩⟨ψ | for some ψ ∈ L2(Rd N )

independent of z, in which case the functional depends only on a wave function ψ and a probability
measure µ over hω. We thus set

Epm[ψ,µ] :=

∫
hω

dµ(z)⟨ψ |Hz|ψ⟩L2(Rd N ). (2-4)

The variational problem (stability) reads

“Is Epm := inf
(ψ,µ)∈Dpm

Epm[ψ,µ] greater than −∞?” (vp′1)

where

Dpm := {(ψ,µ) ∈ L2(Rd N )⊕ P(hω) : ∥ψ∥2 = 1, µ(hω)= 1, |Epm[ψ,µ]|<+∞}, (2-5)

and (existence of a ground state)

“Does there exist (ψpm, µpm) ∈ Dpm such that Epm[(ψpm, µpm)] = Epm?” (vp′2)

Note that the functional Eqc and the corresponding variational problems (VP1) and (VP2) are recovered by
simply imposing in Epm above that µ is a Dirac delta, i.e., there exists z0 ∈hω such that µ= δz0 . Yet another
minimization problem can be formulated by substituting the minimization over P(hω; L 1

+
(L2(Rd N )))

and P(hω) in (2-2) and (2-4) with the one over atomic measures Patom(hω; L 1
+
(L2(Rd N ))) and Patom(hω),

respectively.
Finally, in the spirit of derivation of effective functionals of ψ or z alone, as the Pekar-like functionals

defined in (1-28) and (1-34), we can also define the effective energy

I[z] := inf
ψ∈L2(Rd N ),∥ψ∥2=1

Eqc[ψ, z]. (2-6)

The rest of this section is devoted to proving equivalences between the minimization problems defined
above. In fact, the natural variational problem emerging in the quasiclassical limit is the one involving
state-valued measures (see (vp1) and (vp2)), however the most relevant from the physical and practical
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point of view is the one formulated in terms of wave functions and classical fields (see (VP1) and (VP2)).
Therefore, the fact that all the infima turn out to be equal (Propositions 2.1 and 2.8) and that the existence
of the various minimizers are related (Propositions 2.3 and 2.9) allow us to derive a more concrete physical
statement.

Proposition 2.1 (quasiclassical energies). Under assumptions (A1), (A2) and (A3),

Eqc = Esvm = inf
m∈Dsvm∩Patom(hω;L 1

+(L2(Rd N )))

Esvm[m] = Epm

= inf
(ψ,µ)∈Dpm, µ∈Patom(hω)

Epm[ψ,µ] = EPekar = inf
z∈hω

I[z]. (2-7)

Proof. We use the weak density of atomic scalar measures, supported on a finite number of points, in the
space of all finite measures, that holds for hω separable [Parthasarathy 1967]. Thanks to that it is possible
to prove the following (see [Correggi and Falconi 2018, Lemma 3.20] for a detailed proof):

Esvm = inf
m∈Dsvm

Esvm[m] = inf
m∈Dsvm∩Patom(hω;L 1

+(L2(Rd N )))

Esvm[m],

Epm = inf
(ψ,µ)∈Dpm

Epm[ψ,µ] = inf
(ψ,µ)∈Dpm, µ∈Patom(hω)

Epm[ψ,µ].

Now, let us prove that
inf

m∈Dsvm∩Patom(hω;L 1
+(L2(Rd N )))

Esvm[m] = inf
(ψ,µ)∈Dpm,µ∈Patom(hω)

Epm[ψ,µ]. (2-8)

Let δ > 0, and let mδ =
∑K

k=1 λkγkδzk — with λk ≥ 0 (recall that mδ takes values in positive operators),∑K
k=1 λk = 1 and γk ∈ L 1

+,1(L
2(Rd N ))— be an atomic state-valued measure such that

Esvm[mδ] =

K∑
k=1

λk trL2(Rd N )[γkHzk ]< inf
m∈Dsvm∩Patom(hω;L 1

+(L2(Rd N )))

Esvm[m] + δ.

For fixed k, since γk is a normalized density matrix,

inf
ψ∈L2(Rd N ),∥ψ∥2=1

⟨ψ |Hzk |ψ⟩L2(Rd N ) ≤ trL2(Rd N )[γkHzk ].

Therefore,

inf
(ψ,µ)∈Dpm, µ∈Patom(hω)

Epm[ψ,µ] = inf
(ψ,µ)∈Dpm, µ∈Patom(hω)

∫
hω

dµ⟨ψ |Hz|ψ⟩L2(Rd N )

≤

K∑
k=1

λk inf
ψ∈L2(Rd N ),∥ψ∥2=1

⟨ψ |Hzk |ψ⟩L2(Rd N ) ≤

K∑
k=1

λk trL2(Rd N )[γkHzk ]

< inf
m∈Dsvm∩Patom(hω;L 1

+(L2(Rd N )))

Esvm[m] + δ. (2-9)

Since δ > 0 is arbitrary, we conclude that

inf
(ψ,µ)∈Dpm, µ∈Patom(hω)

Epm[ψ,µ] ≤ inf
m∈Dsvm∩Patom(hω;L 1

+(L2(Rd N )))

Esvm[m]. (2-10)

To prove the opposite inequality, we follow a similar reasoning. Let δ > 0 and µδ =
∑K

k=1 λkδzk be a
scalar atomic measure and ψδ,zk ∈ L2(Rd N ) a family of normalized wave functions such that µδ(hω)= 1
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and
K∑

k=1

λk⟨ψδ,zk |Hzk |ψδ,zk ⟩L2(Rd N ) < inf
(ψ,µ)∈Dpm, µ∈Patom(hω)

Epm[ψ,µ] + δ.

Now, mδ :=
∑K

k=1 λk |ψδ,zk ⟩⟨ψδ,zk |δzk is an atomic state-valued measure belonging to Dsvm. Therefore,

inf
m∈Dsvm∩Patom(hω;L 1

+(L2(Rd N )))

Esvm[m] ≤ Esvm[mδ] =

K∑
k=1

λk⟨ψδ,zk |Hzk |ψδ,zk ⟩L2(Rd N )

< inf
(ψ,µ)∈Dpm, µ∈Patom(hω)

Epm[ψ,µ] + δ, (2-11)

which yields the desired inequality.
To complete the proof, we show that

inf
(ψ,µ)∈Dpm, µ∈Patom(hω)

Epm[ψ,µ] = inf
z∈hω

I[z] = EPekar = Eqc. (2-12)

Let us prove the first equality beforehand. Let µδ =
∑K

k=1 λkδzk be the atomic minimizing family of
measures defined before and ψδ,zk the corresponding minimizing vectors. Then

K∑
k=1

λk inf
ψ∈L2(Rd N ),∥ψ∥2=1

⟨ψ |Hzk |ψ⟩L2(Rd N ) ≤

K∑
k=1

λk⟨ψδ,zk |Hzk |ψδ,zk ⟩L2(Rd N )

< inf
(ψ,µ)∈Dpm, µ∈Patom(hω)

Epm[ψ,µ] + δ. (2-13)

Since the left-hand side is a convex combination and δ is arbitrary, we immediately deduce that

inf
z∈hω

I[z] ≤ inf
(ψ,µ)∈Dpm, µ∈Patom(hω)

Epm[ψ,µ]. (2-14)

On the other hand, since a measure concentrated in a single point is atomic,

inf
(ψ,µ)∈Dpm, µ∈Patom(hω)

Epm[ψ,µ] ≤ inf
z∈hω

inf
ψ∈L2(Rd N ),∥ψ∥2=1

Eqc[ψ, z] = inf
z∈hω

I[z],

which implies the first identity in (2-12).
Now, let us prove the second equality above, namely

inf
z∈hω

I[z] = EPekar. (2-15)

Let again δ > 0 and let zδ be a minimizing family of vectors for I, i.e., such that I[zδ]< infz∈hω I[z]+ δ.
For each zδ, let ψδ,zδ be a minimizing vector for Eqc[ · , zδ], i.e., such that

Eqc[ψδ,zδ , zδ]< I[zδ] + δ.

Now,
EPekar ≤ EPekar[ψδ,zδ ] ≤ Eqc[ψδ,zδ , zδ],

therefore
EPekar ≤ inf

z∈hω
I[z]. (2-16)
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On the other hand, let ψδ be a minimizing family of states for EPekar, and, after fixing ψδ, let zδ,ψδ be a
minimizing family for Eqc[ψδ, · ]:

Eqc[ψδ, zδ,ψδ ]< EPekar + δ. (2-17)

As above, we then get

inf
z∈hω

I[z] ≤ inf
ψ∈L2(Rd N ),∥ψ∥2=1

Eqc[ψ, zδ,ψδ ] ≤ Eqc[ψδ, zδ,ψδ ]< EPekar + δ,

which yields
inf

z∈hω
I[z] ≤ EPekar. (2-18)

Finally, we prove that
EPekar = Eqc. (2-19)

Now, let (ψδ, zδ,ψδ ) be as above, i.e., such that (2-17) holds true. Hence,

Eqc ≤ Eqc[ψδ, zδ,ψδ ]< EPekar + δ,

and thus Eqc ≤ EPekar. On the other hand, let (ψδ, zδ) be a minimizing family of configurations for Eqc:

Eqc[ψδ, zδ]< Eqc + δ.

Clearly, now one has
EPekar ≤ EPekar[ψδ] ≤ Eqc[ψδ, zδ]< Eqc + δ,

yielding the opposite inequality, i.e., EPekar ≤ Eqc. □

Remark 2.2 (stability). In the above proof we have implicitly assumed that the energies under considera-
tions are bounded from below, but in fact it is easy to see that, if one of the functionals is unbounded from
below, then all the others must be unstable as well. We do not provide any detail of such an argument,
because our main result (Theorem 1.3) implies that (VP1) holds true, so that (VP′1), (vp1) and (vp′1)
immediately follow.

The other important result concerns equivalences for the existence of minimizers in the variational
problems above.

Proposition 2.3 (quasiclassical minimizers). Under assumptions (A1), (A2) and (A3),

(VP2) ⇐⇒ (VP′2) ⇐⇒ (vp2) ⇐⇒ (vp′2). (2-20)

Furthermore, any minimizer msvm of (vp2) is concentrated on the set of minimizers (ψqc, zqc) of (VP2).

Proof. Some implications are easy to prove. Let us first prove that (VP2) =⇒ (vp′2). Let (ψqc, zqc) be a
minimizer of Eqc in Dqc. Then, evaluating the energy Epm on the configuration (ψqc, µ0), with µ0 = δzqc ,
we get

Epm[ψqc, µ0] =

∫
hω

dµ0(z)Eqc[ψqc, z] = Eqc[ψqc, zqc] = Eqc.
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By Proposition 2.1, (ψqc, µ0) thus solves (vp′2). Analogously, let us prove (vp′2)=⇒ (vp2): let (ψpm, µpm)

be a minimizer for (vp′2); then, the state-valued measure m0, with µm0 = µpm and γm0(z)= |ψpm⟩⟨ψpm|,
solves (VP2) by Proposition 2.1.

We prove now that (vp2) =⇒ (VP2). Given a minimizer msvm of Esvm, for µmsvm-a.e. z ∈ hω there exists
{λk(z)}k∈N, with λk(z)≥ 0 and

∑
k∈N λk(z)= 1, and {ψk(z)}k∈N, with ∥ψk(z)∥L2(Rd N ) = 1, such that

Esvm = Esvm[msvm] =

∫
hω

dµmsvm(z)
∑
k∈N

λk(z)Eqc[ψk(z), z].

The above is due to the fact that γmsvm(z) is a density matrix on L2(Rd N ) for µmsvm-a.e. z. The measure
µmsvm ∈ P(hω) is a probability measure, hence the right-hand side of the above equation is a (double)
convex combination of numerical values of the real-valued function Eqc. However, a convex combination
of values of a function equals its infimum, if and only if the infimum is a minimum, and all variables
appearing in the convex combination are minimizers. Therefore, Eqc admits at least one minimizer.
Actually, the measure msvm is concentrated on the set of minimizers (ψqc, zqc), in the above sense.

Finally, we consider the Pekar-like variational problem (VP′2) and its equivalence with (VP2). Let us
first prove that (VP′2) =⇒ (VP2): given a Pekar minimizer ψPekar ∈ L2(Rd N ), we immediately deduce
that ψPekar ∈ H 1(Rd N ) by boundedness from above of the energy and regularity of the classical field a(x),
which is continuous and vanishing at infinity [Correggi et al. 2019, Remark 1.5]. Furthermore, Lemma 2.4
guarantees the existence (and uniqueness) of ηPekar[ψPekar] ∈ h minimizing Eqc[ψPekar, z] with respect
to z. Therefore, the configuration (ψPekar, ηPekar[ψPekar]) is admissible for Eqc and we deduce from
Proposition 2.1 that Eqc[ψPekar, ηPekar[ψPekar]] = Eqc.

Conversely, given a minimizer (ψqc, zqc) ∈ D of Eqc, we know that the configuration must satisfy the
Euler–Lagrange equations (1-23) at least in the weak sense. However, the second equation in (1-23) is
easily seen to coincide with (1-27) or the first equation in (1-34), when the change of variable η = ω1/2z
has been performed. Furthermore, any weak solution η of such equations is in fact a strong solution,
i.e., η ∈ h, under the assumptions made. Hence, by strict convexity of Fqc[ψ, η] in η proven in Lemma 2.4
and then uniqueness of ηPekar, we deduce that ηPekar[ψqc] =ω1/2zqc, and the equivalence (VP2) =⇒ (VP′2)
is readily proven via Proposition 2.1. □

The next result about the quasiclassical functional defined in (1-18) or, more precisely, about its
variant Fqc introduced in (1-25) is important to explore the connection with the Pekar-like functionals
(1-28) and (1-34).

Lemma 2.4. For any fixed ψ , the functional Fqc[ψ, η] is strictly convex in η ∈ hω.

Proof. In cases (a) and (b) the proof is trivial, since Fqc contains only two terms depending on η: one is
quadratic in η (the free field energy) and therefore strictly convex, while the other (the interaction) is
linear and thus convex.

So we have to investigate in detail only case (c), namely the Pauli–Fierz quasiclassical energy, and,
specifically, only the kinetic part of the energy involving the interaction, which reads

N∑
j=1

1
2m j

(−i∇j + 2Re⟨η|(ω−1/2λj )(xj )⟩h)
2.
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Let us then set η= βη1 + (1−β)η2 for some η1, η2 ∈ h and β ∈ (0, 1). Expanding the square and setting
ξ j (x) := ω−1/2λj (x) for short, we get (for any nonzero ψ)〈
ψ

∣∣(−i∇j + 2Re⟨η|ξ j (xj )⟩h)
2∣∣ψ 〉

L2(R3N )

< ⟨ψ | −1j |ψ⟩L2(R3N ) − 2
〈
ψ

∣∣iβRe⟨η1|ξ j (xj )⟩h · ∇j + i(1 −β)Re⟨η2|ξ j (xj )⟩h · ∇j
∣∣ψ 〉

L2(R3N )

+ 4
〈
ψ

∣∣β(Re⟨η1|ξ j (xj )⟩h)
2
+ (1 −β)(Re⟨η2|ξ j (xj )⟩h)

2∣∣ψ 〉
L2(R3N )

, (2-21)

again by the strict convexity of the square, i.e., the bound (βa + (1 − β)b)2 < βa2
+ (1 − β)b2, valid

for any a, b ∈ R and β ∈ (0, 1). The result easily follows, since the remaining term in the functional
depending on η is the free field energy, which is quadratic in η and thus strictly convex as well. □

Remark 2.5 (minimizers for (vp′2)). The existence of a solution for (vp′2) obtained here is trivial, i.e., it
involves a measure concentrated in a single point zqc ∈ hω and a ψzqc dependent on such a point. It would
be interesting, but outside the scope of this paper, to know whether there are nontrivial minimizers in
which µ0 is not concentrated at a single point. This is obviously related to the question of uniqueness of
the minimizing configuration (ψqc, zqc). Note that this would not be in contradiction with Lemma 2.4,
since we prove there strict convexity of Fqc[ψ, η] only in η, while the full functional Eqc[ψ, z] is in
general not jointly convex in ψ and z nor in |ψ |

2 and z (see also Remark 1.2).

Proof of Proposition 1.1. Combining Proposition 2.1 with Proposition 2.3 one obtains the equivalence of
the variational problems. □

2B. Minimization problem for generalized state-valued measures. We discuss now the generalization
of the concepts introduced above needed to deal with the minimization (1-52), which is particularly
useful to treat small systems consisting of unconfined particles. Taking the double dual, it is well known
that L 1(L2(Rd N )) can be continuously embedded in B(L2(Rd N ))′, the dual of bounded operators, in
a positivity preserving way. By an abuse of notation, we will write L 1(L2(Rd N )) ⊂ B(L2(Rd N ))′.
We recall that we denoted by L 1(L2(Rd N )) the closure of L 1(L2(Rd N )) with respect to the weak*
topology σ(B(L2(Rd N ))′,B(L2(Rd N ))) on B(L2(Rd N ))′. Also, L 1

+(L2(Rd N )) and L 1
+,1(L2(Rd N ))

stand for the subsets of positive and normalized positive elements, respectively. A generalized state-
valued measure is then a measure on hω with values in the space of generalized states L 1

+(L2(Rd N )).
Properties of generalized state-valued measures are discussed in the Appendix. Since the dual space
B(L2(Rd N ))′ is not separable, it does not have the Radon–Nikodým property, therefore integration of
functions F : hω → B(L2(Rd N )) is restricted only to those with separable range.

Such integration can be extended to functions valued in unbounded operators in the following sense.

Definition 2.6 (domains of generalized Wigner measures). Let T be a strictly positive unbounded operator
on L2(Rd N ). A generalized state-valued measure n is in the domain of T if and only if there exists a
measure nT ∈ P(hω,L 1

+(L2(Rd N ))) such that for all B ∈ B(L2(Rd N )) and all Borel sets S ⊆ hω,

nT (S)[T −1/2BT −1/2
] = n(S)[B]. (2-22)
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Therefore, if n is in the domain of T , with a little abuse of notation we may write

n(S)[T 1/2
· T 1/2

] = nT (S)[ · ] (2-23)

as a state-valued measure “absorbing a singularity” of order T . Now, let F(z) be a function with values
in unbounded operators such that for all z ∈ hω,

• T −1/2F(z)T −1/2
∈ B(L2(Rd N )),

• the range of z 7→ T −1/2F(z)T −1/2 is separable,

• T −1/2F(z)T −1/2 is nT -absolutely integrable.

Then, it follows that we can define the integral of F with respect to n as∫
hω

dn(z)[F(z)] :=

∫
hω

dnT (z)[T −1/2F(z)T −1/2
]. (2-24)

A simple but useful example of such F(z) is the following: let S be a self-adjoint operator, and let n be
in the domain of T = |S|+1; then the function F(z)= S satisfies all above hypotheses and thus it makes
sense to write, for all Borel set S ⊆ hω,∫

S
dn(z)[S] = n(S)[S] := nT (S)[T −1/2ST −1/2

] ∈ R. (2-25)

The other cases useful for our analysis are discussed in Section 3.
We are now in a position to define another quasiclassical minimization problem. Recall the definition of

the domain Dgqc (1-53), the ground state energy Egqc given by (1-54) and any corresponding minimizing
configuration (ρgqc, zgqc) ∈ Dgqc; then the analogues of (VP1) and (VP2) are (stability)

“Is Egqc greater than −∞?” (GVP1)
and (existence of a ground state)

“Does there exist (ρgqc, zgqc) ∈ Dgqc such that Egqc(ρgqc, zgqc)= Egqc?” (GVP2)

The functional Egqc can indeed be seen as the generalized quasiclassical energy: let Hz be the abstract
realization of Hz as an operator affiliated to the abstract C∗-algebra B(L2(Rd N )). Then, given a nor-
malized pure state ρ ∈ L 1

+(L2(Rd N )), we define the corresponding irreducible GNS representation by
(Kρ, πρ, ψρ), where Kρ is a suitable Hilbert space, πϱ : B(L2(Rd N ))→ B(Kρ) is a C∗-homomorphism
(that can be extended to operators affiliated to the algebra) and ψρ ∈ Kϱ is the normalized cyclic vector
associated to ρ. Therefore, it follows that

Egqc[ρ, z] = ⟨ψρ |πρ(Hz)|ψρ⟩Kρ
.

This expression is analogous to the one for Eqc (see (1-18)) and it reduces exactly to the latter whenever ρ
is a pure state belonging to L 1(L2(Rd N )) (see Remark 2.7).

The generalization of the variational problems for state-valued measures (vp1) and (vp2) is obtained as
follows: setting

Dgsvm :=

{
n ∈ L 1

+(L2(Rd N )) : ∥n(hω)∥B′ = 1,
∣∣∣∣∫

hω

dn(z)[Hz]

∣∣∣∣<+∞

}
, (2-26)
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we consider the questions (stability)

“Is Egsvm := inf
n∈Dgsvm

∫
hω

dn(z)[Hz] greater than −∞?” (gvp1)

and (existence of a ground state)

“Does there exists ngsvm ∈ Dgsvm such that
∫
hω

dngsvm(z)[Hz] = Egsvm?” (gvp2)

Remark 2.7 (state-valued and generalized state-valued measures). We point out that, if a generalized
state-valued measure n ∈ Dgsvm is actually a state-valued measure, i.e., such that, for all Borel sets S ⊆ hω,

n(S) ∈ L 1
+
(L2(Rd N )),

then n ∈ Dsvm and ∫
hω

dn(z)[Hz] = Esvm[n].

Proposition 2.8 (generalized quasiclassical ground state energy). Under assumptions (A1), (A2) and (A3),

Eqc = Egqc = Egsvm. (2-27)

Proof. Firstly, let us prove that

Eqc = Egqc.

Since ρ belongs to the weak* closure of L 1
+,1(L

2(Rd N )), there exists a filter base S⊂ 2L 1
+,1(L

2(Rd N )) such
that S → ρ in the weak* topology. Hence, for any fixed z ∈ hω,4

lim
S→ρ

trL2(Rd N )[S(Hz)] = ρ[Hz].

Now, on one hand, each |ψ⟩⟨ψ |, ψ ∈ L2(Rd N ), is also a pure generalized state and therefore

Egqc ≤ inf
(ψ,z)∈Dqc

Eqc[ψ, z] = Eqc. (2-28)

On the other hand, let (ρδ, zδ) ∈ Dgqc be a minimizing sequence:

Egqc[ρδ, zδ] = ρδ[Hzδ ]< Egqc + δ,

for some δ > 0 and let Sδ ⊂ 2L 1
+,1(L

2(Rd N )) be the corresponding approximating filter base for ρδ . Then,

Eqc = inf
(ψ,z)∈Dqc

Eqc[ψ, z] = inf
(γ,z)∈L 1

+,1(L
2(Rd N ))⊕hω

trL2(Rd N )[γHz] ≤ sup
X∈Sδ

inf
γ∈X

trL2(Rd N )[γHzδ ]

= lim inf
Sδ

trL2(Rd N )[Sδ(Hzδ )] = lim
Sδ→ρδ

trL2(Rd N )[Sδ(Hzδ )] = ρδ[Hzδ ]< Egqc + δ. (2-29)

4The notation trL2(Rd N )[S(Hz)] stands for the filter base that is the image of S on R via the map γ 7→ trL2(Rd N )[γHz];
given any X ∈ S, we have that {trL2(Rd N )[γHz], γ ∈ X} ∈ trL2(Rd N )[S(Hz)].
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Since the above chain of inequalities is valid for all δ > 0, it follows that the opposite inequality of (2-28)
holds true, i.e.,

Eqc ≤ Egqc, (2-30)
which implies the claim.

The proof of the identity Egsvm = Eqc is perfectly analogous, where we remind the reader that it is
possible to approximate any measure n∈ P(hω,L 1

+(L2(Rd N ))) with a filter base T⊂ 2P(hω,L
1
+(L

2(Rd N )))

with respect to the product of weak* topologies∏
S⊂hω Borel

σ(B(L2(Rd N ))′,B(L2(Rd N ))),

which implies the convergence of integrals5

lim
T→n

trL2(Rd N )

[∫
hω

dT(z)Hz

]
=

∫
hω

dn(z)[Hz]. □

Finally, also for the generalized minimization problems, it is possible to prove equivalence of existence
of minimizers.

Proposition 2.9 (generalized quasiclassical minimizers). Under assumptions (A1), (A2) and (A3),

(GVP2) ⇐⇒ (gvp2). (2-31)

Furthermore, any minimizer ngsvm of (gvp2) is concentrated on the set of minimizers (ρgqc, zgqc) of (GVP2).

Proof. The forward implication is trivial: let (ρgqc, zgqc) be a minimizer for (GVP2). Then, evaluating the
energy of the generalized state-valued measure n0 = δzgqcρgqc, we get∫

hω

dn0(z)[Hz] = ρgqc[Hzgqc] = Egqc. (2-32)

By Proposition 2.8, n0 is thus a minimizer for (gvp2).
To prove the reverse implication, note that the integral with respect to a generalized state-valued

probability measure is a convex combination of expectations over possibly mixed generalized states. Since
the mixed states are themselves convex combinations of pure states, it follows that the measure ngsvm

must be concentrated on the set of minimizers for (gvp2), and thus the latter is not empty. □

3. Ground state energies and ground states in the quasiclassical regime

In this section we study the quasiclassical limit of ground state energies and ground states of the
microscopic models introduced in Section 1.

The microscopic interaction is described by a fully quantum system, in which both the small system
and the environment are quantum. The Hilbert space is thus (see (1-2)) given by Hε = L2(Rd N )⊗Gϵ(h),
where Gϵ(h) =

⊕
n∈N h⊗sn is the symmetric Fock space over h and ε is the quasiclassical parameter

whose dependence is given by a semiclassical choice of canonical commutation relations (1-3), i.e.,

5As before, the integral with respect to dT is just a short-hand notation to denote the integral over elements belonging to the
filter T.
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[aε(z), a†
ε (w)] = ε⟨z|w⟩h, with a♯ε the annihilation and creation operators on the Fock space. A state of

the whole system is given by a density matrix

0ε ∈ L 1
+,1(L

2(Rd N )⊗Gε(h)),

the positive trace-class operators with unit trace.
The dynamics of the system is described by a self-adjoint Hamiltonian operator Hε whose general

form is given in (1-4). Such an operator is the partial Wick quantization of the quasiclassical Schrödinger
energy operator Hz provided in (1-14). Wick quantization consists in substituting each z appearing
in H with aε and each z̄ with a†

ε , and of ordering all the a†
ε to the left of all the aε. Such a quantization

procedure is well-defined for symbols Fz that are polynomial in z and z∗, as is the case in the concrete
models we are considering; see Section 4 for additional details and [Ammari and Nier 2008] for the
rigorous procedure. Hence, we write

Hε = OpWick
ε (Hz), (3-1)

and, more precisely, Hz can be split into three terms, at least in the sense of quadratic forms, i.e.,

Hz = K0 +

N∑
i=1

Vz(xi )+ ⟨z|ω|z⟩h (3-2)

with K0 self-adjoint and bounded from below, yielding

Hε = K0 ⊗ 1 + 1 ⊗ OpWick
ε (⟨z|ω|z⟩h)+

N∑
i=1

OpWick
ε (Vz(xi )) (3-3)

as a quadratic form. The first and second terms on the right-hand side are the free energies of the small
system and environment, respectively, and the third term is the small system-environment interaction.

The minimization problem for the quantum system described by Hε is defined in (1-12): the microscopic
ground state energy is Eε := inf σ(Hε), while 9ε,gs stands for any corresponding minimizer. Such a
minimization problem has been thoroughly studied for the concrete models under consideration in this
paper; see Section 1A. A crucial ingredient of our proof is the uniform boundedness from below of the
spectrum of Hε. Note again that we do not need the existence of a microscopic ground state 9ε,gs.

Proposition 3.1 (stability and existence of the ground state). Under assumptions (A1), (A2) and (A3),
there exist finite constants c,C > 0 independent of ε such that

−c ≤ Eε ≤ C. (3-4)

The proof of the above result is model-dependent and therefore it is postponed to Section 4.
We now investigate the link between the microscopic ground state problem and the quasiclassical

minimization problems described in Section 2, starting from the proof of Theorem 1.3. The strategy of
proof can be outlined as follows:

• Derive an energy upper bound (Proposition 3.2) by means of a suitable trial state.

• Prove a matching lower bound (Proposition 3.3) by showing the convergence of the expectation of
each term in the energy over a suitable minimizing sequence.
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Although both cases could be treated at once, we provide a separate discussion of the main results for
trapped and nontrapped particle systems, whose difference is apparent in the statements of Corollary 1.10
and Corollary 1.17. The convergence of minimizing sequences and ground states (Theorem 1.7), if
present, is then obtained as a direct consequence of the above arguments.

3A. Proof of Theorem 1.3. The proof of Theorem 1.3 is obtained by putting together the energy upper
bound (Proposition 3.2) and lower bound (Proposition 3.3).

In the following, we denote by 9ε,δ ∈ D(Hε), δ > 0, a minimizing sequence for Hε:

⟨9ε,δ|Hε|9ε,δ⟩Hε
< Eε + δ. (3-5)

Proposition 3.2 (energy upper bound). Under assumptions (A1), (A2) and (A3),

lim sup
ε→0

Eε ≤ Eqc. (3-6)

Proof. In order to prove the upper bound we use a coherent trial state: let us denote by �ε ∈ Gε(h) the
Fock vacuum and let

4ε[ψ, z] := ψ ⊗ Wε

( z
iε

)
�ε (3-7)

be a coherent product state constructed over the particle state ψ and the classical configuration z ∈ h. We
shall restrict to ψ ∈ Q(K0), where Q(K0) is the form domain of K0, and z ∈ h such that ω1/2z ∈ h. As
discussed in Section 4, this is sufficient to make 4ε[ψ, z] ∈ Q(Hε) and (ψ, z) ∈ Dqc. The energy of the
above trial state is

⟨4ε[ψ, z]|Hε|4ε[ψ, z]⟩Hε
= Eqc[ψ, z] + oε(1). (3-8)

The proof of the above estimate depends on the microscopic model involved. The computation of the
expectation over the trial states (3-7) can be found in [Correggi and Falconi 2018, Proposition 3.11 and
Section 3.6] for the Nelson and polaron models, and in [Correggi et al. 2019, Proof of Theorem 1.9] for
the Pauli–Fierz model. Hence, we have that

Eε ≤ inf
(ψ,z)∈Dqc

⟨4ε[ψ, z]|Hε|4ε[ψ, z]⟩Hε
= inf
(ψ,z)∈Dqc

Eqc[ψ, z] + oε(1)= Eqc + oε(1). (3-9)

The result is then obtained by taking the lim supε→0 on both sides. □

The symmetric result of Proposition 3.2 is stated in the following proposition.

Proposition 3.3 (energy lower bound). Under assumptions (A1), (A2) and (A3),

lim inf
ε→0

Eε ≥ Eqc. (3-10)

Although not necessary in principle, we find it convenient to present two different proofs of (3-10),
one valid only when K0 has compact resolvent, e.g., when the small system is trapped, and one valid
for nontrapped small systems as well. The main reason is that the former does not require the use of
generalized Wigner measures, since conventional state-valued measures are sufficient, resulting in a more
accessible proof.
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3A1. Energy lower bound: trapped particle systems. If K0 has compact resolvent, the set of quasiclassical
Wigner measures (as in Definition 1.4) associated with minimizing sequences for Hε is not empty. In
addition, the expectation of OpWick

ε (Vz) converges to the quasiclassical integral of Vz . Let us formulate
some preliminary results about the convergence of the expectation values of the operators involved. Such
results rely on suitable a priori bounds on the family of states 9ε ∈ Hε, as ε varies in (0, 1). Lemma 3.7
guarantees that there exists a minimizing sequence 9ε,δ in the sense of (3-5) satisfying such bounds.

Lemma 3.4. If (A4) holds and there exists C <+∞ such that, uniformly with respect to ε ∈ (0, 1),∣∣⟨9ε|(K0 + dGε(ω)+ 1)|9ε⟩Hε

∣∣ ≤ C, (3-11)

then W (9ε, ε ∈ (0, 1)) ̸=∅. Furthermore, if 9εn

qc
εn→0−−−→m, then trL2(Rd N )[γm(z)K0] is µm-a.e. finite and

µm-absolutely integrable, and

lim
n→∞

⟨9εn |K0|9εn ⟩Hεn
=

∫
hω

dµm(z) trL2(Rd N )[γm(z)K0]. (3-12)

Proof. For ω = 1 this proposition is proved in [Correggi et al. 2023, Propositions 2.3 and 2.6]. For a
generic ω ≥ 0, the proof (in the presence of semiclassical degrees of freedom only) can be found in
[Falconi 2018a, Theorem 3.3]; the extension to the quasiclassical setting is straightforward, testing with
compact observables of the small system, as in the aforementioned [Correggi et al. 2023, Propositions 2.3
and 2.6]. Let us stress that the fact that all Wigner measures are probability measures, i.e., there is no loss
of mass and m(hω)= 1, is due to the fact that K0 has compact resolvent. Otherwise, there may be a loss
of probability mass due to the interplay between the particle system and the environment; see [Correggi
et al. 2023, Corollary 1.7 and Remark 1.9] for additional details. □

In order to control the convergence of the free field energy, we first have to regularize it: we pick a
sequence of positive self-adjoint compact operators {1r }r∈N ⊂ B(h) approximating the identity: for all
r ∈ N, 1r ≤ 1, and for all z ∈ hω,

lim
r→∞

⟨z|ωr |z⟩h = lim
r→∞

⟨z|1r |z⟩hω = ∥z∥2
hω

= ⟨z|ω|z⟩h, (3-13)

where we have written ωr := ω1/21rω
1/2. Recall also that OpWick

ε (⟨z|ω|z⟩h)= 1 ⊗ dGε(ω), where dGε(ω)
stands for the second quantization of ω as above.

Lemma 3.5. If (A4) holds and there exist C < +∞ and δ > 1 such that, uniformly with respect to
ε ∈ (0, 1), ∣∣⟨9ε|(K0 + dGε(ω)δ + 1)|9ε⟩Hε

∣∣ ≤ C, (3-14)

then, if 9εn

qc
εn→0−−−→ m ∈ W (9ε, ε ∈ (0, 1)), it follows that for any η ≤ δ,∫

hω

dµm(z)⟨z|ω|z⟩ηh ≤ C, (3-15)

and, for all r ∈ N,

lim
n→∞

⟨9εn |1 ⊗ dGεn (ωr )|9εn ⟩Hεn
=

∫
hω

dµm(z)⟨z|ωr |z⟩h =

∫
hω

dµm(z)⟨z|1r |z⟩hω . (3-16)
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Proof. The proof of µm-integrability of ⟨z|ω|z⟩ηh (and the relative bound) is a consequence of the
corresponding result for semiclassical (scalar) Wigner measures proved in [Ammari and Nier 2008;
Falconi 2018a]. Analogously, the convergence holds because ⟨z|1r |z⟩hω is a compact scalar symbol; see
[Falconi 2018a] for the convergence of compact symbols in hω, and [Correggi et al. 2023, Propositions 2.3
and 2.6] for additional details on the generalization of results in semiclassical analysis to the quasiclassical
case. □

Lemma 3.6. If (A4) holds and there exists C <+∞ such that, uniformly with respect to ε ∈ (0, 1),∣∣⟨9ε|(K0 + dGε(ω)2 + 1)|9ε⟩Hε

∣∣ ≤ C, (3-17)

then, if 9εn

qc
εn→0−−−→ m, for any i = 1, . . . , N ,

lim
n→∞

⟨9εn |OpWick
εn

(Vz(xi ))|9εn ⟩Hεn
=

∫
hω

dµm(z) trL2(Rd N )[γm(z)Vz(xi )]. (3-18)

Lemma 3.7. Under assumptions (A1), (A2) and (A3), there exists a minimizing sequence {9ε,δ}ε,δ∈(0,1)

such that, for all fixed δ ∈ (0, 1), (3-5) holds true and there exists Cδ <+∞ such that∣∣⟨9ε,δ|(K0 + dGε(ω)2 + 1)|9ε,δ⟩Hε

∣∣ ≤ Cδ. (3-19)

The proofs of Lemma 3.6 and Lemma 3.7, like the form of the quasiclassical potential Vz , depend on
the model considered. We thus provide them in Section 4.

Remark 3.8. Observe that if Lemma 3.7 holds, then the assumptions of Lemmas 3.4–3.6 are verified for
the minimizing sequence 9ε,δ.

We are now in a position to prove the lower bound in the trapped case.

Proof of Proposition 3.3. Let 9ε,δ be the minimizing sequence for Hε of Lemma 3.7. Since for any r ∈ N,
ωr ≤ ω, it follows that dGε(ωr )≤ dGε(ω). Hence,〈

9ε,δ

∣∣∣∣(K0 + dGε(ωr )+ OpWick
ε

(∑
i

Vz(xi )

))∣∣∣∣9ε,δ〉
Hε

≤ ⟨9ε,δ|Hε|9ε,δ⟩Hε
< Eε + δ. (3-20)

Now, let us recall that, by Lemmas 3.4–3.7,

• for any δ > 0, W (9ε,δ, ε ∈ (0, 1)) ̸= ∅;

• the expectation value of each term in the Hamiltonian converges as ε→ 0 or, more precisely, there
exists m ∈ W (9ε,δ, ε ∈ (0, 1)) such that∫

hω

dµm(z) trL2(Rd N )

[
γm

(
K0 + ⟨z|ωr |z⟩h +

∑
i

Vz(xi )

)]
≤ lim inf

ε→0

〈
9ε,δ

∣∣∣∣(K0 + dGε(ωr )+ OpWick
ε

(∑
i

Vz(xi )

))∣∣∣∣9ε,δ〉
Hε

. (3-21)
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Hence, we deduce that∫
hω

dµm(z) trL2(Rd N )

[
γm

(
K0 + ⟨z|ωr |z⟩h +

∑
i

Vz(xi )

)]
< lim inf

ε→0
Eε + δ. (3-22)

Now, ⟨z|ωr |z⟩h r→∞
−−−→ ⟨z|ω|z⟩h for any z ∈ hω by construction, and any m ∈ W (9ε, ε ∈ (0, 1)) is

concentrated on hω by Lemma 3.4. Furthermore,∫
hω

dµm(z)⟨z|ωr |z⟩h ≤

∫
hω

dµm(z)⟨z|ω|z⟩h ≤ C <+∞.

Hence, by dominated convergence,

lim
r→∞

∫
hω

dµm(z)⟨z|ωr |z⟩h =

∫
hω

dµm(z)⟨z|ω|z⟩h. (3-23)

Thus, one gets

inf
m∈W (9ε,δ,ε∈(0,1))

∫
hω

dµm(z) trL2(Rd N )[γmHz]< lim inf
ε→0

Eε + δ, (3-24)

which, via Proposition 2.1, implies that

Eqc ≤ inf
m∈W (9ε,δ,ε∈(0,1))

∫
hω

dµm(z) trL2(Rd N )[γmHz]< lim inf
ε→0

Eε + δ.

Since δ > 0 is arbitrary, the claim follows. □

3A2. Energy lower bound: nontrapped particle systems. In the nontrapped case, the strategy of proof is
very similar, however it is not ensured that the set of quasiclassical Wigner measures for the minimizing
sequence is not empty. It is then necessary to use generalized Wigner measures (recall Definition 1.6).

We first generalize the preparatory lemmas that we needed in the trapped case to the general situation.
Note that for Lemma 3.7 it is not necessary that K0 has compact resolvent and therefore we can use it
directly also in the nontrapped case. We also use the same notation as in the trapped case; in particular,
we make use of the same compact approximation ωr of ω we introduced in (3-13).

Lemma 3.9. If there exists C <+∞ such that, uniformly with respect to ε ∈ (0, 1),∣∣⟨9ε|(K0 + dGε(ω)+ 1)|9ε⟩Hε

∣∣ ≤ C, (3-25)

then G W (9ε, ε ∈ (0, 1)) ̸= ∅. Furthermore, if 9εn

gqc
εn→0−−−→ n, then n is in the domain of K0 + 1 in the

sense of Definition 2.6 and

lim
n→∞

⟨9εn |K0|9εn ⟩Hεn
=

∫
hω

dn(z)[K0]. (3-26)

In addition, it follows that ∫
hω

dn(z)[1]⟨z|ω|z⟩h ≤ C, (3-27)

and, for all r ∈ N,

lim
n→∞

⟨9εn |1 ⊗ dGεn (ωr )|9εn ⟩Hεn
=

∫
hω

dn(z)[1]⟨z|ωr |z⟩h. (3-28)
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Proof. These lemmas extend to generalized Wigner measures Lemmas 3.4 and 3.5, respectively. The
proof is, mutatis mutandis, completely analogous to those of the latter. Contrary to Lemma 3.4, since
now K0 has a noncompact resolvent, the set of Wigner measures of 9ε may be empty and there might be
a loss of mass along the quasiclassical convergence. The set of generalized Wigner measures is, however,
always nonempty: no mass is lost due to the fact that

∥9ε∥
2
Hε

= ⟨9ε|1 ⊗ Wε(0)|9ε⟩Hε
= 1,

and the identity operator belongs to B(L2(Rd N )) but is not compact. More precisely, the above quantity
can be immediately identified, in the limit ε→ 0, with the total mass of all generalized Wigner measures
associated to 9ε, as defined in Definition 1.6, whereas it is a priori only bigger than or equal to the total
mass of measures defined by the convergence in Definition 1.4 (if all cluster points for the aforementioned
convergence have total mass strictly less than one, the set of Wigner measures associated to 9ε, which
are required by Definition 1.4 to have total mass 1, is thus empty). □

Lemma 3.10. If there exists C <+∞ such that, uniformly with respect to ε ∈ (0, 1),∣∣⟨9ε|(K0 + dGε(ω)2 + 1)|9ε⟩Hε

∣∣ ≤ C, (3-29)

then, if 9εn

gqc
εn→0−−−→ n, for any i = 1, . . . , N ,

lim
n→∞

⟨9εn |OpWick
εn

(Vz(xi ))|9εn ⟩Kεn
=

∫
hω

dn(z)[Vz(xi )]. (3-30)

Like its analogue Lemma 3.6, the proof of Lemma 3.10 is model-dependent and thus given in Section 4.
The proof of the lower bound for the nontrapped case is now equivalent to the one in the trapped case,

using generalized Wigner measures.

Proof of Proposition 3.3. Let 9ε,δ be the minimizing sequence for Hε of Lemma 3.7 satisfying (3-20).
By Lemmas 3.7–3.10,

• for any δ > 0, we have that G W (9ε,δ, ε ∈ (0, 1)) ̸= ∅;

• for Wigner measures, there exists n ∈ G W (9ε,δ, ε ∈ (0, 1)) such that∫
hω

dn(z)
[
K0 + ⟨z|ωr |z⟩h +

∑
i

Vz(xi )

]
≤ lim inf

ε→0

〈
9ε,δ

∣∣∣∣(K0 + dGε(ωr )+ OpWick
ε

(∑
i

Vz(xi )

))∣∣∣∣9ε,δ〉
Hε

,

and therefore ∫
hω

dn(z)
[
K0 + ⟨z|ωr |z⟩h +

∑
i

Vz(xi )

]
< lim inf

ε→0
Eε + δ. (3-31)

However, by dominated convergence, see Theorem A.18 in the Appendix,

lim
r→∞

∫
hω

dn(z)[1]⟨z|ωr |z⟩h =

∫
hω

dn(z)[1]⟨z|ω|z⟩h.

Hence,

Egqc ≤ inf
n∈G W (9ε,δ,ε∈(0,1))

∫
hω

dn(z)[Hz]< lim inf
ε→0

Eε + δ,

and the result follows from the arbitrarity of δ > 0, via Proposition 2.8. □
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3B. Convergence of minimizing sequences and minimizers. Once the energy convergence is proven,
we investigate the behavior of minimizing sequences and minimizers, if any.

Proof of Theorem 1.7. Let 9ε,δ ∈ D(Hε) be a minimizing sequence. Then by Lemmas 3.4–3.7, any
mδ ∈ W (9ε,δ, ε ∈ (0, 1)), corresponding to a sequence {9εn,δ}n∈N, εn → 0, satisfies∫

hω

dµmδ (z) trL2(Rd N )[γmδ (z)Hz] = lim
n→∞

⟨9εn,δ|Hεn |9εn,δ⟩Hεn
< lim

n→∞
Eεn + δ = Eqc + δ,

as proven in Theorem 1.3. □

Proof of Corollary 1.9. If δ = oε(1), then considering m0 ∈ W (9ε,oε(1), ε ∈ (0, 1)), corresponding to a
sequence {9εn,δ}n∈N, εn → 0, we have∫

hω

dµm0(z) trL2(Rd N )[γm0(z)Hz] ≤ lim
n→∞

(Eεn + oεn (1))= Eqc.

By Proposition 2.1 it follows that m0 is a minimizer of (vp2) and, by Proposition 2.3, is concentrated on
the set (ψqc, zqc) of minimizers of (VP2). □

Proof of Corollary 1.10. Let 9ε,gs be a ground state of Hε. Then it is also an (exact) minimizing sequence
with δ = 0, and thus as above m0 is a minimizer of (vp2) and is concentrated on the set (ψqc, zqc) of
minimizers of (VP2). □

The proof of Theorem 1.15 is also completely analogous to the proof of Theorem 1.7 for trapped
systems.

Proof of Theorem 1.15. If K0 does not have compact resolvent, then by Lemmas 3.7, 3.9 and 3.10, any
nδ ∈ G W (9ε,δ, ε ∈ (0, 1)) satisfies∫

hω

dnδ(z)[Hz]< lim
εn→0

Eεn + δ = Eqc + δ = Egqc + δ, (3-32)

by Theorem 1.3 and Proposition 2.8. □

Proof of Corollary 1.16. If δ = oε(1), it follows that n0 ∈ G W (9ε,oε(1), ε ∈ (0, 1)) satisfies∫
hω

dn0(z)[Hz] = lim
εn→0

Eεn = Egqc.

Therefore n0 solves (gvp2), and thus it is concentrated on minimizers solving (GVP2). □

Proof of Corollary 1.17. This proof is completely analogous to that of Corollary 1.10. □

4. Concrete models

In this section we discuss the concrete models introduced in Section 1, and in particular we provide the
proofs of results used in Section 3 that require a model-dependent treatment.
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4A. The Nelson model. The simplest model under consideration is the so-called Nelson model [1964]. It
consists of a small system of N nonrelativistic particles coupled with a scalar bosonic field, both moving
in d spatial dimensions.

We recall the explicit expression of the quasiclassical energy (1-14) in the Nelson model:

Hz =

N∑
j=1

{−1j +Vz(xj )} +W(x1, . . . , xN )+ ⟨z|ω|z⟩h,

acting on L2(Rd N ) and dependent on z ∈ h, where Vz is the potential (1-15), i.e., Vz(x)= 2Re⟨z|λ(x)⟩h,
W ∈ L1

loc(R
d N

; R+) is a field-independent potential,6 e.g., a trap or an interaction between the particles,
ω≥0 is a self-adjoint operator on h with an inverse that is possibly unbounded and λ, ω−1/2λ∈ L∞(Rd , h).
Both W and Vz are multiplication operators and Hz is self-adjoint on D(−1+W) and bounded from
below for all z ∈ hω. The associated quasiclassical energy of the system is the quadratic form Eqc, whose
form domain is thus contained in Q(−1+W)⊕Q(ω), where we recall that Q(A) stands for the quadratic
form domain associated with the self-adjoint operator A.

The quasiclassical Wick quantization of Hz yields the quantum field Hamiltonian

Hε =

N∑
j=1

{−1j ⊗ 1 + aε(λ(xj ))+ a†
ε (λ(xj ))} +W(x1, . . . , xN )⊗ 1 + 1 ⊗ dGε(ω)

acting on Hε = L2(Rd N )⊗Gε(h), where we have explicitly highlighted the trivial action of some terms
of Hε on either the particle’s or the field’s degrees of freedom. Whenever λ ∈ L∞(Rd

; h), the operator Hε
is self-adjoint, with domain of essential self-adjointness

D(−1+W + dGε(ω))∩ C ∞

0 (dGε(1)),

where the latter is the set of vectors with a finite number of field excitations [Falconi 2015], but it
may be unbounded from below if 0 ∈ σ(ω). It is however well known that, if for a.e. x ∈ Rd we have
λ(x) ∈ D(ω−1/2), that we assume in (1-8), then Hε is bounded from below by Kato–Rellich’s theorem.
Nonetheless, it may still not have a ground state if 0 ∈ σ(ω) or if W is not regular enough. We simply
remark here that the ground state exists if 0 /∈ σ(ω) and −1+W has compact resolvent (trapped particle
system), or if 0 ∈ σ(ω) and λ and W satisfy suitable conditions, irrespective of compactness of the
resolvent of −1+W .

Proof of Proposition 3.1. The upper and lower bounds in (3-4) are well known; see, e.g., [Ammari and
Falconi 2014; Correggi and Falconi 2018; Ginibre et al. 2006]. The lower bound is a direct consequence
of Kato–Rellich’s inequality, while the upper bound is proved using coherent states for the field. We
provide some details for the sake of completeness.

6Of course we may allow for a negative part of the potential W , provided it is bounded, but we choose a positive potential for
the sake of simplicity.
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Setting7

Hfree := K0 ⊗ 1 + 1 ⊗ dGε(ω), (4-1)

we get, for all α > 0 and all 9ε ∈ D(Hfree),∥∥∥∥ N∑
j=1

(aε(λ(xj ))+ a†
ε (λ(xj )))9ε

∥∥∥∥
Hε

≤ 2N∥ω−1/2λ∥L∞(Rd ;h)∥dGε(ω)1/29ε∥Hε
+

√
ε∥λ∥L∞(Rd ;h)∥9ε∥Hε

≤ α⟨9ε|dGε(ω)|9ε⟩Hε
+

[ N 2

α
∥ω−1/2λ∥2

L∞(Rd ;h) +
√
ε∥λ∥L∞(Rd ;h)

]
∥9ε∥Hε

. (4-2)

Therefore, choosing α = 1, we deduce that (recall that ε ∈ (0, 1))

Eε ≥ −N 2
∥ω−1/2λ∥2

L∞(Rd ;h) − ∥λ∥L∞(Rd ;h). (4-3)

The upper bound is trivial to show by exploiting (4-2) and evaluating the energy on any state such
that ⟨9ε|dGε(ω)|9ε⟩Hε

≤ C < +∞, e.g., a product state 9ε = ψ ⊗�ε, with ψ ∈ D(K0) and �ε the
field vacuum. Note that the uniform boundedness of Eε from above could as well be deduced by the
boundedness of E0, which in turn follows from the evaluation of Eqc on, e.g., a configuration (ψ, 0),
with ψ ∈ D(K0). □

We now prove Lemmas 3.6 and 3.7 for the Nelson model. We have however to state first a technical
result, which generalizes the convergence of expectation values proven in [Correggi et al. 2023]: indeed,
in [Correggi et al. 2023, Proposition 2.6] it is shown that,8 if

⟨9ε, (dGε(ω)+ 1)δ9ε⟩L2(Rd N )⊗Kε
≤ C,

for any δ > 1
2 , and 9εn

qc
n→∞

−−−→ m, then, for all K ∈ L ∞(L2(Rd N )),

lim
n→∞

⟨9εn |OpWick
εn

(Vz)K9εn ⟩Hεn
=

∫
hω

dµm(z) trL2(Rd N )[γm(z)VzK], (4-4)

but our goal is to apply the above convergence to the identity, which is not compact. We have then to
approximate it with compact operators.

Lemma 4.1. If (A4) holds and there exist C < +∞ and δ ≥ 1 such that, uniformly with respect to
ε ∈ (0, 1), ∣∣⟨9ε|(K0 + dGε(ω)δ + 1)|9ε⟩Hε

∣∣ ≤ C (4-5)

and 9εn

qc
εn→0−−−→ m, then, for all B ∈ B(L2(Rd N )) and any j = 1, . . . , N,

lim
n→∞

⟨9εn |OpWick
εn

(Vz(xj ))B9εn ⟩Hεn
=

∫
hω

dµm(z) trL2(Rd N )[γm(z)Vz(xj )B]. (4-6)

7Even if not stated explicitly, we use the notation Hfree also in Sections 4B and 4C with the same meaning.
8In [Correggi et al. 2023, Proposition 2.6] the result is proved for ω= 1. The extension to a generic ω is done straightforwardly

by combining the proof of Proposition 2.6 with the techniques introduced in [Falconi 2018a].
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Proof. Let us introduce compact approximate identities {1m}m∈N ⊂ L ∞(L2(Rd N )) as follows:

1m := 1[−m,m](K0),

where 1[−m,m] : R → {0, 1} is the characteristic function of the interval [−m,m], so that the right-hand
side of the above expression is the usual spectral projector of K0 constructed via spectral theory. For later
convenience, let us also define Bm := B1m . Therefore, we have

⟨9εn |OpWick
εn

(Vz(xj ))B9εn ⟩Hεn

= ⟨9εn |OpWick
εn

(Vz(xj ))Bm9εn ⟩Hεn
+ ⟨9εn |OpWick

εn
(Vz(xj ))(B−Bm)9εn ⟩Hεn

. (4-7)

The first term on the right-hand side converges when n → ∞ for any fixed m ∈ N, since we have that
Bm ∈ L ∞(L2(Rd N )) (see (4-4)), i.e.,

lim
n→∞

⟨9εn |OpWick
εn

(Vz(xj ))Bm9εn ⟩Hεn
=

∫
hω

dµm(z) trL2(Rd N )[γm(z)Vz(xj )Bm].

By dominated convergence, we can then take the limit m → ∞, to obtain

lim
m→∞

lim
n→∞

⟨9εn |OpWick
εn

(Vz(xj ))Bm9εn ⟩Hεn
=

∫
hω

dµm(z) trL2(Rd N )[γm(z)Vz(xj )B]. (4-8)

It remains to prove that
lim

m→∞
sup
ε∈(0,1)

∣∣⟨9ε|OpWick
ε (Vz(xj ))(B−Bm)9ε⟩Hε

∣∣ = 0. (4-9)

For any 0< s ≤
1
2 and for any c0 > |inf σ(K0)|,∣∣⟨9ε|OpWick

ε (Vz(xj ))(B−Bm)9ε⟩Hε

∣∣
≤ 2∥(B−Bm)(K0 + c0)

−s/2
∥B(L2(Rd N ))∥(dGε(ω)1/2 + 1)−1/2aε(λ(xj ))(dGε(ω)1/2 + 1)−1/2

∥B(Hε)

× ∥(dGε(ω)1/2 + 1)1/2(K0 + c0)
s/29ε∥

2
Hε

≤ C∥B∥B∥(1 − 1m)(K0 + c0)
−s/2

∥B∥ω−1/2λ∥L∞(Rd ,h)⟨9ε|K2s
0 + dGε(1)+ 1|9ε⟩Hε

≤ C sup
η∈[(−∞,−m)∪(m,+∞)]∩σ(K0)

1
(η+c0)s/2

≤ Cm−s/2

for m large enough, e.g., larger than |inf σ(K0)|. Therefore, since the above quantity vanishes as m → ∞

uniformly with respect to ε ∈ (0, 1), we conclude that (4-9) holds true and the result follows. □

Proof of Lemma 3.6. The result follows by taking B = 1 in Lemma 4.1. Again, this makes crucial use of
the fact that K0 = −1+W has compact resolvent, and that 9ε is regular enough with respect to K0. □

Proof of Lemma 3.7. The proof of Lemma 3.7 stems from a known result that allows us to compare
the expectation of the square of the free energy H 2

free with the expectation of the square of the full
Hamiltonian H 2

ε . This is a consequence of Kato–Rellich’s inequality: there exists C > 0 (independent
of ε) such that

⟨9ε|H 2
free|9ε⟩Hε

≤ C⟨9ε|H 2
ε + 1|9ε⟩Hε

. (4-10)

The idea of the proof of this standard inequality goes as follows: From the triangular inequality we get

⟨9ε|H 2
free|9ε⟩Hε

≤ 2⟨9ε|H 2
ε |9ε⟩Hε

+ 2⟨9ε|(Hε − Hfree)
2
|9ε⟩Hε

.
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Now, using inequality (4-2), we get that for any α < 1/
√

2,

(1 − 2α2)⟨9ε|H 2
free|9ε⟩Hε

≤ 2⟨9ε|H 2
ε |9ε⟩Hε

+ Cα∥9ε∥2
Hε
,

with Cα independent of ε. The result then easily follows.
It remains to prove that there exists a minimizing sequence {9ε,δ}ε,δ∈(0,1) ⊂ D(Hε) for Hε such that

⟨9ε|H 2
ε |9ε⟩Hε

≤ max{E2
ε , (Eε + δ)2} ≤ C, (4-11)

with the last inequality given by Proposition 3.1. Indeed, combining the above estimate with (4-10), we
immediately deduce that (3-17) holds true. Let us denote by 1(a,b)(Hε) the spectral projections of Hε,
and by P(a,b) := 1(α,β)(Hε)Hε the associated spectral subspaces. Let us now choose, for any δ > 0,

9ε,δ ∈ {9 ∈ P(Eε−δ,Eε+δ) : ∥9∥Hε
= 1}.

Each spectral subspace above is not empty by definition of Eε = inf σ(Hε). Therefore, on one hand,

⟨9ε,δ|Hε|9ε,δ⟩Hε
≤ Eε + δ,

and, on the other,
∥Hε9ε,δ∥2

Hε
≤ max{E2

ε , (Eε + δ)2}. □

It remains only to prove Lemma 3.10, used in the nontrapped case.

Proof of Lemma 3.10. To prove the result, it is sufficient to show that, if 9ε is such that∣∣⟨9ε|(dGε(ω)+ 1)δ|9ε⟩Hε

∣∣ ≤ C,

for some δ > 1
2 and some finite constant C , and if 9εn

gqc
n→∞

−−−→ n, then (3-30) holds true, i.e., for all
B ∈ B(L2(Rd N )),

lim
n→∞

⟨9εn |OpWick
εn

(Vz))B9εn ⟩Hε
=

∫
hω

dn[VzB].

Such a result is however a special case of [Correggi et al. 2023, Proposition 2.6], if in that statement
Wigner measures are substituted by generalized Wigner measures, the test with compact operators of the
small system is replaced with the test with bounded operators, and dGε(1) is replaced by dGε(ω). The
proof given there is generalized to this setting straightforwardly, recalling the properties of generalized
Wigner measures outlined in the Appendix. There is only one thing we need to mention explicitly: the
integration of operator-valued functions with respect to generalized Wigner measures makes sense only if
Ran(z 7→ Vz)⊂ B(L2(Rd N )) is separable in the norm topology of B(L2(Rd N )). Let us check explicitly
that Ran(z 7→ Vz) is indeed separable: Since hω is separable, let us denote by k ⊂ hω a countable dense
subset and denote by

Vk := {Vζ (x) ∈ B(L2(Rd N )) : ζ ∈ k}

the image of k by means of z 7→ Vz . Now, for any z ∈ hω, ζ ∈ k, we have that

∥Vz −Vζ∥B(L2(Rd N )) ≤ 2∥ω−1/2λ∥L∞(Rd ;h)∥z − ζ∥hω ,

which implies that Vk is dense in Ran(z 7→ Vz) with respect to the B(L2(Rd N ))-norm topology. □
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4B. The polaron model. The polaron model, introduced in [Fröhlich 1937], describes N electrons
(spinless for simplicity) subjected to the vibrational (phonon) field of a lattice. This model is similar to
Nelson’s, however the coupling is slightly more singular. The one-excitation space is h = L2(Rd), while
the form factor is given by (1-9): the quasiclassical energy has the same form as in the Nelson model, as
well as the effective potential Vz (see (1-15)), although now

λ(x; k)=
√
α

e−i k·x

|k|(d−1)/2 , ω = 1,

where α > 0 is a constant measuring the coupling’s strength. The assumptions on K0 = −1+W are the
same as in the Nelson model. Let us remark that in this case since ω = 1, we have that hω = h.

The key difference with the aforementioned Nelson model is thus that there exists z ∈ h such that

Vz( · ) /∈ L∞(Rd),

due to the fact that λ /∈ L∞(Rd
; h). However, it is possible to write Vz as the sum of an L∞ function and

the commutator between an L∞ vector function and the momentum operator −i∇x :

Vz(x)=
√
α(V<,z(x)+ [−i∇x,V>,z(x)]), (4-12)

where
V<,z(x)= 2ReF−1

[λ<z](x), λ<(k) := 1|k|≤ϱ|k|
−(d−1)/2,

V>,z(x)= 2ReF−1
[λ>z](x), λ>(k) := 1|k|>ϱ|k|

−(d+1)/2 k̂,

where k̂ := k/|k| and F stands for the Fourier transform in Rd. Note that, for any ϱ>0, we have that λ<∈h

and λ> ∈ h⊗ Cd. By the KLMN theorem, it then follows that Hz is self-adjoint and bounded from below
for all z ∈ h, with z-independent form domain Q(Hz)= Q(K0). Let us remark that, choosing ρ suitably
large (independent of z) in the above decomposition, it is possible to make the operator Hz bounded from
below uniformly with respect to z ∈ h; see, e.g., [Correggi and Falconi 2018, Proposition 3.21].

The quasiclassical Wick quantization of Hz formally yields the same expression as in the Nelson
model (with ω = 1 and λ as above). Such a formal operator gives rise to a closed and bounded from
below quadratic form, via the decomposition (4-12) (this can also be proved by the KLMN theorem,
choosing ϱ sufficiently large; see, e.g., [Frank and Schlein 2014; Lieb and Thomas 1997]). We still denote
the corresponding self-adjoint operator by Hε with a little abuse of notation. The polaron Hamiltonian Hε
has a ground state, if −1+W has compact resolvent by an application of the HVZ theorem analogous
to the one for the Nelson model (see the aforementioned result in [Dereziński and Gérard 1999]). It is
known that ground states exist also for nonconfining but suitably regular external potentials W .

Proof of Proposition 3.1. These lower and upper bounds are well known; see, e.g., [Correggi and Falconi
2018; Lieb and Thomas 1997]. The lower bound is a direct consequence of the KLMN theorem, while
the upper bound is proved using coherent states for the field in a fashion that is completely analogous to
the one discussed for the Nelson model. Thus here we focus on the lower bound.
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Let us introduce the unperturbed operator Hfree = K0 ⊗ 1 + 1 ⊗ dGε(1), as in the Nelson model. Then,
for any 9ε ∈ Q(Hfree), for all ϱ > 0 and for all β > 0, we can bound the interaction term in the polaron
quadratic form via∣∣⟨9ε|OpWick

ε (V<,z(x))− i∇x · OpWick
ε (V>,z(x))+ iOpWick

ε (V>,z(x)) · ∇x |9ε⟩Hε

∣∣
≤ 2∥λ<∥h⟨9ε|H

1/2
free |9ε⟩Hε

+ 4∥λ>∥h⟨9ε|Hfree|9ε⟩Hε

≤
1
β

∥λ<∥
2
h∥9ε∥

2
Hε

+ (β + 4∥λ>∥h)⟨9ε|Hfree|9ε⟩Hε
. (4-13)

Obviously, the norms of λ< and λ> depend on ϱ. However, since the norm of λ> diverges as ϱ→ 0 and
vanishes as ϱ→ +∞, we can always choose ϱ = ϱ(β) such that

4∥λ>∥h = β. (4-14)

Hence, we can bound∣∣⟨9ε|HI |9ε⟩Hε

∣∣ ≤
√
αN

[
2β⟨9ε|Hfree|9ε⟩Hε

+
1
β

∥λ<∥
2
h∥9ε∥

2
Hε

]
,

and therefore, taking β = (2
√
αN )−1, we conclude that

Eε ≥ −2αN 2
∥λ<∥

2
h, (4-15)

where the last norm is evaluated at ϱ((2
√
αN )−1). □

Let us now prove Lemmas 3.6 and 3.7. The assumption in the former takes the following simplified
form for the polaron model: assuming that there exists a finite constant C such that∣∣⟨9ε|(K0 + dGε(1)2 + 1)|9ε⟩Hε

∣∣ ≤ C, (4-16)

the convergence (3-18) holds true for any limit point in W (9ε, ε ∈ (0, 1)).

Proof of Lemma 3.6. Using again the splitting (4-12), we see that the term involving the quantization
of V<,z converges by Lemma 4.1. Let us consider then the other term. Analogously to the proof of
Lemma 4.1, we define compact approximate identities {1m}m∈N ⊂ L ∞(L2(Rd N )) as

1m := 1[−m,m](K0).

We can now rewrite explicitly the term involving the quantization of V>,z , by introducing ξ ∈ L∞(Rd
; h)

given by

ξ(x; k) := λ>e−i k·x, (4-17)

as

√
α

N∑
j=1

⟨9εn |[−i∇j ,Op(Wick)
εn

(V>(xj ))]|9εn ⟩Hεn

= 2
√
α

N∑
j=1

Re⟨−i∇j9εn |[a
†
εn
(ξ(xj ))+ aεn (ξ(xj ))]9εn ⟩Hεn

. (4-18)
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In order to prove its convergence, we estimate∣∣⟨−i∇j9εn |[a
†
εn
(ξ(xj ))+ aεn (ξ(xj ))]9εn ⟩Hεn

∣∣
≤

∣∣⟨−i∇j9εn |[a
†
εn
(ξ(xj ))+ aεn (ξ(xj ))]1m9εn ⟩Hεn

∣∣
+

∣∣⟨−i∇j9εn |[a
†
εn
(ξ(xj ))+ aεn (ξ(xj ))](1 − 1m)9εn ⟩Hεn

∣∣. (4-19)

The first term on the right-hand side converges when n → ∞ and m ∈ N is fixed, thanks to [Correggi
et al. 2023, Proposition 7.1]; then, a dominated convergence argument allows us to take the limit m → ∞,
yielding the desired result. It remains therefore to prove that the second term on the right-hand side
converges to zero as m → ∞, uniformly with respect to ε ∈ (0, 1). This is done as follows:∣∣⟨−i∇j9εn |[a

†
εn
(ξ(xj ))+ aεn (ξ(xj ))](1 − 1m)9εn ⟩Hεn

∣∣
≤ ∥∇j9ε∥Hε

∥[a†
εn
(ξ(xj ))+ aεn (ξ(xj ))](1 − 1m)9ε∥Hε

≤ 2(ε+ ∥ξ∥L∞(Rd ;h))∥∇j9ε∥Hε
∥(dGε(1)+ 1)1/2(1 − 1m)9ε∥Hε

. (4-20)

Thus, for all β > 0, ε ∈ (0, 1) and s > 0 and for any c0 > |inf σ(K0)|,∣∣⟨−i∇j9εn |[a
†
εn
(ξ(xj ))+ aεn (ξ(xj ))](1 − 1m)9εn ⟩Hεn

∣∣
≤ (1 + ∥ξ∥L∞)

[
β∥K1/2

0 9ε∥
2
Hε

+
1
β

∥(1 − 1m)(K0 + c0)
−s/2

∥
2
B(L2(Rd N ))

∥(dGε(1)+ 1)1/2(K0 + c0)
s/29ε∥

2
Hε

]
≤ 2(1 + ∥ξ∥L∞)

(
β +

1
β

∥(1 − 1m)(K0 + c0)
−s/2

∥
2
B

)
⟨9ε|K0 +K2s

0 + dGε(1)2 + 1|9ε⟩Hε
. (4-21)

Hence, using (4-16), for any s ≤
1
2 , we get∣∣⟨−i∇j9εn |[a

†
εn
(ξ(xj ))+ aεn (ξ(xj ))](1 − 1m)9εn ⟩Hεn

∣∣ ≤ Cβm, (4-22)

where we have chosen

β = βm := ∥(1 − 1m)(K0 + c0)
−s/2

∥B = sup
η∈[(−∞,−m)∪(m,+∞)]∩σ(K0)

1
(η+ c0)s/2

m→∞
−−−→ 0.

Since the right-hand side of (4-22) is independent of ε and converges to zero as m → ∞, the result is
proven. □

Proof of Lemma 3.7. The proof is analogous to the one for the Nelson model. The expectation of the
number operator squared is bounded via the pull-through formula by means of the expectation of H 2

ε . As
discussed in [Correggi et al. 2023], the pull-through formula was originally proved for the renormalized
Nelson Hamiltonian with a bound that is ε-dependent in [Ammari 2000]; the uniformity of such bound
with respect to ε ∈ (0, 1) has been proved in [Ammari and Falconi 2017]. Since the renormalized Nelson
model “contains” all type of terms appearing in the polaron model, the proof of the formula extends to
the polaron model immediately, see [Olivieri 2020] for additional details.
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The pull-through formula reads as follows: there exists a finite constant C (independent of ε) such that

⟨9ε|dGε(1)2|9ε⟩Hε
≤ C⟨9ε|(Hε + 1)2|9ε⟩Hε

. (4-23)

The expectation of Hfree is bounded by means of the expectation of Hε, using the KLMN inequality,
already discussed in the proof of Proposition 3.1, in the very same way we used the Kato–Rellich inequality
for the Nelson model. The fact that there exists a minimizing sequence such that the expectation of H 2

ε is
bounded uniformly with respect to ε ∈ (0, 1) is also discussed in the proof for the Nelson model and it
does not depend on the model at hand. We omit further details for the sake of brevity. □

It remains only to prove Lemma 3.10 for nontrapping potentials.

Proof of Lemma 3.10. The proof uses the following fact: if 9ε is such that there exists δ ≥ 1 and a finite
constant C such that ∣∣⟨9ε|(K0 + dGε(1)δ + 1)|9ε⟩Hε

∣∣ ≤ C, (4-24)

then, if n ∈ G W (9ε, ε ∈ (0, 1)) and 9εn

gqc
n→∞

−−−→ n, one has that (3-30) holds true.
Such a result is proved by a combination of [Correggi et al. 2023, Propositions 2.6 and 7.1], if in these

propositions Wigner measures are substituted by generalized Wigner measures and the test with compact
operators of the small system is substituted by the test with the identity operator. The proof given there
is generalized to this setting straightforwardly, recalling the properties of generalized Wigner measures
outlined in the Appendix.

As in the proof for the Nelson model, let us check explicitly that Ran(z 7→ Vz) is separable in the
norm operator topology.9 By using the decomposition (4-12), we see that the term containing V<,z has
separable range, since it is equivalent to the one appearing in the Nelson model. Let us focus then on the
remaining term containing the expectation of the operator [−i∇x ,V>,z]. Such an operator is not bounded.
Nonetheless, it is nT -integrable with T = K0 + 1 by (4-24), provided that

h ∋ z 7→

N∑
j=1

T −1/2
[−i∇j ,V>,z(xj )]T −1/2

∈ B(L2(Rd N )) (4-25)

has separable range. Since h is separable, let us denote by k ⊂ h a countable dense subset and denote by

T −1/2ṼkT −1/2
:=

{∑
j

T −1/2
[−i∇j ,V>,ζ(xj )]T

−1/2
∈ B(L2(Rd N )) : ζ ∈ k

}
the image of k through T −1/2 ∑

j [−i∇j ,V>, · (xj )]T −1/2. Now, for any z ∈ h, ζ ∈ k and j = 1, . . . , N ,
we have that (recall (4-17))

∥T −1/2
[−i∇j ,V>,z(xj )]T −1/2

− T −1/2
[−i∇j ,V>,ζ (xj )]T −1/2

∥B(L2(Rd N )) ≤ 4∥ξ∥L∞∥z − ζ∥h,

which implies that T −1/2ṼkT −1/2 is dense in the image of the map (4-25) with respect to the norm
topology in B(L2(Rd N )). □

9More precisely, we prove that Ran(z 7→ (K0 + 1)−1/2Vz(K0 + 1)−1/2) has separable range. This is sufficient to prove
that V( · ) is integrable with respect to n, since the latter is in the domain of K0 + 1.
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4C. The Pauli–Fierz model. The Pauli–Fierz model describes N spinless charges (with an extended
and sufficiently smooth charge distribution) interacting with the electromagnetic field in the Coulomb
gauge, in three dimensions. Generalizations to other gauges, to particles with spin or to two dimensions
are possible without much effort. The one-excitation Hilbert space is thus h = L2(R3

; C2). Let the
charge density of each particle be given by λj (x), with λj ∈ L∞(R3

; L2(R3)), j = 1, . . . , N , such that
−i∇jλj (x; k)= kλj (x; k) and let the polarization vectors be denoted ep ∈ L∞(R3

; R3), p = 1, 2, such
that for a.e. k ∈ R3 and ep(k) · ep′(k)= δpp′ , k · ep(k)= 0 (Coulomb gauge). The quasiclassical energy
functional is then given by (1-17), i.e.,10

Hz =

N∑
j=1

1
2m j

(−i∇j + az, j (xj ))
2
+W(X)+ ⟨z|ω|z⟩h,

where the classical field is

az, j (x)= 2Re⟨z|λj (x)⟩h = 2Re
2∑

p=1

⟨z p|λj (x)ep⟩L2(R3) ∈ C3

and, as usual, W is an external positive potential acting on the particles. Note that the field free energy is

⟨z|ω|z⟩h =

2∑
p=1

⟨z p|ω|z p⟩L2(R3).

The operator Hz is self-adjoint for all z ∈ hω, with domain of self-adjointness D(K0), where we recall
that K0 = −1+W , where in this case we adopt the notation

−1=

N∑
j=1

−
1j

2m j
.

The quasiclassical Wick quantization of Hz yields the Pauli–Fierz Hamiltonian in (1-10):

Hε =

N∑
j=1

1
2m j

(−i∇j + Aε, j (xj ))
2
+W(x1, . . . , xN )+ 1 ⊗ dGε(ω),

where

Aε, j (x)= a†
ε (λj (x))+ aε(λj (x))=

2∑
p=1

(a†
ε,p(λj (x)ep)+ aε,p(λj (x)ep))

is the quantized magnetic potential. The Pauli–Fierz Hamiltonian is self-adjoint on D(K0 + dGε(ω)),
provided that for almost all x ∈ R3 and for all j = 1, . . . , N, we have λj (x) ∈ Q(ω+ω−1) (see [Falconi
2015; Hasler and Herbst 2008; Hiroshima 2000; 2002; Matte 2017]), that we assumed in (1-11). The
Pauli–Fierz Hamiltonian has a ground state for suitable choices of the potential W , e.g., if it is the sum
of single particle and pair potentials with suitable properties (clustering, binding, etc.); see, e.g., [Arai
et al. 1999; Gérard 2000; Griesemer et al. 2001; Hiroshima 2001]. In particular, this holds true when the
field is massive [Gérard 2000], i.e., for ω > 0. As for the other models, we refrain from giving a detailed

10Without loss of generality, we fix the charge e = 1 since it does not play any relevant role in these arguments.
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description of the conditions allowing them to have a ground state, since for our purposes it is sufficient
that a ground state does exist in some cases.

Proof of Proposition 3.1. The lower bound follows from the diamagnetic inequality [Matte 2017]:

⟨9ε| −1j |9ε⟩Hε
≤ ⟨9ε|(−i∇j + Aε, j (xj ))

2
|9ε⟩Hε

, (4-26)

which in particular implies that Hε is positive. The upper bound is proved using coherent states for the
field, analogously to the Nelson model and the polaron. □

Let us now prove Lemmas 3.6 and 3.7 for the Pauli–Fierz model. The former takes the following form.

Proof of Lemma 3.6. The “potential” (1-16) is composed of two parts:

Vz(x)= 2
N∑

j=1

1
m j

[−iRe⟨z|λj (x)⟩h · ∇j + (Re⟨z|λj (x)⟩h)2]

as well as its Wick quantization. The convergence of the quantization of the second term is perfectly
analogous to the one given for the Nelson model in Lemma 4.1. The proof of convergence for the
quantization of the term involving the gradient is given in the proof of Lemma 3.6 for the polaron. □

Proof of Lemma 3.7. The proof follows from the next estimate, due to F. Hiroshima, and whose detailed
proof will be given in [Ammari et al. 2022]. There exists a finite constant C > 0 such that, for all
9ε ∈ D(Hfree),

∥Hfree9ε∥Hε
≤ C∥Hε9ε∥Hε

. (4-27)

Let us remark that the expectation of

K0 = −

∑
j

(1/(2m j ))1j +W

could also be bounded by means of the expectation of Hε using the diamagnetic inequality (4-26). Hence
if ω > 0, (3-19) could be proved combining the diamagnetic inequality and the pull-through formula
(4-23).

Finally, the fact that there exists a minimizing sequence such that the expectation of H 2
ε is bounded

uniformly with respect to ε ∈ (0, 1) is also discussed in the proof of Lemma 3.7 for the Nelson model. □

It remains only to prove Lemma 3.10 for nontrapped systems.

Proof of Lemma 3.10. The proof here is obtained combining the proofs given for the Nelson and polaron
models. In fact, the quadratic terms can be treated exactly as the linear terms in the Nelson model, and
the gradient terms are equivalent to those appearing in the polaron. □

Appendix: Algebraic state-valued measures

The quasiclassical Wigner measures are state-valued by construction [Correggi et al. 2023; Falconi 2018b].
In other words, quasiclassical measures are countably additive (in a sense to be clarified below) measures
on the measurable phase space of classical fields, taking values in quantum states, or, more generally, in
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the Banach cone A′
+

of positive elements in the dual of a C*-algebra A. In addition, the quasiclassical
symbols are measurable functions from the phase space to a W*-algebra B⊇A of observables (operators),
where A is supposed to be an ideal of B. It is therefore necessary to properly define integration of
operator-valued symbols with respect to a state-valued measure. In this appendix we collect some technical
properties of state-valued measures and integration, from a general algebraic standpoint that includes both
state-valued and generalized state-valued measures, as used throughout the paper. The ideas developed
here in great generality are particularly suited for what we called generalized state-valued measures,
and they are mostly taken from [Bartle 1956; Neeb 1998]. In fact, if state-valued measures have been
already studied in semiclassical analysis and adiabatic theories (see [Balazard-Konlein 1985; Fermanian-
Kammerer and Gérard 2002; Gérard 1991; Gérard et al. 1991; Teufel 2003]), the reader might not be so
familiar with generalized state-valued measures. Since for the latter there is no Radon–Nikodým property,
their description is more abstract, and there are some limitations, especially concerning integration of
operator-valued functions. This justifies the abstract approach followed in this appendix.

A1. Algebraic state-valued measures. Let A be a C*-algebra and denote by A′
+

the cone of positive
elements in the dual of A. In addition, let (X, 6) be a measurable space. There are two equivalent ways
of defining an A′

+
-valued measure on (X, 6).

Definition A.1 (state-valued measure [Neeb 1998]). A family of real-valued measures (µA)A∈A+
defines

a weak* σ -additive measure m :6 → A′
+

as

[m(S)](A1 − A2 + i A3 − i A4)= µA1(S)−µA2(S)+ iµA3(S)− iµA4(S),

for any S ∈ 6 and A1, A2, A3, A4 ∈ A+, if and only if for any A, B ∈ A+ and λ ∈ R+, we have
µλA+B = λµA +µB .

Definition A.2 (algebraic state-valued measure [Bartle 1956]). An application m :6 → A′
+

is a measure
if and only if m(∅)= 0, and for any family (Sn)n∈N ⊂6 of mutually disjoint measurable sets,

m

( ⋃
n∈N

Sn

)
=

∑
n∈N

m(Sn),

where the right-hand side converges unconditionally in the norm of A′.

It is clear that any m satisfying Definition A.2 satisfies also Definition A.1, since σ -additivity in
norm implies weak* σ -additivity. The converse, i.e., that an m satisfying Definition A.1 also satisfies
Definition A.2 is nontrivial, and follows from properties of uniform boundedness in Banach spaces, as
proved in [Dunford 1938, Chapter II]. We use these two definitions interchangeably, depending on the con-
text. Let us remark that with the definitions above, any state-valued measure is automatically finite, since
m(X)∈A′

+
. Actually, in the main body of the paper, we consider probability measures, i.e., ∥m(X)∥A′ = 1.

Remark A.3 (state-valued and generalized state-valued measures). The state-valued measures used in
the paper correspond to choosing A = L ∞(H ); generalized state-valued measures are in a subset of the
measures obtained by picking A = L 1(H ).
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For algebraic state-valued (cylindrical) measures on vector spaces, Bochner’s theorem holds, and
the Fourier transforms are completely positive maps that are weak* continuous when restricted to any
finite-dimensional subspace; see [Falconi 2018b] for additional details. An algebraic state-valued measure
is also monotone:

Lemma A.4. For any S1 ⊆ S2 ∈6,
m(S1)≤ m(S2),

i.e., m(S2)−m(S1) ∈ A′
+

.

Proof. The scalar measures µA, A ∈ A+, are monotonic. Therefore, for all A ∈ A+,

[m(S2)](A) := µA(S2)≥ µA(S1)=: [m(S1)](A). (A-1)

Hence, for all A ∈ A+,
[m(S2)−m(S1)](A)≥ 0. □

We can now introduce the scalar norm measure m, satisfying µA(S)≤ ∥A∥Am(S), for any S ∈6, that
proves to be a very useful tool to compare vector integrals with scalar integrals.

Definition A.5 (norm measure). Let m be an algebraic state-valued measure. Then, its norm measure
m :6 → R+ is defined as

m(S) := ∥m(S)∥A′, (A-2)

for any measurable set S.

Using the cone properties of positive states in a C*-algebra, it is possible to prove that m is a finite
measure. Let us recall that the C*-algebra A may not be unital, so from now on we assume that there
exists a W*-algebra B ⊇ A. If A = L ∞(K )— the compact operators on a separable Hilbert space K —
and B = B(K ), it is well known that the aforementioned property is satisfied: A is actually in this case
a two-sided ideal of B. Let us denote by e ∈ B the identity element.

Proposition A.6 (properties of the norm measure). Let m be an algebraic state-valued measure. Then its
norm measure m is a finite measure on (X, 6) and m ≪ m.

Proof. The proof that m(∅) = 0 and m(X) < +∞ follows immediately from the definition, while
σ -additivity is proved as follows: Let (Sn)n∈N ⊂6 be a family of mutually disjoint measurable sets. We
are going to prove that, for any N ∈ N,

m
( N⋃

n=1

Sn

)
=

N∑
n=1

m(Sn). (A-3)

Indeed, let (eα)α∈I ⊂ A+ be an approximate identity of e ∈ B. It is well known that for any ω ∈ A′
+

we
have ∥ω∥A′ = limα∈I ω(wα). Hence, by Definition A.1 and Definition A.5,

m
( N⋃

n=1

Sn

)
= lim
α∈I

m

( N⋃
n=1

Sn

)
(eα)= lim

α∈I
µeα

( N⋃
n=1

Sn

)
= lim
α∈I

N∑
n=1

µeα (Sn)=

N∑
n=1

m(Sn).
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Next, we show

lim
N→∞

m
( ⋃

n∈N

Sn

)
−

N∑
n=1

m(Sn)= 0, (A-4)

which directly implies σ -additivity: Using again the approximate identity on the left-hand side, we obtain

lim
N→∞

lim
α∈I

m
( ⋃

n∈N

Sn

)
−

N∑
n=1

µeα (Sn).

We know that every µeα , α ∈ I , is σ -additive, and therefore that limN→∞

∑N
n=1 µeα (Sn)=µeα

(⋃
n∈N Sn

)
and limα∈I µeα

(⋃
n∈N Sn

)
= m

(⋃
n∈N Sn

)
. Hence, it remains to show that the limits in N and α can be

exchanged. In order to do that, it suffices to show that the limit in α exists uniformly with respect to N :

lim
α∈I

sup
N∈N

∣∣∣∣m( N⋃
n=1

Sn

)
−

N∑
n=1

µeα (Sn)

∣∣∣∣ = lim
α∈I

sup
N∈N

∣∣∣∣m( N⋃
n=1

Sn

)
−µeα

( N⋃
n=1

Sn

)∣∣∣∣
= lim
α∈I

sup
N∈N

(m −µeα )

( N⋃
n=1

Sn

)
≤ lim
α∈I
(m −µeα )(X)= 0, (A-5)

where we have used finite additivity of m and m −µeα and the fact that for any S ∈6, µeα (S)≤ m(S).
It remains to prove that m is absolutely continuous with respect to m. For absolute continuity of

a vector measure with respect to a scalar measure, we adopt the definition of [Diestel and Uhl 1977,
Section I.2, Definition 3]. Since both m and m are countably additive, it suffices to prove that, for any
S ∈ 6, m(S) = 0 implies m(S) = 0. However, since m(S) = ∥m(S)∥A′ and ∥ · ∥A′ is a norm, then the
aforementioned implication follows directly by the properties of norms. □

A2. Integration of scalar functions. The theory of integration for algebraic state-valued measures could
be done in a unified way for scalar- and operator-valued functions. However, it is instructive to deal with
scalar functions first. Let us recall that a function g : X → R+ is simple if there exist a number N ∈ N,
mutually disjoint measurable sets S1, . . . , SN ∈6 and nonnegative numbers c1, . . . , cN ∈ R+, such that,
for all x ∈ X ,

g(x)=

N∑
j=1

cj 1Sj (x), (A-6)

where 1Sj is the characteristic function of the set Sj . Integration of simple functions with respect to an
algebraic state-valued measure µ is straightforwardly defined as∫

X
dm(x)g(x)=

N∑
j=1

cjm(Sj ) ∈ A′

+
. (A-7)

The integral of a nonsimple function can be defined again in two equivalent ways.
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Definition A.7 (integrability I [Neeb 1998, Lemma I.12]). We say that a measurable function f : X → R+

is m-integrable if and only if f is µA-integrable for any A ∈ A+. Furthermore, its integral belongs to A′
+

and is uniquely defined by the integral with respect to µA, i.e.,(∫
S

dm(x) f (x)
)
(A1 − A2 + i A3 − i A4)

=

∫
S

dµA1(x) f (x)−
∫

S
dµA2(x) f (x)+ i

∫
S

dµA3(x) f (x)− i
∫

S
dµA4(x) f (x), (A-8)

for any A1, A2, A3, A4 ∈ A+.

Definition A.8 (integrability II [Bartle 1956, Definition 1]). We say that a measurable function f : X →R+

is m-integrable if and only if for any S ∈6 the sequence of simple integrals{∫
X

dm(x) fn(x)1S(x)
}

n∈N

∈ A′

is Cauchy, where ( fn)n∈N is any approximation of f in terms of simple functions. The integral is then
defined as ∫

S
dm(x) f (x)= lim

n→∞

∫
X

dm(x) fn(x)1S(x), (A-9)

and it is independent of the chosen approximation.

In both cases one says that a complex function f : X → C is µ-integrable if and only if | f | is
m-integrable and, in this case, its integral is given by the complex combination of the integrals of its real
positive, real negative, imaginary positive and imaginary negative parts.

Since the weak* and strong limits coincide if they both exist, it follows that the integrals of a function
that is m-integrable with respect to Definitions A.7 and A.8 coincide. In addition, if f is m-integrable in
the “strong” sense of Definition A.8, then it is also m-integrable in the weak* sense of Definition A.7. It
remains to show that if f is m-integrable in the sense of Definition A.7, then it is m-integrable in the
sense of Definition A.8, but this can be done by exploiting the norm measure m.

Lemma A.9. If a measurable function f : X → R+ is m-integrable in the sense of Definition A.7, then it
is m-integrable as well.

Proof. If f is m-integrable, then for any S ∈6,
∫

S dµA(x) f (x) is finite and nonnegative for any A ∈A+.
Applying [Neeb 1998, Lemma I.5], we deduce that there exists a finite constant C , depending only
on S, m, and f , such that ∫

S
dµA(x) f (x)≤ C∥A∥A. (A-10)

Now, let ( fn)n∈N be a simple pointwise nondecreasing approximation of f from below. Then, by the
monotone convergence theorem,∫

S
dm(x) f (x)= lim

n→∞

∫
X

dm(x) fn(x)1S(x).
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Hence, by Definition A.5 and µeα -integrability of f ,∫
X

dm(x) fn(x)1S(x)= lim
α∈I

∫
X

dµeα (x) fn(x)1S(x)≤ lim
α∈I

∫
S

dµeα (x) f (x)≤ C lim
α∈I

∥eα∥A ≤ C, (A-11)

and taking the limit n → ∞, we get the result. □

Proposition A.10 (equivalence of Definitions A.7 and A.8). If a measurable function f : X → R+ is
m-integrable in the sense of Definition A.7, then it is m-integrable in the sense of Definition A.8. In
addition, for any S ∈6, ∥∥∥∥∫

S
dm(x) f (x)

∥∥∥∥
A′

≤

∫
S

dm(x) f (x). (A-12)

Proof. We prove that {∫
S

dm(x) fn(x)
}

n∈N

∈ A′

+

is a Cauchy sequence, where ( fn)n∈N is a nondecreasing simple approximation of f . Observe that for
any n ≥ m ∈ N, fn − fm is a simple positive function, which can be written as

fn − fm =

N (n,m)∑
j=1

c(n,m)j 1S(n,m)j
. (A-13)

Hence,∥∥∥∥∫
S

dm(x)( fn(x)− fm(x))
∥∥∥∥
A′

≤

N (n,m)∑
j=1

c(n,m)j m(S(n,m)j ∩ S)=
∫

S
dm(x)( fn − fm)(x)−−−−→

n,m→∞
0, (A-14)

where in the last limit we have used the dominated convergence theorem, since fn − fm ≤ 2 f , and f is
m-integrable by Lemma A.9. This proves both m-integrability of f in the sense of Definition A.8, and
the bound (A-12). □

Therefore, the two definitions are indeed equivalent: Definition A.8 has the advantage of identifying
constructively the integral as the limit of the integrals of simple approximations of the integrand, while
Definition A.7 is useful to prove properties of the integral. The integral defined above is indeed linear in
the integrand and monotonic.

Lemma A.11. Let f, g : X → R be two m-integrable functions. If for m-a.e. x ∈ X we have that
g(x)≤ f (x), then ∫

X
dm(x)( f (x)− g(x)) ∈ A′

+
. (A-15)

Proof. The result follows from Definition A.7 and monotonicity of the usual integral. □

The dominated convergence theorem holds in a general form (see Theorems A.17 and A.18 below),
which in particular implies that it applies to scalar functions.
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A3. Integration of operator-valued functions. The integration of operator-valued functions is defined
similarly to Definition A.8. Let us discuss first the integration of simple operator-valued functions and the
approximation with simple functions in this context. An operator-valued function g : X → B is simple if
there exist N ∈ N, mutually disjoint measurable sets S1, . . . , SN ∈6 and c1, . . . , cN ∈ B such that for
all x ∈ X ,

g(x)=

N∑
j=1

cj 1Sj (x). (A-16)

Let us recall that since A ⊂ B, for any ω ∈ A′ and B ∈ B, we can define ω ◦ B ∈ A′ as

(ω ◦ B)( · ) := ω( · B) or (ω ◦ B)( · ) := ω(B · ), (A-17)

depending on which side A is an ideal of B. If it is a two-sided ideal, both definitions are equivalent.
Keeping this definition in mind, we can define the integral of simple functions as∫

X
dm(x)g(x)=

N∑
j=1

m(Sj ) ◦ cj ∈ A′. (A-18)

Next, we recall hypotheses under which an operator-valued function admits a simple approximation.

Proposition A.12 (simple approximation [Cohn 2013, Proposition E.2]). Let f : X →B be a measurable
function. If f (X) is separable, then f admits a simple approximation, i.e., there exists a sequence { fn}n∈N

of simple functions such that for all x ∈ X and n ∈ N,

∥ fn(x)∥B ≤ ∥ f (x)∥B and lim
n→∞

∥ f (x)− fn(x)∥B = 0. (A-19)

Due to this result, in the following we only consider operator-valued functions with separable range,
even if not stated explicitly.

Definition A.13 (integrability III). A measurable function with separable range f : X →B is m-integrable
if and only if, for any S ∈6, the sequence of simple integrals{∫

X
dm(x) fn(x)1S(x)

}
n∈N

∈ A′ (A-20)

is Cauchy, where { fn}n∈N is any approximation of f in terms of simple functions. The integral is then
defined as ∫

S
dm(x) f (x)= lim

n→∞

∫
X

dm(x) fn(x)1S(x), (A-21)

and it is independent of the chosen approximation.

Definition A.14 (absolute integrability). A measurable function with separable range f : X → B is
m-absolutely integrable if and only if ∥ f ( · )∥B is m-integrable.

In fact, any m-absolutely integrable function is also m-integrable.
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Proposition A.15 (integrability and absolute integrability). Let f : X →B be an m-absolutely integrable
function. Then f is also m-integrable and, for all S ∈6,∥∥∥∥∫

S
dm(x) f (x)

∥∥∥∥
A′

≤

∫
S

dm(x)∥ f (x)∥B. (A-22)

Proof. The proof is completely analogous to that of Proposition A.10. We omit it for the sake of brevity. □

Corollary A.16 (integrability of bounded functions). Any function f : X → B with separable range such
that ∥ f ( · )∥B is m-a.e. uniformly bounded is m-integrable.

We are now in a position to state two versions of the dominated convergence theorem for operator-
valued functions. The second, that makes crucial use of absolute integrability, is the most convenient
in our concrete applications. Note that both results easily apply to the special case of scalar functions
discussed in the previous section.

Theorem A.17 (dominated convergence I [Bartle 1956, Theorem 6]). Let { fn}n∈N, fn : X → B for all
n ∈ N, be a sequence of m-integrable operator-valued functions strongly converging m-a.e. to f : X →B.
If there exists an m-integrable operator-valued function g such that for all n ∈ N and S ∈6∥∥∥∥∫

S
dm(x) fn(x)

∥∥∥∥ ≤

∥∥∥∥∫
S

dm(x)g(x)
∥∥∥∥, (A-23)

then f is m-integrable and for any S ∈6∫
S

dm(x) f (x)= lim
n→∞

∫
S

dm(x) fn(x). (A-24)

Theorem A.18 (dominated convergence II). Let { fn}n∈N, fn : X → B for all n ∈ N, be a sequence
of operator-valued functions strongly converging µ-a.e. to f : X → B. If there exists an m-integrable
function G : X → R+ such that m-a.e.

∥ fn(x)∥B ≤ G(x), (A-25)

then, for any n ∈ N, fn and f are m-absolutely integrable, and∫
S

dm(x) f (x)= lim
n→∞

∫
S

dm(x) fn(x). (A-26)

Proof. By the dominated convergence theorem for scalar measures and functions applied to m and
{∥ fn( · )∥B}n∈N, respectively, we get that ∥ fn( · )∥B and ∥ f ( · )∥B are both m-integrable and therefore,
by Proposition A.15, it follows that fn and f are also m-integrable. Now, for any S ∈ 6, again by
Proposition A.15, ∥∥∥∥∫

S
dm(x)( f − fn)(x)

∥∥∥∥
A′

≤

∫
S

dm(x)∥( f − fn)(x)∥B.

Therefore by the dominated convergence theorem for m applied to the sequence of scalar functions
{∥( f − fn)(x)∥B}n∈N, it follows that in the strong topology of A′,∫

S
dm(x) f (x)= lim

n→∞

∫
S

dm(x) fn(x). □
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A4. Integration of functions with values in unbounded operators. Let us restrict attention, for this
section, to the concrete case A = B(L2(Rd N )). In the applications described above, it is sometimes
necessary to integrate functions from some measurable space X to the unbounded operators on L2(Rd N )

(albeit with a rather explicit form). It is possible to define the integration of such functions with respect
to suitable generalized state-valued measures, as already outlined in Section 2B. Let us repeat here the
argument for the sake of completeness.

Let T > 0 be an operator on L2(Rd N ), possibly unbounded. A generalized state-valued measure is
in the domain of T if and only if there exists a generalized state-valued measure nT such that for all
B ∈ B(L2(Rd N )) and for any S ∈6,

nT (S)[T −1/2BT −1/2
] = n(S)[B].

Given a measure in the domain of T , we can integrate functions singular “at most as T ”. Let F be
a function from X to the (closed and densely defined) operators on L2(Rd N ). Then F is n-absolutely
integrable, with n in the domain of T , if and only if for n-a.e. x ∈ X ,

• T −1/2F(x)T −1/2
∈ B(L2(Rd N ));

• T −1/2F(x)T −1/2 is nT -absolutely integrable.

Given an absolutely integrable function, we can define the integral as follows: for any S ∈6,∫
S

dn(x)[F(x)] =

∫
S

dnT (x)[T −1/2F(x)T −1/2
].

A5. Two-sided integration. If A is a two-sided ideal of B, we can give a slight generalization of the
operator-valued integration, to accommodate integration of one function to the left and one function to
the right of the measure. We use the notations and definitions of Section A3. Let g, h : X → B be two
simple functions,

g(x)=

N∑
j=1

cj 1Sj (x), h(x)=

M∑
j=1

dj 1Tj (x).

In addition, for any B,C ∈ B and for any ω ∈ A′, let us define B ◦ω ◦ C ∈ A′ by

(B ◦ω ◦ C)( · ) := ω(B · C). (A-27)

Hence, it is possible to define two-sided simple integration as∫
X

g(x)dm(x)h(x)=

N∑
j=1

M∑
k=1

cj ◦µ(Sj ∩ Tk) ◦ dk. (A-28)

Moreover, if f1, f2 : X → B have separable range, it is straightforward to extend Definition A.13 to
define the two-sided integral ∫

S
f1(x)dm(x) f2(x) ∈ A′. (A-29)
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If the above integral exists, we say that the pair f1, f2 is m-two-sided-integrable (the order is relevant).
This notion also preserves positivity: for all f such that f ∗, f is m-two-sided-integrable, then∫

S
f ∗(x)dm(x) f (x) ∈ A′

+
. (A-30)

A pair of functions with separable range f1, f2 : X → B are m-two-sided-absolutely integrable if and
only if ∥ f1( · )∥B∥ f2( · )∥B is m-integrable. The analogue of Proposition A.15 is the following.

Proposition A.19 (integrability and absolute integrability). Let f1, f2 : X →B be m-two-sided-absolutely
integrable. Then, f1, f2 and f2, f1 are both m-two-sided-integrable and, for all S ∈6,∥∥∥∥∫

S
f1(x)dm(x) f2(x)

∥∥∥∥
A′

≤

∫
S

dm(x)∥ f1(x)∥B∥ f2(x)∥B, (A-31)

with analogous bound when f1 and f2 are exchanged on the left-hand side.

Finally, dominated convergence applies to two-sided integration too.

Theorem A.20 (dominated convergence III). Let { fn}n∈N and {gn}n∈N, fn, gn : X → B for all n ∈ N, be
two sequences of operator-valued functions strongly converging m-a.e. to f, g : X → B, respectively. If
there exists an m-square-integrable function G : X → R+ such that m-a.e.

∥ fn(x)∥B ≤ G(x), ∥gn(x)∥B ≤ G(x), (A-32)

then, for any n ∈ N, fn, gn and f, g are m-two-sided-absolutely integrable, and∫
S

f (x)dm(x)g(x)= lim
n→∞

∫
S

fn(x)dm(x)gn(x), (A-33)∫
S

g(x)dm(x) f (x)= lim
n→∞

∫
S

gn(x)dm(x) fn(x). (A-34)

A6. Radon–Nikodým property and push-forward. If an operator-valued function does not have a separa-
ble range, it may fail to have an approximation with simple functions. It is possible to give an alternative
definition of integration if A′ is a separable space, as it is the case for the trace class operators on a
separable Hilbert space L 1(K ), thanks to the following property.

Theorem A.21 (Radon–Nikodým property [Dunford and Pettis 1940, Theorem 2.1.0]). If A′ is separable,
then it has the Radon–Nikodým property: for every algebraic state-valued measure m, there exists a
function ϱ : X → A′

+
, which is m-Bochner-integrable and such that, for all S ∈6,

m(S)=

∫
S

dm(x)ϱ(x). (A-35)

The function ϱ is the Radon–Nikodým derivative of m with respect to m, denoted by ϱ = dm/dm.

Therefore, it is natural to give the following alternative definition of integrability. Recall that for any
0 ∈A′ and B ∈B we define (0 ◦ B)( · )= 0(B · ) if A is a left ideal of B, and (0 ◦ B)( · )= 0( · B) if A
is a right ideal of B. If A is a two-sided ideal, the notation 0B denotes indifferently either of the two. In
this case, for any B,C ∈ B, we can define (B ◦0 ◦ C)( · )= 0(B · C).
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Definition A.22 (integrability IV). Suppose that A′ is separable, and let f, g : X → B be measurable
functions (possibly with nonseparable range) and m be an algebraic state-valued measure with Radon–
Nikodým derivative ϱ= dm/dm. Then f is m-integrable if and only if ϱ◦ f ∈A′ is m-Bochner-integrable
and, for any S ∈6, ∫

S
dm(x) f (x) :=

∫
S

dm(x)ϱ(x) ◦ f (x) ∈ A′. (A-36)

If in addition A is a two-sided ideal of B, then f, g is m-two-sided-integrable if and only if f ϱg ∈ A′ is
m-Bochner-integrable and, for any S ∈6,∫

S
f (x)dm(x)g(x) :=

∫
S

dm(x) f (x) ◦ ϱ(x) ◦ g(x) ∈ A′. (A-37)

It is straightforward to see that Definition A.22 is equivalent to Definition A.13 and the analogous
one for the two-sided integral for any f, g with separable range, and therefore Definition A.22 extends
Definition A.13 to any separable A′. In addition, since m-Bochner-integrability is equivalent to m-absolute
integrability, it follows that, if A′ is separable, then m-integrability is equivalent to m-absolute-integrability.
Hence, all the results of Sections A2, A3 and A5 extend, if A′ is separable, to functions with nonseparable
range.

Suppose now that X is a topological vector space and 6 is the corresponding Borel σ -algebra. In
this context, Bochner’s theorem holds for algebraic state-valued measures [Falconi 2018b]: the Fourier
transform

m̂(ξ) :=

∫
X

dm(x)e2iξ(x)
∈ A′, with ξ ∈ X ′, (A-38)

identifies uniquely a measure. Therefore, the push-forward of an algebraic state-valued measure m by
means of a linear continuous map 8 : X → Y , where Y is again a topological vector space with the
Borel σ -algebra, is conveniently defined using the Fourier transform, and this definition suffices for the
purposes of this paper: more precisely, the push-forward measure 8♯m is the measure on Y whose
Fourier transform is defined by

̂(8 ♯m)(η) :=

∫
X

dm(x)e2iη(8(x))
∈ A′, with η ∈ Y ′. (A-39)
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